KR20130081107A - Hemetic compressor - Google Patents

Hemetic compressor Download PDF

Info

Publication number
KR20130081107A
KR20130081107A KR1020120002095A KR20120002095A KR20130081107A KR 20130081107 A KR20130081107 A KR 20130081107A KR 1020120002095 A KR1020120002095 A KR 1020120002095A KR 20120002095 A KR20120002095 A KR 20120002095A KR 20130081107 A KR20130081107 A KR 20130081107A
Authority
KR
South Korea
Prior art keywords
cylinder
volume
suction
chamber
compression chamber
Prior art date
Application number
KR1020120002095A
Other languages
Korean (ko)
Inventor
용민철
박준홍
조국현
이윤희
최윤성
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020120002095A priority Critical patent/KR20130081107A/en
Priority to CN201310003553.8A priority patent/CN103195711B/en
Publication of KR20130081107A publication Critical patent/KR20130081107A/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0021Systems for the equilibration of forces acting on the pump
    • F04C29/0035Equalization of pressure pulses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S415/00Rotary kinetic fluid motors or pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S417/00Pumps
    • Y10S417/902Hermetically sealed motor pump unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PURPOSE: An enclosed type compressor assembly is provided to prevent pressure reduction and pressure pulsation reduction in advance without making a compressor to be enlarged by optimizing the size of a middle chamber and an intake passage. CONSTITUTION: An enclosed type compressor is connected to an outlet of a first cylinder (41) and to an inlet of a second cylinder (51) in order to make a refrigerant to be compressed in two stages. A middle chamber (713) with a fixed volume is formed in between both cylinders.

Description

밀폐형 압축기{HEMETIC COMPRESSOR}Hermetic Compressor {HEMETIC COMPRESSOR}

본 발명은 밀폐형 압축기에 관한 것으로서, 특히 복수 개의 실린더를 구비하여 2단 압축되는 경우 실린더들 사이에 구비되는 중간배관의 체적을 최적화할 수 있는 밀폐형 압축기에 관한 것이다.The present invention relates to a hermetic compressor, and more particularly, to a hermetic compressor having a plurality of cylinders and capable of optimizing a volume of an intermediate pipe provided between the cylinders when the second stage is compressed.

일반적으로 밀폐형 압축기는 밀폐용기의 내부공간에 구동력을 발생하는 전동부와 그 전동부의 구동력을 전달받아 냉매를 압축하는 압축기구부가 함께 설치되어 있다.In general, the hermetic compressor is provided with an electric drive unit for generating a driving force in the inner space of the airtight container and a compressor mechanism for compressing the refrigerant by receiving the driving force of the electric drive unit.

밀폐형 압축기는 실린더의 개수에 따라 단식 밀폐형 압축기와 복식 밀폐형 압축기로 구분할 수 있다. 단식 밀폐형 압축기는 한 개의 실린더에 한 개의 흡입관이 결합되는 반면, 복식 밀폐형 압축기는 복수 개의 실린더에 각각 한 개씩의 흡입관이 결합되어 있다. A hermetic compressor can be classified into a single-type hermetic compressor and a double-hermetic type compressor according to the number of cylinders. In the single hermetic compressor, one suction tube is coupled to one cylinder, whereas the double hermetic compressor has one suction tube respectively coupled to the plurality of cylinders.

복식 밀폐형 압축기는 냉매를 압축하는 방식에 따라 1흡입-2토출 방식과 1흡입-1토출 방식으로 구분할 수 있다. 1흡입-2토출 방식은 복수 개의 실린더가 한 개의 흡입관에 분지되어 연결되고, 복수 개의 실린더에서 냉매가 각각 압축되어 밀폐용기의 내부공간으로 토출되는 방식이다. 반면 1흡입-1토출 방식은 복수 개의 실린더 중에서 제1 실린더에 어큐뮬레이터가 1차 흡입유로로 연결되고, 제2 실린더는 어큐뮬레이터가 연결된 제1 실린더의 토출측에 2차 흡입유로로 연결되어 냉매가 2단 압축된 후 밀폐용기의 내부공간으로 토출되는 방식이다. 1흡입-1토출 방식은 2단 압축식 밀폐형 압축기라고 할 수 있다.Compressed air compressors can be divided into 1 suction-2 discharge system and 1 suction-1 discharge system depending on the method of compressing the refrigerant. The 1 suction-2 discharge method is a method in which a plurality of cylinders are branched and connected to one suction pipe, and refrigerant is compressed in each of the plurality of cylinders and discharged into the inner space of the sealed container. On the other hand, in the 1 suction-1 discharge method, the accumulator is connected to the first suction channel of the first cylinder among the plurality of cylinders, and the second cylinder is connected to the discharge side of the first cylinder to which the accumulator is connected by the secondary suction flow path so that the refrigerant has two stages. After compressed, it is discharged into the inner space of the sealed container. The 1 suction-1 discharge system is a two stage compression hermetic compressor.

상기와 같은 2단 압축식 밀폐형 압축기는, 제1 실린더의 하단에 1단 압축된 냉매가 일시적으로 수용되도록 소정의 저장공간을 갖는 중간챔버가 형성되고, 상기 중간챔버는 내부 연통로 또는 외부 연통관과 같은 2차 흡입유로를 통해 제2 실린더의 압축실에 연결되어 상기 제1 실린더에서 1단 압축된 냉매가 상기 제2 실린더에서 2단 압축된 후 밀폐용기의 내부공간으로 토출된다.As described above, the two-stage compressed hermetic compressor has an intermediate chamber having a predetermined storage space to temporarily receive the refrigerant compressed in the first stage at a lower end of the first cylinder, and the intermediate chamber is connected to an internal communication path or an external communication tube. The refrigerant compressed in the first stage by the second cylinder is compressed into the compression chamber of the second cylinder through the same secondary suction passage and then discharged into the inner space of the sealed container after being compressed in the second stage by the second cylinder.

이때, 상기 어큐뮬레이터에서 제1 실린더의 압축실로 흡입되는 과정에서 냉매는 1차 압력감소가 발생되고, 상기 제1 실린더의 압축실에서 중간챔버로 토출되어 2차 흡입유로를 통해 제2 실린더의 압축실로 흡입되는 과정에서 2차 압력감소가 발생하게 된다. 종래에는 상기 중간챔버의 내부체적을 최대한 크게 형성하는 동시에 각 흡입유로의 단면적을 크게 형성하여 압력감소 및 압력맥동을 감쇄시키고 있었다.At this time, in the process of suctioning from the accumulator to the compression chamber of the first cylinder, the refrigerant has a first pressure decrease, discharged from the compression chamber of the first cylinder to the intermediate chamber, and then to the compression chamber of the second cylinder through the secondary suction flow path. In the process of inhalation, a secondary pressure decrease occurs. Conventionally, the internal volume of the intermediate chamber was formed to be as large as possible, while the cross-sectional area of each suction flow path was formed to be large to reduce pressure decrease and pressure pulsation.

그러나, 상기와 같은 종래 2단 압축식 밀폐형 압축기는, 전술한 바와 같이 중간챔버의 체적과 흡입유로의 단면적을 크게 형성하여 압력감소 및 압력맥동을 감쇄시키는 것이었으나, 이 경우 상기 중간챔버와 흡입유로의 크기가 증가하는 만큼 압축기 자체가 커지게 되는 문제점이 있었다.However, the conventional two-stage compression type hermetic compressor as described above has a large volume of the intermediate chamber and a cross-sectional area of the suction passage to reduce the pressure decrease and the pressure pulsation, but in this case, the intermediate chamber and the suction passage As the size of the compressor increases, there is a problem that the compressor itself becomes larger.

본 발명의 목적은, 중간챔버와 흡입유로의 크기를 최적화하여 압축기의 크기가 과도하게 대형화되지 않으면서도 압력감소와 압력맥동을 미연에 방지할 수 있는 밀폐형 압축기를 제공하려는데 있다.An object of the present invention is to provide a hermetic compressor which can prevent the pressure decrease and the pressure pulsation in advance without undue size of the compressor by optimizing the size of the intermediate chamber and the suction passage.

본 발명의 목적을 달성하기 위하여, 밀폐용기의 내부에서 냉매를 2단 압축하도록 제1 실린더의 토출측과 제2 실린더의 흡입측이 연결되고, 상기 제1 실린더의 토출측과 제2 실린더의 흡입측 사이에 소정의 체적을 갖는 중간챔버가 형성되는 밀폐형 압축기에서, 상기 제1 실린더의 압축실 체적을 V1, 상기 제1 실린더에서 토출되어 상기 제2 실린더로 흡입되기 직전까지인 중간관로의 전체 체적을 Vpass 라고 할 때, 상기 제1 실린더의 압축실 체적 대비 중간관로의 체적은 3.4 ≤ Vpass/V1 ≤ 6.3 인 밀폐형 압축기가 제공될 수 있다.In order to achieve the object of the present invention, the discharge side of the first cylinder and the suction side of the second cylinder is connected to compress the refrigerant in two stages inside the sealed container, and between the discharge side of the first cylinder and the suction side of the second cylinder In a hermetic compressor having an intermediate chamber having a predetermined volume in the chamber, the volume of the compression chamber of the first cylinder is V1, and the total volume of the intermediate pipe that is discharged from the first cylinder and just before being sucked into the second cylinder is Vpass. In this case, the volume of the intermediate pipe to the volume of the compression chamber of the first cylinder may be provided with a hermetic compressor of 3.4 ≦ Vpass / V1 ≦ 6.3.

여기서, 상기 제1 실린더로 냉매를 안내하는 1차 흡입유로의 최소면적을 A1, 상기 제2 실린더로 냉매를 안내하는 2차 흡입유로의 최소면적을 A2라고 할 때, 상기 2차 흡입유로의 최소면적에 대한 1차 흡입유로의 최소면적은 0.837 ≤ A1/A2 ≤ 1.425로 이루어질 수 있다.Here, when the minimum area of the primary suction channel for guiding the refrigerant to the first cylinder is A1 and the minimum area of the secondary suction channel for guiding the refrigerant to the second cylinder is A2, the minimum of the secondary suction channel The minimum area of the primary suction channel with respect to the area may be 0.837 ≦ A1 / A2 ≦ 1.425.

그리고, 상기 중간챔버를 지나 상기 제2 실린더로 흡입되기 직전까지인 2차 흡입유로의 관내 체적을 Vpipe라고 할 때, 상기 제1 실린더의 압축실 체적 대비 2차 흡입유로의 관내 체적은 0.195 ≤ Vpipe/V1로 이루어질 수 있다.In addition, when the pipe volume of the second suction flow path passing through the intermediate chamber and just before being sucked into the second cylinder is called Vpipe, the pipe volume of the second suction flow path compared to the compression chamber volume of the first cylinder is 0.195 ≦ Vpipe. / V1.

그리고, 상기 제1 실린더와 제2 실린더는 중간플레이트를 사이에 두고 축방향 양측에서 서로 분리되도록 구비되고, 상기 중간플레이트를 기준으로 상기 제1 실린더와 제2 실린더의 타측에는 그 제1 실린더와 제2 실린더의 압축실을 형성하는 베어링이 각각 구비되며, 상기 제1 실린더의 압축실을 형성하는 베어링에는 상기 중간챔버가 형성되고, 상기 중간챔버의 일측과 상기 제2 실린더의 흡입측 사이에는 상기 밀폐용기의 외부에서 결합되는 연결관에 의해 연통되거나 또는 상기 밀폐용기의 내부에서 연결통로로 연통될 수 있다.The first cylinder and the second cylinder are provided to be separated from each other on both sides in an axial direction with an intermediate plate interposed therebetween, and the first cylinder and the second cylinder on the other side of the first cylinder and the second cylinder based on the intermediate plate. Bearings forming a compression chamber of two cylinders are respectively provided, and the intermediate chamber is formed in a bearing forming the compression chamber of the first cylinder, and the seal is disposed between one side of the intermediate chamber and the suction side of the second cylinder. It may be communicated by a connecting tube coupled to the outside of the container or may be communicated to the connecting passage inside the sealed container.

본 발명에 의한 밀폐형 압축기는, 상기 제1 실린더의 압축실 체적 대비 중간관로의 체적은 3.4 ≤ Vpass/V1 ≤ 6.3, 상기 2차 흡입유로의 최소면적에 대한 1차 흡입유로의 최소면적은 0.837 ≤ A1/A2 ≤ 1.425, 상기 제1 실린더의 압축실 체적 대비 2차 흡입유로의 관내 체적은 0.195 ≤ Vpipe/V1 이 되도록 형성됨으로써, 상기 중간관로에서의 압력손실을 최소화시키는 한편, 상기 조건을 만족하는 범위 내에서 상대맥동을 저감시키고 특정운전영역에서의 공진을 미연에 방지하여 에너지 효율을 극대화할 수 있다.In the hermetic compressor according to the present invention, the volume of the intermediate pipe to the volume of the compression chamber of the first cylinder is 3.4 ≦ Vpass / V1 ≦ 6.3, and the minimum area of the primary suction channel relative to the minimum area of the secondary suction channel is 0.837 ≦ A1 / A2 ≤ 1.425, the inner volume of the second suction flow passage to the volume of the compression chamber of the first cylinder is 0.195 ≤ Vpipe / V1, thereby minimizing the pressure loss in the intermediate pipe, while satisfying the above conditions It is possible to maximize energy efficiency by reducing relative pulsation within the range and preventing resonance in a specific operating region.

도 1은 본 발명에 의한 2단 압축식 로터리 압축기를 보인 종단면도,
도 2는 도 1에 따른 2단 압축식 로터리 압축기에서 제1 압축실의 체적 대비 중간관로의 체적변화에 따른 흡입손실을 보인 그래프,
도 3은 도 1에 따른 2단 압축식 로터리 압축기에서 제1 압축실의 체적 대비 중간관로의 체적비 범위에서 2차 흡입유로의 단면적 대비 1차 흡입유로 단면적 변화에 따른 상대맥동을 보인 그래프,
도 4는 도 1에 따른 2단 압축식 로터리 압축기에서 제1 압축실의 체적 대비 중간관로의 체적변화에 따른 에너지 효율을 보인 그래프.
1 is a longitudinal sectional view showing a two-stage compression rotary compressor according to the present invention;
2 is a graph showing the suction loss according to the volume change of the intermediate pipe to the volume of the first compression chamber in the two-stage compression rotary compressor according to FIG.
3 is a graph showing the relative pulsation according to the cross-sectional area of the primary suction channel compared to the cross-sectional area of the secondary suction channel in the volume ratio of the intermediate pipe to the volume of the first compression chamber in the two-stage compression rotary compressor according to FIG.
Figure 4 is a graph showing the energy efficiency according to the volume change of the intermediate pipe to the volume of the first compression chamber in the two-stage compression rotary compressor according to FIG.

이하, 본 발명에 의한 밀폐형 압축기를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다.Hereinafter, the hermetic compressor according to the present invention will be described in detail based on the embodiment shown in the accompanying drawings.

도 1은 본 발명에 의한 2단 압축식 로터리 압축기를 보인 종단면도이다.1 is a longitudinal sectional view showing a two-stage compression rotary compressor according to the present invention.

도 1에 도시된 바와 같이 본 발명에 의한 복식 로터리 압축기는, 밀폐용기(1)의 내부공간 상측에 구동력을 발생하는 전동부(2)가 설치되고, 상기 밀폐용기(1)의 내부공간 하측에는 상기 전동부(2)에서 발생된 회전력으로 냉매를 2단 압축하는 압축부(3)가 설치된다.As shown in FIG. 1, the double rotary compressor according to the present invention includes an electric motor 2 generating a driving force above an inner space of the sealed container 1, and below the inner space of the sealed container 1. A compression unit 3 is provided to compress the refrigerant in two stages by the rotational force generated by the transmission unit 2.

상기 압축부(3)는 냉매를 순차적으로 압축하기 위한 제1 압축기구부(4)와 제2 압축기구부(5)가 중간플레이트(6)의 양쪽에 각각 설치되고, 상기 제1 압축기구부(4)의 하단에는 상기 중간플레이트(6)의 저면과 함께 제1 압축기구부(4)의 제1 압축실(413)을 형성하는 하부베어링플레이트(이하, 하부베어링)(7)가 설치되며, 상기 제2 압축기구부(5)의 상단에는 상기 중간플레이트(6)의 상면과 함께 제2 압축기구부(5)의 제2 압축실(513)을 형성하는 상부베어링플레이트(이하, 상부베어링)(8)가 설치된다.In the compression section 3, the first compression mechanism section 4 and the second compression mechanism section 5 for sequentially compressing the refrigerant are respectively provided on both sides of the intermediate plate 6, and the first compression mechanism section 4 is provided. A lower bearing plate (hereinafter referred to as a lower bearing) 7 is formed at a lower end of the intermediate plate 6 to form a first compression chamber 413 of the first compression mechanism 4 together with the bottom surface of the intermediate plate 6. An upper bearing plate (hereinafter referred to as an upper bearing) 8 is formed at the upper end of the compression mechanism 5 to form a second compression chamber 513 of the second compression mechanism 5 together with the upper surface of the intermediate plate 6. do.

상기 제1 압축기구부(4)는 제1 실린더(41)와, 제1 롤링피스톤(42)과, 제1 베인(미도시) 그리고 제1 토출밸브(43)로 이루어진다.The first compression mechanism 4 includes a first cylinder 41, a first rolling piston 42, a first vane (not shown), and a first discharge valve 43.

상기 제2 압축기구부(5)는 제2 실린더(51)와, 제2 롤링피스톤(52)과, 제2 베인(미도시)과, 제2 토출밸브(53) 그리고 토출머플러(54)로 이루어진다.The second compression mechanism 5 includes a second cylinder 51, a second rolling piston 52, a second vane (not shown), a second discharge valve 53, and a discharge muffler 54. .

상기 제1 실린더(41)와 제2 실린더(51) 사이에는 상기 중간 플레이트(6)가 설치되어 상기 제1 실린더(41)의 제1 압축실(413)과 제2 실린더(51)의 제2 압축실(513)이 분리된다. The intermediate plate 6 is installed between the first cylinder 41 and the second cylinder 51 so that the first compression chamber 413 of the first cylinder 41 and the second cylinder 51 of the second cylinder 51 are provided. The compression chamber 513 is separated.

상기 제1 실린더(41)는 1차 흡입유로를 이루는 흡입구(411)가 어큐뮬레이터(9)와 흡입관(11)으로 연결되고, 상기 제1 실린더(41)의 토출구(412)는 그 제1 실린더(41)에 결합되는 중간챔버(713)에 연통되며, 상기 중간챔버(713)는 2차 흡입유로를 이루는 연통관(13)과 상기 제2 실린더(51)의 흡입구(511)를 통해 상기 제2 압축실(513)에 연통된다. 그리고 상기 제2 실린더(51)의 토출구(512)는 토출머플러(54)를 통해 밀폐용기(1)의 내부공간에 연통되고, 상기 밀폐용기(1)의 내부공간은 토출관(12)을 통해 냉동시스템에 연결된다. The first cylinder 41 has a suction port 411 forming a primary suction flow path connected to the accumulator 9 and the suction pipe 11, and the discharge hole 412 of the first cylinder 41 has a first cylinder ( The second chamber 713 is connected to the intermediate chamber 713 coupled to the second chamber 713, and the second chamber 713 is compressed through the second inlet 511 of the communication tube 13 and the second cylinder 51. It communicates with the thread 513. The discharge port 512 of the second cylinder 51 communicates with the inner space of the sealed container 1 through the discharge muffler 54, and the inner space of the sealed container 1 is discharged through the discharge tube 12. It is connected to the refrigeration system.

상기 하부베어링(7)의 저면에 소정의 깊이로 음각지게 공간부가 형성되는 동시에 상기 하부베어링(7)의 공간부는 복개판(10)으로 복개되어 상기 중간챔버(713)가 형성된다.A space portion is formed on the bottom surface of the lower bearing 7 so as to be intaglio with a predetermined depth, and at the same time, the space portion of the lower bearing 7 is covered by the cover plate 10 to form the intermediate chamber 713.

도면중 미설명 부호인 21은 고정자, 22는 회전자, 23은 회전축이다.In the figure, 21 is a stator, 22 is a rotor, and 23 is a rotating shaft.

상기와 같은 본 발명 복식 로터리 압축기가 가지는 작용 효과는 다음과 같다.The operation and effect of the double rotary compressor of the present invention as described above are as follows.

즉, 상기 전동부(2)의 고정자(21)에 전원을 인가하여 상기 회전자(22)가 회전하면, 상기 회전축(23)이 상기 회전자(22)와 함께 회전하면서 상기 전동부(2)의 회전력을 상기 제1 압축기구부(4)와 제2 압축기구부(5)에 전달하고, 상기 제1 압축기구부(4)와 제2 압축기구부(5)에서는 각각 제1 롤링피스톤(42)과 제2 롤링피스톤(52)이 선회운동을 하면서 상기 제1 베인(미도시) 및 제2 베인(미도시)과 함께 제1 압축실(413)과 제2 압축실(513)을 형성하게 된다.That is, when the rotor 22 rotates by applying power to the stator 21 of the transmission unit 2, the rotation shaft 23 rotates together with the rotor 22 while the transmission unit 2 is rotated. To the first compression mechanism 4 and the second compression mechanism 5, the first compression mechanism 4 and the second compression mechanism 5, respectively, the first rolling piston 42 and the As the rolling piston 52 pivots, a first compression chamber 413 and a second compression chamber 513 are formed together with the first vane (not shown) and the second vane (not shown).

이때, 상기 어큐뮬레이터(9)에서 액냉매와 분리되는 가스냉매는 상기 흡입관(11)을 통해 상기 제1 실린더(41)의 제1 압축실(413)로 흡입되고, 상기 제1 압축실(413)에서 압축된 냉매는 상기 제1 실린더(41)의 토출구(412)를 통해 중간챔버(713)로 유입된다. 상기 중간챔버(713)로 유입되는 1단 압축된 냉매는 상기 연통관(13)을 통해 제2 실린더(51)의 제2 압축실(513)로 흡입되고, 상기 제2 실린더(51)의 제2 압축실(513)에서 2단 압축된 후 그 제2 실린더(51)의 토출구(512)를 통해 밀폐용기(1)의 내부공간으로 토출된다.At this time, the gas refrigerant separated from the liquid refrigerant in the accumulator 9 is sucked into the first compression chamber 413 of the first cylinder 41 through the suction pipe 11, and the first compression chamber 413. The compressed refrigerant is introduced into the intermediate chamber 713 through the discharge port 412 of the first cylinder 41. The first stage compressed refrigerant flowing into the intermediate chamber 713 is sucked into the second compression chamber 513 of the second cylinder 51 through the communication tube 13 and the second of the second cylinder 51. After the second stage compression in the compression chamber 513 is discharged to the inner space of the sealed container 1 through the discharge port 512 of the second cylinder (51).

여기서, 상기 제1 압축실(413)과 제2 압축실(513)에서 냉매를 2단으로 압축하는 경우 어큐뮬레이터(9)에서 나와 제1 실린더(41)의 흡입구(411)로 이루어진 1차 흡입유로를 통해 제1 압축실(413)로 흡입되는 과정에서 1차 압력감소가 발생하며, 상기 제1 압축실(413)에서 1단 압축된 냉매가 중간챔버(713)에서 토출되어 상기 연통관(13)과 제2 실린더(51)의 흡입구(511)로 이루어진 2차 흡입유로를 통해 상기 2차 압축실(513)로 흡입되는 과정에서 다시 한번 압력감소가 발생하게 된다. Here, in the case of compressing the refrigerant in two stages in the first compression chamber 413 and the second compression chamber 513, the primary suction flow passage composed of the inlet port 411 of the first cylinder 41 exits the accumulator 9. In the process of being sucked into the first compression chamber 413 through the primary pressure decrease occurs, the refrigerant compressed in the first stage in the first compression chamber 413 is discharged from the intermediate chamber 713 is the communication tube 13 In the process of being sucked into the secondary compression chamber 513 through the secondary suction passage consisting of the suction port 511 of the second cylinder 51, the pressure decrease occurs once again.

이를 감안하여, 종래에는 중간챔버(713)의 체적을 최대한 크게 형성하고 각 흡입유로의 단면적을 크게 형성하여 압력감소 및 압력맥동을 낮추는 것이었으나, 이 경우 중간챔버(713)와 각 흡입유로의 크기가 커지는 만큼 압축기의 크기가 증대하게 되는 문제점이 있었다. 따라서, 본 실시예에서는 상기 중간챔버의 체적과 각 흡입유로의 단면적을 최적화하여 압축기의 크기가 과도하게 커지지 않으면서도 냉매의 압력감소 및 압력맥동을 낮추고자 하는 것이다.In view of this, in the related art, the volume of the intermediate chamber 713 is formed as large as possible and the cross-sectional area of each suction channel is formed to reduce the pressure decrease and the pressure pulsation, but in this case, the size of the intermediate chamber 713 and each suction channel is reduced. As the size of the compressor increases, there is a problem that the size of the compressor increases. Therefore, in this embodiment, the volume of the intermediate chamber and the cross-sectional area of each suction channel are optimized to reduce the pressure decrease and the pressure pulsation of the refrigerant without excessively increasing the size of the compressor.

이를 위해, 상기 제1 압축실(413)의 체적을 V1, 상기 제1 실린더(41)에서 토출되어 상기 제2 압축실(513)로 흡입되기 직전까지인 중간관로의 전체 체적을 Vpass 라고 할 때, 상기 제1 압축실 체적 대비 중간관로의 체적은 3.4 ≤ Vpass/V1 ≤ 6.3(이하, 조건 1.)가 되도록 형성할 수 있다.To this end, when the volume of the first compression chamber 413 is discharged from the first cylinder 41 and immediately before being sucked into the second compression chamber 513 by the volume of the first compression chamber 413 as Vpass. The volume of the intermediate pipe to the volume of the first compression chamber may be formed to be 3.4 ≦ Vpass / V1 ≦ 6.3 (hereinafter, condition 1.).

이와 같이, 상기 제1 압축실의 체적 대비 중간관로의 체적 비율을 상기와 같이 조건 1.로 한정할 경우 도 2에서와 같이 흡입손실이 최소화되는 것을 알 수 있다. 이는 상기 제1 압축실의 체적 대비 중간관로의 체적이 너무 넓으면 압력맥동이 증가하는 반면 너무 좁으면 압력손실이 증가하여 흡입손실이 증가할 수 있으므로 상기 제1 압축실의 체적 대비 중간관로의 체적 비율을 조건 1.과 같이 적절하게 설정함으로써 흡입손실을 최소화할 수 있다.As such, when the volume ratio of the intermediate pipe to the volume of the first compression chamber is limited to condition 1. as described above, it can be seen that the suction loss is minimized as shown in FIG. 2. This is because if the volume of the intermediate pipe is too large compared to the volume of the first compression chamber, the pressure pulsation may increase, while if it is too narrow, the pressure loss may increase and the suction loss may increase. The suction loss can be minimized by setting the ratio appropriately as in Condition 1.

하지만, 중간챔버의 체적을 충분히 크게 형성하는 기존 방식과 달리, 본 실시예와 같이 제1 압축실의 체적 대비 중간관로의 체적 비율을 최적화하는 방법을 사용하여 흡입손실을 최소화할 경우에는 특정 운전영역에서 공진으로 인한 이상소음이 발생하거나 맥동이 증가하여 상기 제2 압축실(513)에서의 흡입손실이 증가할 수 있다. 이를 감안하여, 다음과 같은 조건을 추가할 수 있다.However, unlike the existing method of forming the volume of the intermediate chamber sufficiently large, in the case of minimizing the suction loss by using a method of optimizing the volume ratio of the intermediate pipe to the volume of the first compression chamber as in the present embodiment, a specific operating region An abnormal noise due to resonance may occur or a pulsation may increase to increase suction loss in the second compression chamber 513. In view of this, the following conditions can be added.

즉, 상기 제1 압축실(413)로 냉매를 안내하는 1차 흡입유로의 최소면적을 A1, 상기 제2 압축실(513)로 냉매를 안내하는 2차 흡입유로의 최소면적을 A2라고 할 때, 상기 2차 흡입유로의 최소면적에 대한 1차 흡입유로의 최소면적은 0.837 ≤ A1/A2 ≤ 1.425(조건 2.)가 되도록 형성할 수 있다.That is, when the minimum area of the primary suction channel guiding the refrigerant to the first compression chamber 413 is A1 and the minimum area of the secondary suction channel guiding the refrigerant to the second compression chamber 513 is A2. The minimum area of the primary suction channel with respect to the minimum area of the secondary suction channel may be formed such that 0.837 ≦ A1 / A2 ≦ 1.425 (condition 2.).

그리고 상기 중간챔버를 지나 상기 제2 압축실(513)로 흡입되기 직전까지인 2차 흡입유로의 관내 체적을 Vpipe라고 할 때, 상기 제1 압축실 체적 대비 2차 흡입유로의 관내 체적은 0.195 ≤ Vpipe/V1(조건 3.)가 되도록 형성할 수 있다.In addition, when the pipe volume of the second suction flow path that passes through the intermediate chamber and just before being sucked into the second compression chamber 513 is called Vpipe, the volume of the pipe in the second suction flow path compared to the first compression chamber volume is 0.195 ≦ It can be formed to be Vpipe / V1 (Condition 3.).

이렇게 하여, 조건 1.을 통해 중간관로에서의 압력손실을 최소화시키는 한편, 상기 조건을 만족하는 범위 내에서 상대맥동을 저감시키기 위해 조건 2.를 적용하여 도 3과 같은 결과를 얻을 수 있다. 그리고 특정운전영역에서의 공진을 막기 위해 조건 3.으로 설정함으로써 도 4에서와 같이 앞서 조건 1.에서의 에너지 효율을 극대화할 수 있다.In this way, while the condition 1. to minimize the pressure loss in the intermediate pipe, while applying the condition 2. to reduce the relative pulsation within the range satisfying the above conditions can be obtained as shown in FIG. In addition, by setting the condition 3. to prevent resonance in a specific driving region, the energy efficiency of the condition 1. can be maximized as shown in FIG. 4.

한편, 도면으로 도시하지는 않았으나, 상기와 같이 연통관을 이용하여 중간챔버와 제2 압축실을 연통하지 않고 내부의 연통로를 이용하여 중간챔버와 제2 압축실을 연통하는 경우에도 상기의 조건들을 동일하게 적용할 수 있다. Although not shown in the drawings, the above conditions are the same even when the intermediate chamber and the second compression chamber are communicated using the internal communication path without communicating the intermediate chamber and the second compression chamber using the communication tube as described above. Can be applied.

1 : 밀폐용기 2 : 전동부
3 : 압축부 4 : 제1 압축기구부
411 : 제1 흡입구 413 : 제1 압축실
5 : 제2 압축기구부 511 : 제2 흡입구
513 : 제2 압축실 7 : 하부베어링
713 : 중간챔버 10 : 복개판
13 : 연통관
1: sealed container 2: electric drive
3: compression section 4: first compression mechanism section
411: first suction port 413: first compression chamber
5: second compression mechanism 511: second suction port
513: second compression chamber 7: lower bearing
713: intermediate chamber 10: the stomach plate
13: communication tube

Claims (4)

밀폐용기의 내부에서 냉매를 2단 압축하도록 제1 실린더의 토출측과 제2 실린더의 흡입측이 연결되고, 상기 제1 실린더의 토출측과 제2 실린더의 흡입측 사이에 소정의 체적을 갖는 중간챔버가 형성되는 밀폐형 압축기에서,
상기 제1 실린더의 압축실 체적을 V1, 상기 제1 실린더에서 토출되어 상기 제2 실린더로 흡입되기 직전까지인 중간관로의 전체 체적을 Vpass 라고 할 때,
상기 제1 실린더의 압축실 체적 대비 중간관로의 체적은 3.4 ≤ Vpass/V1 ≤ 6.3 이 되도록 형성되는 밀폐형 압축기.
An intermediate chamber having a predetermined volume is connected between the discharge side of the first cylinder and the suction side of the second cylinder so as to compress the refrigerant in two stages within the hermetic container. In the hermetic compressor that is formed,
When the volume of the compression chamber of the first cylinder is V1 and the total volume of the intermediate pipe that is discharged from the first cylinder and immediately before being sucked into the second cylinder is Vpass,
And the volume of the intermediate pipe to the volume of the compression chamber of the first cylinder is 3.4 ≦ Vpass / V1 ≦ 6.3.
제1항에 있어서,
상기 제1 실린더로 냉매를 안내하는 1차 흡입유로의 최소면적을 A1, 상기 제2 실린더로 냉매를 안내하는 2차 흡입유로의 최소면적을 A2라고 할 때,
상기 2차 흡입유로의 최소면적에 대한 1차 흡입유로의 최소면적은 0.837 ≤ A1/A2 ≤ 1.425 이 되도록 형성되는 밀폐형 압축기.
The method of claim 1,
When the minimum area of the primary suction channel guiding the refrigerant to the first cylinder is A1 and the minimum area of the secondary suction channel guiding the refrigerant to the second cylinder is A2,
The closed compressor of the first suction channel to the minimum area of the second suction channel is formed so that 0.837 <A1 / A2 <1.425.
제1항 또는 제2항에 있어서,
상기 중간챔버를 지나 상기 제2 실린더로 흡입되기 직전까지인 2차 흡입유로의 관내 체적을 Vpipe라고 할 때,
상기 제1 실린더의 압축실 체적 대비 2차 흡입유로의 관내 체적은 0.195 ≤ Vpipe/V1 이 되도록 형성되는 밀폐형 압축기.
The method according to claim 1 or 2,
When the pipe volume of the secondary suction flow path passing through the intermediate chamber and just before being sucked into the second cylinder is called Vpipe,
The hermetic compressor of the first cylinder is formed such that the volume of the pipe in the second suction flow path is 0.195 ≦ Vpipe / V1.
제1항에 있어서,
상기 제1 실린더와 제2 실린더는 중간플레이트를 사이에 두고 축방향 양측에서 서로 분리되도록 구비되고,
상기 중간플레이트를 기준으로 상기 제1 실린더와 제2 실린더의 타측에는 그 제1 실린더와 제2 실린더의 압축실을 형성하는 베어링이 각각 구비되며,
상기 제1 실린더의 압축실을 형성하는 베어링에는 상기 중간챔버가 형성되고,
상기 중간챔버의 일측과 상기 제2 실린더의 흡입측 사이에는 상기 밀폐용기의 외부에서 결합되는 연결관에 의해 연통되거나 또는 상기 밀폐용기의 내부에서 연결통로로 연통되는 밀폐형 압축기.
The method of claim 1,
The first cylinder and the second cylinder are provided to be separated from each other on both sides in the axial direction with an intermediate plate therebetween,
Bearings forming compression chambers of the first cylinder and the second cylinder are respectively provided on the other side of the first cylinder and the second cylinder based on the intermediate plate,
The intermediate chamber is formed in the bearing forming the compression chamber of the first cylinder,
The hermetic compressor between the one side of the intermediate chamber and the suction side of the second cylinder is communicated by a connecting tube coupled from the outside of the hermetic container or in a connecting passage in the interior of the hermetic container.
KR1020120002095A 2012-01-06 2012-01-06 Hemetic compressor KR20130081107A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020120002095A KR20130081107A (en) 2012-01-06 2012-01-06 Hemetic compressor
CN201310003553.8A CN103195711B (en) 2012-01-06 2013-01-06 Seal type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120002095A KR20130081107A (en) 2012-01-06 2012-01-06 Hemetic compressor

Publications (1)

Publication Number Publication Date
KR20130081107A true KR20130081107A (en) 2013-07-16

Family

ID=48718453

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120002095A KR20130081107A (en) 2012-01-06 2012-01-06 Hemetic compressor

Country Status (2)

Country Link
KR (1) KR20130081107A (en)
CN (1) CN103195711B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492748A4 (en) * 2016-07-28 2019-07-31 Guangdong Meizhi Compressor Co., Ltd. Compressor as well as cooling-heating refrigeration device and cooling-only refrigeration device having same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318760C (en) * 2002-03-13 2007-05-30 三洋电机株式会社 Multi-stage compressive rotary compressor and refrigerant return device
TWI263762B (en) * 2002-08-27 2006-10-11 Sanyo Electric Co Multi-stage compression type rotary compressor and a setting method of displacement volume ratio for the same
JP4719432B2 (en) * 2004-07-12 2011-07-06 日立アプライアンス株式会社 Air conditioner and rotary two-stage compressor used therefor
JP2008240666A (en) * 2007-03-28 2008-10-09 Fujitsu General Ltd Rotary compressor and heat pump system
KR20090047874A (en) * 2007-11-08 2009-05-13 엘지전자 주식회사 2 stage rotary compressor
KR101386481B1 (en) * 2008-03-05 2014-04-18 엘지전자 주식회사 Hermetic compressor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3492748A4 (en) * 2016-07-28 2019-07-31 Guangdong Meizhi Compressor Co., Ltd. Compressor as well as cooling-heating refrigeration device and cooling-only refrigeration device having same

Also Published As

Publication number Publication date
CN103195711A (en) 2013-07-10
CN103195711B (en) 2015-06-17

Similar Documents

Publication Publication Date Title
WO2014030436A1 (en) Gas compressor
KR101386481B1 (en) Hermetic compressor
US7431571B2 (en) Noise reduction muffler for hermetic rotary compressor
KR101681585B1 (en) Twin type rotary compressor
CN203272136U (en) Single-cylinder multi-stage compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
AU2002224180A1 (en) Muffler for hermetic rotary compressor
US9689388B2 (en) Scroll compressor
EP3406906B1 (en) Rotary compressor
CN203335407U (en) Single-cylinder two-stage compression pump body and compressor
US20060073053A1 (en) Orbiting vane compressor
US9695825B2 (en) Rotary compressor
KR101587174B1 (en) Rotary compressor
KR101981096B1 (en) Hemetic compressor
KR102392655B1 (en) Compressor having seperated oil retrun flow path and refrigerant flow path
KR20130011864A (en) Scroll compressor
KR20130081107A (en) Hemetic compressor
JP6257806B2 (en) Multi-cylinder hermetic compressor
KR102201409B1 (en) A rotary compressor
KR20060120382A (en) Gas discharge structure for twin rotary compressor
KR101335421B1 (en) Hermetic compressor
CN109595166B (en) Compressor
KR101870180B1 (en) 2 stage rotary compressor
KR100585810B1 (en) Modulation type rotary compressor with double shell and operation method
KR102060470B1 (en) 2-stage compressor

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination