JP4948557B2 - Multistage compressor and refrigeration air conditioner - Google Patents

Multistage compressor and refrigeration air conditioner Download PDF

Info

Publication number
JP4948557B2
JP4948557B2 JP2009059161A JP2009059161A JP4948557B2 JP 4948557 B2 JP4948557 B2 JP 4948557B2 JP 2009059161 A JP2009059161 A JP 2009059161A JP 2009059161 A JP2009059161 A JP 2009059161A JP 4948557 B2 JP4948557 B2 JP 4948557B2
Authority
JP
Japan
Prior art keywords
refrigerant
stage
suction
muffler
compression unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009059161A
Other languages
Japanese (ja)
Other versions
JP2010209865A (en
Inventor
哲英 横山
利秀 幸田
慎 関屋
圭 佐々木
雷人 河村
太郎 加藤
篤義 深谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009059161A priority Critical patent/JP4948557B2/en
Publication of JP2010209865A publication Critical patent/JP2010209865A/en
Application granted granted Critical
Publication of JP4948557B2 publication Critical patent/JP4948557B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Description

本発明は、例えば、蒸気圧縮式冷凍サイクルに用いられる多段圧縮機、および、冷凍空調装置に関する。   The present invention relates to, for example, a multistage compressor used in a vapor compression refrigeration cycle and a refrigeration air conditioner.

冷凍冷蔵庫、空気調和機、ヒートポンプ式給湯機等の冷凍空調装置には、回転式圧縮機を用いた蒸気圧縮式冷凍サイクルが用いられる。
地球温暖化防止を図る観点等から、蒸気圧縮式冷凍サイクルの省エネルギー化と効率化とが必要である。省エネルギー化と効率化とを図った蒸気圧縮式冷凍サイクルとして、二段回転式圧縮機を用いたインジェクションサイクルがある。二段回転式圧縮機を用いたインジェクションサイクルをより普及させるためには、コスト低減と、さらなる効率化とが必要である。
A vapor compression refrigeration cycle using a rotary compressor is used in a refrigeration air conditioner such as a refrigerator, an air conditioner, or a heat pump type hot water heater.
From the viewpoint of preventing global warming, it is necessary to save energy and improve efficiency of the vapor compression refrigeration cycle. An example of a vapor compression refrigeration cycle that achieves energy saving and efficiency is an injection cycle that uses a two-stage rotary compressor. In order to make the injection cycle using a two-stage rotary compressor more widespread, cost reduction and further efficiency are required.

回転式圧縮機は、圧縮部とモータとを密閉シェルの内部に収容する密閉形圧縮機が一般的である。密閉形の回転式圧縮機は、吸入マフラを経由して圧縮部に冷媒を吸入する。吸入マフラは、冷媒を吸入する時に生じる圧力脈動の発生を抑え、音響騒音を低減する。また、吸入マフラは、冷媒を気冷媒と液冷媒とに分離して、分離した液冷媒を一時的に貯蔵する。これにより、吸入マフラは、液冷媒が多量に圧縮部に入るのを防ぐ。
高圧シェル型の圧縮機および中間圧シェル型の圧縮機においては、吸入マフラは密閉シェルの外側に並設される。そして、密閉シェルの側部と吸入マフラの底部とが、吸込み冷媒管を介して接続される。そのため、高圧シェル型または中間圧シェル型の圧縮機を配置する場合には、圧縮機の側部に吸入マフラを配置するスペースが必要になる。特許文献1には、気液分離機能を有する吸入マフラを密閉シェルの軸方向上方に配置し、軸方向から見て略円弧状に形成した圧縮機についての記載がある。これにより、特許文献1では、圧縮機の側部に吸入マフラを配置するスペースを不要とした。
一方、低圧シェル型の圧縮機においては、冷媒を圧縮部へ吸入する前に、密閉シェル内で冷媒を気冷媒と液冷媒と分離することは一般的である。例えば、特許文献2には、冷媒を気冷媒と液冷媒とに分離することに加え、液冷媒と潤滑油とを分離するアキュムレータを密閉シェル内に備えたアキュムレータ一体型の圧縮機についての記載がある。
The rotary compressor is generally a hermetic compressor in which a compression unit and a motor are accommodated in a hermetic shell. A hermetic rotary compressor sucks refrigerant into a compression unit via a suction muffler. The suction muffler suppresses generation of pressure pulsation that occurs when the refrigerant is sucked, and reduces acoustic noise. The suction muffler separates the refrigerant into a gas refrigerant and a liquid refrigerant, and temporarily stores the separated liquid refrigerant. As a result, the suction muffler prevents a large amount of liquid refrigerant from entering the compression section.
In the high-pressure shell type compressor and the intermediate pressure shell type compressor, the suction muffler is juxtaposed outside the hermetic shell. And the side part of an airtight shell and the bottom part of a suction muffler are connected via a suction refrigerant pipe. Therefore, when a high-pressure shell type or intermediate pressure shell type compressor is arranged, a space for arranging the suction muffler on the side of the compressor is required. Patent Document 1 describes a compressor in which a suction muffler having a gas-liquid separation function is arranged in an axial direction above a hermetic shell and is formed in a substantially arc shape when viewed from the axial direction. Thereby, in patent document 1, the space which arrange | positions a suction muffler in the side part of the compressor became unnecessary.
On the other hand, in a low-pressure shell type compressor, it is common to separate a refrigerant from a gas refrigerant and a liquid refrigerant in a sealed shell before the refrigerant is sucked into the compression unit. For example, Patent Document 2 describes an accumulator-integrated compressor in which an accumulator for separating a liquid refrigerant and a lubricating oil is provided in a sealed shell in addition to separating the refrigerant into a gas refrigerant and a liquid refrigerant. is there.

二段回転式圧縮機では、低段圧縮部と高段圧縮部とを直列に接続する中間連結部で圧力損失(中間圧力脈動損失)を生じる。中間連結部で生じる圧力損失とは、低段吐出部で生じる過圧縮損失と高段吸入部で生じる不足膨張損失との総和に相当する。二段回転式圧縮機の効率化を図るには、中間連結部で生じる圧力損失を低減することが重要である。
特許文献3には、中間連結部の容積を高段圧縮部の圧縮室の排除容積よりも大きく設定することについての記載がある。これにより、特許文献3では、低段での冷媒の吐出と高段での冷媒の吸入とのタイミングのずれに起因する圧力脈動の発生を、中間連結部の緩衝作用で抑制した。そして、中間連結部で生じる圧力損失を少なくした。
特許文献4には、低段圧縮要素と高段圧縮要素との平面配置をずらすことについての記載がある。これにより、特許文献4では、中間連結流路の長さを最短にし、中間連結部での吸入ガスの追従性を良くした。そして、中間連結部で生じる圧力損失を少なくした。
In a two-stage rotary compressor, a pressure loss (intermediate pressure pulsation loss) is generated at an intermediate coupling portion that connects a low-stage compression portion and a high-stage compression portion in series. The pressure loss that occurs in the intermediate connection portion corresponds to the sum of the overcompression loss that occurs in the low-stage discharge portion and the insufficient expansion loss that occurs in the high-stage suction portion. In order to increase the efficiency of the two-stage rotary compressor, it is important to reduce the pressure loss that occurs at the intermediate connecting portion.
Patent Document 3 describes that the volume of the intermediate coupling portion is set larger than the displacement volume of the compression chamber of the high-stage compression portion. Thereby, in patent document 3, generation | occurrence | production of the pressure pulsation resulting from the timing shift of the refrigerant | coolant discharge in a low stage and the suction | inhalation of the refrigerant | coolant in a high stage was suppressed by the buffering action of the intermediate | middle connection part. And the pressure loss which arises in an intermediate connection part was decreased.
Patent Document 4 has a description of shifting the planar arrangement of the low-stage compression element and the high-stage compression element. Thereby, in patent document 4, the length of the intermediate | middle connection flow path was made shortest, and the followable | trackability of the suction gas in the intermediate | middle connection part was improved. And the pressure loss which arises in an intermediate connection part was decreased.

特開2006−342743号公報JP 2006-342743 A 特開2007−9789号公報Japanese Patent Laid-Open No. 2007-9789 特開昭63−138189号公報JP-A-63-138189 特開2003−148366号公報JP 2003-148366 A

特許文献1に記載されたように吸入マフラを配置した場合には、圧縮機の全高が高くなる。したがって、圧縮機の外観容積は従来と同一である。
特許文献2に記載されたように、低圧シェル型の圧縮機では、圧縮機の内側にアキュムレータを設けることは容易である。しかし、高圧シェル型や中間圧シェル型の圧縮機においては、依然として密閉シェルの内側にアキュムレータ機能を設けることはできない。
以上のように、従来の吸入マフラの省スペース化方法では、圧縮機の小型化の効果を十分に得られない。
When the suction muffler is arranged as described in Patent Document 1, the overall height of the compressor is increased. Therefore, the external volume of the compressor is the same as before.
As described in Patent Document 2, in a low-pressure shell type compressor, it is easy to provide an accumulator inside the compressor. However, in high-pressure shell type and intermediate pressure shell type compressors, it is still impossible to provide an accumulator function inside the sealed shell.
As described above, with the conventional space-saving method for the suction muffler, the effect of downsizing the compressor cannot be sufficiently obtained.

特許文献3に記載されたように中間連結部の容積を大きく設定した場合であっても、中間連結部の流路が長く、曲がっている場合や、途中に緩衝容器がある場合には、圧力損失が大きい。したがって、中間連結部を流れる冷媒の追従性が悪くなる。そのため、中間圧力脈動の振幅は小さくなっても位相遅れを生じ、中間連結部で圧力損失が増える。
特許文献4に記載されたように低段圧縮部、高段圧縮部それぞれのシリンダ平面配置位相をずらした場合、一般的な二段回転式圧縮機の特長である低段圧縮部と高段圧縮部のトルク変動を逆位相で打ち消しあう効果が得られなくなる。
以上のように、従来の中間連結部における圧力損失を低減する方法には課題がある。
Even when the volume of the intermediate connecting portion is set large as described in Patent Document 3, when the flow path of the intermediate connecting portion is long and bent, or when there is a buffer container in the middle, the pressure The loss is great. Therefore, the followability of the refrigerant flowing through the intermediate connecting portion is deteriorated. Therefore, even if the amplitude of the intermediate pressure pulsation becomes small, a phase delay occurs, and the pressure loss increases at the intermediate connecting portion.
When the cylinder plane arrangement phase of each of the low-stage compression section and the high-stage compression section is shifted as described in Patent Document 4, the low-stage compression section and the high-stage compression, which are the features of a general two-stage rotary compressor, are described. The effect of canceling out torque fluctuations at the opposite phase in the opposite phase cannot be obtained.
As described above, there is a problem in the conventional method for reducing the pressure loss in the intermediate connecting portion.

本発明は、多段回転式圧縮機の小型化と効率化とを両立することを目的とする。   An object of the present invention is to achieve both reduction in size and efficiency of a multistage rotary compressor.

この発明に係る多段圧縮機は、例えば、
密閉シェルと、
前記密閉シェルの内部に設けられ、冷媒を圧縮する第1圧縮部と、
前記密閉シェルの内部に前記第1圧縮部に積層されて設けられ、前記第1圧縮部が圧縮した冷媒をさらに圧縮する第2圧縮部と、
前記冷媒が前記密閉シェル外部から流入し、前記第1圧縮部へ流出する吸入マフラ空間を形成する吸入マフラと、
前記冷媒が前記第1圧縮部から吐出され、前記第2圧縮部へ流出する吐出マフラ空間を形成する吐出マフラとを備え、
前記吸入マフラと前記吐出マフラとは、前記第1圧縮部と前記第2圧縮部との積層方向において少なくとも一部が並列に配置され、かつ、前記第1圧縮部と前記第2圧縮部とに積層され前記密閉シェルの内部に設けられ、
前記吐出マフラは、前記第1圧縮部が圧縮した冷媒が吐出される吐出口と、冷媒が前記第2圧縮部へ流出する連通口とを含む所定の空間を前記吐出マフラ空間として形成し、
前記吸入マフラは、前記積層方向において前記吐出マフラ空間が形成された範囲の空間であって、前記吐出マフラ空間が形成された空間以外の空間の少なくとも一部を前記吸入マフラ空間として形成する
ことを特徴とする。
The multistage compressor according to the present invention is, for example,
A sealed shell;
A first compression unit provided inside the hermetic shell and compressing the refrigerant;
A second compression unit provided inside the hermetic shell and stacked on the first compression unit, and further compresses the refrigerant compressed by the first compression unit;
A suction muffler that forms a suction muffler space in which the refrigerant flows in from the outside of the sealed shell and flows out to the first compression unit;
A discharge muffler that forms a discharge muffler space in which the refrigerant is discharged from the first compression unit and flows out to the second compression unit;
The suction muffler and the discharge muffler are at least partially arranged in parallel in the stacking direction of the first compression unit and the second compression unit, and the first compression unit and the second compression unit Laminated and provided inside the sealed shell,
The discharge muffler forms, as the discharge muffler space, a predetermined space including a discharge port through which the refrigerant compressed by the first compression unit is discharged and a communication port through which the refrigerant flows out to the second compression unit,
The suction muffler is a space in a range where the discharge muffler space is formed in the stacking direction, and forms at least a part of the space other than the space where the discharge muffler space is formed as the suction muffler space. Features.

本発明に係る多段圧縮機は、従来密閉シェル外付けであった吸入マフラをシェル内に適切に配置することにより、小型化と効率化とを両立することが可能である。   The multistage compressor according to the present invention can achieve both reduction in size and efficiency by appropriately arranging the suction muffler, which has been conventionally externally attached to the hermetic shell, in the shell.

実施の形態1に係る二段回転式圧縮機の全体構成を示す断面図。FIG. 2 is a cross-sectional view showing the overall configuration of the two-stage rotary compressor according to the first embodiment. 実施の形態1に係る図1の二段回転式圧縮機のA−A断面図。FIG. 2 is an AA cross-sectional view of the two-stage rotary compressor of FIG. 1 according to the first embodiment. 従来の二段回転式圧縮機のA−A断面図。AA sectional drawing of the conventional two-stage rotary compressor. 実施の形態1および実施の形態2に係る二段回転式圧縮機の低段吐出マフラ比容積と比圧縮機効率の関係を示す図。The figure which shows the relationship between the low stage discharge muffler specific volume of the two-stage rotary compressor which concerns on Embodiment 1 and Embodiment 2, and specific compressor efficiency. 実施の形態2に係る図1の二段回転式圧縮機のA−A断面図。FIG. 4 is a cross-sectional view taken along line AA of the two-stage rotary compressor of FIG. 実施の形態2に係る図1の二段回転式圧縮機のA−A断面図。FIG. 4 is a cross-sectional view taken along line AA of the two-stage rotary compressor of FIG. 実施の形態2に係る図1の二段回転式圧縮機のA−A断面図。FIG. 4 is a cross-sectional view taken along line AA of the two-stage rotary compressor of FIG. 実施の形態3に係る二段回転式圧縮機の全体構成を示す断面図。Sectional drawing which shows the whole structure of the two-stage rotary compressor which concerns on Embodiment 3. FIG. 実施の形態3に係る図8の二段回転式圧縮機のA−A断面図。FIG. 9 is an AA cross-sectional view of the two-stage rotary compressor of FIG. 8 according to the third embodiment. 実施の形態4に係る二段回転式圧縮機の全体構成を示す断面図。Sectional drawing which shows the whole structure of the two-stage rotary compressor which concerns on Embodiment 4. FIG. 実施の形態4に係る図10の二段回転式圧縮機のA−A断面図。FIG. 11 is an AA cross-sectional view of the two-stage rotary compressor of FIG. 10 according to the fourth embodiment. 実施の形態5に係る二段回転式圧縮機の全体構成を示す断面図。Sectional drawing which shows the whole structure of the two-stage rotary compressor which concerns on Embodiment 5. FIG. 実施の形態5に係る図12の二段回転式圧縮機のA−A断面図。FIG. 13 is an AA cross-sectional view of the two-stage rotary compressor of FIG. 12 according to the fifth embodiment. 実施の形態6に係る暖房給湯システムの構成を示す概略図。Schematic which shows the structure of the heating hot-water supply system which concerns on Embodiment 6. FIG.

以下、図面に基づき、この発明の実施の形態について説明する。ここでは、多段圧縮機の一例として二段回転式圧縮機を説明する。
なお、以下の説明では、「低圧」、「中間圧」及び「高圧」の用語を用いる。しかし、これらは冷媒圧力の相対的な高さを示すものであって、絶対的な高さを示すものではない。「低圧」は、低段圧縮部による圧縮前の圧力を示す。「中間圧」は、低段圧縮部による圧縮後の圧力であって、高段圧縮部による圧縮前の圧力を示す。「高圧」は、高段圧縮部による圧縮後の圧力を示す。
また、二段圧縮機は、密閉シェル8内の圧力レベルによって大きく三種類に分類される。密閉シェル8内圧力が蒸発器圧力、又は、第1圧縮部の吸入圧力に等しい場合は「低圧シェル型」である。密閉シェル8内圧力が第1圧縮部の吐出圧力、又は、第2圧縮部の吸入圧力に等しい場合は「中間圧シェル型」である。密閉シェル8内圧力が凝縮器圧力、又は、第2圧縮部の吐出圧力に等しい場合は「高圧シェル型」である。なお、密閉シェル8内圧力とは、密閉シェル8の主要部分の圧力を指す。したがって、密閉シェル8内であっても、部分的に圧力が異なる場合もある。
また、二段圧縮機において、第1圧縮部は低段圧縮部であり、第2圧縮部は高段圧縮部である。また、以下の実施の形態では、多段圧縮機の一例として、2つの圧縮部(圧縮機構)を有する二段圧縮機を説明する。しかし、多段圧縮機は、3つ以上の圧縮部(圧縮機構)を有する圧縮機であってもよい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, a two-stage rotary compressor will be described as an example of a multistage compressor.
In the following description, the terms “low pressure”, “intermediate pressure”, and “high pressure” are used. However, these indicate the relative height of the refrigerant pressure, not the absolute height. “Low pressure” indicates the pressure before compression by the low-stage compression section. “Intermediate pressure” is the pressure after compression by the low-stage compression section, and indicates the pressure before compression by the high-stage compression section. “High pressure” indicates the pressure after compression by the high-stage compression section.
The two-stage compressor is roughly classified into three types according to the pressure level in the hermetic shell 8. When the internal pressure of the closed shell 8 is equal to the evaporator pressure or the suction pressure of the first compression section, it is a “low pressure shell type”. When the internal pressure of the sealed shell 8 is equal to the discharge pressure of the first compression section or the suction pressure of the second compression section, it is “intermediate pressure shell type”. When the pressure in the closed shell 8 is equal to the condenser pressure or the discharge pressure of the second compression unit, the high-pressure shell type is used. The internal pressure of the sealed shell 8 refers to the pressure of the main part of the sealed shell 8. Therefore, even in the closed shell 8, the pressure may be partially different.
In the two-stage compressor, the first compression unit is a low-stage compression unit, and the second compression unit is a high-stage compression unit. In the following embodiments, a two-stage compressor having two compression units (compression mechanisms) will be described as an example of a multistage compressor. However, the multistage compressor may be a compressor having three or more compression units (compression mechanisms).

実施の形態1.
図1は、実施の形態1に係る二段回転式圧縮機の全体構成を示す断面図である。図2は、実施の形態1に係る図1の二段回転式圧縮機のA−A断面図である。なお、図2では、本来断面図では見えない一部の構成要素を破線で示す。
実施の形態1に係る二段回転式圧縮機は、密閉シェル8の内側に、低段圧縮部10、高段圧縮部20、吸入マフラ30、低段吐出マフラ40、高段吐出マフラ50、下部支持部材60、上部支持部材70、中間連結部80、圧縮機吸入管1、潤滑油貯蔵部3、中間仕切板5、駆動軸6、モータ部9を備える。吸入マフラ30及び低段吐出マフラ40の層と、下部支持部材60と、低段圧縮部10と、中間仕切板5と、高段圧縮部20と、上部支持部材70と、高段吐出マフラ50と、モータ部9とが、駆動軸6の軸方向の下側から順に積層されている。また、密閉シェル8の内側において、駆動軸6の軸方向の最も下側に、潤滑油貯蔵部3が設けられる。
Embodiment 1 FIG.
FIG. 1 is a cross-sectional view showing the overall configuration of the two-stage rotary compressor according to the first embodiment. 2 is a cross-sectional view taken along line AA of the two-stage rotary compressor of FIG. 1 according to the first embodiment. In FIG. 2, some constituent elements that are not originally visible in the sectional view are indicated by broken lines.
The two-stage rotary compressor according to the first embodiment includes a low-stage compression unit 10, a high-stage compression unit 20, a suction muffler 30, a low-stage discharge muffler 40, a high-stage discharge muffler 50, and a lower part inside the hermetic shell 8. A support member 60, an upper support member 70, an intermediate connecting part 80, a compressor suction pipe 1, a lubricating oil storage part 3, an intermediate partition plate 5, a drive shaft 6, and a motor part 9 are provided. The layers of the suction muffler 30 and the low-stage discharge muffler 40, the lower support member 60, the low-stage compression unit 10, the intermediate partition plate 5, the high-stage compression unit 20, the upper support member 70, and the high-stage discharge muffler 50 And the motor unit 9 are stacked in order from the lower side in the axial direction of the drive shaft 6. In addition, inside the sealed shell 8, the lubricating oil storage unit 3 is provided on the lowest side in the axial direction of the drive shaft 6.

低段圧縮部10、高段圧縮部20はそれぞれ、シリンダ11,21を備える。また、低段圧縮部10、高段圧縮部20はそれぞれ、シリンダ11,21の内側に、回転ピストン12a,22a、ベーン14a,24aを備える。また、シリンダ11,21には、シリンダ吸入口15,25、吐出口16,26、吐出バルブ17,27、吐出バルブ凹型設置部18,28が設けられる。低段圧縮部10は、シリンダ11が下部支持部材60と中間仕切板5との間に挟まれるように積層される。高段圧縮部20は、シリンダ21が上部支持部材70と中間仕切板5との間に挟まれるように積層される。   The low stage compression unit 10 and the high stage compression unit 20 include cylinders 11 and 21, respectively. Further, the low-stage compression unit 10 and the high-stage compression unit 20 include rotary pistons 12a and 22a and vanes 14a and 24a inside the cylinders 11 and 21, respectively. The cylinders 11 and 21 are provided with cylinder suction ports 15 and 25, discharge ports 16 and 26, discharge valves 17 and 27, and discharge valve concave installation portions 18 and 28. The low-stage compression unit 10 is stacked such that the cylinder 11 is sandwiched between the lower support member 60 and the intermediate partition plate 5. The high-stage compression unit 20 is stacked such that the cylinder 21 is sandwiched between the upper support member 70 and the intermediate partition plate 5.

吸入マフラ30は、吸入マフラ容器32、吸入マフラシール部33、液貯蔵部34、細管38を備える。吸入マフラ30には、吸入マフラ容器32と下部支持部材60とによって囲まれた吸入マフラ空間31が形成される。
吸入マフラ空間31に入った低圧冷媒が漏れないように、吸入マフラ容器32と下部支持部材60との間は吸入マフラシール部33で封止される。また、吸入マフラ30は、吸入マフラ空間31に入った冷媒を気冷媒と液冷媒とに分離する。液貯蔵部34は分離した液冷媒を一時的に蓄えるため、吸入マフラ空間31の下側(駆動軸6の長手方向において低段圧縮部10の反対側)に設けられる。吸入マフラ30は、液貯蔵部34に蓄えられた液冷媒の液面が所定以上に上昇すると、細管38から汲み上げて液貯蔵量を所定の範囲に保持する。また、吸入マフラ30には、圧縮機吸入管1と接続された吸入マフラ入口36と、低段圧縮部10と接続された吸入マフラ出口37とが設けられる。
The suction muffler 30 includes a suction muffler container 32, a suction muffler seal portion 33, a liquid storage portion 34, and a narrow tube 38. The suction muffler 30 is formed with a suction muffler space 31 surrounded by the suction muffler container 32 and the lower support member 60.
The suction muffler container 32 and the lower support member 60 are sealed with a suction muffler seal portion 33 so that the low-pressure refrigerant that has entered the suction muffler space 31 does not leak. The suction muffler 30 separates the refrigerant that has entered the suction muffler space 31 into gas refrigerant and liquid refrigerant. The liquid storage unit 34 is provided below the suction muffler space 31 (on the opposite side of the low-stage compression unit 10 in the longitudinal direction of the drive shaft 6) in order to temporarily store the separated liquid refrigerant. When the liquid level of the liquid refrigerant stored in the liquid storage unit 34 rises above a predetermined level, the suction muffler 30 is pumped up from the narrow tube 38 and holds the liquid storage amount within a predetermined range. The suction muffler 30 is provided with a suction muffler inlet 36 connected to the compressor suction pipe 1 and a suction muffler outlet 37 connected to the low-stage compression unit 10.

低段吐出マフラ40は、低段吐出マフラ容器42、低段吐出マフラシール部43を備える。
低段吐出マフラ40には、吸入マフラ容器32と下部支持部材60とによって囲まれた低段吐出マフラ空間41が形成される。低段吐出マフラ空間41に入った中間圧冷媒が漏れないように、低段吐出マフラ容器42と下部支持部材60の間は低段吐出マフラシール部43で封止される。また、低段吐出マフラ40には、中間連結部80を介して高段圧縮部20に連通する連通口47が設けられる。
The low stage discharge muffler 40 includes a low stage discharge muffler container 42 and a low stage discharge muffler seal portion 43.
The low-stage discharge muffler 40 is formed with a low-stage discharge muffler space 41 surrounded by the suction muffler container 32 and the lower support member 60. The low-stage discharge muffler seal part 43 is sealed between the low-stage discharge muffler container 42 and the lower support member 60 so that the intermediate pressure refrigerant that has entered the low-stage discharge muffler space 41 does not leak. The low-stage discharge muffler 40 is provided with a communication port 47 that communicates with the high-stage compression unit 20 through the intermediate connection unit 80.

シール部33,43には、例えば、弾性材料からなるOリング、又は、金属パッキンが用いられる。   For the seal portions 33 and 43, for example, an O-ring made of an elastic material or a metal packing is used.

吸入マフラ30と低段吐出マフラ40とは、駆動軸6の軸方向(積層方向)において少なくとも一部が並列に配置される。つまり、吸入マフラ空間31と低段吐出マフラ空間41とが駆動軸6の軸方向に少なくとも一部が同一層を形成する。そして、吸入マフラ30と低段吐出マフラ40とは、下部支持部材60の吐出口側面部62に接するように積層され配置される。すなわち、吸入マフラ30と低段吐出マフラ40とは、下部支持部材60の吐出口側面部62に接する空間を分割するように配置される。
高段吐出マフラ50は、高段吐出マフラ容器52、高段吐出マフラシール部53を備える。高段吐出マフラ50には、高段吐出マフラ容器52と上部支持部材70とによって囲まれた高段吐出マフラ空間51が形成される。高段吐出マフラ空間51に入った高圧冷媒が漏れないように、高段吐出マフラ容器52と上部支持部材70の間は高段吐出マフラシール部53で封止される。また、高段吐出マフラ50には、密閉シェル8の内側に連通する連通口57が設けられる。
The suction muffler 30 and the low-stage discharge muffler 40 are at least partially arranged in parallel in the axial direction (stacking direction) of the drive shaft 6. That is, the suction muffler space 31 and the low-stage discharge muffler space 41 at least partially form the same layer in the axial direction of the drive shaft 6. The suction muffler 30 and the low-stage discharge muffler 40 are stacked and arranged so as to be in contact with the discharge port side surface portion 62 of the lower support member 60. That is, the suction muffler 30 and the low-stage discharge muffler 40 are arranged so as to divide the space in contact with the discharge port side surface portion 62 of the lower support member 60.
The high stage discharge muffler 50 includes a high stage discharge muffler container 52 and a high stage discharge muffler seal portion 53. The high-stage discharge muffler 50 is formed with a high-stage discharge muffler space 51 surrounded by the high-stage discharge muffler container 52 and the upper support member 70. The high-stage discharge muffler container 52 and the upper support member 70 are sealed with a high-stage discharge muffler seal portion 53 so that the high-pressure refrigerant that has entered the high-stage discharge muffler space 51 does not leak. The high-stage discharge muffler 50 is provided with a communication port 57 that communicates with the inside of the hermetic shell 8.

下部支持部材60は、下部軸受け部61、吐出口側面部62を備える。下部軸受け部61は、円筒形に形成され、駆動軸6を支持する。吐出口側面部62は、リング状(ドーナツ状)に形成され、上述した吸入マフラ空間31と低段吐出マフラ空間41とを形成するとともに、低段圧縮部10を支持する。同様に、上部支持部材70は、上部軸受け部71、吐出口側面部72を備える。上部軸受け部71は、円筒形に形成され、駆動軸6を支持する。吐出口側面部72は、リング状(ドーナツ状)に形成され、上述した高段吐出マフラ空間51を形成するとともに高段圧縮部20を支持する。   The lower support member 60 includes a lower bearing portion 61 and a discharge port side surface portion 62. The lower bearing portion 61 is formed in a cylindrical shape and supports the drive shaft 6. The discharge port side surface portion 62 is formed in a ring shape (donut shape), forms the above-described suction muffler space 31 and the low-stage discharge muffler space 41, and supports the low-stage compression unit 10. Similarly, the upper support member 70 includes an upper bearing portion 71 and a discharge port side portion 72. The upper bearing portion 71 is formed in a cylindrical shape and supports the drive shaft 6. The discharge port side surface portion 72 is formed in a ring shape (donut shape), forms the above-described high-stage discharge muffler space 51 and supports the high-stage compression section 20.

中間連結部80は、中間連結流路81、冷媒注入ポート82を備える。中間連結流路81は、低段吐出マフラ40の連通口47と高段圧縮部20のシリンダ21とを接続する流路である。冷媒注入ポート82は、中間連結流路81に取り付けられた冷媒を注入可能なポートである。また、中間連結流路81は、密閉シェル8の外部に溶接した配管である中間連結管84を流路とする。   The intermediate connection part 80 includes an intermediate connection flow path 81 and a refrigerant injection port 82. The intermediate connection channel 81 is a channel that connects the communication port 47 of the low stage discharge muffler 40 and the cylinder 21 of the high stage compression unit 20. The refrigerant injection port 82 is a port that can inject a refrigerant attached to the intermediate connection flow path 81. Further, the intermediate connection flow path 81 uses the intermediate connection pipe 84 which is a pipe welded to the outside of the sealed shell 8 as a flow path.

冷媒の流れを説明する。なお、図において矢印は冷媒の流れを示す。
まず、低圧の冷媒は、密閉シェル8に固定した圧縮機吸入管1を経て(図1の(1))、密閉シェル8の内側の吸入マフラ空間31へ吸入マフラ入口36から入る(図1の(2))。冷媒は、吸入マフラ空間31の中で気冷媒と液冷媒とに分離される。気冷媒と液冷媒とに分離された後、気冷媒は吸入マフラ出口37からシリンダ吸入口15を通って(図1の(3))低段圧縮部10のシリンダ11へ吸入される(図1の(4))。一方、液冷媒は吸入マフラ空間31の内部に一旦保持される。シリンダ11へ吸入された冷媒は、低段圧縮部10で中間圧まで圧縮された後、吐出バルブ17が開いて吐出口16から低段吐出マフラ空間41へ吐出される(図1の(5))。低段吐出マフラ空間41へ吐出された冷媒は、連通口47から中間連結流路81を通って(図1の(6))、高段圧縮部20のシリンダ21へ吸入される(図1の(7))。次に、シリンダ21へ吸入された冷媒は、高段圧縮部20で高圧まで圧縮された後、吐出口26から高段吐出マフラ空間51へ吐出される(図1の(8))。そして、高段吐出マフラ空間51へ吐出された冷媒は、密閉シェル8の内側へ吐出される。密閉シェル8の内側に吐出された冷媒は、圧縮部の上方にあるモータ部9の隙間を通った後、密閉シェル8に固定した圧縮機吐出管2を経て、外部冷媒回路へ吐出される。
なお、高圧冷媒が密閉シェル8の内側を通過する間に、冷媒と潤滑油とは分離される。分離された潤滑油は密閉シェル8底部の潤滑油貯蔵部3に貯蔵され、駆動軸6下部に取り付けられた回転ポンプによって汲み上げられ、各圧縮部の摺動部およびシール部に給油される。
また、上述したように、高段圧縮部20で高圧まで圧縮され、高段吐出マフラ空間51へ吐出された冷媒が密閉シェル8の内側へ吐出される。したがって、密閉シェル8内の圧力は、高段圧縮部20の吐出圧力に等しい。したがって、図1に示す圧縮機は、高圧シェル型である。
The flow of the refrigerant will be described. In the figure, the arrows indicate the flow of the refrigerant.
First, the low-pressure refrigerant enters the suction muffler space 31 inside the sealed shell 8 from the suction muffler inlet 36 through the compressor suction pipe 1 fixed to the sealed shell 8 ((1) in FIG. 1) (in FIG. 1). (2)). The refrigerant is separated into a gas refrigerant and a liquid refrigerant in the suction muffler space 31. After being separated into the gas refrigerant and the liquid refrigerant, the gas refrigerant is sucked from the suction muffler outlet 37 through the cylinder suction port 15 ((3) in FIG. 1) into the cylinder 11 of the low-stage compression unit 10 (FIG. 1). (4)). On the other hand, the liquid refrigerant is temporarily held inside the suction muffler space 31. The refrigerant sucked into the cylinder 11 is compressed to the intermediate pressure by the low-stage compression unit 10, and then the discharge valve 17 is opened and discharged from the discharge port 16 to the low-stage discharge muffler space 41 ((5) in FIG. 1). ). The refrigerant discharged to the low-stage discharge muffler space 41 passes through the intermediate connection flow path 81 from the communication port 47 ((6) in FIG. 1) and is sucked into the cylinder 21 of the high-stage compression unit 20 (in FIG. 1). (7)). Next, the refrigerant sucked into the cylinder 21 is compressed to a high pressure by the high-stage compression unit 20 and then discharged from the discharge port 26 to the high-stage discharge muffler space 51 ((8) in FIG. 1). Then, the refrigerant discharged to the high-stage discharge muffler space 51 is discharged to the inside of the sealed shell 8. The refrigerant discharged to the inside of the sealed shell 8 passes through the gap of the motor unit 9 above the compression unit, and then is discharged to the external refrigerant circuit through the compressor discharge pipe 2 fixed to the sealed shell 8.
Note that the refrigerant and the lubricating oil are separated while the high-pressure refrigerant passes through the inside of the sealed shell 8. The separated lubricating oil is stored in the lubricating oil storage section 3 at the bottom of the hermetic shell 8, pumped up by a rotary pump attached to the lower portion of the drive shaft 6, and supplied to the sliding section and the sealing section of each compression section.
Further, as described above, the refrigerant compressed to the high pressure in the high stage compression unit 20 and discharged into the high stage discharge muffler space 51 is discharged into the sealed shell 8. Therefore, the pressure in the sealed shell 8 is equal to the discharge pressure of the high-stage compression unit 20. Therefore, the compressor shown in FIG. 1 is a high-pressure shell type.

低段圧縮部10、高段圧縮部20の圧縮動作を説明する。
モータ部9は、駆動軸6を軸心6dを中心として回転させ、圧縮部10、20を駆動させる。駆動軸6の回転により、低段圧縮部10と高段圧縮部20とで、それぞれシリンダ11、21内の回転ピストン12a,22aは反時計まわりに偏心回転する。シリンダ11内側壁との隙間を最小にする偏心方向位置は、回転基準位相θから、シリンダ吸入口位相、前記低段吐出ポート位相の順番に回転移動して冷媒を圧縮する。ここでは、回転基準位相は、シリンダ内を圧縮室と吸入室に仕切るベーン14a(仕切り部材の一例)の位置とする。つまり、回転ピストン12aは、回転基準位相から反時計回りに、シリンダ吸入口15の位相θs1を通って、吐出口16の位相まで回転して冷媒を圧縮する。
高段圧縮部20においても、低段圧縮部10と同様に、回転ピストン22aが回転基準位相θから反時計回りに、シリンダ吸入口25の位相θs2を通って、吐出口26の位相まで回転して冷媒を圧縮する。すなわち、この実施の形態に示す圧縮機においては、低段圧縮部10のベーン14aの位置と高段圧縮部20のベーン24aの位置とは、同位相(回転基準位相θ)に設けられている。
The compression operation of the low stage compression unit 10 and the high stage compression unit 20 will be described.
The motor unit 9 rotates the drive shaft 6 around the axis 6d to drive the compression units 10 and 20. Due to the rotation of the drive shaft 6, the rotary pistons 12 a and 22 a in the cylinders 11 and 21 are eccentrically rotated counterclockwise by the low-stage compression unit 10 and the high-stage compression unit 20, respectively. The position in the eccentric direction that minimizes the gap with the inner wall of the cylinder 11 is rotationally moved from the rotation reference phase θ 0 in the order of the cylinder suction port phase and the low-stage discharge port phase to compress the refrigerant. Here, the rotation reference phase is a position of a vane 14a (an example of a partition member) that partitions the inside of the cylinder into a compression chamber and a suction chamber. That is, the rotary piston 12a rotates in the counterclockwise direction from the rotation reference phase through the phase θs1 of the cylinder suction port 15 to the phase of the discharge port 16 to compress the refrigerant.
In the high-stage compression unit 20, similarly to the low-stage compression unit 10, the rotary piston 22 a rotates counterclockwise from the rotation reference phase θ 0 to the phase of the discharge port 26 through the phase θs 2 of the cylinder suction port 25. And compresses the refrigerant. That is, in the compressor shown in this embodiment, the position of the vane 14a of the low-stage compressor 10 and the position of the vane 24a of the high-stage compressor 20 are provided in the same phase (rotation reference phase θ 0 ). Yes.

実施の形態1に係る二段回転式圧縮機は、特に以下の(1)から(4)の特徴を有する。
1)低段吐出マフラ空間41の形状
上述したように、低段圧縮部10で中間圧まで圧縮された冷媒は、吐出口16から低段吐出マフラ空間41へ吐出される。低段吐出マフラ空間41に吐出された冷媒は、低段吐出マフラ空間41の中で急拡大した後、連通口47から中間連結流路81へ流れ込む。
ここで、低段吐出マフラ空間41が上記吐出口16から連通口47への冷媒の流れを導くような形状となるように、低段吐出マフラ容器42は設けられる。つまり、吐出口16に対して連通口47と反対側の空間は、吐出口16から連通口47への冷媒の流れを無用に拡散する無効流れ領域49(図2で符号49で示すハッチング部分)となる。無効流れ領域49は、冷媒がよどみ易く圧力損失が増える原因となる。そこで、無効流れ領域49の容積が小さくなるように、低段吐出マフラ容器42は設けられる。
そして、以下に示す従来の回転式圧縮機において無効流れ領域が形成されていた領域に、吸入マフラ空間31が形成されるように吸入マフラ容器32は設けられる。
The two-stage rotary compressor according to the first embodiment particularly has the following features (1) to (4).
1) Shape of the low-stage discharge muffler space 41 As described above, the refrigerant compressed to the intermediate pressure by the low-stage compression unit 10 is discharged from the discharge port 16 to the low-stage discharge muffler space 41. The refrigerant discharged into the low-stage discharge muffler space 41 rapidly expands in the low-stage discharge muffler space 41 and then flows into the intermediate connection channel 81 from the communication port 47.
Here, the low-stage discharge muffler container 42 is provided so that the low-stage discharge muffler space 41 is shaped to guide the flow of the refrigerant from the discharge port 16 to the communication port 47. That is, the space opposite to the communication port 47 with respect to the discharge port 16 is an ineffective flow region 49 (hatched portion indicated by reference numeral 49 in FIG. 2) in which the refrigerant flow from the discharge port 16 to the communication port 47 is unnecessarily diffused. It becomes. The ineffective flow region 49 causes the refrigerant to stagnate and increase pressure loss. Therefore, the low-stage discharge muffler container 42 is provided so that the volume of the invalid flow region 49 is reduced.
The suction muffler container 32 is provided so that the suction muffler space 31 is formed in the region where the ineffective flow region is formed in the conventional rotary compressor described below.

図3は、従来の二段回転式圧縮機のA−A断面図である。図3に示すように、従来の低段吐出マフラ空間141は、吸入マフラ空間と同一層を形成しておらず、駆動軸6と駆動軸6の周囲(軸受け部分)とを除き密閉シェル8の内部を覆うリング状に形成されている。したがって、従来の低段吐出マフラ空間141は、無効流れ領域149(図3で符号149で示すハッチング部分)の容積が、有効流れ領域148(低段吐出マフラ空間141の無効流れ領域149以外の領域)に比べ非常に大きい。
これに対し、図2に示すように、実施の形態1に係る低段吐出マフラ空間41は、無効流れ領域49の容積が小さい。したがって、低段吐出マフラ40での圧力損失を少なくすることができる。また、無効流れ領域49の容積を小さくしたことにより生まれた空間に吸入マフラ30を配置することにより、圧縮機を小型化することができる。
FIG. 3 is an AA cross-sectional view of a conventional two-stage rotary compressor. As shown in FIG. 3, the conventional low-stage discharge muffler space 141 does not form the same layer as the suction muffler space, and the sealed shell 8 except for the drive shaft 6 and the periphery of the drive shaft 6 (bearing portion). It is formed in a ring shape that covers the inside. Therefore, in the conventional low-stage discharge muffler space 141, the volume of the invalid flow region 149 (hatched portion indicated by reference numeral 149 in FIG. 3) is the effective flow region 148 (the region other than the invalid flow region 149 of the low-stage discharge muffler space 141). ) Is very large.
On the other hand, as shown in FIG. 2, in the low stage discharge muffler space 41 according to the first embodiment, the volume of the ineffective flow region 49 is small. Therefore, the pressure loss in the low-stage discharge muffler 40 can be reduced. Further, the compressor can be reduced in size by arranging the suction muffler 30 in the space created by reducing the volume of the ineffective flow region 49.

例えば、低段吐出マフラ空間41は、A−A断面において、吐出口16と連通口47とを結ぶ直線を直径とする円(図3で破線で示した円44)の円弧と密閉シェル8の内壁とによって形成された領域(図3の斜線部45)を断面とする空間とする。また、低段吐出マフラ空間41は、A−A断面において、吐出口16と連通口47とを結ぶ直線を長辺とする楕円の楕円弧と密閉シェル8の内壁とによって形成された領域を断面とする空間であってもよい。
なお、吐出口16と連通口47とを結ぶ直線は、A−A断面において、吐出口16と連通口47とのうち、最も遠い2点を結ぶ直線である。つまり、前記円または楕円には、吐出口16の全体と連通口47の全体とが含まれる。
また、吐出口16と連通口47とを結ぶ直線に代えて、吐出バルブ17と連通口47とを結ぶ直線としてもよい。
また、前記円または前記楕円は、ほぼ円やほぼ楕円であればよく、厳密に円または楕円である必要はない。
また、前記領域を断面とする空間とは、例えば、前記断面を駆動軸6の長手方向に真っ直ぐに伸ばした形状の空間である。つまり、低段吐出マフラ空間41は、例えば、端面が前記円(又は楕円)である円柱(又は楕円柱)と密閉シェル8の内壁とによって形成された空間である。
For example, the low-stage discharge muffler space 41 has an arc of a circle (circle 44 shown by a broken line in FIG. 3) having a diameter that is a straight line connecting the discharge port 16 and the communication port 47 in the AA cross section. A region formed by the inner wall (shaded portion 45 in FIG. 3) is a space having a cross section. Further, the low-stage discharge muffler space 41 has a cross-sectional area formed by an elliptical elliptic arc whose long side is a straight line connecting the discharge port 16 and the communication port 47 and the inner wall of the sealed shell 8 in the AA cross section. It may be a space.
The straight line connecting the discharge port 16 and the communication port 47 is a straight line connecting two farthest points of the discharge port 16 and the communication port 47 in the AA cross section. That is, the circle or ellipse includes the entire discharge port 16 and the entire communication port 47.
Further, instead of a straight line connecting the discharge port 16 and the communication port 47, a straight line connecting the discharge valve 17 and the communication port 47 may be used.
The circle or ellipse may be substantially a circle or an ellipse, and does not need to be strictly a circle or an ellipse.
The space having the cross section as the cross section is, for example, a space having a shape obtained by extending the cross section straight in the longitudinal direction of the drive shaft 6. That is, the low-stage discharge muffler space 41 is a space formed by, for example, a cylinder (or elliptical column) whose end surface is the circle (or ellipse) and the inner wall of the sealed shell 8.

2)連通口47の配置
中間連結流路81への連通口47の位置における回転ピストン12aの回転位相(θout1,以下「連通口位相」と呼ぶ)が、高段圧縮部20のシリンダ吸入口25の位置における回転ピストン12aの回転位相(θs2,以下「高段吸入口位相」と呼ぶ)に近くなるように連通口47を配置する。つまり、回転ピストン12aの回転位相が、高段吸入口位相(θs2)に近い位相となる位置に連通口47を設ける。すなわち、連通口47の平面配置を高段圧縮部20のシリンダ吸入口25に近い位置とする。
図2では、連通口位相(θout1)が、回転基準位相(θ)と低段圧縮部10のシリンダ吸入口15の位置における回転ピストン12aの回転位相(θs1,以下「低段吸入口位相」と呼ぶ)との間になる位置に連通口47を設けた。つまり、回転ピストン12aの回転位相において、回転基準位相(θ)と低段吸入口位相(θs1)との間の位相となる位置に連通口47を設けた。
これにより、密閉シェル8の外側に配管を溶接して構成した中間連結管84は両端の位置における回転ピストン12aの回転位相の差が小さくなる。そのため、中間連結管84が短く、曲がりが少なくなる。その結果、中間連結管84を含む中間連結流路81は短く、曲がりが少ない流路になる。中間連結流路81を短く、曲がりの少ない流路にすることにより、中間連結流路81の圧力損失を低減することができる。
2) Arrangement of Communication Port 47 The rotational phase (θout1, hereinafter referred to as “communication port phase”) of the rotary piston 12a at the position of the communication port 47 to the intermediate connection flow path 81 is the cylinder suction port 25 of the high-stage compression unit 20. The communication port 47 is arranged so as to be close to the rotation phase of the rotary piston 12a at the position (θs2, hereinafter referred to as “high-stage suction port phase”). That is, the communication port 47 is provided at a position where the rotational phase of the rotary piston 12a is close to the high-stage suction port phase (θs2). That is, the planar arrangement of the communication port 47 is set to a position close to the cylinder suction port 25 of the high-stage compression unit 20.
In FIG. 2, the communication port phase (θout1) is the rotation reference phase (θ 0 ) and the rotation phase of the rotary piston 12a at the position of the cylinder suction port 15 of the low-stage compression unit 10 (θs1, hereinafter “low-stage suction port phase”). The communication port 47 is provided at a position between the two. That is, the communication port 47 is provided at a position that is a phase between the rotation reference phase (θ 0 ) and the low-stage suction port phase (θs1) in the rotation phase of the rotary piston 12a.
As a result, the intermediate connecting pipe 84 formed by welding the pipe to the outside of the hermetic shell 8 reduces the rotational phase difference of the rotary piston 12a at both end positions. Therefore, the intermediate connecting pipe 84 is short and bending is reduced. As a result, the intermediate connection flow path 81 including the intermediate connection pipe 84 is short and the flow path is less bent. By making the intermediate connection channel 81 short and a channel with less bending, the pressure loss of the intermediate connection channel 81 can be reduced.

3)圧縮機吸入管1に対する中間連結管84と連通口47との配置
圧縮機吸入管1の接続部の位置における回転ピストン12aの回転位相(θin1,以下「吸入管接続位相」と呼ぶ)と、中間連結管84の両端の位置における回転ピストン12aの回転位相とをずらす。ここで、中間連結管84の両端とは、中間連結管84の終端接続部と、中間連結管84の始端接続部とである。
中間連結管84の終端接続部の位置における回転ピストン12aの回転位相(θin2)を、以下「連結管終端位相」と呼ぶ。また、中間連結管84の始端接続部の位置における回転ピストン12aの回転位相を、以下「連結管始端位相」と呼ぶ。
連結管始端位相は、原則として連通口位相(θout1)と同一の位相である。したがって、言い換えると、吸入管接続位相(θin1)に対して、連結管終端位相(θin2)と連通口位相(θout1)とをずらす。
3) Arrangement of the intermediate connecting pipe 84 and the communication port 47 with respect to the compressor suction pipe 1 Rotation phase of the rotary piston 12a at the position of the connecting portion of the compressor suction pipe 1 (θin1, hereinafter referred to as “suction pipe connection phase”) The rotational phase of the rotary piston 12a at the positions of both ends of the intermediate connecting pipe 84 is shifted. Here, both ends of the intermediate connecting pipe 84 are a terminal connection portion of the intermediate connecting pipe 84 and a start end connecting portion of the intermediate connecting pipe 84.
The rotational phase (θin2) of the rotary piston 12a at the position of the terminal connecting portion of the intermediate connecting pipe 84 is hereinafter referred to as “connecting pipe terminal phase”. Further, the rotational phase of the rotary piston 12a at the position of the starting end connection portion of the intermediate connecting pipe 84 is hereinafter referred to as a “connecting pipe start end phase”.
The connecting pipe starting end phase is in principle the same phase as the communication port phase (θout1). Therefore, in other words, the connecting pipe end phase (θin2) and the communication port phase (θout1) are shifted from the suction pipe connecting phase (θin1).

2)で説明したように、連通口位相(θout1)が高段吸入口位相(θs2)に近い位相となる位置に連通口47を設ける。ここで、高段吸入口位相(θs2)と連結管終端位相(θin2)とは、位相をずらすことも可能であるが、原則としてほぼ同一の位相である。つまり、連結管始端位相(=連通口位相(θout1))と連結管終端位相(θin2)とは近い位相である。そのため、連結管始端位相(=連通口位相(θout1))や連結管終端位相(θin2)と、吸入管接続位相(θin1)とが重なっていると、中間連結管84と圧縮機吸入管1とが接触しないように、中間連結管84を曲げ変形する必要がある。
そこで、吸入管接続位相(θin1)に対して、連結管始端位相(=連通口位相(θout1))と連結管終端位相(θin2)とをずらす。つまり、回転ピストン12aの回転位相が、吸入管接続位相(θin1)と異なる位相になる位置に中間連結管84の終端接続部(連通口47)と中間連結管84の終端接続部とを設ける。これにより、中間連結管84を圧縮機吸入管1との接触をさけるために、曲げ変形させる必要がなくなる。
As described in 2), the communication port 47 is provided at a position where the communication port phase (θout1) is close to the high-stage suction port phase (θs2). Here, the high-stage inlet phase (θs2) and the connecting pipe end phase (θin2) can be shifted in phase, but are basically the same in principle. That is, the connecting pipe start end phase (= communication port phase (θout1)) and the connecting pipe end phase (θin2) are close to each other. Therefore, if the connecting pipe start end phase (= communication port phase (θout1)) or the connecting pipe end phase (θin2) overlaps with the suction pipe connection phase (θin1), the intermediate connection pipe 84 and the compressor suction pipe 1 It is necessary to bend and deform the intermediate connecting pipe 84 so that they do not contact each other.
Therefore, the connection pipe start phase (= communication port phase (θout1)) and the connection pipe end phase (θin2) are shifted from the suction pipe connection phase (θin1). That is, the terminal connection part (communication port 47) of the intermediate connection pipe 84 and the terminal connection part of the intermediate connection pipe 84 are provided at positions where the rotational phase of the rotary piston 12a is different from the suction pipe connection phase (θin1). This eliminates the need for bending deformation of the intermediate connecting pipe 84 in order to avoid contact with the compressor suction pipe 1.

なお、圧縮機吸入管1の接続部とは、圧縮機吸入管1が吸入マフラ30へ接続される部分である。言い換えると、圧縮機吸入管1の接続部とは、圧縮機吸入管1が密閉シェル8へ挿入される位置である。
中間連結管84の終端接続部とは、中間連結管84が高段圧縮部20側の流路と接続される位置である。言い換えると、中間連結管84の終端接続部とは、中間連結管84が密閉シェル8に接続される位置であって、高段圧縮部20側の位置である。
同様に、中間連結管84の始端接続部とは、中間連結管84が低段吐出マフラ40側の流路と接続される位置である。言い換えると、中間連結管84の始端接続部とは、中間連結管84が密閉シェル8に接続される位置であって、低段吐出マフラ40側の位置である。
The connection portion of the compressor suction pipe 1 is a portion where the compressor suction pipe 1 is connected to the suction muffler 30. In other words, the connection portion of the compressor suction pipe 1 is a position where the compressor suction pipe 1 is inserted into the sealed shell 8.
The terminal connection portion of the intermediate connecting pipe 84 is a position where the intermediate connecting pipe 84 is connected to the flow path on the high-stage compression section 20 side. In other words, the terminal connection portion of the intermediate connecting pipe 84 is a position where the intermediate connecting pipe 84 is connected to the sealed shell 8 and is a position on the high-stage compression section 20 side.
Similarly, the starting end connecting portion of the intermediate connecting pipe 84 is a position where the intermediate connecting pipe 84 is connected to the flow path on the low-stage discharge muffler 40 side. In other words, the starting end connection portion of the intermediate connecting pipe 84 is a position where the intermediate connecting pipe 84 is connected to the sealed shell 8 and is a position on the low-stage discharge muffler 40 side.

図2では、連結管始端位相(=連通口位相(θout1))と連結管終端位相(θin2)とが、圧縮機吸入管1の接続部の位置における位相(θin1)と回転基準位相(θ)との間となる位置に、中間連結管84の終端接続部と連通口47とを設けた。つまり、回転ピストン12aの回転位相が、圧縮機吸入管1の接続部の位置における位相と回転基準位相(θ)との間の位相になる位置に、中間連結管84の両端を設けた。
中間連結流路81を曲がりの少ない流路にすることにより、中間連結流路81の圧力損失を低減することができる。
In FIG. 2, the connecting pipe start end phase (= communication port phase (θout1)) and the connecting pipe end phase (θin2) are the phase (θin1) and the rotation reference phase (θ 0 ) at the position of the connecting portion of the compressor suction pipe 1. ) Are provided with a terminal connecting portion of the intermediate connecting pipe 84 and a communication port 47 at a position between them. That is, both ends of the intermediate connecting pipe 84 are provided at positions where the rotational phase of the rotary piston 12a becomes a phase between the phase at the position of the connecting portion of the compressor suction pipe 1 and the rotation reference phase (θ 0 ).
By making the intermediate connection channel 81 a channel with few bends, the pressure loss of the intermediate connection channel 81 can be reduced.

4)シリンダ吸入口15と圧縮機吸入管1の密閉シェル接続部との配置
低段吸入口位相(θs1)を、吸入管接続位相(θin1)よりも回転基準位相(θ)よりにずらす。3)で説明したように、連結管始端位相(=連通口位相(θout1))と連結管終端位相(θin2)とを、回転基準位相(θ)と吸入管接続位相(θin1)との間に配置すると、吸入管接続位相(θin1)が回転基準位相(θ)から離れてしまう。そのため、低段圧縮部10における排除容積(低段排除容積)が小さくなってしまう。
そこで、低段吸入口位相(θs1)を吸入管接続位相(θin1)よりも回転基準位相(θ)よりにずらす。つまり、回転ピストン12aの回転位相が、吸入管接続位相(θin1)よりも回転基準位相(θ)に近い位相になる位置にシリンダ吸入口15を設ける。これにより、低段圧縮部10における排除容積(低段排除容積)が小さくなることを防止できる。
4) Arrangement of the cylinder suction port 15 and the closed shell connection portion of the compressor suction pipe 1 The low-stage suction port phase (θs1) is shifted from the rotation reference phase (θ 0 ) with respect to the suction pipe connection phase (θin1). As described in 3), the connecting pipe start phase (= communication port phase (θout1)) and the connecting pipe end phase (θin2) are set between the rotation reference phase (θ 0 ) and the suction pipe connection phase (θin1). If it arrange | positions to, the suction pipe connection phase ((theta) in1) will leave | separate from a rotation reference phase ((theta) 0 ). Therefore, the excluded volume (low stage excluded volume) in the low stage compression unit 10 becomes small.
Therefore, the low-stage suction port phase (θs1) is shifted from the rotation reference phase (θ 0 ) rather than the suction pipe connection phase (θin1). That is, the cylinder suction port 15 is provided at a position where the rotation phase of the rotary piston 12a is closer to the rotation reference phase (θ 0 ) than the suction pipe connection phase (θin1). Thereby, it can prevent that the exclusion volume (low stage exclusion volume) in the low stage compression part 10 becomes small.

図4は、実施の形態1および実施の形態2に係る二段回転式圧縮機の低段吐出マフラ比容積と比圧縮機効率との関係を示す図である。なお、図4はR410A冷媒を用いた3馬力相当の圧縮機で暖房定格相当のヒートポンプの運転をした場合を示す。
ここで、低段吐出マフラ比容積とは、「低段吐出マフラ空間41の容積/低段排除容積」である。また、比圧縮機効率とは、「圧縮機効率/従来の二段回転式圧縮機(中間連結部圧力損失改善前)の試験で低段吐出マフラ比容積が最も大きい場合における圧縮機効率」である。
FIG. 4 is a diagram illustrating the relationship between the low-stage discharge muffler specific volume and the specific compressor efficiency of the two-stage rotary compressor according to the first and second embodiments. FIG. 4 shows a case where a heat pump equivalent to the heating rating is operated with a compressor equivalent to 3 horsepower using the R410A refrigerant.
Here, the low-stage discharge muffler specific volume is “the volume of the low-stage discharge muffler space 41 / the low-stage excluded volume”. The specific compressor efficiency is "compressor efficiency / compressor efficiency when the low-stage discharge muffler specific volume is the largest in the conventional two-stage rotary compressor (before improvement of pressure loss in the intermediate connection)" is there.

従来の二段回転式圧縮機は、低段吐出マフラ比容積が大きいほど比圧縮機効率が高い。
一方、実施の形態1に係る二段回転式圧縮機は、従来の二段回転式圧縮機に比べて圧縮機効率が向上している。特に、低段吐出マフラ空間41の容積が低段排除容積の5倍程度の場合に、圧縮機効率が最大となる傾向を示した。
図4からも分かるように、低段吐出マフラ空間41の容積は、ある程度の大きさが必要である。これは、低段吐出マフラ40は吐出口16からの噴出した流体の圧力脈動の発生を抑えるためである。しかし、上述したように、無効流れ領域49ではよどみを発生し、圧力損失を増加する原因となる。つまり、低段吐出マフラ空間41の容積を低段排除容積の5倍程度としつつ、無効流れ領域49を小さくすることがよい。
例えば、低段吐出マフラ空間41の容積を低段排除容積の5倍程度としつつ、A−A断面における低段吐出マフラ空間41の形状を上述した断面形状(円弧又は楕円弧により形成される領域の形状)とする。なお、低段吐出マフラ空間41の容積は、低段排除容積の5倍に限らず、図4に示すように約2−7倍であってもよい。また、低段吐出マフラ空間41は、最低限必要である吐出口16と吐出バルブ17と中間連結流路81への連通口47とを含む空間であって、無効流れ領域49をできる限り小さくした空間であってもよい。
The conventional two-stage rotary compressor has a higher specific compressor efficiency as the low-stage discharge muffler specific volume is larger.
On the other hand, the two-stage rotary compressor according to the first embodiment has improved compressor efficiency compared to the conventional two-stage rotary compressor. In particular, when the volume of the low-stage discharge muffler space 41 is about five times the low-stage exclusion volume, the compressor efficiency tends to be maximized.
As can be seen from FIG. 4, the volume of the low-stage discharge muffler space 41 needs to have a certain size. This is because the low-stage discharge muffler 40 suppresses the occurrence of pressure pulsation of the fluid ejected from the discharge port 16. However, as described above, the stagnation occurs in the ineffective flow region 49, causing the pressure loss to increase. That is, it is preferable to make the ineffective flow region 49 small while setting the volume of the low-stage discharge muffler space 41 to about five times the low-stage exclusion volume.
For example, while the volume of the low-stage discharge muffler space 41 is about five times the volume of the low-stage exclusion volume, the shape of the low-stage discharge muffler space 41 in the AA cross section is the above-described cross-sectional shape (a region formed by an arc or an elliptic arc). Shape). The volume of the low-stage discharge muffler space 41 is not limited to 5 times the low-stage exclusion volume, and may be about 2-7 times as shown in FIG. Further, the low-stage discharge muffler space 41 is a space including the discharge port 16, the discharge valve 17, and the communication port 47 to the intermediate connection flow path 81 that are the minimum necessary, and the ineffective flow region 49 is made as small as possible. It may be a space.

以上のように、実施の形態1に係る二段回転式圧縮機は、従来の二段回転式圧縮機と比べて、低段吐出マフラ空間41の無効流れ領域49が小さい。そのため、実施の形態1に係る二段回転式圧縮機は、低段吐出マフラ40での圧力損失を低減でき、圧縮機効率が高い。また、実施の形態1に係る二段回転式圧縮機は、従来密閉シェル8に外付けしていた吸入マフラ30を、無効流れ領域49を小さくすることにより生まれた空間に配置する。そのため、実施の形態1に係る二段回転式圧縮機は、小型化と効率化の両立が可能である。   As described above, the two-stage rotary compressor according to the first embodiment has a smaller ineffective flow region 49 in the low-stage discharge muffler space 41 than the conventional two-stage rotary compressor. Therefore, the two-stage rotary compressor according to the first embodiment can reduce the pressure loss in the low-stage discharge muffler 40, and the compressor efficiency is high. In the two-stage rotary compressor according to the first embodiment, the suction muffler 30 that has been externally attached to the hermetic shell 8 is disposed in the space created by reducing the ineffective flow region 49. Therefore, the two-stage rotary compressor according to Embodiment 1 can achieve both miniaturization and efficiency.

また、実施の形態1に係る二段回転式圧縮機は、中間連結流路81の長さが短く、曲がりの少ない流路であるため、中間連結流路81での圧力損失が少ない。
また、実施の形態1に係る二段回転式圧縮機は、中間連結流路81の長さが短くするため、特許文献4に記載されているような低段圧縮部10のシリンダ11と高段圧縮部20のシリンダ21との平面配置をずらす方式は用いない。つまり、通常の二段回転式圧縮機と同様に、低段圧縮部10のシリンダ11と高段圧縮部20のシリンダ21との平面配置は同位相のまま、回転ピストン12aと回転ピストン22aとの位置を駆動軸6に対して180度ずらして配置できる。したがって、通常の二段回転式圧縮機の特長である、低段圧縮部10と高段圧縮部20のトルク変動を逆位相で打ち消し合う効果を得ることができる。
In the two-stage rotary compressor according to the first embodiment, the intermediate connection flow path 81 has a short length and is a flow path with little bending, so that the pressure loss in the intermediate connection flow path 81 is small.
Further, in the two-stage rotary compressor according to the first embodiment, since the length of the intermediate connection flow path 81 is shortened, the cylinder 11 and the high stage of the low stage compression unit 10 as described in Patent Document 4 are used. A method of shifting the planar arrangement of the compression unit 20 with the cylinder 21 is not used. That is, as in a normal two-stage rotary compressor, the planar arrangement of the cylinder 11 of the low-stage compression unit 10 and the cylinder 21 of the high-stage compression unit 20 remains in the same phase, and the rotary piston 12a and the rotary piston 22a are in the same phase. The position can be shifted by 180 degrees with respect to the drive shaft 6. Therefore, it is possible to obtain an effect of canceling out torque fluctuations of the low-stage compression unit 10 and the high-stage compression unit 20 in opposite phases, which is a feature of a normal two-stage rotary compressor.

なお、図4についての説明では、R410A冷媒を用いた結果で効果を説明したが、R 410A冷媒以外のHFC冷媒(R22、R407他)や、HC冷媒(イソブタン、プロパン)やCO2冷媒などの自然冷媒や、HFO1234yfなどの低GWP冷媒などを用いても同様の効果が得られる。   In the description of FIG. 4, the effect is described by using the R410A refrigerant. However, natural effects such as HFC refrigerants (R22, R407, etc.) other than the R410A refrigerant, HC refrigerants (isobutane, propane), and CO2 refrigerants are used. The same effect can be obtained by using a refrigerant or a low GWP refrigerant such as HFO1234yf.

実施の形態2.
実施の形態2では、実施の形態1とは異なる吸入マフラ30と低段吐出マフラ40との配置について説明する。
Embodiment 2. FIG.
In the second embodiment, the arrangement of the suction muffler 30 and the low-stage discharge muffler 40 different from the first embodiment will be described.

図5は、実施の形態2に係る図1の二段回転式圧縮機のA−A断面図である。なお、図5では、本来断面図では見えない一部の構成要素を破線で示す。
図2に示す低段吐出マフラ40の低段吐出マフラシール部43の領域は、下部軸受け部61を囲むように形成した。図5に示す低段吐出マフラ40の低段吐出マフラシール部43の領域は、下部軸受け部61を含まず、シリンダ吐出口16、吐出バルブ17、凹型設置部18、連通口47を含む閉曲線で形成した。つまり、図5に示す低段吐出マフラ40は、低段吐出マフラシール部43で囲む領域をシリンダ11の吐出口16、吐出バルブ17、凹型設置部18を含む範囲に限定した点が図2に示す低段吐出マフラ40と異なる。
図5に示すように吸入マフラ30と低段吐出マフラ40とを構成しても、図2に示すように吸入マフラ30と低段吐出マフラ40とを構成した場合と同様の効果を得ることができる。
5 is an AA cross-sectional view of the two-stage rotary compressor of FIG. 1 according to the second embodiment. In FIG. 5, some constituent elements that are not originally visible in the sectional view are indicated by broken lines.
The region of the low-stage discharge muffler seal portion 43 of the low-stage discharge muffler 40 shown in FIG. 2 is formed so as to surround the lower bearing portion 61. The region of the low-stage discharge muffler seal portion 43 of the low-stage discharge muffler 40 shown in FIG. 5 does not include the lower bearing portion 61, but is formed by a closed curve including the cylinder discharge port 16, the discharge valve 17, the recessed installation portion 18, and the communication port 47. did. That is, the low-stage discharge muffler 40 shown in FIG. 5 is shown in FIG. 2 in that the region surrounded by the low-stage discharge muffler seal portion 43 is limited to the range including the discharge port 16, the discharge valve 17, and the concave installation portion 18 of the cylinder 11. Different from the low-stage discharge muffler 40.
Even if the suction muffler 30 and the low-stage discharge muffler 40 are configured as shown in FIG. 5, the same effect as when the suction muffler 30 and the low-stage discharge muffler 40 are configured as shown in FIG. 2 can be obtained. it can.

図6は、実施の形態2に係る図1の二段回転式圧縮機のA−A断面図である。なお、図6では、本来断面図では見えない一部の構成要素を破線で示す。
図6では、低段吐出マフラ空間41は、下部支持部材60の吐出口側面部62に接する領域であって下部軸受け部61を含まないリング状(ドーナツ状)の領域のうちの駆動軸6の軸心6dを中心とした所定の角度範囲とした。特に、図6では、低段吐出マフラ空間41は、吐出口16、吐出バルブ17、吐出バルブ凹型設置部18、連通口47を含む範囲に限定した領域に形成した。
一方、吸入マフラ空間は、下部支持部材60の吐出口側面部62に接する領域であって下部軸受け部61を含まないリング状(ドーナツ状)の領域のうちの低段吐出マフラ空間41を除く駆動軸6の軸心6dを中心とした所定の角度範囲とした。
図6に示すように吸入マフラ30と低段吐出マフラ40とを構成しても、図2に示すように吸入マフラ30と低段吐出マフラ40とを構成した場合と同様の効果を得ることができる。
6 is a cross-sectional view taken along line AA of the two-stage rotary compressor of FIG. 1 according to the second embodiment. In FIG. 6, some constituent elements that are not originally visible in the sectional view are indicated by broken lines.
In FIG. 6, the low-stage discharge muffler space 41 is a region in contact with the discharge port side surface portion 62 of the lower support member 60 and does not include the lower bearing portion 61, and is included in the ring-shaped (donut-shaped) region of the drive shaft 6. It was set as the predetermined angle range centering on the shaft center 6d. In particular, in FIG. 6, the low-stage discharge muffler space 41 is formed in a region limited to a range including the discharge port 16, the discharge valve 17, the discharge valve recessed portion 18, and the communication port 47.
On the other hand, the suction muffler space is a drive that excludes the low-stage discharge muffler space 41 in a ring-shaped (donut-shaped) region that is in contact with the discharge port side surface portion 62 of the lower support member 60 and does not include the lower bearing portion 61. A predetermined angle range centered on the axis 6d of the shaft 6 was set.
Even if the suction muffler 30 and the low-stage discharge muffler 40 are configured as shown in FIG. 6, the same effect as when the suction muffler 30 and the low-stage discharge muffler 40 are configured as shown in FIG. 2 can be obtained. it can.

図2、図5に示すシール部33,43は、滑らかな曲線を繋いで形成された。そのため、図2、図5に示すシール部33,43には、Oリングを用いることができる。一方、図6に示すシール部33,43は、直線を含む形状に形成された。そのため、図6に示すシール部33,43には、Oリングではなく、金属パッキンを用いる必要がある。シール部33,43に金属パッキンを用いることにより、シール部33,43により形成される領域を自由な形状にすることができる。   The seal portions 33 and 43 shown in FIGS. 2 and 5 are formed by connecting smooth curves. Therefore, O-rings can be used for the seal portions 33 and 43 shown in FIGS. On the other hand, the seal parts 33 and 43 shown in FIG. 6 were formed in a shape including a straight line. Therefore, it is necessary to use metal packing instead of an O-ring for the seal portions 33 and 43 shown in FIG. By using metal packing for the seal portions 33 and 43, the region formed by the seal portions 33 and 43 can be formed into a free shape.

図7は、実施の形態2に係る図1の二段回転式圧縮機のA−A断面図である。なお、図7では、本来断面図では見えない一部の構成要素を破線で示す。
図2、図5では、吸入マフラシール部33によって囲まれた吸入マフラ空間31の内側に、低段吐出マフラシール部43で閉曲線を作り低段吐出マフラ空間41を形成した。一方、図7では、吸入マフラシール部33によって囲まれた吸入マフラ空間31の外側に、低段吐出マフラシール部43で閉曲線を作り低段吐出マフラ空間41を形成した。
図7に示すように吸入マフラ30と低段吐出マフラ40とを構成しても、図2に示すように吸入マフラ30と低段吐出マフラ40とを構成した場合と同様の効果を得ることができる。
7 is a cross-sectional view taken along line AA of the two-stage rotary compressor of FIG. 1 according to the second embodiment. In FIG. 7, some components that are not originally visible in the sectional view are indicated by broken lines.
2 and 5, the low-stage discharge muffler space 41 is formed inside the suction muffler space 31 surrounded by the suction muffler seal part 33 by forming a closed curve with the low-stage discharge muffler seal part 43. On the other hand, in FIG. 7, the low-stage discharge muffler space 41 is formed outside the suction muffler space 31 surrounded by the suction muffler seal part 33 by forming a closed curve with the low-stage discharge muffler seal part 43.
Even if the suction muffler 30 and the low-stage discharge muffler 40 are configured as shown in FIG. 7, the same effects as those obtained when the suction muffler 30 and the low-stage discharge muffler 40 are configured as shown in FIG. 2 can be obtained. it can.

図4に、図7に示す吸入マフラ30と低段吐出マフラ40とを備える二段回転式圧縮機についての低段吐出マフラ比容積と比圧縮機効率の関係を示す。なお、図7では、連通口47の位相(θout1)を、あえてシリンダ吸入口25の位相の近くに配置しなかった。そのため、中間連結管84が長くなり圧力損失が大きくなる。
図4に示すように、図7に示す構成を備えた二段回転式圧縮機は、従来の二段回転式圧縮機に比べて圧縮機効率が高くなった。一方、図7に示す構成を備えた二段回転式圧縮機は、連通口位相(θout1)を回転基準位相(θ)に対して、回転ピストン12aの回転方向と反対側に設けたので、中間連結管84が長くなり圧力損失が大きくなったため、実施の形態1に係る二段回転式圧縮機に比べると圧縮機効率の改善効果が劣る。
しかし、図7に示す構成を備えた二段回転式圧縮機は、実施の形態1に係る二段回転式圧縮機と同様に、低段吐出マフラ40での無効流れ領域49を小さくし、低段吐出マフラ40での圧力損失を少なくしており、圧縮機効率が高くなっている。特に、実施の形態1の場合と同様に、低段吐出マフラ空間41の容積が低段排除容積の5倍程度の場合に、圧縮機効率が最大となる傾向を示した。
なお、低段吐出マフラ空間41の容積は、低段排除容積の5倍に限らず、図4に示すように約3−8倍であってもよい。また、図7に示す構成を備えた二段回転式圧縮機は、実施の形態1に係る二段回転式圧縮機と同様に、吸入マフラ30を密閉シェル8の内側に適切に配置することが可能である。したがって、図7に示す構成を備えた二段回転式圧縮機は、実施の形態1に係る二段回転式圧縮機と同様に、小型化と効率化を両立することが可能である。
FIG. 4 shows the relationship between the low-stage discharge muffler specific volume and the specific compressor efficiency for the two-stage rotary compressor including the suction muffler 30 and the low-stage discharge muffler 40 shown in FIG. In FIG. 7, the phase (θout1) of the communication port 47 is not intentionally placed near the phase of the cylinder suction port 25. For this reason, the intermediate connecting pipe 84 becomes longer and the pressure loss becomes larger.
As shown in FIG. 4, the two-stage rotary compressor having the configuration shown in FIG. 7 has higher compressor efficiency than the conventional two-stage rotary compressor. On the other hand, the two-stage rotary compressor having the configuration shown in FIG. 7 has the communication port phase (θout1) provided on the opposite side of the rotation direction of the rotary piston 12a with respect to the rotation reference phase (θ 0 ). Since the intermediate connecting pipe 84 is long and the pressure loss is large, the effect of improving the compressor efficiency is inferior to that of the two-stage rotary compressor according to the first embodiment.
However, the two-stage rotary compressor having the configuration shown in FIG. 7 is similar to the two-stage rotary compressor according to the first embodiment in that the ineffective flow region 49 in the low-stage discharge muffler 40 is reduced, and the The pressure loss in the stage discharge muffler 40 is reduced, and the compressor efficiency is increased. In particular, as in the case of the first embodiment, when the volume of the low-stage discharge muffler space 41 is about five times the low-stage exclusion volume, the compressor efficiency tends to be maximized.
The volume of the low-stage discharge muffler space 41 is not limited to 5 times the low-stage exclusion volume, and may be about 3 to 8 times as shown in FIG. Further, in the two-stage rotary compressor having the configuration shown in FIG. 7, the suction muffler 30 can be appropriately arranged inside the hermetic shell 8, similarly to the two-stage rotary compressor according to the first embodiment. Is possible. Therefore, the two-stage rotary compressor having the configuration shown in FIG. 7 can achieve both miniaturization and efficiency, as with the two-stage rotary compressor according to the first embodiment.

実施の形態3.
実施の形態1では、密閉シェル8の外側を通る中間連結管84を用いて中間連結流路81を構成した二段回転式圧縮機を説明した。実施の形態3では、中間連結流路81全体を密閉シェル8の内側に配置した二段回転式圧縮機を説明する。
Embodiment 3 FIG.
In the first embodiment, the two-stage rotary compressor in which the intermediate connection flow path 81 is configured using the intermediate connection pipe 84 that passes outside the sealed shell 8 has been described. In the third embodiment, a two-stage rotary compressor in which the entire intermediate connection channel 81 is disposed inside the hermetic shell 8 will be described.

図8は、実施の形態3に係る二段回転式圧縮機の全体構成を示す断面図である。図9は、実施の形態3に係る図8の二段回転式圧縮機のA−A断面図である。なお、図9では、本来断面図では見えない一部の構成要素を破線で示す。
実施の形態3に係る二段回転式圧縮機は、中間連結流路81が密閉シェル8の外部に接続された中間連結管84を含まない。つまり、中間連結流路81の全体が密閉シェル8の内部に設けられている。この点で、実施の形態3に係る二段回転式圧縮機は、実施の形態1に係る二段回転式圧縮機と異なる。
実施の形態3に係る二段回転式圧縮機における冷媒の流れは、原則として実施の形態1に係る二段回転式圧縮機における冷媒の流れと同様である。但し、低段吐出マフラ空間41へ吐出された冷媒が、密閉シェル8の内側を通ってシリンダ吸入口25へ繋がる中間連結流路81を通って(図8の(6))、高段圧縮部20のシリンダ21へ吸入される点で異なる。
実施の形態3に係る二段回転式圧縮機においても、無効流れ領域49を小さくすることにより中間連結部の圧力損失を少なくする方法を適用できる。したがって、実施の形態3に係る二段回転式圧縮機は、実施の形態1に係る二段回転式圧縮機と同様に、小型化と効率化を両立することが可能である。
特に、実施の形態3に係る二段回転式圧縮機では、中間連結流路81全体が密閉シェル8の内側を通るため、実施の形態1に係る二段回転式圧縮機よりも、流路の長さを短くできる。したがって、より圧力損失を少なくすることが可能であり、小型化も可能である。
FIG. 8 is a cross-sectional view showing the overall configuration of the two-stage rotary compressor according to the third embodiment. 9 is an AA cross-sectional view of the two-stage rotary compressor of FIG. 8 according to the third embodiment. In FIG. 9, some components that are not originally visible in the sectional view are indicated by broken lines.
The two-stage rotary compressor according to the third embodiment does not include the intermediate connection pipe 84 in which the intermediate connection flow path 81 is connected to the outside of the sealed shell 8. That is, the entire intermediate connection channel 81 is provided inside the sealed shell 8. In this respect, the two-stage rotary compressor according to the third embodiment is different from the two-stage rotary compressor according to the first embodiment.
The refrigerant flow in the two-stage rotary compressor according to the third embodiment is basically the same as the refrigerant flow in the two-stage rotary compressor according to the first embodiment. However, the refrigerant discharged into the low-stage discharge muffler space 41 passes through the intermediate connection flow path 81 connected to the cylinder suction port 25 through the inside of the closed shell 8 ((6) in FIG. 8), and the high-stage compression section. It differs in that it is sucked into 20 cylinders 21.
Also in the two-stage rotary compressor according to the third embodiment, a method of reducing the pressure loss of the intermediate connecting portion by reducing the ineffective flow region 49 can be applied. Therefore, similarly to the two-stage rotary compressor according to the first embodiment, the two-stage rotary compressor according to the third embodiment can achieve both reduction in size and efficiency.
In particular, in the two-stage rotary compressor according to the third embodiment, the entire intermediate connection flow path 81 passes through the inside of the hermetic shell 8, so that the flow path is more than that of the two-stage rotary compressor according to the first embodiment. The length can be shortened. Therefore, the pressure loss can be further reduced and the size can be reduced.

実施の形態4.
実施の形態1では、低段圧縮部10を中間仕切板5の下側に配置した二段回転式圧縮機を説明した。実施の形態4では、低段圧縮部10を中間仕切板5の上側に配置した二段回転式圧縮機を説明する。
Embodiment 4 FIG.
In the first embodiment, the two-stage rotary compressor in which the low-stage compression unit 10 is disposed below the intermediate partition plate 5 has been described. In the fourth embodiment, a two-stage rotary compressor in which the low-stage compression unit 10 is disposed on the upper side of the intermediate partition plate 5 will be described.

図10は、実施の形態4に係る二段回転式圧縮機の全体構成を示す断面図である。図11は、実施の形態4に係る図10の二段回転式圧縮機のA−A断面図である。なお、図11では、本来断面図では見えない一部の構成要素を破線で示し、低段圧縮部10がスイングピストン型の圧縮機であることを想定した図である。
なお、実施の形態1では、一例として、低段圧縮部10が回転ピストン型の圧縮機であることを想定した説明をした。そのため、図2は、低段圧縮部10が回転ピストン型の圧縮機であることを想定した図である。また、実施の形態1では、ベーン14aの位置を回転基準位相(θ)とした。
一方、実施の形態4では、他の例として、低段圧縮部10がスイングピストン型の圧縮機であることを想定する。つまり、実施の形態4では、低段圧縮部10では、駆動軸の回転により、シリンダ11内の揺動ピストン12bがブレード14bを介して揺動ブッシュ14cを支点にシリンダ11内を揺動運動しながら、シリンダ11内側壁との隙間を最小にする偏心方向位置を反時計まわりに回転する。シリンダ内を圧縮室と吸入室に仕切るブレード14b(仕切り部材の一例)の静止点位置を回転基準位相θとし、低段ピストン偏心方向位置を回転基準位相θから、シリンダ吸入口位相、前記低段吐出ポート位相の順番に回転移動して冷媒を圧縮する。
FIG. 10 is a cross-sectional view showing the overall configuration of the two-stage rotary compressor according to the fourth embodiment. FIG. 11 is an AA cross-sectional view of the two-stage rotary compressor of FIG. 10 according to the fourth embodiment. In addition, in FIG. 11, the one part component which cannot be seen in sectional drawing originally is shown with a broken line, and it is the figure which assumes that the low stage compression part 10 is a swing piston type compressor.
In the first embodiment, as an example, the description has been made assuming that the low-stage compression unit 10 is a rotary piston type compressor. Therefore, FIG. 2 is a diagram assuming that the low-stage compression unit 10 is a rotary piston type compressor. In the first embodiment, the position of the vane 14a is set as the rotation reference phase (θ 0 ).
On the other hand, in the fourth embodiment, as another example, it is assumed that the low stage compression unit 10 is a swing piston type compressor. That is, in the fourth embodiment, in the low-stage compression unit 10, the swing piston 12b in the cylinder 11 swings in the cylinder 11 with the swing bush 14c as a fulcrum through the blade 14b by the rotation of the drive shaft. However, the eccentric position that minimizes the gap with the inner wall of the cylinder 11 is rotated counterclockwise. A stationary point position of a blade 14b (an example of a partition member) that partitions the inside of the cylinder into a compression chamber and a suction chamber is defined as a rotation reference phase θ 0 , and a low-stage piston eccentric direction position is determined from the rotation reference phase θ 0 , the cylinder suction port phase, The refrigerant is compressed by rotating in the order of the low-stage discharge port phase.

実施の形態4に係る二段回転式圧縮機における冷媒の流れは、高段圧縮部20で高圧まで圧縮されるまでは、実施の形態1に係る二段回転式圧縮機における冷媒の流れと同様である。そこで、高段圧縮部20で高圧まで圧縮された後の冷媒の流れを説明する。
高圧まで圧縮された冷媒は、高段吐出マフラ50の内部に形成された高段吐出マフラ空間51へ吐出される(図10の(8))。高段吐出マフラ空間51へ吐出された冷媒は、連通口57から高段吐出流路58を通って(図10の(9))、密閉シェル8の内側で低段圧縮部10とモータ部9の間の空間に吐出される(図10の(10))。そして、冷媒は、圧縮機吐出管2を経て、外部冷媒回路に吐出する。
The refrigerant flow in the two-stage rotary compressor according to the fourth embodiment is the same as the refrigerant flow in the two-stage rotary compressor according to the first embodiment until the high-stage compression unit 20 compresses the refrigerant to a high pressure. It is. Then, the flow of the refrigerant | coolant after compressed to the high pressure in the high stage compression part 20 is demonstrated.
The refrigerant compressed to a high pressure is discharged into a high-stage discharge muffler space 51 formed inside the high-stage discharge muffler 50 ((8) in FIG. 10). The refrigerant discharged into the high-stage discharge muffler space 51 passes through the high-stage discharge flow path 58 from the communication port 57 ((9) in FIG. 10), and inside the hermetic shell 8, the low-stage compression unit 10 and the motor unit 9. (10 in FIG. 10). Then, the refrigerant is discharged to the external refrigerant circuit through the compressor discharge pipe 2.

実施の形態4に係る二段回転式圧縮機においても、実施の形態1の中間連結部の圧力損失を少なくする方法を適用できる。つまり、低段圧縮部10を中間仕切板5の上側に配置し、高段圧縮部20を中間仕切板5の下側に配置した二段回転式圧縮機であっても、実施の形態1に係る二段回転式圧縮機と同様に、小型化と効率化を両立することが可能である。同様に、低段圧縮部10(及び高段圧縮部20)にスイングピストン型の圧縮機を用いた二段回転式圧縮機であっても、実施の形態1に係る二段回転式圧縮機と同様に、小型化と効率化を両立することが可能である。   Also in the two-stage rotary compressor according to the fourth embodiment, the method of reducing the pressure loss of the intermediate coupling portion of the first embodiment can be applied. That is, even in the two-stage rotary compressor in which the low-stage compression unit 10 is disposed on the upper side of the intermediate partition plate 5 and the high-stage compression unit 20 is disposed on the lower side of the intermediate partition plate 5, Similar to the two-stage rotary compressor, it is possible to achieve both miniaturization and efficiency. Similarly, even if it is a two-stage rotary compressor using a swing piston type compressor for the low-stage compressor 10 (and the high-stage compressor 20), the two-stage rotary compressor according to the first embodiment Similarly, it is possible to achieve both miniaturization and efficiency.

実施の形態5.
以上の実施の形態では、密閉シェル8内側に高圧の冷媒を通す高圧シェル型の二段回転式圧縮機であった。実施の形態5では、密閉シェル8の内側に中間圧の冷媒を通す中間圧シェル型の二段回転式圧縮機について説明する。
Embodiment 5 FIG.
In the above embodiment, the high-pressure shell type two-stage rotary compressor that allows high-pressure refrigerant to pass inside the sealed shell 8 is used. In the fifth embodiment, an intermediate pressure shell type two-stage rotary compressor in which an intermediate pressure refrigerant is passed inside the hermetic shell 8 will be described.

図12は、実施の形態5に係る二段回転式圧縮機の全体構成を示す断面図である。図13は、実施の形態5に係る図12の二段回転式圧縮機のA−A断面図である。なお、図13では、本来断面図では見えない一部の構成要素を破線で示す。
実施の形態5に係る二段回転式圧縮機における冷媒の流れは、低段圧縮部10で中間圧まで圧縮されるまでは、実施の形態1に係る二段回転式圧縮機における冷媒の流れと同様である。そこで、低段圧縮部10で中間圧まで圧縮された後の冷媒の流れを説明する。
中間圧まで圧縮された冷媒は、吐出バルブ17が開いて吐出口16から低段吐出マフラ空間41へ吐出される(図12の(5))。低段吐出マフラ空間41へ吐出された冷媒は、連通口47から密閉シェル8の内側へと出される(図12の(6))。そして、密閉シェル8の内側へと出された冷媒は、中間連結流路81を通って(図12の(7))、高段圧縮部20のシリンダ21へ吸入される(図12の(8))。次に、シリンダ21へ吸入された冷媒は、高段圧縮部20で高圧まで圧縮された後、高段吐出マフラ50の内部に形成された高段吐出マフラ空間51へ吐出される(図12の(9))。高段吐出マフラ空間51へ吐出された冷媒は、圧縮機吐出管2を経て、外部冷媒回路に吐出する。
FIG. 12 is a cross-sectional view showing the overall configuration of the two-stage rotary compressor according to the fifth embodiment. 13 is an AA cross-sectional view of the two-stage rotary compressor of FIG. 12 according to the fifth embodiment. In FIG. 13, some components that are not originally visible in the cross-sectional view are indicated by broken lines.
The refrigerant flow in the two-stage rotary compressor according to the fifth embodiment is the same as the refrigerant flow in the two-stage rotary compressor according to the first embodiment until the low-stage compression unit 10 compresses the refrigerant to the intermediate pressure. It is the same. Therefore, the flow of the refrigerant after being compressed to the intermediate pressure by the low stage compression unit 10 will be described.
The refrigerant compressed to the intermediate pressure is discharged from the discharge port 16 to the low-stage discharge muffler space 41 by opening the discharge valve 17 ((5) in FIG. 12). The refrigerant discharged to the low-stage discharge muffler space 41 is discharged from the communication port 47 to the inside of the sealed shell 8 ((6) in FIG. 12). Then, the refrigerant discharged to the inside of the sealed shell 8 passes through the intermediate connection channel 81 ((7) in FIG. 12) and is sucked into the cylinder 21 of the high-stage compression unit 20 ((8 in FIG. 12). )). Next, the refrigerant sucked into the cylinder 21 is compressed to a high pressure by the high stage compression unit 20 and then discharged to a high stage discharge muffler space 51 formed inside the high stage discharge muffler 50 (FIG. 12). (9)). The refrigerant discharged to the high-stage discharge muffler space 51 is discharged to the external refrigerant circuit through the compressor discharge pipe 2.

実施の形態5に係る二段回転式圧縮機においても、実施の形態1の中間連結部の圧力損失を少なくする方法を適用できる。つまり、中間圧シェル型の二段回転式圧縮機であっても、実施の形態1に係る二段回転式圧縮機と同様に、小型化と効率化を両立することが可能である。   Also in the two-stage rotary compressor according to the fifth embodiment, the method of reducing the pressure loss of the intermediate coupling portion of the first embodiment can be applied. That is, even in the case of the intermediate pressure shell type two-stage rotary compressor, it is possible to achieve both miniaturization and efficiency improvement in the same manner as the two-stage rotary compressor according to the first embodiment.

以上の実施の形態では、回転式圧縮機として、回転ピストン型の圧縮機の場合とスイングピストン型の圧縮機の場合について説明した。しかし、これに限らず、実施の形態1の中間連結部の圧力損失を少なくする方法は、スライディングベーン型の圧縮機などの様々な回転式圧縮機に適用できる。そして、スライディングベーン型の圧縮機などに適用した場合であっても、以上の実施の形態で説明した回転ピストン型の圧縮機と同様の効果が得られる。   In the above embodiment, the case of the rotary piston type compressor and the case of the swing piston type compressor has been described as the rotary compressor. However, the present invention is not limited to this, and the method of reducing the pressure loss of the intermediate connecting portion according to the first embodiment can be applied to various rotary compressors such as a sliding vane type compressor. And even if it is a case where it applies to a sliding vane type compressor etc., the same effect as a rotary piston type compressor explained by the above embodiment is acquired.

実施の形態6.
実施の形態6では、以上の実施の形態で説明した多段回転式圧縮機(二段回転式圧縮機)の利用例であるヒートポンプ式暖房給湯システム90について説明する。
Embodiment 6 FIG.
In the sixth embodiment, a heat pump heating and hot water supply system 90 that is an example of using the multistage rotary compressor (two-stage rotary compressor) described in the above embodiment will be described.

図14は、実施の形態6に係るヒートポンプ式暖房給湯システム90の構成を示す概略図である。ヒートポンプ式暖房給湯システム90は、圧縮機91、第1熱交換器92、第1膨張弁93、第2熱交換器94、第2膨張弁95、第3熱交換器96、主冷媒回路97、水回路98、暖房給湯用水利用装置100を備える。ここで、圧縮機91は、以上の実施の形態で説明した多段回転式圧縮機(ここでは、二段回転式圧縮機)である。   FIG. 14 is a schematic diagram showing a configuration of a heat pump type heating and hot water supply system 90 according to the sixth embodiment. The heat pump type hot water supply system 90 includes a compressor 91, a first heat exchanger 92, a first expansion valve 93, a second heat exchanger 94, a second expansion valve 95, a third heat exchanger 96, a main refrigerant circuit 97, A water circuit 98 and a heating / hot water supply device 100 are provided. Here, the compressor 91 is the multistage rotary compressor (here, a two-stage rotary compressor) described in the above embodiment.

ヒートポンプユニット101は、圧縮機91、第1熱交換器92、第1膨張弁93、
第2熱交換器94を順次接続した主冷媒回路97と、第1熱交換器92、第1膨張弁93の間の分岐点102で一部の冷媒は分岐して第2膨張弁95、第3熱交換器96を流れ、圧縮機91の中間連結部80に冷媒を戻すインジェクション回路99から構成し、効率に優れたエコノマイザサイクルとして動作する。
The heat pump unit 101 includes a compressor 91, a first heat exchanger 92, a first expansion valve 93,
A part of the refrigerant branches off at a branch point 102 between the main refrigerant circuit 97 in which the second heat exchanger 94 is sequentially connected, the first heat exchanger 92, and the first expansion valve 93, and the second expansion valve 95, It is composed of an injection circuit 99 that flows through the three heat exchangers 96 and returns the refrigerant to the intermediate connecting portion 80 of the compressor 91, and operates as an economizer cycle having excellent efficiency.

第1熱交換器92では、圧縮機91が圧縮した冷媒と、水回路98を流れる液体(ここでは、水)とを熱交換する。ここでは、第1熱交換器92において熱交換されることにより、冷媒が冷され、水が温められる。第1膨張弁93は、第1熱交換器92で熱交換された冷媒を膨張させる。第2熱交換器94では、第1膨張弁93の制御に従い膨張した冷媒と空気との熱交換を行う。ここでは、第2熱交換器94において熱交換されることにより、冷媒が暖められ、空気が冷やされる。そして、温められた冷媒は、圧縮機91へ吸入される。
さらに、第1熱交換器92で熱交換された冷媒の一部は、分岐点102で分岐し、第2膨張弁95で膨張し、第3熱交換器96では、第2膨張弁の制御に従い膨張した冷媒と、第1熱交換器92で冷やされた冷媒とを内部熱交換し、圧縮機91の中間連結部80に注入される。このように、インジェクション回路99を流れる冷媒の減圧効果により冷房能力及び暖房能力を増大させるエコノマイザ手段を備えたヒートポンプユニット101として動作する。
一方、水回路98では、上述したように、第1熱交換器92で熱交換されることにより水は温められ、温められた水は暖房給湯用水利用装置100へ流れて、給湯や暖房に利用される。なお、給湯用の水は、第1熱交換器92で熱交換される水でなくてもよい。つまり、給湯器などでさらに水回路98を流れる水と給湯用の水とが熱交換されるようにしてもよい。
In the first heat exchanger 92, heat is exchanged between the refrigerant compressed by the compressor 91 and the liquid (here, water) flowing through the water circuit 98. Here, heat is exchanged in the first heat exchanger 92, whereby the refrigerant is cooled and the water is warmed. The first expansion valve 93 expands the refrigerant heat-exchanged by the first heat exchanger 92. The second heat exchanger 94 performs heat exchange between the expanded refrigerant and air in accordance with the control of the first expansion valve 93. Here, the heat is exchanged in the second heat exchanger 94, whereby the refrigerant is warmed and the air is cooled. Then, the warmed refrigerant is sucked into the compressor 91.
Further, a part of the refrigerant heat-exchanged by the first heat exchanger 92 branches at the branch point 102 and expands at the second expansion valve 95, and the third heat exchanger 96 follows the control of the second expansion valve. The expanded refrigerant and the refrigerant cooled by the first heat exchanger 92 undergo internal heat exchange and are injected into the intermediate connection portion 80 of the compressor 91. In this manner, the heat pump unit 101 including the economizer means that increases the cooling capacity and the heating capacity by the pressure reducing effect of the refrigerant flowing through the injection circuit 99 is operated.
On the other hand, as described above, in the water circuit 98, the water is warmed by heat exchange in the first heat exchanger 92, and the warmed water flows to the heating / hot water supply device 100 and is used for hot water supply and heating. Is done. The hot water supply water may not be water that is heat-exchanged by the first heat exchanger 92. That is, the water flowing through the water circuit 98 and the water for hot water supply may be further heat-exchanged by a water heater or the like.

本発明による多段回転式圧縮機は単体の圧縮機効率と小型化に優れている。さらに、本実施の形態で説明したヒートポンプ式暖房給湯システム90にこれを搭載し、エコノマイザサイクルを構成すると高効率化に優位な構成が実現できる。また、小型化にも優位である。
なお、ここでは、以上の実施の形態で説明した多段回転式圧縮機によって圧縮された冷媒で水を加熱するヒートポンプ式暖房給湯システム(ATW(Air To Water)システム)について説明した。しかし、これに限らず、以上の実施の形態で説明した多段回転式圧縮機によって圧縮された冷媒で空気等の気体を加熱又は冷却する蒸気圧縮式冷凍サイクルを形成することもできる。つまり、以上の実施の形態で説明した多段回転式圧縮機により冷凍空調装置を構築することもできる。本発明の多段回転式圧縮機を用いた冷凍空調装置においては、小型化と高効率化に優れている。
The multistage rotary compressor according to the present invention is excellent in single compressor efficiency and miniaturization. Furthermore, when this is mounted on the heat pump heating / hot water supply system 90 described in the present embodiment and an economizer cycle is configured, a configuration superior in efficiency can be realized. It is also superior in miniaturization.
Here, the heat pump type heating hot water supply system (ATW (Air To Water) system) that heats water with the refrigerant compressed by the multistage rotary compressor described in the above embodiment has been described. However, the present invention is not limited to this, and a vapor compression refrigeration cycle in which a gas such as air is heated or cooled with the refrigerant compressed by the multistage rotary compressor described in the above embodiment can also be formed. That is, a refrigeration air conditioner can also be constructed by the multistage rotary compressor described in the above embodiment. The refrigerating and air-conditioning apparatus using the multistage rotary compressor of the present invention is excellent in miniaturization and high efficiency.

1 圧縮機吸入管、2 圧縮機吐出管、3 潤滑油貯蔵部、5 中間仕切板、6 駆動軸、8 密閉シェル、9 モータ部、10 低段圧縮部、20 高段圧縮部、11,21 シリンダ、11a,21a シリンダ室、12a,22a 回転ピストン、12b,12b 揺動ピストン、14a,24a ベーン、14b,24b ブレード、14c 揺動ブッシュ、15,25 シリンダ吸入口、16,26 吐出口、17,27 吐出バルブ、18,28 吐出バルブ凹型設置部、30 吸入マフラ、31 吸入マフラ空間、32 吸入マフラ容器、33 吸入マフラシール部、34 液貯蔵部、36 吸入マフラ入口、37 吸入マフラ出口、38 細管、39 きり穴、40 低段吐出マフラ、41 低段吐出マフラ空間、42 低段吐出マフラ容器、43 低段吐出マフラシール部、47 連通口、49 無効流れ領域、50 高段吐出マフラ、51 高段吐出マフラ空間、52 高段吐出マフラ容器、53 高段吐出マフラシール部、57 連通口、58 高段吐出流路、60 下部支持部材、61 下部軸受け部、62 吐出口側面部、70 上部支持部材、71 上部軸受け部、72 吐出口側面部、80 中間連結部、81 中間連結流路、82 冷媒注入ポート、84 中間連結管、90 ヒートポンプ式暖房給湯システム、91 圧縮機、92 第1熱交換器、93 第1膨張弁、94 第2熱交換器、95 第2膨張弁、96 第3熱交換器、97 主冷媒回路、98 水回路、99 インジェクション回路、100 暖房給湯用水利用装置、101 ヒートポンプユニット、102 分岐点、140 低段吐出マフラ、141 低段吐出マフラ空間、142 低段吐出マフラ容器、143 低段吐出マフラシール部、147 連通口、149 無効流れ領域。   DESCRIPTION OF SYMBOLS 1 Compressor suction pipe, 2 Compressor discharge pipe, 3 Lubricating oil storage part, 5 Intermediate partition plate, 6 Drive shaft, 8 Sealing shell, 9 Motor part, 10 Low stage compression part, 20 High stage compression part, 11, 21 Cylinder, 11a, 21a Cylinder chamber, 12a, 22a Rotating piston, 12b, 12b Oscillating piston, 14a, 24a Vane, 14b, 24b Blade, 14c Oscillating bush, 15, 25 Cylinder suction port, 16, 26 Discharge port, 17 , 27 Discharge valve, 18, 28 Discharge valve concave installation part, 30 Suction muffler, 31 Suction muffler space, 32 Suction muffler container, 33 Suction muffler seal part, 34 Liquid storage part, 36 Suction muffler inlet, 37 Suction muffler outlet, 38 Narrow tube , 39 Drilled holes, 40 Low-stage discharge muffler, 41 Low-stage discharge muffler space, 42 Low-stage discharge muffler container, 43 Low-stage discharge muffler seal part, 47 communication port, 49 Invalid flow area, 50 High-stage discharge muffler, 51 High-stage discharge muffler space, 52 High-stage discharge muffler container, 53 High-stage discharge muffler seal part, 57 Communication port, 58 High-stage discharge Flow path, 60 Lower support member, 61 Lower bearing portion, 62 Discharge port side surface portion, 70 Upper support member, 71 Upper bearing portion, 72 Discharge port side surface portion, 80 Intermediate connection portion, 81 Intermediate connection flow channel, 82 Refrigerant injection port , 84 Intermediate connecting pipe, 90 Heat pump type hot water supply system, 91 Compressor, 92 1st heat exchanger, 93 1st expansion valve, 94 2nd heat exchanger, 95 2nd expansion valve, 96 3rd heat exchanger, 97 Main refrigerant circuit, 98 Water circuit, 99 Injection circuit, 100 Heating hot water supply device, 101 Heat pump unit, 102 Branch point, 140 Stage discharge muffler, 141 low-stage discharge muffler space 142 low-stage discharge muffler chamber, 143 low-stage discharge Mafurashiru unit, 147 communication port, 149 disables the flow area.

Claims (7)

密閉シェルと、
前記密閉シェルの内部に設けられ、冷媒を圧縮する第1圧縮部と、
前記密閉シェルの内部に前記第1圧縮部に積層されて設けられ、前記第1圧縮部が圧縮した冷媒をさらに圧縮する第2圧縮部と、
前記冷媒が前記密閉シェル外部から流入し、流入した冷媒を気冷媒と液冷媒とに分離して、分離した液冷媒を一時的に貯蔵するとともに、分離した気冷媒を前記第1圧縮部へ流出する吸入マフラ空間を形成する吸入マフラと、
前記冷媒が前記第1圧縮部から吐出され、前記第2圧縮部へ流出する吐出マフラ空間を形成する吐出マフラとを備え、
前記吸入マフラと前記吐出マフラとは、前記第1圧縮部と前記第2圧縮部との積層方向において少なくとも一部が並列に配置され、かつ、前記第1圧縮部と前記第2圧縮部とに積層され前記密閉シェルの内部に設けられ、
前記吐出マフラは、前記第1圧縮部が圧縮した冷媒が吐出される吐出口と、冷媒が前記第2圧縮部へ流出する連通口とを含む所定の空間を前記吐出マフラ空間として形成し、
前記吸入マフラは、前記積層方向において前記吐出マフラ空間が形成された範囲の空間であって、前記吐出マフラ空間が形成された空間以外の空間の少なくとも一部を前記吸入マフラ空間として形成する
ことを特徴とする多段圧縮機。
A sealed shell;
A first compression unit provided inside the hermetic shell and compressing the refrigerant;
A second compression unit provided inside the hermetic shell and stacked on the first compression unit, and further compresses the refrigerant compressed by the first compression unit;
The refrigerant flows in from the outside of the hermetic shell , separates the flowing refrigerant into gas refrigerant and liquid refrigerant, temporarily stores the separated liquid refrigerant, and flows the separated gas refrigerant out to the first compression unit. A suction muffler that forms a suction muffler space;
A discharge muffler that forms a discharge muffler space in which the refrigerant is discharged from the first compression unit and flows out to the second compression unit;
The suction muffler and the discharge muffler are at least partially arranged in parallel in the stacking direction of the first compression unit and the second compression unit, and the first compression unit and the second compression unit Laminated and provided inside the sealed shell,
The discharge muffler forms, as the discharge muffler space, a predetermined space including a discharge port through which the refrigerant compressed by the first compression unit is discharged and a communication port through which the refrigerant flows out to the second compression unit,
The suction muffler is a space in a range where the discharge muffler space is formed in the stacking direction, and forms at least a part of the space other than the space where the discharge muffler space is formed as the suction muffler space. A featured multistage compressor.
前記第1圧縮部では、前記吸入マフラから冷媒が流入する吸入口と、前記吐出マフラへ冷媒を吐出する吐出口との間を仕切り部材によって圧縮室と吸入室とに区切られたシリンダの内側をピストンの偏心位置が回転して冷媒を圧縮し、
前記連通口は、前記仕切り部材の位置を回転基準位相とした場合に、前記ピストンの偏心位置の回転位相が、前記回転基準位相と前記吸入口の位置の位相との間の位相になる位置に設けられる
ことを特徴とする請求項1に記載の多段圧縮機。
In the first compression section, an inside of a cylinder partitioned by a partition member into a compression chamber and a suction chamber is formed between a suction port through which the refrigerant flows from the suction muffler and a discharge port through which the refrigerant is discharged to the discharge muffler. The eccentric position of the piston rotates to compress the refrigerant,
The communication port is located at a position where the rotational phase of the eccentric position of the piston is a phase between the rotational reference phase and the phase of the suction port when the position of the partition member is a rotational reference phase. The multistage compressor according to claim 1, wherein the multistage compressor is provided.
一端が前記密閉シェルの外部に設けられ、他端が前記吸入マフラへ接続された圧縮機吸入管と、
前記密閉シェルの外部に設けられ、前記連通口と連通した流路に一端が接続され、前記第2圧縮部と連通した流路に他端が接続された中間連結管とを備え、
前記吸入マフラは、前記圧縮機吸入管を介して冷媒が流入し、
前記第1圧縮部は、シリンダの内側をピストンの偏心位置が回転して、前記吸入マフラから流入した冷媒を圧縮して、前記吐出マフラへ吐出し、
前記吐出マフラは、吐出された冷媒が前記中間連結管を介して前記第2圧縮部へ流出し、
前記中間連結管の両端は、前記ピストンの偏心位置の回転位相が、前記圧縮機吸入管が前記密閉シェルと接続された位置における位相と異なる位相になる位置で接続された
ことを特徴とする請求項1または2に記載の多段圧縮機。
A compressor suction pipe having one end provided outside the sealed shell and the other end connected to the suction muffler;
An intermediate connecting pipe provided outside the sealed shell, connected at one end to the flow path communicating with the communication port, and connected at the other end to the flow path communicated with the second compression section;
In the suction muffler, the refrigerant flows through the compressor suction pipe,
The first compression unit is configured such that the eccentric position of the piston rotates inside the cylinder, compresses the refrigerant flowing in from the suction muffler, and discharges the refrigerant to the discharge muffler.
In the discharge muffler, the discharged refrigerant flows out to the second compression part through the intermediate connecting pipe,
The both ends of the intermediate connecting pipe are connected at positions where the rotational phase of the eccentric position of the piston is different from the phase at the position where the compressor suction pipe is connected to the hermetic shell. Item 3. The multistage compressor according to Item 1 or 2.
前記第1圧縮部は、前記吸入マフラから冷媒が流入する吸入口と、前記吐出マフラへ冷媒を吐出する吐出口との間を仕切り部材によって圧縮室と吸入室とに区切られたシリンダの内側をピストンの偏心位置が回転して冷媒を圧縮し、
前記第1圧縮部の吸入口は、前記仕切り部材の位置を回転基準位相とした場合に、前記ピストンの偏心位置の回転位相が、前記圧縮機吸入管が前記密閉シェルと接続された位置における位相よりも、前記回転基準位相に近い位相になる位置に設けられた
ことを特徴とする請求項3に記載の多段圧縮機。
The first compression unit is disposed inside a cylinder partitioned by a partition member into a compression chamber and a suction chamber between a suction port through which the refrigerant flows from the suction muffler and a discharge port through which the refrigerant is discharged to the discharge muffler. The eccentric position of the piston rotates to compress the refrigerant,
The suction port of the first compression unit has a rotational phase of an eccentric position of the piston at a position where the compressor suction pipe is connected to the sealed shell when the position of the partition member is a rotation reference phase. 4. The multistage compressor according to claim 3, wherein the multistage compressor is provided at a position closer to the rotation reference phase than the rotation reference phase.
前記密閉シェルの内側に、前記吐出マフラと前記第2圧縮部とを接続する中間連結流路
を備え、
前記吐出マフラは、前記中間連結流路を介して冷媒が前記第2圧縮部へ流出する
ことを特徴とする請求項1または2に記載の多段圧縮機。
Provided inside the hermetic shell, an intermediate connecting flow path for connecting the discharge muffler and the second compression part,
The multistage compressor according to claim 1 or 2, wherein the discharge muffler causes the refrigerant to flow out to the second compression section through the intermediate connection flow path.
前記吐出マフラは、前記積層方向と垂直方向の断面において、前記吐出口と前記連通口とを結ぶ直線を直径とする円の円弧、又は、前記直線を長辺とする楕円の楕円弧によって形成される領域を断面とする空間を前記吐出マフラ空間として形成する
ことを特徴とする請求項1から5のいずれか1項に記載の多段圧縮機。
The discharge muffler is formed by a circular arc whose diameter is a straight line connecting the discharge port and the communication port or an elliptical elliptic arc whose long side is the straight line in a cross section perpendicular to the stacking direction. The multistage compressor according to any one of claims 1 to 5, wherein a space having a cross section as a section is formed as the discharge muffler space.
請求項1から6までのいずれか1項に記載の多段圧縮機
を備えることを特徴とする冷凍空調装置。
A refrigerating and air-conditioning apparatus comprising the multistage compressor according to any one of claims 1 to 6.
JP2009059161A 2009-03-12 2009-03-12 Multistage compressor and refrigeration air conditioner Expired - Fee Related JP4948557B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009059161A JP4948557B2 (en) 2009-03-12 2009-03-12 Multistage compressor and refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009059161A JP4948557B2 (en) 2009-03-12 2009-03-12 Multistage compressor and refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2010209865A JP2010209865A (en) 2010-09-24
JP4948557B2 true JP4948557B2 (en) 2012-06-06

Family

ID=42970275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009059161A Expired - Fee Related JP4948557B2 (en) 2009-03-12 2009-03-12 Multistage compressor and refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP4948557B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2873864B1 (en) * 2012-06-26 2020-09-09 Panasonic Intellectual Property Management Co., Ltd. Rotary compressor
WO2023139829A1 (en) * 2022-01-24 2023-07-27 パナソニックIpマネジメント株式会社 Rotary compressor

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0291493A (en) * 1988-09-27 1990-03-30 Mitsubishi Electric Corp Sealed rotary compressor
JP2007009789A (en) * 2005-06-30 2007-01-18 Denso Corp Accumulator-integrated compressor and vapor-compression refrigerating system
JP4864589B2 (en) * 2006-08-03 2012-02-01 三菱電機株式会社 Multistage rotary compressor

Also Published As

Publication number Publication date
JP2010209865A (en) 2010-09-24

Similar Documents

Publication Publication Date Title
KR101316247B1 (en) 2 stage rotary compressor
JP4065315B2 (en) Expander and heat pump using the same
US8985985B2 (en) Rotary compressor and refrigeration cycle apparatus
JP2008286037A (en) Rotary compressor and heat pump system
WO2012056728A1 (en) Screw compressor
WO2013042368A1 (en) Scroll compressor
JP6460595B2 (en) Compressor
WO2011148453A1 (en) Two-stage rotary compressor and heat pump apparatus
JP5228905B2 (en) Refrigeration equipment
JP6454879B2 (en) Rotary compressor with two cylinders
JP5338314B2 (en) Compressor and refrigeration equipment
JP4948557B2 (en) Multistage compressor and refrigeration air conditioner
JP2008240666A (en) Rotary compressor and heat pump system
JP2011179394A (en) Multicylinder compressor
JP5401899B2 (en) Refrigeration equipment
WO2013027237A1 (en) Two-stage compressor, and heat pump device
JP5511769B2 (en) Compressor
JP2009036140A (en) Scroll compressor and air conditioner
JP2019019779A (en) Rotary compressor
JP5595324B2 (en) Compressor
JP2005098663A (en) Transient critical refrigerant cycle device
JP5789581B2 (en) Scroll compressor
JP5217869B2 (en) Two-stage compressor
WO2015129169A1 (en) Compressor
JP2013224595A (en) Two-cylinder rotary compressor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120306

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4948557

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees