JP2015001367A - Gas-liquid separator, and air conditioner having the same mounted thereon - Google Patents

Gas-liquid separator, and air conditioner having the same mounted thereon Download PDF

Info

Publication number
JP2015001367A
JP2015001367A JP2013127742A JP2013127742A JP2015001367A JP 2015001367 A JP2015001367 A JP 2015001367A JP 2013127742 A JP2013127742 A JP 2013127742A JP 2013127742 A JP2013127742 A JP 2013127742A JP 2015001367 A JP2015001367 A JP 2015001367A
Authority
JP
Japan
Prior art keywords
gas
liquid separator
refrigerant
container
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013127742A
Other languages
Japanese (ja)
Inventor
瑞朗 酒井
Mizuro Sakai
瑞朗 酒井
麻子 田村
Asako Tamura
麻子 田村
松本 崇
Takashi Matsumoto
崇 松本
寿守務 吉村
Susumu Yoshimura
寿守務 吉村
村上 泰城
Taijo Murakami
泰城 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013127742A priority Critical patent/JP2015001367A/en
Publication of JP2015001367A publication Critical patent/JP2015001367A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a gas-liquid separator capable of suppressing the reduction in efficiency of the gas-liquid separation, and to obtain an air conditioner having such the gas-liquid separator.SOLUTION: A gas-liquid separator 10 of the invention comprises: a vessel 1; an inflow pipe 2 in which a part or the whole of end part positioned on the inner side of the vessel 1 is blocked and a plurality of holes are formed on a side of the region positioned inside the vessel 1, the inflow pipe 2 allowing fluid to flow into the inside of the vessel 1 from the outside of the vessel 1; and outflow pipes 3 and 4 for draining the fluid which has separated from the inside of the vessel 1 to the outside of the vessel 1. The plurality of holes include at least one hole with a large aperture area and a plurality of holes with a smaller aperture area. The at least one hole with the large aperture area is formed at a position closer to the end part of the inflow pipe 2 in comparison with the plurality of holes with the smaller aperture area.

Description

本発明は、気液分離器と、それを搭載した空気調和装置と、に関する。   The present invention relates to a gas-liquid separator and an air conditioner equipped with the same.

従来の気液分離器として、容器と、容器の内側に位置する側の端部に穴が形成され、容器の内側に位置する領域の側部に複数の穴が形成され、容器の外側から内側に流体を流入させる流入配管と、容器の内側から外側に分離後の流体を流出させる流出配管と、を備えるものがある(例えば、特許文献1を参照)。   As a conventional gas-liquid separator, a hole is formed at the end of the container and the side located inside the container, and a plurality of holes are formed at the side of the region located inside the container. Some have an inflow pipe for allowing fluid to flow into and an outflow pipe for allowing the separated fluid to flow out from the inside to the outside of the container (see, for example, Patent Document 1).

そのような気液分離器は、例えば、気液二相状態の冷媒を、冷媒蒸気と冷媒液とに分離することができる。流入配管に流入する気液二相状態の冷媒のうちの冷媒液が、慣性力によって、流入配管の容器の内側に位置する側の端部まで流れ、端部に形成された穴から容器の内側に流入し、また、流入配管に流入する気液二相状態の冷媒のうちの冷媒蒸気が、冷媒液を含んだ状態で、流入配管の容器の内側に位置する領域の側部に形成された複数の穴から容器の内側に噴出して容器の壁面に衝突することで、冷媒蒸気と冷媒液とが重力分離される。分離された冷媒蒸気と冷媒液とは、容器に設けられた流出配管から流出する。   Such a gas-liquid separator can, for example, separate a gas-liquid two-phase refrigerant into refrigerant vapor and refrigerant liquid. The refrigerant liquid of the gas-liquid two-phase refrigerant flowing into the inflow pipe flows to the end of the inflow pipe on the side located inside the container by the inertial force, and from the hole formed in the end to the inside of the container The refrigerant vapor of the gas-liquid two-phase refrigerant flowing into the inflow pipe is formed on the side of the region located inside the container of the inflow pipe in a state containing the refrigerant liquid. The refrigerant vapor and the refrigerant liquid are gravity-separated by ejecting from the plurality of holes to the inside of the container and colliding with the wall surface of the container. The separated refrigerant vapor and refrigerant liquid flow out from an outflow pipe provided in the container.

特許第4903119号公報(段落[0010]〜[0024]、段落[0078]〜[0080]、図1〜図4、図21〜図23)Japanese Patent No. 4903119 (paragraphs [0010] to [0024], paragraphs [0078] to [0080], FIGS. 1 to 4 and FIGS. 21 to 23)

従来の気液分離器では、流入配管に流入する流体の流量が大きくなったり、また、外気温度が低下したりすると、流入配管内での流体の流速が増大して、流入配管の端部に形成された穴から容器の内側に流入しきれなくなった大量の液体が、流入配管の側部に形成された穴から噴出して容器の壁面に衝突し、容器の内側で大きく飛散することとなって、気液分離の効率が低下してしまうという問題があった。   In the conventional gas-liquid separator, when the flow rate of the fluid flowing into the inflow pipe increases or the outside air temperature decreases, the flow velocity of the fluid in the inflow pipe increases, and the end of the inflow pipe is A large amount of liquid that can no longer flow into the inside of the container from the formed hole is ejected from the hole formed in the side portion of the inflow pipe, collides with the wall surface of the container, and greatly scatters inside the container. As a result, the efficiency of gas-liquid separation is reduced.

本発明は、上記のような課題を背景としてなされたものであり、気液分離の効率が低下してしまうことが抑制された気液分離器を得ることを目的とする。また、そのような気液分離器を備えた空気調和装置を得ることを目的とする。   The present invention has been made against the background of the above problems, and an object of the present invention is to obtain a gas-liquid separator in which the efficiency of gas-liquid separation is suppressed. Moreover, it aims at obtaining the air conditioning apparatus provided with such a gas-liquid separator.

本発明に係る気液分離器は、容器と、前記容器の内側に位置する側の端部の一部又は全部が閉塞され、前記容器の内側に位置する領域の側部に複数の穴が形成され、前記容器の外側から内側に流体を流入させる流入配管と、前記容器の内側から外側に分離後の前記流体を流出させる流出配管と、を備え、前記複数の穴は、開口面積が大きい少なくとも1つの穴と、開口面積が小さい複数の穴と、であり、前記開口面積が大きい少なくとも1つの穴は、前記開口面積が小さい複数の穴と比較して、前記端部に近い側に形成されたものである。   In the gas-liquid separator according to the present invention, the container and a part or all of the end portion on the inner side of the container are closed, and a plurality of holes are formed in the side portion of the region located on the inner side of the container. And an inflow pipe for allowing fluid to flow from the outside to the inside of the container, and an outflow pipe for allowing the fluid to flow after separation from the inside to the outside of the container, wherein the plurality of holes have a large opening area. One hole and a plurality of holes having a small opening area, and at least one hole having a large opening area is formed closer to the end than the plurality of holes having a small opening area. It is a thing.

本発明に係る気液分離器は、流入配管に流入する流体の流量が大きくなったり、また、外気温度が低下したりして、流入配管内での流体の流速が増大しても、端部の近くに形成された相対的に開口面積が大きい穴から液体が容器の内部に流入し、端部の近くに形成されていない相対的に開口面積が小さい穴から気体が容器の内部に流入することとなって、容器の内側で液体が大きく飛散することが抑制されるため、気液分離の効率が低下してしまうことが抑制される。   The gas-liquid separator according to the present invention has an end portion even if the flow rate of the fluid flowing into the inflow pipe increases or the outside air temperature decreases and the flow velocity of the fluid in the inflow pipe increases. The liquid flows into the inside of the container from the hole with a relatively large opening area formed near the gas, and the gas flows into the container from the hole with a relatively small opening area that is not formed near the end. As a result, since the liquid is prevented from greatly scattering inside the container, the efficiency of gas-liquid separation is suppressed from decreasing.

本発明の実施の形態1に係る気液分離器の、正面図である。It is a front view of the gas-liquid separator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る気液分離器の流入配管の、側面図及び底面図である。It is the side view and bottom view of the inflow piping of the gas-liquid separator which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る気液分離器が適用される空気調和装置の、構成を示す図である。It is a figure which shows the structure of the air conditioning apparatus to which the gas-liquid separator which concerns on Embodiment 1 of this invention is applied. 本発明の実施の形態1に係る気液分離器の変形例の、正面図である。It is a front view of the modification of the gas-liquid separator which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る気液分離器の流入配管の、側面図及び底面図である。It is the side view and bottom view of the inflow piping of the gas-liquid separator which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る気液分離器の流入配管の、側面図及び底面図である。It is the side view and bottom view of the inflow piping of the gas-liquid separator which concerns on Embodiment 3 of this invention. 本発明の実施の形態4に係る気液分離器の流入配管の、側面図及び底面図である。It is the side view and bottom view of the inflow piping of the gas-liquid separator which concerns on Embodiment 4 of this invention.

以下、本発明に係る気液分離器について、図面を用いて説明する。
なお、以下では、本発明に係る気液分離器が、気液二相状態の冷媒を冷媒蒸気と冷媒液とに分離する場合を説明するが、そのような場合に限定されず、気液混合状態の他の流体を気体と液体とに分離してもよい。また、以下で説明する構成、動作等は、一例であり、本発明に係る気液分離器は、そのような構成、動作等に限定されない。また、各図において、同一又は類似する部材又は部分には、同一の符号を付している。また、細かい構造については、適宜図示を簡略化又は省略している。また、重複又は類似する説明については、適宜簡略化又は省略している。
Hereinafter, a gas-liquid separator according to the present invention will be described with reference to the drawings.
Hereinafter, a case where the gas-liquid separator according to the present invention separates the refrigerant in the gas-liquid two-phase state into the refrigerant vapor and the refrigerant liquid will be described. Other fluids in the state may be separated into gas and liquid. Moreover, the structure, operation | movement, etc. which are demonstrated below are examples, and the gas-liquid separator which concerns on this invention is not limited to such a structure, operation | movement. Moreover, in each figure, the same code | symbol is attached | subjected to the same or similar member or part. Further, the illustration of the fine structure is simplified or omitted as appropriate. In addition, overlapping or similar descriptions are appropriately simplified or omitted.

実施の形態1.
実施の形態1に係る気液分離器について説明する。
<気液分離器の構成>
以下に、実施の形態1に係る気液分離器の構成について説明する。
図1は、本発明の実施の形態1に係る気液分離器の、正面図である。
図1に示されるように、気液分離器10は、容器1と、容器1の上部を貫通するように取り付けられた流入配管2と、容器1の上部に流入配管2と並べて取り付けられた冷媒蒸気流出配管3と、容器1の下部に取り付けられた冷媒液流出配管4と、を有する。流入配管2の断面は、円形状である。扁平管のような長丸形状であってもよく、また、楕円形状であってもよい。流入配管2及び冷媒蒸気流出配管3が挿入された容器1の上部が絞られることで、接続の気密性が確保されてもよく、また、フランジ型のように流入配管2及び冷媒蒸気流出配管3が後付けされることで、接続の気密性が確保されてもよい。冷媒蒸気流出配管3及び冷媒液流出配管4は、本発明の「流出配管」に相当する。
Embodiment 1 FIG.
The gas-liquid separator according to Embodiment 1 will be described.
<Configuration of gas-liquid separator>
Below, the structure of the gas-liquid separator which concerns on Embodiment 1 is demonstrated.
FIG. 1 is a front view of the gas-liquid separator according to Embodiment 1 of the present invention.
As shown in FIG. 1, the gas-liquid separator 10 includes a container 1, an inflow pipe 2 attached so as to penetrate the upper part of the container 1, and a refrigerant attached to the upper part of the container 1 side by side with the inflow pipe 2. It has a steam outflow pipe 3 and a refrigerant liquid outflow pipe 4 attached to the lower part of the container 1. The cross section of the inflow pipe 2 is circular. An oblong shape like a flat tube may be sufficient and an elliptical shape may be sufficient. The upper part of the container 1 into which the inflow pipe 2 and the refrigerant vapor outflow pipe 3 are inserted may be squeezed so that the airtightness of the connection may be secured, and the inflow pipe 2 and the refrigerant vapor outflow pipe 3 as in the flange type. May be retrofitted to ensure the airtightness of the connection. The refrigerant vapor outflow pipe 3 and the refrigerant liquid outflow pipe 4 correspond to the “outflow pipe” of the present invention.

図2は、本発明の実施の形態1に係る気液分離器の流入配管の、側面図及び底面図である。
流入配管2の一方の端部は、外部回路に接続される。図2に示されるように、流入配管2の容器1の内側に位置する側の他方の端部2aに、小径の下穴5が形成された底板2bが取り付けられて、端部2aの一部、つまり下穴5以外の領域が閉塞される。底板2bが、下穴5を有しなくてもよい。つまり、端部2aの全部が閉塞されてもよい。下穴5は、冷媒蒸気が噴出しない程度の開口面積に設定される。図1及び図2では、下穴5が1個である場合を示しているが、2個以上であってもよい。また、端部2aに、底板2bが取り付けられず、バーリング加工等によって流入配管2自体が絞られることで、端部2aの一部又は全部が閉塞されてもよい。端部2aの一部を閉塞する場合には、流入配管2自体を絞って端部2aの全部を閉塞した後に穴を加工してもよく、一部に穴が形成されるように流入配管2自体を絞ってもよい。なお、端部2aの一部を閉塞する場合には、端部2aの先端面の全域が閉塞されないような場合も含まれる。
FIG. 2 is a side view and a bottom view of the inflow piping of the gas-liquid separator according to Embodiment 1 of the present invention.
One end of the inflow pipe 2 is connected to an external circuit. As shown in FIG. 2, a bottom plate 2b in which a small-diameter pilot hole 5 is formed is attached to the other end 2a on the side located inside the container 1 of the inflow pipe 2, and a part of the end 2a is attached. That is, the region other than the pilot hole 5 is closed. The bottom plate 2 b may not have the prepared hole 5. That is, the entire end 2a may be closed. The pilot hole 5 is set to an opening area such that the refrigerant vapor is not ejected. 1 and 2 show a case where the number of the pilot holes 5 is one, it may be two or more. Further, the bottom plate 2b is not attached to the end 2a, and the inflow pipe 2 itself may be throttled by burring or the like, so that part or all of the end 2a may be closed. When part of the end 2a is closed, the inflow pipe 2 itself may be squeezed to close all of the end 2a, and then the hole may be processed. The inflow pipe 2 is formed so that a hole is formed in part. You may squeeze itself. In addition, the case where a part of the end portion 2a is closed includes a case where the entire front end surface of the end portion 2a is not closed.

流入配管2の容器1の内側に位置する領域の側部2cには、複数の横穴6a、6bが形成される。複数の横穴6a、6bは、流入配管2の周方向のうちの容器1の壁面に近い方向に形成されるとよい。複数の横穴6a、6bは、開口面積が大きい少なくとも1つの横穴6aと、開口面積が小さい複数の横穴6bと、である。開口面積が大きい横穴6aは、開口面積が小さい横穴6bと比較して、端部2aに近い側に形成される。なお、図1及び図2では、開口面積が大きい横穴6aが、1個であり、開口面積が小さい横穴6bが、6個である場合を示しているが、他の個数であってもよい。横穴6a及び横穴6bの個数及び開口面積は、流入配管2に流入する冷媒の流量等に応じて設定される。横穴6a又は横穴6bが、流入配管2の周方向のうちの複数方向に形成されてもよい。また、開口面積が大きい横穴6aが複数である場合には、全ての横穴6aの開口面積が同じになるように形成されてもよく、また、端部2aに近い横穴6aほど開口面積が大きくなるように形成されてもよい。また、流入配管2の容器1の内側に位置する領域の側部2cに、横穴6a及び横穴6b以外の横穴が形成されてもよい。   A plurality of lateral holes 6 a and 6 b are formed in the side portion 2 c of the region located inside the container 1 of the inflow pipe 2. The plurality of horizontal holes 6 a and 6 b may be formed in a direction close to the wall surface of the container 1 in the circumferential direction of the inflow pipe 2. The plurality of lateral holes 6a and 6b are at least one lateral hole 6a having a large opening area and a plurality of lateral holes 6b having a small opening area. The horizontal hole 6a having a large opening area is formed closer to the end 2a than the horizontal hole 6b having a small opening area. 1 and 2 show the case where there is one horizontal hole 6a having a large opening area and six horizontal holes 6b having a small opening area, other numbers may be used. The number and opening area of the horizontal holes 6 a and 6 b are set according to the flow rate of the refrigerant flowing into the inflow pipe 2. The horizontal hole 6 a or the horizontal hole 6 b may be formed in a plurality of directions in the circumferential direction of the inflow pipe 2. In addition, when there are a plurality of horizontal holes 6a having a large opening area, all the horizontal holes 6a may be formed to have the same opening area, and the opening area of the horizontal hole 6a closer to the end 2a becomes larger. It may be formed as follows. Further, a lateral hole other than the lateral hole 6a and the lateral hole 6b may be formed in the side portion 2c of the region located inside the container 1 of the inflow pipe 2.

<気液分離器の動作>
(流入配管から容器の内側に気液二相状態の冷媒が流入する場合の動作)
以下に、流入配管2から容器1の内側に気液二相状態の冷媒が流入する場合の、気液分離器10の動作を説明する。
流入配管2に流入した気液二相状態の冷媒は、流入配管2の端部2aに向けて進む。このとき、流入配管2の断面が円形状である場合には、環状流等のようになって、流入配管2の内面に均一な液膜が形成される。そのため、流入配管2の側部2cに形成された複数の横穴6a、6bから容器1の壁面へ向けて噴出する冷媒蒸気には、少量の冷媒液しか含まれない。
<Operation of gas-liquid separator>
(Operation when a gas-liquid two-phase refrigerant flows from the inlet pipe into the container)
Below, operation | movement of the gas-liquid separator 10 when the refrigerant | coolant of a gas-liquid two-phase state flows in into the container 1 from the inflow piping 2 is demonstrated.
The gas-liquid two-phase refrigerant that has flowed into the inflow pipe 2 proceeds toward the end 2 a of the inflow pipe 2. At this time, when the cross section of the inflow piping 2 is circular, it becomes like an annular flow and a uniform liquid film is formed on the inner surface of the inflow piping 2. Therefore, the refrigerant vapor ejected from the plurality of lateral holes 6a, 6b formed in the side portion 2c of the inflow pipe 2 toward the wall surface of the container 1 contains only a small amount of refrigerant liquid.

複数の横穴6a、6bから噴出した冷媒蒸気は容器1の上部に設けられた冷媒蒸気流出配管3を通って容器1の外側に流出する。また、複数の横穴6a、6bから噴出した冷媒液は、容器1の壁面に衝突して付着し、粒の大きい液滴又は液膜となって、冷媒蒸気と分離される。液滴又は液膜となった冷媒液は、容器1の壁面に沿って重力によって落下し、容器1の底部に溜まる。一方、横穴6a及び横穴6bから噴出せずに、流入配管2の端部2aに至った冷媒液は、流入配管2の端部2aに溜まり、下穴5から下向きに流出して、容器1の底部に溜まる。複数の横穴6a、6bから噴出して容器1の底部に溜まった冷媒液と、下穴5から流出して容器1の底部に溜まった冷媒液と、は、容器1の底部に設けられた冷媒液流出配管4から容器1の外側に流出する。   The refrigerant vapor ejected from the plurality of lateral holes 6 a and 6 b flows out of the container 1 through the refrigerant vapor outflow pipe 3 provided in the upper part of the container 1. In addition, the refrigerant liquid ejected from the plurality of horizontal holes 6a and 6b collides with and adheres to the wall surface of the container 1 to form large droplets or a liquid film, and is separated from the refrigerant vapor. The refrigerant liquid that has become droplets or a liquid film falls by gravity along the wall surface of the container 1 and accumulates at the bottom of the container 1. On the other hand, the refrigerant liquid that reaches the end 2a of the inflow pipe 2 without being ejected from the horizontal holes 6a and 6b is accumulated in the end 2a of the inflow pipe 2 and flows downward from the lower hole 5 to Accumulate at the bottom. The refrigerant liquid ejected from the plurality of horizontal holes 6 a and 6 b and accumulated at the bottom of the container 1 and the refrigerant liquid that has flowed out from the lower hole 5 and accumulated at the bottom of the container 1 are refrigerant provided at the bottom of the container 1. The liquid flows out from the liquid outflow pipe 4 to the outside of the container 1.

(冷媒液流出配管から容器の内側に液相状態の冷媒が流入する場合の動作)
以下に、冷媒液流出配管4から容器1の内側に液相状態の冷媒が流入する場合の、気液分離器10の動作を説明する。
例えば、四方弁等が切り替えられて冷媒循環回路の冷媒が逆流し、冷媒液流出配管4から容器1の内側に液相状態の冷媒が流入する場合には、冷媒蒸気流出配管3又は冷媒蒸気流出配管3に接続される外部回路が電磁弁等によって閉止され、液相状態の冷媒が流入配管2から容器1の外部に流出する。この際、容器1の内側には、余剰の冷媒液が貯留される。冷媒液に非相溶の冷凍機油が含まれている場合には、冷媒液の上方に溜まった冷凍機油が、流入配管2に流入して、冷媒液と共に容器1の外部へ流出する。
(Operation when liquid phase refrigerant flows from the refrigerant liquid outflow pipe to the inside of the container)
Below, operation | movement of the gas-liquid separator 10 when the refrigerant | coolant of a liquid phase state flows in into the container 1 from the refrigerant | coolant liquid outflow piping 4 is demonstrated.
For example, when the four-way valve or the like is switched and the refrigerant in the refrigerant circulation circuit flows backward, and the liquid-phase refrigerant flows into the container 1 from the refrigerant liquid outflow pipe 4, the refrigerant vapor outflow pipe 3 or the refrigerant vapor outflow The external circuit connected to the pipe 3 is closed by a solenoid valve or the like, and the liquid-phase refrigerant flows out of the container 1 from the inflow pipe 2. At this time, excessive refrigerant liquid is stored inside the container 1. When incompatible refrigerating machine oil is contained in the refrigerant liquid, the refrigerating machine oil accumulated above the refrigerant liquid flows into the inflow pipe 2 and flows out of the container 1 together with the refrigerant liquid.

<気液分離器の使用態様>
以下に、実施の形態1に係る気液分離器の使用態様の一例について説明する。
なお、以下では、実施の形態1に係る気液分離器が空気調和装置に適用される場合を説明しているが、そのような場合に限定されず、例えば、冷媒循環回路を有する他の冷凍サイクル装置に適用されてもよい。また、空気調和装置が、冷房運転と暖房運転とを切り替えるものである場合を説明しているが、そのような場合に限定されず、冷房運転又は暖房運転のみを行うものであってもよい。
<Usage of gas-liquid separator>
Below, an example of the usage aspect of the gas-liquid separator which concerns on Embodiment 1 is demonstrated.
In addition, below, although the case where the gas-liquid separator which concerns on Embodiment 1 is applied to an air conditioning apparatus is demonstrated, it is not limited to such a case, For example, other refrigeration which has a refrigerant circulation circuit You may apply to a cycle apparatus. Moreover, although the case where an air conditioning apparatus switches between cooling operation and heating operation is demonstrated, it is not limited to such a case, You may perform only cooling operation or heating operation.

図3は、本発明の実施の形態1に係る気液分離器が適用される空気調和装置の、構成を示す図である。なお、図3では、冷房運転時の冷媒の流れが実線の矢印で示され、暖房運転時の冷媒の流れが点線の矢印で示される。また、冷房運転時の四方弁12の流路が実線で示され、暖房運転時の四方弁12の流路が点線で示される。   FIG. 3 is a diagram showing a configuration of an air-conditioning apparatus to which the gas-liquid separator according to Embodiment 1 of the present invention is applied. In FIG. 3, the refrigerant flow during the cooling operation is indicated by a solid line arrow, and the refrigerant flow during the heating operation is indicated by a dotted line arrow. Further, the flow path of the four-way valve 12 during the cooling operation is indicated by a solid line, and the flow path of the four-way valve 12 during the heating operation is indicated by a dotted line.

空気調和装置100は、気液分離器10と、圧縮機11と、四方弁12と、室外熱交換器13と、膨張弁等の絞り装置14と、室内熱交換器15と、が接続された冷媒循環回路を有する。気液分離器10の冷媒蒸気流出配管3と、四方弁12と室内熱交換器15との間と、が、ガス側バイパス回路によって接続される。ガス側バイパス回路には、電磁弁等の流量制御弁16と、逆止弁17と、毛細管等の抵抗18と、が接続される。制御装置19に、圧縮機11、四方弁12、絞り装置14、流量制御弁16等が接続される。   In the air conditioner 100, a gas-liquid separator 10, a compressor 11, a four-way valve 12, an outdoor heat exchanger 13, an expansion device 14 such as an expansion valve, and an indoor heat exchanger 15 are connected. It has a refrigerant circulation circuit. The refrigerant vapor outlet pipe 3 of the gas-liquid separator 10 and the four-way valve 12 and the indoor heat exchanger 15 are connected by a gas side bypass circuit. A flow control valve 16 such as an electromagnetic valve, a check valve 17, and a resistor 18 such as a capillary tube are connected to the gas side bypass circuit. A compressor 11, a four-way valve 12, a throttling device 14, a flow control valve 16, and the like are connected to the control device 19.

気液分離を行わない冷房運転では、制御装置19によって、流量制御弁16が閉じられ、ガス側バイパス回路に冷媒が流れない。圧縮機11で高圧になった気相状態の冷媒は、四方弁12を通って、室外熱交換器13に流入し、ファン等によって供給される外気と熱交換して凝縮し、過冷却された液相状態の冷媒となる。過冷却された液相状態の冷媒は、絞り装置14で減圧されて、気液二相状態の冷媒となる。気液二相状態の冷媒は、気液分離器10の流入配管2と冷媒液流出配管4とを順に通って、室内熱交換器15に流入して、ファン等によって供給される室内空気と熱交換して蒸発し、気相状態の冷媒となる。気相状態の冷媒は、四方弁12を通って、圧縮機11に戻る。   In the cooling operation in which gas-liquid separation is not performed, the flow rate control valve 16 is closed by the control device 19, and the refrigerant does not flow into the gas side bypass circuit. The refrigerant in the gas phase that has become high pressure in the compressor 11 flows into the outdoor heat exchanger 13 through the four-way valve 12, and is condensed by exchanging heat with the outside air supplied by a fan or the like. It becomes a refrigerant in a liquid phase state. The supercooled liquid-phase refrigerant is decompressed by the expansion device 14 and becomes a gas-liquid two-phase refrigerant. The refrigerant in the gas-liquid two-phase state passes through the inflow pipe 2 and the refrigerant liquid outflow pipe 4 of the gas-liquid separator 10 in this order, flows into the indoor heat exchanger 15, and indoor air and heat supplied by a fan or the like. It exchanges and evaporates and becomes a refrigerant in a gas phase. The refrigerant in the gas phase returns to the compressor 11 through the four-way valve 12.

気液分離を行う冷房運転では、制御装置19によって、流量制御弁16が開けられ、ガス側バイパス回路に冷媒が流れる。圧縮機11で高圧になった気相状態の冷媒は、四方弁12を通って、室外熱交換器13に流入し、ファン等によって供給される外気と熱交換して凝縮し、過冷却された液相状態の冷媒となる。過冷却された液相状態の冷媒は、絞り装置14で減圧されて、気液二相状態の冷媒となった後、気液分離器10で冷媒蒸気と冷媒液とに分離される。冷媒液は、室内熱交換器15に流入し、ファン等によって供給される室内空気と熱交換して蒸発し、気相状態の冷媒となる。一方、冷媒蒸気は、流量制御弁16と逆止弁17と抵抗18とを順に通って、室内熱交換器15から流出する気相状態の冷媒と合流する。合流した冷媒は、四方弁12を通って、圧縮機11に戻る。気液分離器10で分離された冷媒液のみを、室内熱交換器15に流入させることで、室内熱交換器15を通過する際に生じる冷媒の圧力損失を低減することができるため、空気調和装置100のエネルギー効率が向上される。   In the cooling operation in which gas-liquid separation is performed, the control device 19 opens the flow control valve 16 and the refrigerant flows through the gas side bypass circuit. The refrigerant in the gas phase that has become high pressure in the compressor 11 flows into the outdoor heat exchanger 13 through the four-way valve 12, and is condensed by exchanging heat with the outside air supplied by a fan or the like. It becomes a refrigerant in a liquid phase state. The supercooled liquid-phase refrigerant is decompressed by the expansion device 14 to become a gas-liquid two-phase refrigerant, and then separated into refrigerant vapor and refrigerant liquid by the gas-liquid separator 10. The refrigerant liquid flows into the indoor heat exchanger 15, exchanges heat with indoor air supplied by a fan or the like, and evaporates to become a gas phase refrigerant. On the other hand, the refrigerant vapor passes through the flow control valve 16, the check valve 17, and the resistor 18 in order, and merges with the refrigerant in the gas phase that flows out of the indoor heat exchanger 15. The merged refrigerant passes through the four-way valve 12 and returns to the compressor 11. Since only the refrigerant liquid separated by the gas-liquid separator 10 flows into the indoor heat exchanger 15, the pressure loss of the refrigerant that occurs when passing through the indoor heat exchanger 15 can be reduced. The energy efficiency of the device 100 is improved.

暖房運転では、制御装置19によって、流量制御弁16が閉じられ、ガス側バイパス回路に冷媒が流れない。圧縮機11で高圧になった気相状態の冷媒は、四方弁12を通って、室内熱交換器15に流入し、ファン等によって供給される室内空気と熱交換して凝縮し、過冷却された液相状態の冷媒となる。過冷却された液相状態の冷媒は、気液分離器10の冷媒液流出配管4と流入配管2とを順に通って、絞り装置14に流入し、絞り装置14で減圧されて、気液二相状態の冷媒となる。気液二相状態の冷媒は、室外熱交換器13に流入して、ファン等によって供給される外気と熱交換して蒸発し、気相状態の冷媒となる。気相状態の冷媒は、四方弁12を通って、圧縮機11に戻る。   In the heating operation, the control device 19 closes the flow control valve 16 so that no refrigerant flows into the gas side bypass circuit. The refrigerant in the gas phase that has become high pressure in the compressor 11 passes through the four-way valve 12 and flows into the indoor heat exchanger 15, where it is condensed and supercooled by exchanging heat with indoor air supplied by a fan or the like. It becomes a liquid phase refrigerant. The supercooled liquid phase refrigerant passes through the refrigerant liquid outflow pipe 4 and the inflow pipe 2 of the gas-liquid separator 10 in order, flows into the expansion device 14, and is decompressed by the expansion device 14. It becomes a refrigerant in a phase state. The gas-liquid two-phase refrigerant flows into the outdoor heat exchanger 13, exchanges heat with the outside air supplied by a fan or the like, and evaporates to become a gas-phase refrigerant. The refrigerant in the gas phase returns to the compressor 11 through the four-way valve 12.

<気液分離器の作用>
以下に、実施の形態1に係る気液分離器の作用について説明する。
気液分離器10は、流入配管2に流入する気液二相状態の冷媒の流量が大きくなったり、また、外気温度が低下したりして、流入配管2内での冷媒の流速が増大しても、端部2aの近くに形成された相対的に開口面積が大きい横穴6aから冷媒液が容器1の内部に流入し、端部2aの近くに形成されていない相対的に開口面積が小さい横穴6bから冷媒蒸気が容器1の内部に流入することとなって、容器1の内側で冷媒液が大きく飛散することが抑制されるため、気液分離の効率が低下してしまうことが抑制される。
<Operation of gas-liquid separator>
Below, the effect | action of the gas-liquid separator which concerns on Embodiment 1 is demonstrated.
The gas-liquid separator 10 increases the flow rate of the refrigerant in the inflow pipe 2 because the flow rate of the gas-liquid two-phase refrigerant flowing into the inflow pipe 2 increases or the outside air temperature decreases. However, the refrigerant liquid flows into the inside of the container 1 from the lateral hole 6a formed near the end 2a and having a relatively large opening area, and the opening area is relatively small that is not formed near the end 2a. Since the refrigerant vapor flows into the inside of the container 1 from the horizontal hole 6b and the refrigerant liquid is prevented from greatly scattering inside the container 1, it is suppressed that the efficiency of gas-liquid separation is reduced. The

<変形例>
図4は、本発明の実施の形態1に係る気液分離器の変形例の、正面図である。
気液分離器10は、空気調和装置100のアキュムレータとして使用されてもよい。そのような場合には、図4に示されるように、冷媒蒸気流出配管3と冷媒液流出配管4とが、1つの流出配管7に置き換えられる。図2に示されるように、流入配管2の容器1の内側に位置する領域の側部2cには、複数の横穴6a、6bが形成される。
<Modification>
FIG. 4 is a front view of a modification of the gas-liquid separator according to Embodiment 1 of the present invention.
The gas-liquid separator 10 may be used as an accumulator of the air conditioner 100. In such a case, as shown in FIG. 4, the refrigerant vapor outflow pipe 3 and the refrigerant liquid outflow pipe 4 are replaced with one outflow pipe 7. As shown in FIG. 2, a plurality of horizontal holes 6 a and 6 b are formed in the side portion 2 c of the region located inside the container 1 of the inflow pipe 2.

気液分離器10が空気調和装置100のアキュムレータとして使用される場合でも、端部2aの近くに形成された相対的に開口面積が大きい横穴6aから冷媒液が容器1の内部に流入し、端部2aの近くに形成されていない相対的に開口面積が小さい横穴6bから冷媒蒸気が容器1の内部に流入するため、過熱の不足等に起因する冷媒液の増加に伴って気液分離の効率が低下してしまうことが抑制される。   Even when the gas-liquid separator 10 is used as an accumulator of the air conditioner 100, the refrigerant liquid flows into the inside of the container 1 from the lateral hole 6a formed near the end 2a and having a relatively large opening area. Since the refrigerant vapor flows into the inside of the container 1 from the lateral hole 6b that is not formed near the portion 2a and has a relatively small opening area, the efficiency of the gas-liquid separation accompanying the increase in the refrigerant liquid due to lack of overheating or the like Is suppressed from decreasing.

実施の形態2.
実施の形態2に係る気液分離器について説明する。
なお、以下では、実施の形態1と重複又は類似する説明については、適宜簡略化又は省略している。
Embodiment 2. FIG.
A gas-liquid separator according to Embodiment 2 will be described.
Note that, in the following, descriptions that overlap or are similar to those of the first embodiment are appropriately simplified or omitted.

<気液分離器の構成>
以下に、実施の形態2に係る気液分離器の構成について説明する。
図5は、本発明の実施の形態2に係る気液分離器の流入配管の、側面図及び底面図である。
図5に示されるように、開口面積が大きい横穴6aは、流入配管2の軸方向に長い長丸形状又は楕円形状である。なお、図5では、開口面積が大きい横穴6aが、長丸形状である場合を示している。
<Configuration of gas-liquid separator>
Below, the structure of the gas-liquid separator which concerns on Embodiment 2 is demonstrated.
FIG. 5 is a side view and a bottom view of the inflow piping of the gas-liquid separator according to Embodiment 2 of the present invention.
As shown in FIG. 5, the lateral hole 6 a having a large opening area has a long round shape or an elliptical shape that is long in the axial direction of the inflow pipe 2. FIG. 5 shows a case where the horizontal hole 6a having a large opening area has an oval shape.

<気液分離器の作用>
以下に、実施の形態2に係る気液分離器の作用について説明する。
開口面積が大きい横穴6aが、流入配管2の軸方向に長い長丸形状又は楕円形状であるため、横穴6aの流入配管2の径方向における開口幅を大きくすることなく、横穴6aの開口面積を大きくすることができ、流入配管2が大型化されること、又は、流入配管2の形状が複雑化されることが抑制される。
<Operation of gas-liquid separator>
Below, the effect | action of the gas-liquid separator which concerns on Embodiment 2 is demonstrated.
Since the horizontal hole 6a having a large opening area is in the shape of an ellipse or an ellipse that is long in the axial direction of the inflow pipe 2, the opening area of the horizontal hole 6a can be increased without increasing the opening width in the radial direction of the inflow pipe 2 of the horizontal hole 6a. The size of the inflow pipe 2 can be increased, and an increase in the size of the inflow pipe 2 or a complicated shape of the inflow pipe 2 can be suppressed.

実施の形態3.
実施の形態3に係る気液分離器について説明する。
なお、以下では、実施の形態1及び実施の形態2と重複又は類似する説明については、適宜簡略化又は省略している。
Embodiment 3 FIG.
A gas-liquid separator according to Embodiment 3 will be described.
In the following description, descriptions that overlap or are similar to those in Embodiments 1 and 2 are simplified or omitted as appropriate.

<気液分離器の構成>
以下に、実施の形態3に係る気液分離器の構成について説明する。
図6は、本発明の実施の形態3に係る気液分離器の流入配管の、側面図及び底面図である。
図6に示されるように、開口面積が大きい横穴6aは、流入配管2の軸方向に長い多角形状である。なお、図6では、開口面積が大きい横穴6aが、長方形状である場合を示している。
<Configuration of gas-liquid separator>
Below, the structure of the gas-liquid separator which concerns on Embodiment 3 is demonstrated.
FIG. 6 is a side view and a bottom view of the inflow piping of the gas-liquid separator according to Embodiment 3 of the present invention.
As shown in FIG. 6, the lateral hole 6 a having a large opening area has a polygonal shape that is long in the axial direction of the inflow pipe 2. In addition, in FIG. 6, the case where the horizontal hole 6a with a large opening area is a rectangular shape is shown.

<気液分離器の作用>
以下に、実施の形態3に係る気液分離器の作用について説明する。
開口面積が大きい横穴6aが、流入配管2の軸方向に長い多角形状であるため、横穴6aの流入配管2の径方向における開口幅を大きくすることなく、横穴6aの開口面積を大きくすることができ、流入配管2が大型化されること、又は、流入配管2の形状が複雑化されることが抑制される。
<Operation of gas-liquid separator>
Below, the effect | action of the gas-liquid separator which concerns on Embodiment 3 is demonstrated.
Since the horizontal hole 6a having a large opening area has a polygonal shape that is long in the axial direction of the inflow pipe 2, the opening area of the horizontal hole 6a can be increased without increasing the opening width in the radial direction of the inflow pipe 2 of the horizontal hole 6a. It is possible to suppress an increase in the size of the inflow pipe 2 or a complicated shape of the inflow pipe 2.

実施の形態4.
実施の形態4に係る気液分離器について説明する。
なお、以下では、実施の形態1〜実施の形態3と重複又は類似する説明については、適宜簡略化又は省略している。
Embodiment 4 FIG.
A gas-liquid separator according to Embodiment 4 will be described.
In the following description, descriptions that overlap or are similar to those of the first to third embodiments are appropriately simplified or omitted.

<気液分離器の構成>
以下に、実施の形態4に係る気液分離器の構成について説明する。
図7は、本発明の実施の形態4に係る気液分離器の流入配管の、側面図及び底面図である。
図7に示されるように、流入配管2の容器1の内側に位置する領域の側部2cの少なくとも一部が、拡張される。側部2cの拡張された部分の断面積は、流入配管2の容器1と交わる領域の断面積と比較して大きい。側部2cの拡張された部分の断面は、長丸形状、楕円形状等である。側部2cの拡張された部分の断面が、円形状であってもよい。開口面積が小さい横穴6bのうちの端部2aに遠い側の幾つかの横穴6bが、流入配管2の容器1と交わる領域と側部2cの拡張された部分との間の側部2cに形成されてもよい。
<Configuration of gas-liquid separator>
Below, the structure of the gas-liquid separator which concerns on Embodiment 4 is demonstrated.
FIG. 7 is a side view and a bottom view of the inflow pipe of the gas-liquid separator according to Embodiment 4 of the present invention.
As shown in FIG. 7, at least a part of the side part 2c of the region located inside the container 1 of the inflow pipe 2 is expanded. The cross-sectional area of the expanded part of the side part 2c is larger than the cross-sectional area of the region where the container 1 of the inflow pipe 2 intersects. The cross section of the expanded part of the side part 2c has an oval shape, an elliptical shape, or the like. The cross section of the expanded part of the side part 2c may be circular. Several horizontal holes 6b on the side far from the end 2a of the horizontal holes 6b having a small opening area are formed in the side 2c between the region of the inflow pipe 2 that intersects the container 1 and the expanded part of the side 2c. May be.

<気液分離器の作用>
以下に、実施の形態4に係る気液分離器の作用について説明する。
側部2cの少なくとも一部が拡張されることで、流入配管2の内側に溜めることができる冷媒液の量が増大するため、複数の横穴6a、6bから大量の冷媒液が噴出することが抑制され、気液分離の効率が低下することが抑制される。また、流入配管2の容器1と交わる領域の断面積を小さくすることで、冷媒蒸気流出配管3等の他の配管との干渉を避けることができる。また、開口面積が大きい横穴6aを、側部2cの拡張された部分に形成することができるため、開口面積を更に大きくすることができ、気液分離の効率が低下してしまうことの抑制が確実化される。
<Operation of gas-liquid separator>
The operation of the gas-liquid separator according to the fourth embodiment will be described below.
Since at least a part of the side portion 2c is expanded, the amount of refrigerant liquid that can be accumulated inside the inflow pipe 2 is increased, so that a large amount of refrigerant liquid is prevented from being ejected from the plurality of lateral holes 6a and 6b. Thus, a reduction in the efficiency of gas-liquid separation is suppressed. Moreover, interference with other piping, such as the refrigerant | coolant vapor | steam outflow piping 3, can be avoided by making small the cross-sectional area of the area | region which intersects the container 1 of the inflow piping 2. As shown in FIG. Moreover, since the horizontal hole 6a with a large opening area can be formed in the expanded part of the side part 2c, the opening area can be further increased, and the suppression of the gas-liquid separation efficiency being reduced can be suppressed. Ensured.

特に、図7に示されるように、拡張された側部2cの断面が長丸形状、楕円形状等であり、側部2cの広い面2c−1(長辺を含む面)に複数の横穴6a、6bが形成され、開口面積が大きい横穴6aが流入配管2の径方向に長い長丸形状、楕円形状、多角形状等である場合には、開口面積が大きい横穴6aを更に大きくすることができ、加えて、端部2aの近くに形成された相対的に開口面積が大きい横穴6aから冷媒液が容器1の内部に流入し、端部2aの近くに形成されていない相対的に開口面積が小さい横穴6bから冷媒蒸気が容器1の内部に流入することが更に確実化されるため、気液分離の効率が低下してしまうことの抑制が更に確実化される。   In particular, as shown in FIG. 7, the cross section of the expanded side portion 2c is an oval shape, an oval shape, or the like, and a plurality of horizontal holes 6a are formed on a wide surface 2c-1 (a surface including a long side) of the side portion 2c. , 6b is formed, and the horizontal hole 6a having a large opening area is in the shape of a long circle, an ellipse, a polygon or the like that is long in the radial direction of the inflow pipe 2, the horizontal hole 6a having a large opening area can be further increased. In addition, the refrigerant liquid flows into the inside of the container 1 from the lateral hole 6a formed near the end 2a and having a relatively large opening area, and there is a relatively open area that is not formed near the end 2a. Since it is further ensured that the refrigerant vapor flows into the container 1 from the small lateral hole 6b, it is further ensured that the efficiency of gas-liquid separation is reduced.

つまり、拡張された側部2cの断面が長丸形状、楕円形状等であると、側部2cの広い面2c−1(長辺を含む面)の冷媒液の液膜が薄くなり、側部2cの狭い面2c−2(短辺を含む面)の液膜が厚くなる。図7に示されるように、開口面積が大きい横穴6aが流入配管2の径方向に長い長丸形状、楕円形状等であり、開口面積が小さい横穴6bが円形状であるような場合には、開口面積が大きい横穴6aが側部2cの狭い面2c−2(短辺を含む面)の近くまで広がり、開口面積が小さい横穴6b(特に横穴6aに近い横穴6b)が側部2cの狭い面2c−2(短辺を含む面)の近くまで広がらないこととなり、開口面積が大きい横穴6aへの冷媒液の流入が促進され、開口面積が小さい横穴6bへの冷媒液の流入が抑制されることとなるため、端部2aの近くに形成された相対的に開口面積が大きい横穴6aから冷媒液が容器1の内部に流入し、端部2aの近くに形成されていない相対的に開口面積が小さい横穴6bから冷媒蒸気が容器1の内部に流入することが更に確実化される。   That is, when the cross section of the extended side portion 2c is an oval shape, an elliptical shape, or the like, the liquid film of the refrigerant liquid on the wide surface 2c-1 (surface including the long side) of the side portion 2c becomes thin, and the side portion The liquid film on the narrow surface 2c-2 (surface including the short side) of 2c becomes thick. As shown in FIG. 7, when the horizontal hole 6 a having a large opening area is in the shape of an ellipse or an ellipse that is long in the radial direction of the inflow pipe 2, and the horizontal hole 6 b having a small opening area is circular, The lateral hole 6a having a large opening area extends to the vicinity of the narrow surface 2c-2 (surface including the short side) of the side portion 2c, and the lateral hole 6b having a small opening area (particularly the lateral hole 6b close to the lateral hole 6a) is a narrow surface of the side portion 2c. 2c-2 (surface including the short side) does not spread, the inflow of the refrigerant liquid into the lateral hole 6a having a large opening area is promoted, and the inflow of the refrigerant liquid into the lateral hole 6b having a small opening area is suppressed. Therefore, the refrigerant liquid flows into the inside of the container 1 from the side hole 6a formed near the end 2a and having a relatively large opening area, and the opening area is not formed near the end 2a. Refrigerant vapor from the side hole 6b where the Flow into the is further reliabilized.

以上、実施の形態1〜実施の形態4について説明したが、本発明は各実施の形態の説明に限定されない。例えば、各実施の形態の全て又は一部、変形例等を組み合わせることも可能である。   As mentioned above, although Embodiment 1-Embodiment 4 were demonstrated, this invention is not limited to description of each embodiment. For example, it is possible to combine all or part of the embodiments, modified examples, and the like.

1 容器、2 流入配管、2a 端部、2b 底板、2c 側部、2c−1 側部の広い面、2c−2 側部の狭い面、3 冷媒蒸気流出配管、4 冷媒液流出配管、5 下穴、6a 開口面積が大きい横穴、6b 開口面積が小さい横穴、7 流出配管、10 気液分離器、11 圧縮機、12 四方弁、13 室外熱交換器、14 絞り装置、15 室内熱交換器、16 流量制御弁、17 逆止弁、18 抵抗、19 制御装置、100 空気調和装置。   1 container, 2 inflow piping, 2a end, 2b bottom plate, 2c side, 2c-1 wide side, 2c-2 side narrow, 3 refrigerant vapor outflow piping, 4 refrigerant liquid outflow piping, 5 down Hole, 6a Horizontal hole with large opening area, 6b Horizontal hole with small opening area, 7 Outflow pipe, 10 Gas-liquid separator, 11 Compressor, 12 Four-way valve, 13 Outdoor heat exchanger, 14 Throttle device, 15 Indoor heat exchanger, 16 flow control valve, 17 check valve, 18 resistance, 19 control device, 100 air conditioner.

Claims (6)

容器と、
前記容器の内側に位置する側の端部の一部又は全部が閉塞され、前記容器の内側に位置する領域の側部に複数の穴が形成され、前記容器の外側から内側に流体を流入させる流入配管と、
前記容器の内側から外側に分離後の前記流体を流出させる流出配管と、
を備え、
前記複数の穴は、開口面積が大きい少なくとも1つの穴と、開口面積が小さい複数の穴と、であり、
前記開口面積が大きい少なくとも1つの穴は、前記開口面積が小さい複数の穴と比較して、前記端部に近い側に形成された、
ことを特徴とする気液分離器。
A container,
A part or all of the end portion located on the inner side of the container is closed, a plurality of holes are formed in the side portion of the region located on the inner side of the container, and the fluid is allowed to flow from the outer side to the inner side of the container. Inflow piping;
An outflow pipe for flowing out the fluid after separation from the inside to the outside of the container;
With
The plurality of holes are at least one hole having a large opening area and a plurality of holes having a small opening area,
The at least one hole having a large opening area is formed closer to the end portion than the plurality of holes having a small opening area.
A gas-liquid separator characterized by that.
前記開口面積が大きい少なくとも1つの穴は、円形状である、
ことを特徴とする請求項1に記載の気液分離器。
The at least one hole having a large opening area is circular.
The gas-liquid separator according to claim 1.
前記開口面積が大きい少なくとも1つの穴は、長丸形状又は楕円形状である、
ことを特徴とする請求項1に記載の気液分離器。
The at least one hole having a large opening area has an oval shape or an oval shape.
The gas-liquid separator according to claim 1.
前記開口面積が大きい少なくとも1つの穴は、多角形状である、
ことを特徴とする請求項1に記載の気液分離器。
The at least one hole having a large opening area has a polygonal shape,
The gas-liquid separator according to claim 1.
前記流入配管の前記容器の内側に位置する領域の少なくとも一部の断面積は、前記流入配管の前記容器と交わる領域の断面積と比較して、大きい、
ことを特徴とする請求項1〜4のいずれか一項に記載の気液分離器。
The cross-sectional area of at least a part of the region located inside the container of the inflow pipe is larger than the cross-sectional area of the region of the inflow pipe intersecting with the container,
The gas-liquid separator as described in any one of Claims 1-4 characterized by the above-mentioned.
請求項1〜5のいずれか一項に記載の気液分離器を備えた、
ことを特徴とする空気調和装置。
The gas-liquid separator according to any one of claims 1 to 5 is provided.
An air conditioner characterized by that.
JP2013127742A 2013-06-18 2013-06-18 Gas-liquid separator, and air conditioner having the same mounted thereon Pending JP2015001367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013127742A JP2015001367A (en) 2013-06-18 2013-06-18 Gas-liquid separator, and air conditioner having the same mounted thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013127742A JP2015001367A (en) 2013-06-18 2013-06-18 Gas-liquid separator, and air conditioner having the same mounted thereon

Publications (1)

Publication Number Publication Date
JP2015001367A true JP2015001367A (en) 2015-01-05

Family

ID=52295993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013127742A Pending JP2015001367A (en) 2013-06-18 2013-06-18 Gas-liquid separator, and air conditioner having the same mounted thereon

Country Status (1)

Country Link
JP (1) JP2015001367A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105135766A (en) * 2015-09-13 2015-12-09 华南理工大学 Bi-directional spiral flash vessel applied to air-supplementing and enthalpy-increasing heat pump air-conditioning system
CN109073297A (en) * 2016-12-27 2018-12-21 株式会社不二工机 Cryogen vessel
WO2019073564A1 (en) * 2017-10-12 2019-04-18 三菱電機株式会社 Gas-liquid separator and refrigerant circuit

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105135766A (en) * 2015-09-13 2015-12-09 华南理工大学 Bi-directional spiral flash vessel applied to air-supplementing and enthalpy-increasing heat pump air-conditioning system
CN109073297A (en) * 2016-12-27 2018-12-21 株式会社不二工机 Cryogen vessel
CN109073297B (en) * 2016-12-27 2021-06-22 株式会社不二工机 Refrigerant container
WO2019073564A1 (en) * 2017-10-12 2019-04-18 三菱電機株式会社 Gas-liquid separator and refrigerant circuit
JPWO2019073564A1 (en) * 2017-10-12 2020-10-01 三菱電機株式会社 Gas-liquid separator and refrigerant circuit

Similar Documents

Publication Publication Date Title
JP5395358B2 (en) A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
JP6272497B2 (en) Oil separator
JP6119489B2 (en) Ejector
JP6184314B2 (en) Accumulator and air conditioner
JP2015034637A (en) Gas-liquid separator and refrigeration cycle device
JP2015001367A (en) Gas-liquid separator, and air conditioner having the same mounted thereon
US11125476B2 (en) Gas-liquid separator system for refrigeration cycle apparatus
JP6391819B2 (en) Refrigeration cycle apparatus and air conditioner
JP2008145030A (en) Multi-chamber type air conditioner
JP2003004343A (en) Vapor-liquid separator, and air conditioner using it
JP5634549B2 (en) A gas-liquid separator and a refrigeration apparatus including the gas-liquid separator.
JP6131621B2 (en) Oil separator
JP5072523B2 (en) Gas-liquid separator and air conditioner
JP2017172906A (en) Heat exchanger
JP2014145497A (en) Oil separator
JP6551251B2 (en) Header distributor, outdoor unit equipped with header distributor, and air conditioner
JP5965725B2 (en) Air conditioner
JP7361907B2 (en) Accumulator and refrigeration cycle equipment
JPWO2019021431A1 (en) Refrigeration cycle device
JP2015124992A (en) Heat exchanger
WO2018088127A1 (en) Accumulator
JP2018004093A (en) Accumulator of refrigeration cycle device
JP2008175433A (en) Gas-liquid separator for air conditioner, and air conditioner
JP2017072352A (en) Refrigerating device
JP6827554B2 (en) Oil separator and air conditioner equipped with it