WO2015129169A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2015129169A1
WO2015129169A1 PCT/JP2015/000552 JP2015000552W WO2015129169A1 WO 2015129169 A1 WO2015129169 A1 WO 2015129169A1 JP 2015000552 W JP2015000552 W JP 2015000552W WO 2015129169 A1 WO2015129169 A1 WO 2015129169A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
compressor
refrigerant
compression
pressure
Prior art date
Application number
PCT/JP2015/000552
Other languages
French (fr)
Japanese (ja)
Inventor
雅至 井ノ上
小村 正人
江原 俊行
井上 孝
Original Assignee
株式会社デンソー
株式会社日本自動車部品総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社日本自動車部品総合研究所 filed Critical 株式会社デンソー
Priority to DE112015001018.1T priority Critical patent/DE112015001018T5/en
Publication of WO2015129169A1 publication Critical patent/WO2015129169A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/26Refrigerants with particular properties, e.g. HFC-134a
    • F04C2210/261Carbon dioxide (CO2)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Definitions

  • the present disclosure relates to a compressor that compresses a fluid in a compression chamber that reduces the volume while being displaced around a rotation axis.
  • a compressor that compresses a fluid in a compression chamber that reduces the volume while being displaced around a rotation axis (hereinafter referred to as a rotary type volume compressor) is known.
  • a scroll compressor including a fixed scroll and a movable scroll each having a spiral tooth portion.
  • the movable scroll is swung (revolved) with respect to the fixed scroll in a state where the spiral tooth portions formed on the movable scroll and the fixed scroll are engaged with each other.
  • the volume of the compression chamber is reduced while displacing the compression chamber formed between the respective tooth portions around the rotation axis.
  • Patent Document 1 discloses a compressor applied to a so-called gas injection cycle (economizer-type refrigeration cycle), in which an intermediate pressure fluid that is sucked from outside is joined to a fluid in a compression process in a compression chamber.
  • a scroll compressor provided with a suction port is disclosed.
  • the compression efficiency of the compressor can be improved by joining an intermediate pressure fluid having a relatively low temperature into the compression chamber.
  • the compression efficiency of the compressor is a value defined by the ratio of the work output from the compressor to the work required to drive the compressor.
  • a general rotary volumetric compressor includes a compression chamber forming member that partitions and forms a compression chamber. Then, a part of the compression chamber forming member is rotationally displaced along with the rotation of the rotation shaft, and a portion (wall surface) of the compression chamber forming member that actually forms the compression chamber is continuously changed around the rotation axis. Thereby, the compression chamber is displaced around the rotation axis.
  • the suction side compression chamber communicating with the suction port side for sucking low pressure fluid and the discharge side compression chamber communicating with the discharge port side for discharging high pressure fluid are the same compression chamber.
  • a compartment is formed by the forming member.
  • the scroll compressor includes a fixed scroll and a movable scroll as compression chamber forming members. Then, the movable scroll is turned (revolved) with respect to the fixed scroll, and the position where the movable side tooth portion of the movable scroll contacts the fixed side tooth portion of the fixed scroll is gradually changed around the rotation axis. Thereby, the wall surface forming the compression chamber is continuously changed to displace the compression chamber around the rotation axis.
  • the compression chamber on the suction side formed on the outer peripheral side and the compression chamber on the discharge side formed on the center side are partitioned by the same fixed scroll and movable scroll.
  • the temperature of the fluid in the compression chamber increases as it is compressed, so the fluid temperature in the compression chamber on the discharge side is higher than the fluid temperature sucked into the compression chamber on the suction side. Also gets higher.
  • the same compression chamber forming member such as a rotary type volume compressor
  • the volumetric efficiency of the compressor is a value defined by the ratio of the amount of fluid actually sucked into the compression chamber to the volume that the compression chamber theoretically shrinks. Therefore, the discharge flow rate of the compressor at the same rotation speed can be improved by improving the volumetric efficiency.
  • the number of revolutions required to exhibit the same cooling capacity or heating capacity can be reduced by improving the volumetric efficiency.
  • the reliability of the compressor can be improved and the coefficient of performance (COP) of the refrigeration cycle can be improved.
  • an object of the present disclosure is to provide a compressor capable of suppressing deterioration in volume efficiency of a compressor that compresses fluid in a compression chamber that reduces the volume while being displaced around a rotation axis.
  • the compressor of the present disclosure includes a compression chamber forming member that forms a compression chamber that reduces the volume while being displaced around a rotation axis, and an intermediate that joins an intermediate pressure fluid sucked from the outside to a fluid in a compression process in the compression chamber. And a pressure suction port.
  • the compressor further includes a backflow prevention unit that prevents the fluid from flowing back from the compression chamber toward the intermediate pressure suction port.
  • a downstream fluid passage extending from the backflow prevention unit to the compression chamber is formed with a directional component extending at least in the direction opposite to the rotation direction of the rotation shaft.
  • the downstream fluid passage is formed with a directional component extending in the direction opposite to the rotation direction of the rotation shaft. Accordingly, the intermediate pressure fluid flowing through the downstream fluid passage can cool the wall surface of the compression chamber forming member that forms the low pressure side compression chamber whose fluid pressure is relatively low.
  • the heat of the high-pressure fluid in the discharge-side compression chamber that communicates with the discharge port that discharges the high-pressure fluid flows into the suction-side compression chamber that communicates with the suction port that sucks in the low-pressure fluid via the compression chamber forming member. It is possible to suppress the heat transfer to the fluid to be performed and suppress the deterioration of the volume efficiency of the compressor.
  • the compressor of the present disclosure may be specifically configured as a scroll type compressor.
  • the compression chamber forming member revolves by the rotational driving force transmitted from the rotation shaft, and the movable scroll having a spiral movable side tooth portion, and the spiral fixed side tooth portion meshing with the movable side tooth portion.
  • a fixed scroll having The compression chamber is formed between the movable side tooth portion and the fixed side tooth portion.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG.
  • FIG. 4 is an enlarged cross-sectional view of the IV-IV cross section of FIG. 3, and is a cross-sectional view for explaining the shape of the downstream refrigerant passage of the first embodiment. It is sectional drawing for demonstrating the shape of the downstream refrigerant path of 2nd Embodiment. It is sectional drawing for demonstrating the shape of the downstream refrigerant path of 3rd Embodiment.
  • the compressor 1 according to the present disclosure is applied to a heat pump cycle (vapor compression refrigeration cycle) 100 that heats hot water using a heat pump hot water heater. Therefore, the fluid compressed by the compressor 1 of this embodiment is a refrigerant.
  • the heat pump cycle 100 is configured as a gas injection cycle in which the intermediate pressure gas-phase refrigerant of the cycle is merged with the refrigerant in the pressurizing process in the compression chamber Vc of the compressor 1. More specifically, the heat pump cycle 100 of the present embodiment includes a compressor 1, a water-refrigerant heat exchanger 2, a first expansion valve 3, a gas-liquid separator 4, a second expansion valve, as shown in FIG. 5. It has the outdoor heat exchanger 6 grade
  • the water-refrigerant heat exchanger 2 is a heating heat exchanger that heats hot water by exchanging heat between the refrigerant discharged from the discharge port 40a of the compressor 1 and the hot water.
  • the first expansion valve 3 is a high-stage decompression unit that decompresses the high-pressure refrigerant flowing out of the water-refrigerant heat exchanger 2 until it becomes an intermediate-pressure refrigerant. Further, the first expansion valve 3 is an electric expansion valve whose operation is controlled by a control signal output from a control device (not shown).
  • the gas-liquid separator 4 is a gas-liquid separator that separates the gas-liquid of the intermediate pressure refrigerant decompressed by the first expansion valve 3.
  • the second expansion valve 5 is a low-stage decompression unit that decompresses the intermediate-pressure liquid-phase refrigerant flowing out from the liquid-phase refrigerant outlet of the gas-liquid separator 4 until it becomes a low-pressure refrigerant.
  • the basic configuration of the second expansion valve 5 is the same as the basic configuration of the first expansion valve 3.
  • the outdoor heat exchanger 6 is a heat absorption heat exchanger that evaporates the low-pressure refrigerant decompressed by the second expansion valve 5 by exchanging heat with the outside air.
  • a suction port 30 a of the compressor 1 is connected to the refrigerant outlet side of the outdoor heat exchanger 6, and an intermediate pressure suction port 30 b of the compressor 1 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 4. Yes. Therefore, in this embodiment, the intermediate-pressure gas-phase refrigerant separated by the gas-liquid separator 4 is injected into the refrigerant in the pressurizing process in the compression chamber Vc of the compressor 1.
  • the heat pump cycle 100 of the present embodiment carbon dioxide is employed as the refrigerant.
  • the heat pump cycle 100 constitutes a supercritical refrigeration cycle in which the pressure of the high-pressure side refrigerant in the cycle from the discharge port of the compressor 1 to the inlet of the first expansion valve 3 is equal to or higher than the critical pressure. Furthermore, the refrigerant is mixed with oil (refrigeration oil) that lubricates each sliding portion inside the compressor 1, and a part of this oil circulates in the cycle together with the refrigerant.
  • oil refrigeration oil
  • the heat pump type hot water heater has a hot water storage tank, a hot water circulation circuit, a water pump (all not shown) and the like in addition to the heat pump cycle 100.
  • the hot water storage tank stores hot water heated by the water-refrigerant heat exchanger 2.
  • the hot water circulation circuit circulates hot water between the hot water storage tank and the water-refrigerant heat exchanger 2.
  • the water pump is disposed in the hot water circulation circuit and pumps hot water.
  • the compressor 1 includes a compression mechanism unit 10, an electric motor unit (electric motor unit) 20, a housing 30, an oil separator 40, and the like.
  • the compression mechanism unit 10 sucks, compresses and discharges a refrigerant that is a compression target fluid.
  • the electric motor unit 20 outputs a rotational driving force that drives the compression mechanism unit 10.
  • the housing 30 forms an outer shell of the compressor 1 and houses the compression mechanism unit 10 and the electric motor unit 20 therein.
  • the oil separator 40 is disposed outside the housing 30 and separates oil from the high-pressure refrigerant compressed by the compression mechanism unit 10.
  • a shaft (rotating shaft) 25 that transmits a rotational driving force from the electric motor unit 20 to the compression mechanism unit 10 extends in the vertical direction (vertical direction).
  • the compression mechanism unit 10 and the electric motor unit 20 are arranged in the vertical direction. That is, the compressor 1 of the present embodiment is a so-called vertical type. More specifically, in the compressor 1 of the present embodiment, the compression mechanism unit 10 is disposed on the lower side of the electric motor unit 20.
  • the housing 30 includes a cylindrical member 31 whose central axis extends in the vertical direction, a bowl-shaped upper lid member 32 that blocks the upper end of the cylindrical member 31, and a bowl-shaped lower lid member 33 that blocks the lower end of the cylindrical member 31. .
  • the housing 30 has a sealed container structure in which a cylindrical member 31, an upper lid member 32, and a lower lid member 33 are integrally joined.
  • the cylindrical member 31, the upper lid member 32, and the lower lid member 33 are all made of iron or an iron-based metal, and these are joined by welding.
  • the housing 30 is formed with a suction port 30a, an intermediate pressure suction port 30b (not shown in FIG. 2), and a high-pressure refrigerant outlet (not shown in FIG. 2).
  • the suction port 30a is a refrigerant suction port through which the low-pressure refrigerant flowing out of the outdoor heat exchanger 6 is sucked into the compression mechanism unit 10.
  • the intermediate pressure suction port 30 b is an intermediate pressure refrigerant suction port that joins the intermediate pressure gas phase refrigerant flowing out from the gas phase refrigerant outlet of the gas-liquid separator 4 with the refrigerant in the compression process in the compression chamber Vc of the compression mechanism unit 10. .
  • the high-pressure refrigerant outlet is a refrigerant outlet that allows the high-pressure refrigerant discharged from the compression mechanism unit 10 to flow out toward the oil separator 40 disposed outside the housing 30.
  • the electric motor unit 20 includes a coil stator 21 that forms a stator and a rotor 22 that forms a rotor.
  • a shaft 25 is fixed to the shaft center hole of the rotor 22 by press-fitting. Therefore, when electric power is supplied from the control device to the coils of the coil stator 21 and a rotating magnetic field is generated, the rotor 22 and the shaft 25 rotate together.
  • the shaft 25 is formed in a substantially cylindrical shape, and both end portions thereof are rotatably supported by a first bearing portion 26 and a second bearing portion 27 that are configured by sliding bearings, respectively. Further, an oil supply passage 25 a for supplying oil to the sliding portion between the outer surface of the shaft 25 and the first and second bearing portions 26 and 27 is formed inside the shaft 25.
  • the first bearing portion 26 is formed in a middle housing 28 that partitions the space in the housing 30 into a space in which the electric motor portion 20 is disposed and a space in which the compression mechanism portion 10 is disposed.
  • the first bearing part 26 supports the lower end side (compression mechanism part 10 side) of the shaft 25.
  • the 2nd bearing part 27 is being fixed to the cylindrical member 31 of the housing 30 via the interposition member, and is supporting the upper end side (opposite side of the compression mechanism part 10) of the shaft 25.
  • the compression mechanism unit 10 is configured as a scroll type compression mechanism unit having a movable scroll 11 and a fixed scroll 12 each having a spiral tooth portion.
  • the movable scroll 11 is disposed below the middle housing 28 described above, and the fixed scroll 12 is disposed below the movable scroll 11.
  • the movable scroll 11 has a disk-shaped movable side substrate portion 111 and a spiral movable side tooth portion 112 protruding from the movable side substrate portion 111 toward the fixed scroll 12.
  • the fixed scroll 12 has a disk-shaped fixed side substrate portion 121 and a spiral fixed side tooth portion 122 protruding from the fixed side substrate portion 121 toward the movable scroll 11.
  • the fixed scroll 12 is fixed to the housing 30 by press-fitting the outer peripheral side surface of the fixed-side substrate 121 to the inner peripheral side surface of the cylindrical member 31 of the housing 30.
  • the movable scroll 11 is disposed in a space formed between the middle housing 28 and the fixed scroll 12.
  • the movable scroll 11 and the fixed scroll 12 are arranged so that the plate surfaces of the substrate portions 111 and 121 face each other.
  • the tooth portion 112 of the movable scroll 11 and the tooth portion 122 of the fixed scroll 12 are engaged with each other, and the tip portion of the tooth portion of one scroll is in contact with the substrate portion of the other scroll.
  • a tip seal for improving the airtightness of the compression chamber Vc (working chamber V) is disposed at the tip of each scroll tooth. More specifically, a spiral groove along the shape of the tip is formed at the tip of each scroll tooth, and the tip seal is arranged in a spiral by being fitted into this groove. ing.
  • a chip seal is made of, for example, PEEK (polyether ether ketone) resin.
  • each tooth part 112,122 contacts in several places, and when it sees from the axial direction of the central axis of the shaft 25 between each tooth part 112,122, it forms in a crescent moon shape.
  • a plurality of compression chambers Vc are formed. 2 and 3, for the sake of clarity of illustration, only some of the compression chambers Vc are provided with reference numerals, and other compression chambers are omitted. Yes.
  • a cylindrical boss portion 113 into which the lower end portion of the shaft 25 (end portion on the compression mechanism portion 10 side) is inserted is formed at the center portion on the upper surface side of the movable side substrate portion 111 of the movable scroll 11.
  • the lower end portion of the shaft 25 is an eccentric portion 25 b that is eccentric with respect to the rotation center of the shaft 25. Accordingly, the eccentric portion 25 b of the shaft 25 is inserted into the boss portion 113 of the movable side substrate portion 111 of the movable scroll 11.
  • a rotation prevention mechanism (not shown) for preventing the movable scroll 11 from rotating around the eccentric portion 25b is provided. For this reason, when the shaft 25 rotates, the movable scroll 11 turns (revolves) with the rotation center of the shaft 25 as the revolution center without rotating around the eccentric portion 25b.
  • the compressor 1 of the present embodiment is configured as a rotary type volume compressor, and the movable scroll 11 and the fixed scroll 12 constitute a compression chamber forming member.
  • the suction port 30a formed in the housing 30 communicates with the compression chamber Vc on the suction side which is positioned on the outermost peripheral side of the compression chamber Vc and has the largest volume.
  • the intermediate pressure suction port 30b communicates with the compression chamber Vc at an intermediate position that is positioned at an intermediate position in the process of displacement from the outermost peripheral side to the center side of the compression chamber Vc.
  • At least a part of the refrigerant passage for suction from the suction port 30a to the compression chamber Vc on the suction side, and at least a part of the refrigerant passage for injection from the intermediate pressure suction port 30b to the compression chamber Vc at the intermediate position are It is formed inside the fixed side substrate 121 of the fixed scroll 12.
  • a backflow prevention valve 50 is arranged in the refrigerant passage for injection from the intermediate pressure suction port 30b to the compression chamber Vc at the intermediate position.
  • the backflow prevention valve 50 is a backflow prevention unit for preventing the refrigerant from flowing back from the compression chamber Vc toward the intermediate pressure suction port 30b.
  • the backflow prevention valve 50 of the present embodiment is configured by a reed valve 50a formed of a plate-like member and a seat member 50b formed with a passage that opens and closes the reed valve 50a.
  • a reed valve type backflow prevention valve 50 can be accommodated in a relatively small accommodation space, and therefore, the internal volume (dead volume) of the refrigerant passage downstream from the backflow prevention valve 50 in the injection refrigerant passage. ) Is effective in that it does not unnecessarily expand.
  • the direction in which the refrigerant passage on the downstream side of the backflow prevention valve 50 in the injection refrigerant passage extends is inclined with respect to the central axis direction of the shaft 25 as shown in FIGS. ing. That is, the refrigerant passage is a downstream refrigerant passage (downstream fluid passage) 51 from the backflow prevention valve 50 to the compression chamber Vc at the intermediate position.
  • a line passing through the inlet portion of the downstream refrigerant passage 51 and the central axis of the shaft 25 is defined as a line L ⁇ b> 1 and the inlet of the downstream refrigerant passage 51.
  • a line passing through the part and the outlet part is defined as a line L2
  • an angle from the line L1 to the line L2 in the rotational direction of the shaft 25 and the movable scroll 11 is defined as ⁇ .
  • the angle ⁇ is set so as to satisfy the following formula F1.
  • downstream side refrigerant passage 51 is formed having a directional component toward the wall surface forming the compression chamber Vc.
  • the line extending in the axial direction of the shaft 25 is defined as a line L3, and between the line L3 and the line L2.
  • the smaller angle is ⁇ .
  • the angle ⁇ is set so as to satisfy the following formula F2.
  • downstream refrigerant passage 51 is formed with a directional component parallel to the axial direction of the shaft 25.
  • the downstream refrigerant path 51 has a direction component extended in the reverse direction to the rotation direction of the shaft 25 and the movable scroll 11, and is formed. Furthermore, in the present embodiment, the downstream refrigerant passage 51 is formed to have a directional component toward the wall surface forming the suction-side compression chamber Vc of the fixed scroll 12.
  • downstream refrigerant passage 51 in the present embodiment is a refrigerant passage on the downstream side of the check valve 50. Accordingly, a housing space for displacing the reed valve 50 a provided as a part of the check valve 50 is not included in the downstream refrigerant passage 51.
  • a discharge hole 123 through which the refrigerant compressed in the compression chamber Vc is discharged is formed at the center of the fixed side substrate 121 on the fixed scroll 12 side. Further, a discharge chamber 124 communicating with the discharge hole 123 is formed below the discharge hole 123.
  • the discharge chamber 124 is provided with a discharge valve (reed valve) that forms a check valve that prevents the refrigerant from flowing backward from the discharge chamber 124 to the compression chamber Vc, and a stopper 16 that regulates the maximum opening of the discharge valve. .
  • a refrigerant passage (not shown) that guides the refrigerant from the discharge chamber 124 to the refrigerant outlet formed in the housing 30 is formed. Further, a refrigerant inlet 40b of the oil separator 40 is connected to the refrigerant outlet.
  • the oil separator 40 includes a cylindrical member 41 extending in the vertical direction, and the refrigerant pressurized by the compression mechanism unit 10 is swirled in a space formed therein, and the gas phase refrigerant and the oil are subjected to centrifugal force. And are separated.
  • the high-pressure gas-phase refrigerant separated by the oil separator 40 is discharged to the water-refrigerant heat exchanger 2 from a discharge port 40a formed on the upper side of the oil separator 40.
  • the oil separated by the oil separator 40 is stored in a lower part of the oil separator 40, and the compression mechanism portion 10 in the housing 30 and the shaft 25 and the first, Supplied to a sliding portion with the second bearing portions 26 and 27 and the like.
  • the low-pressure refrigerant flowing out of the outdoor heat exchanger 6 is sucked into the suction-side compression chamber Vc positioned on the outermost peripheral side and communicated with the suction port 30a through the suction port 30a.
  • the compression chamber Vc into which the low-pressure refrigerant has flowed moves to an intermediate position communicating with the downstream-side refrigerant passage 51 while reducing the volume of the compression chamber Vc as the shaft 25 rotates.
  • the compression chamber Vc moves to a position communicating with the discharge hole 123 of the fixed scroll 12 on the center side as the shaft 25 rotates, and the pressure of the high-pressure refrigerant in the compression chamber Vc exceeds the valve opening pressure of the discharge valve.
  • the discharge valve opens.
  • the high-pressure refrigerant is discharged into the discharge chamber 124.
  • the high-pressure refrigerant discharged to the discharge chamber 124 is separated from the oil by the oil separator 40 and discharged from the discharge port 40a to the water-refrigerant heat exchanger 2.
  • the compressor 1 of the present embodiment can suck the refrigerant, compress it, and discharge it.
  • the compressor 1 spin type compressor
  • a part of the compression chamber forming member (specifically, the movable scroll 11 and the fixed scroll 12) that partitions the compression chamber Vc is rotationally displaced.
  • the compression chamber Vc is displaced around the shaft 25 by continuously changing the portion (wall surface) of the compression chamber forming member that actually forms the compression chamber Vc.
  • the movable scroll 11 is rotationally displaced, and the wall surface that actually defines the compression chamber Vc among the compression chamber forming members is continuously changed, thereby compressing.
  • the chamber Vc is displaced around the shaft 25.
  • both the suction side compression chamber Vc communicating with the suction port 30a and the discharge side compression chamber Vc communicating with the discharge port 40a are defined by the same compression chamber forming member. ing.
  • the temperature of the refrigerant in the compression chamber Vc increases as it is compressed, the temperature of the high-pressure refrigerant in the discharge-side compression chamber Vc is higher than the temperature of the low-pressure refrigerant sucked into the suction-side compression chamber Vc. Get higher.
  • a rotary displacement compressor represented by a scroll compressor the heat of the high-pressure refrigerant in the discharge-side compression chamber Vc flows into the suction-side compression chamber Vc via the compression chamber forming member. Heat is easily transferred to low-pressure refrigerant.
  • the downstream refrigerant passage 51 has a directional component extending in the direction opposite to the rotation direction of the shaft 25. Therefore, the portion of the fixed scroll 12 that forms the suction-side compression chamber Vc can be cooled by the intermediate pressure refrigerant flowing through the downstream-side refrigerant passage 51.
  • the downstream side refrigerant passage 51 is connected to the shaft 25 so that the angle ⁇ shown in FIG. 3 satisfies the formula F1 and the angle ⁇ shown in FIG. 4 satisfies the formula F2. Inclined with respect to the central axis. Therefore, it is possible to make the shape having a direction component extending in the direction opposite to the rotation direction of the shaft 25 without complicating the passage configuration of the downstream refrigerant passage 51.
  • downstream refrigerant passage 51 is formed inside the fixed scroll 12 and has a directional component toward the wall surface forming the suction-side compression chamber Vc in the fixed scroll 12. Therefore, the temperature rise of the wall surface forming the suction side compression chamber Vc is suppressed, and the refrigerant flowing into the suction side compression chamber Vc is heated by the heat of the high-pressure refrigerant in the discharge side compression chamber Vc. This can be effectively suppressed.
  • downstream refrigerant passage 51 is formed with a directional component parallel to the axial direction.
  • the wide range of the wall surface which forms the compression chamber Vc among the fixed scrolls 12 can be cooled by the intermediate pressure refrigerant flowing through the downstream refrigerant passage 51. Therefore, it is possible to effectively prevent the refrigerant flowing into the suction-side compression chamber Vc from being heated by the heat of the high-pressure refrigerant in the discharge-side compression chamber Vc.
  • a supercritical refrigeration cycle is configured in which the pressure of the high-pressure side refrigerant is equal to or higher than the critical pressure.
  • the temperature of the discharge refrigerant discharged from the compressor 1 tends to be relatively high (for example, 90 ° C. or higher), and is sucked by the heat of the high-pressure refrigerant in the discharge-side compression chamber Vc.
  • the refrigerant flowing into the compression chamber Vc on the side is likely to be heated. Therefore, the effect of suppressing the deterioration of volume efficiency by the compressor 1 of the present embodiment is extremely effective.
  • FIG. 5 is a drawing corresponding to FIG. 4 of the first embodiment, and the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
  • downstream-side refrigerant passage 51 of the present embodiment is formed inside the fixed-side tooth portion 122 of the fixed scroll 12. Further, the outlet portion of the downstream refrigerant passage 51 is open to the side surface of the fixed side tooth portion 122.
  • Other configurations and operations are the same as those in the first embodiment.
  • the downstream refrigerant passage 51 is formed inside the fixed side tooth portion 122 of the fixed scroll 12. Thereby, the downstream refrigerant passage 51 can be brought close to the suction-side compression chamber Vc, and the portion of the fixed scroll 12 that forms the suction-side compression chamber Vc can be effectively cooled.
  • the shape of the downstream refrigerant passage 51 is changed as shown in FIG. 6 with respect to the first embodiment.
  • FIG. 6 is a drawing corresponding to FIG. 4 of the first embodiment.
  • the downstream refrigerant passage 51 of the present embodiment has its passage cross-sectional area gradually expanding toward the flow direction of the intermediate pressure refrigerant. Other configurations and operations of the present embodiment are the same as those of the first embodiment.
  • the effect of suppressing the deterioration of the volume efficiency can be obtained as in the first embodiment. Furthermore, in this embodiment, since the passage cross-sectional area of the downstream refrigerant passage 51 gradually increases in the flow direction of the intermediate pressure refrigerant, the intermediate pressure fluid is ejected over a wide range in the compression chamber Vc at the intermediate position. be able to.
  • the intermediate pressure refrigerant injected into the compression chamber Vc at the intermediate position efficiently cools the wide range of the compression chamber Vc, and the suction side compression is performed by the heat of the high-pressure refrigerant in the discharge side compression chamber Vc. It can suppress that the refrigerant
  • the compressor 1 according to the present disclosure is applied to the heat pump cycle 100 of the heat pump hot water heater.
  • the application of the compressor 1 is not limited thereto. That is, the compressor 1 can be applied to a wide range of uses as a compressor that compresses various fluids.
  • the compressor 1 may be applied to a gas injection cycle including a compressor, a radiator, a branching section, a high stage side expansion valve, an internal heat exchanger, a low stage side expansion valve, and an evaporator.
  • the compressor compresses and discharges the refrigerant.
  • the radiator causes heat exchange between the high-pressure refrigerant discharged from the compressor and the fluid to be heated (or outside air).
  • the branch portion branches the flow of the high-pressure refrigerant that has flowed out of the radiator.
  • the high stage side expansion valve depressurizes one of the high-pressure refrigerants branched at the branching portion until it becomes an intermediate-pressure refrigerant.
  • the internal heat exchanger exchanges heat between the other high-pressure refrigerant branched at the branch portion and the intermediate-pressure refrigerant decompressed by the high-stage side expansion valve.
  • the low stage side expansion valve depressurizes the high-pressure refrigerant that has flowed out of the internal heat exchanger until it becomes a low-pressure refrigerant.
  • the evaporator exchanges heat between the low-pressure refrigerant flowing out from the low-stage side expansion valve and the outside air (or the fluid to be cooled) to evaporate the low-pressure refrigerant.
  • the intermediate pressure refrigerant flowing out from the internal heat exchanger is sucked into the intermediate pressure suction port 30b of the compressor 1.
  • the low-pressure refrigerant flowing out from the evaporator is sucked into the suction port 30a of the compressor 1.
  • the compressor 1 configured as a scroll compressor has been described, but the type of the compressor is not limited to this. That is, the compressor of the present disclosure includes a wide variety of compressors that compress fluid in a compression chamber that reduces the volume while being displaced around the rotation axis.
  • the compression chamber forming member is in contact with the outer peripheral surface of the rotor from the inner peripheral surface side of the cylinder that forms a cylindrical space, the cylindrical rotor that is arranged eccentrically with respect to the central axis of the cylindrical space You may have the vane which protrudes like this.
  • the compression chamber may be configured as a so-called rolling piston compressor formed by a space partitioned by the inner peripheral surface of the cylinder, the outer peripheral surface of the rotor, and the vanes.
  • the compression chamber forming member protrudes so as to come into contact with the inner peripheral surface of the cylinder from the cylinder forming the columnar space having an elliptical cross section, the columnar rotor disposed inside the columnar space, and the outer peripheral surface side of the rotor. You may have a vane to do.
  • the compression chamber may be configured as a so-called vane type compressor formed by a space partitioned by the inner peripheral surface of the cylinder, the outer peripheral surface of the rotor, and the vanes.
  • the vertical type compressor 1 has been described.
  • a horizontal type compressor in which the shaft (rotating shaft) 25 extends in the horizontal direction and the compression mechanism unit 10 and the electric motor unit 20 are arranged in the horizontal direction (lateral direction) may be used.
  • the backflow prevention valve 50 configured to include the reed valve 50a is used as the backflow prevention unit
  • the backflow prevention unit is not limited thereto.
  • a backflow prevention unit that includes a free valve (spool valve) that is displaced according to the differential pressure between the refrigerant pressure P1 on the compression chamber Vc side and the refrigerant pressure P2 on the intermediate pressure suction port 30b side is employed. May be.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Rotary Pumps (AREA)

Abstract

 A compressor is provided with compression-chamber-forming members (11, 12) for forming a compression chamber (Vc) that reduces capacity while being displaced around a rotating shaft (25), and an intermediate pressure intake port (30b) for causing the flow of intermediate-pressure fluid drawn in from the exterior to merge with fluid in the compression process in the compression chamber (Vc). The compressor is further provided with a backflow-preventing section (50) for preventing fluid from flowing back from the compression chamber (Vc) toward the intermediate pressure intake port (30b). A downstream-side fluid passage (51) leading from the backflow-preventing section (50) to the compression chamber (Vc) is formed having at least a directional component extending in the direction opposite the rotational direction of the rotating shaft (25). The region (wall surface) forming the compression chamber (Vc) on the intake side of the compression-chamber-forming member (12) is cooled by the intermediate-pressure refrigerant flowing through the downstream-side refrigerant passage (51), and the heat of a high-pressure refrigerant inside the compression chamber (Vc) on the discharge side is suppressed from being transferred to a refrigerant flowing into the compression chamber (Vc) on the intake side via the compression-chamber-forming member (12).

Description

圧縮機Compressor 関連出願の相互参照Cross-reference of related applications
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2014年2月28日に出願された日本特許出願2014-038337号を基にしている。 This application is based on Japanese Patent Application No. 2014-038337 filed on February 28, 2014, the disclosure of which is incorporated into this application by reference.
 本開示は、回転軸回りに変位しながら容積を縮小させる圧縮室にて流体を圧縮する圧縮機に関する。 The present disclosure relates to a compressor that compresses a fluid in a compression chamber that reduces the volume while being displaced around a rotation axis.
 従来、回転軸回りに変位しながら容積を縮小させる圧縮室にて流体を圧縮する圧縮機(以下、回転型の容積圧縮機という)が知られている。例えば、この種の回転型の容積圧縮機の一例として、それぞれ渦巻き状の歯部が形成された固定スクロールおよび可動スクロールを備えるスクロール型圧縮機がある。 Conventionally, a compressor that compresses a fluid in a compression chamber that reduces the volume while being displaced around a rotation axis (hereinafter referred to as a rotary type volume compressor) is known. For example, as an example of this type of rotary volumetric compressor, there is a scroll compressor including a fixed scroll and a movable scroll each having a spiral tooth portion.
 より具体的には、スクロール型圧縮機では、可動スクロールおよび固定スクロールに形成された渦巻き状の歯部同士を噛み合わせた状態で、可動スクロールを固定スクロールに対して旋回(公転運動)させる。これにより、それぞれの歯部の間に形成される圧縮室を回転軸周りに変位させながら、圧縮室の容積を縮小させる。 More specifically, in the scroll compressor, the movable scroll is swung (revolved) with respect to the fixed scroll in a state where the spiral tooth portions formed on the movable scroll and the fixed scroll are engaged with each other. Thereby, the volume of the compression chamber is reduced while displacing the compression chamber formed between the respective tooth portions around the rotation axis.
 また、特許文献1には、いわゆるガスインジェクションサイクル(エコノマイザ式冷凍サイクル)に適用された圧縮機であって、外部から吸入された中間圧流体を圧縮室にて圧縮過程の流体へ合流させる中間圧吸入ポートが設けられたスクロール型圧縮機が開示されている。このような中間圧吸入ポートが設けられた圧縮機では、圧縮室内へ比較的温度の低い中間圧流体を合流させることで、圧縮機の圧縮効率を向上させることができる。 Patent Document 1 discloses a compressor applied to a so-called gas injection cycle (economizer-type refrigeration cycle), in which an intermediate pressure fluid that is sucked from outside is joined to a fluid in a compression process in a compression chamber. A scroll compressor provided with a suction port is disclosed. In a compressor provided with such an intermediate pressure suction port, the compression efficiency of the compressor can be improved by joining an intermediate pressure fluid having a relatively low temperature into the compression chamber.
 なお、圧縮機の圧縮効率とは、圧縮機を駆動するために必要な仕事量に対する圧縮機が出力した仕事量の比で定義される値である。 Note that the compression efficiency of the compressor is a value defined by the ratio of the work output from the compressor to the work required to drive the compressor.
特開2013-209954号公報JP 2013-209954 A
 ところで、一般的な回転型の容積圧縮機では、圧縮室を区画形成する圧縮室形成部材を備えている。そして、圧縮室形成部材の一部を回転軸の回転とともに回転変位させて、圧縮室形成部材のうち実際に圧縮室を区画形成する部位(壁面)を回転軸回りに連続的に変化させる。これによって、圧縮室を回転軸回りに変位させている。 Incidentally, a general rotary volumetric compressor includes a compression chamber forming member that partitions and forms a compression chamber. Then, a part of the compression chamber forming member is rotationally displaced along with the rotation of the rotation shaft, and a portion (wall surface) of the compression chamber forming member that actually forms the compression chamber is continuously changed around the rotation axis. Thereby, the compression chamber is displaced around the rotation axis.
 つまり、回転型の容積圧縮機では、低圧流体を吸入する吸入ポート側に連通する吸入側の圧縮室も、高圧流体を吐出する吐出ポート側に連通する吐出側の圧縮室も、同一の圧縮室形成部材によって区画形成されている。 That is, in the rotary type volume compressor, the suction side compression chamber communicating with the suction port side for sucking low pressure fluid and the discharge side compression chamber communicating with the discharge port side for discharging high pressure fluid are the same compression chamber. A compartment is formed by the forming member.
 このことを、スクロール型圧縮機を例に説明すると、スクロール型圧縮機では、圧縮室形成部材として、固定スクロールおよび可動スクロールを備えている。そして、可動スクロールを固定スクロールに対して旋回(公転運動)させ、可動スクロールの可動側歯部と固定スクロールの固定側歯部が接触する位置を回転軸回りに徐々に変更する。これによって、圧縮室を形成する壁面を連続的に変化させて圧縮室を回転軸回りに変位させている。 This will be described by taking a scroll compressor as an example. The scroll compressor includes a fixed scroll and a movable scroll as compression chamber forming members. Then, the movable scroll is turned (revolved) with respect to the fixed scroll, and the position where the movable side tooth portion of the movable scroll contacts the fixed side tooth portion of the fixed scroll is gradually changed around the rotation axis. Thereby, the wall surface forming the compression chamber is continuously changed to displace the compression chamber around the rotation axis.
 従って、外周側に形成される吸入側の圧縮室も、中心側に形成される吐出側の圧縮室も、同一の固定スクロールおよび可動スクロールによって区画形成されている。 Therefore, the compression chamber on the suction side formed on the outer peripheral side and the compression chamber on the discharge side formed on the center side are partitioned by the same fixed scroll and movable scroll.
 本開示の発明者らによる検討によれば、圧縮室内の流体は圧縮されるに伴って温度上昇するので、吐出側の圧縮室内の流体温度は、吸入側の圧縮室へ吸入される流体温度よりも高くなる。このため、回転型の容積圧縮機のように、吐出側の圧縮室および吸入側の圧縮室が同一の圧縮室形成部材によって区画形成される構成では、吐出側の圧縮室内の高圧流体の有する熱が、圧縮室形成部材を介して吸入側の圧縮室へ流入する流体へ伝熱しやすい。 According to studies by the inventors of the present disclosure, the temperature of the fluid in the compression chamber increases as it is compressed, so the fluid temperature in the compression chamber on the discharge side is higher than the fluid temperature sucked into the compression chamber on the suction side. Also gets higher. For this reason, in a configuration in which the discharge-side compression chamber and the suction-side compression chamber are partitioned by the same compression chamber forming member, such as a rotary type volume compressor, the heat of the high-pressure fluid in the discharge-side compression chamber However, heat is easily transferred to the fluid flowing into the compression chamber on the suction side via the compression chamber forming member.
 そして、吐出側の圧縮室内の高圧流体の有する熱が吸入側の圧縮室へ流入する流体へ伝達されると、吸入側の圧縮室へ流入する流体の密度が低下して、圧縮機の体積効率が悪化してしまう。 When the heat of the high-pressure fluid in the discharge-side compression chamber is transferred to the fluid flowing into the suction-side compression chamber, the density of the fluid flowing into the suction-side compression chamber is reduced, and the volumetric efficiency of the compressor Will get worse.
 なお、圧縮機の体積効率とは、理論的に圧縮室が縮小する容積に対する実際に圧縮室に吸入された流体の量の比で定義される値である。従って、体積効率を向上させることで、同一回転数における圧縮機の吐出流量を向上させることができる。 The volumetric efficiency of the compressor is a value defined by the ratio of the amount of fluid actually sucked into the compression chamber to the volume that the compression chamber theoretically shrinks. Therefore, the discharge flow rate of the compressor at the same rotation speed can be improved by improving the volumetric efficiency.
 これにより、例えば、冷凍サイクルに適用される圧縮機においては、体積効率を向上させることで、同一の冷却能力あるいは加熱能力を発揮させるために必要な回転数を低下させることができる。その結果、圧縮機の信頼性を向上させることができるとともに、冷凍サイクルの成績係数(COP)を向上させることができる。 Thereby, for example, in a compressor applied to a refrigeration cycle, the number of revolutions required to exhibit the same cooling capacity or heating capacity can be reduced by improving the volumetric efficiency. As a result, the reliability of the compressor can be improved and the coefficient of performance (COP) of the refrigeration cycle can be improved.
 本開示は、上記点に鑑み、回転軸回りに変位しながら容積を縮小させる圧縮室にて流体を圧縮する圧縮機の体積効率の悪化を抑制できる圧縮機を提供することを目的とする。 In view of the above points, an object of the present disclosure is to provide a compressor capable of suppressing deterioration in volume efficiency of a compressor that compresses fluid in a compression chamber that reduces the volume while being displaced around a rotation axis.
 本開示の圧縮機は、回転軸回りに変位しながら容積を縮小させる圧縮室を形成する圧縮室形成部材と、外部から吸入された中間圧流体を圧縮室にて圧縮過程の流体へ合流させる中間圧吸入ポートとを備える。 The compressor of the present disclosure includes a compression chamber forming member that forms a compression chamber that reduces the volume while being displaced around a rotation axis, and an intermediate that joins an intermediate pressure fluid sucked from the outside to a fluid in a compression process in the compression chamber. And a pressure suction port.
 圧縮機は、圧縮室から中間圧吸入ポートへ向けて流体が逆流することを防止する逆流防止部をさらに備える。逆流防止部から圧縮室へ至る下流側流体通路が、少なくとも回転軸の回転方向と逆方向に延びる方向成分を有して形成されている。 The compressor further includes a backflow prevention unit that prevents the fluid from flowing back from the compression chamber toward the intermediate pressure suction port. A downstream fluid passage extending from the backflow prevention unit to the compression chamber is formed with a directional component extending at least in the direction opposite to the rotation direction of the rotation shaft.
 これによれば、下流側流体通路が、回転軸の回転方向と逆方向に延びる方向成分を有して形成されている。従って、下流側流体通路を流通する中間圧流体によって、圧縮室形成部材のうち、流体圧力が比較的低圧となっている低圧側の圧縮室を形成する壁面を冷却することができる。 According to this, the downstream fluid passage is formed with a directional component extending in the direction opposite to the rotation direction of the rotation shaft. Accordingly, the intermediate pressure fluid flowing through the downstream fluid passage can cool the wall surface of the compression chamber forming member that forms the low pressure side compression chamber whose fluid pressure is relatively low.
 従って、高圧流体を吐出する吐出ポートに連通する吐出側の圧縮室内の高圧流体の有する熱が、圧縮室形成部材を介して、低圧流体を吸入する吸入ポートに連通する吸入側の圧縮室へ流入する流体へ伝熱されることを抑制して、圧縮機の体積効率の悪化を抑制することができる。 Accordingly, the heat of the high-pressure fluid in the discharge-side compression chamber that communicates with the discharge port that discharges the high-pressure fluid flows into the suction-side compression chamber that communicates with the suction port that sucks in the low-pressure fluid via the compression chamber forming member. It is possible to suppress the heat transfer to the fluid to be performed and suppress the deterioration of the volume efficiency of the compressor.
 また、本開示の圧縮機は、具体的に、スクロール型圧縮機として構成されていてもよい。この場合、圧縮室形成部材が、回転軸から伝達される回転駆動力によって公転運動するとともに、渦巻き状の可動側歯部を有する可動スクロール、および可動側歯部と噛み合う渦巻き状の固定側歯部を有する固定スクロールを備える。圧縮室は、可動側歯部と固定側歯部との間に形成される。 Further, the compressor of the present disclosure may be specifically configured as a scroll type compressor. In this case, the compression chamber forming member revolves by the rotational driving force transmitted from the rotation shaft, and the movable scroll having a spiral movable side tooth portion, and the spiral fixed side tooth portion meshing with the movable side tooth portion. A fixed scroll having The compression chamber is formed between the movable side tooth portion and the fixed side tooth portion.
第1実施形態のヒートポンプサイクルの全体構成図である。It is a whole block diagram of the heat pump cycle of 1st Embodiment. 第1実施形態の圧縮機の軸方向断面図である。It is an axial sectional view of the compressor of a 1st embodiment. 図2のIII-III断面図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 図3のIV-IV断面を拡大した拡大断面図であって、第1実施形態の下流側冷媒通路の形状を説明するための断面図である。FIG. 4 is an enlarged cross-sectional view of the IV-IV cross section of FIG. 3, and is a cross-sectional view for explaining the shape of the downstream refrigerant passage of the first embodiment. 第2実施形態の下流側冷媒通路の形状を説明するための断面図である。It is sectional drawing for demonstrating the shape of the downstream refrigerant path of 2nd Embodiment. 第3実施形態の下流側冷媒通路の形状を説明するための断面図である。It is sectional drawing for demonstrating the shape of the downstream refrigerant path of 3rd Embodiment.
(第1実施形態)
 図1~図4により、本開示の第1実施形態を説明する。本実施形態では、本開示に係る圧縮機1を、ヒートポンプ式給湯機にて給湯水を加熱するヒートポンプサイクル(蒸気圧縮式の冷凍サイクル)100に適用している。従って、本実施形態の圧縮機1にて圧縮される流体は、冷媒である。
(First embodiment)
A first embodiment of the present disclosure will be described with reference to FIGS. In the present embodiment, the compressor 1 according to the present disclosure is applied to a heat pump cycle (vapor compression refrigeration cycle) 100 that heats hot water using a heat pump hot water heater. Therefore, the fluid compressed by the compressor 1 of this embodiment is a refrigerant.
 このヒートポンプサイクル100は、圧縮機1の圧縮室Vcにて昇圧過程の冷媒にサイクルの中間圧気相冷媒を合流させるガスインジェクションサイクルとして構成されている。より具体的には、本実施形態のヒートポンプサイクル100は、図1に示すように、圧縮機1、水-冷媒熱交換器2、第1膨張弁3、気液分離器4、第2膨張弁5、室外熱交換器6等を有している。 The heat pump cycle 100 is configured as a gas injection cycle in which the intermediate pressure gas-phase refrigerant of the cycle is merged with the refrigerant in the pressurizing process in the compression chamber Vc of the compressor 1. More specifically, the heat pump cycle 100 of the present embodiment includes a compressor 1, a water-refrigerant heat exchanger 2, a first expansion valve 3, a gas-liquid separator 4, a second expansion valve, as shown in FIG. 5. It has the outdoor heat exchanger 6 grade | etc.,.
 水-冷媒熱交換器2は、圧縮機1の吐出ポート40aから吐出された冷媒と給湯水とを熱交換させて給湯水を加熱する加熱用熱交換器である。第1膨張弁3は、水-冷媒熱交換器2から流出した高圧冷媒を中間圧冷媒となるまで減圧させる高段側減圧部である。さらに、第1膨張弁3は、図示しない制御装置から出力される制御信号によってその作動が制御される電気式膨張弁である。 The water-refrigerant heat exchanger 2 is a heating heat exchanger that heats hot water by exchanging heat between the refrigerant discharged from the discharge port 40a of the compressor 1 and the hot water. The first expansion valve 3 is a high-stage decompression unit that decompresses the high-pressure refrigerant flowing out of the water-refrigerant heat exchanger 2 until it becomes an intermediate-pressure refrigerant. Further, the first expansion valve 3 is an electric expansion valve whose operation is controlled by a control signal output from a control device (not shown).
 気液分離器4は、第1膨張弁3にて減圧された中間圧冷媒の気液を分離する気液分離部である。第2膨張弁5は、気液分離器4の液相冷媒流出口から流出した中間圧液相冷媒を低圧冷媒となるまで減圧させる低段側減圧部である。第2膨張弁5の基本的構成は第1膨張弁3の基本的構成と同様である。室外熱交換器6は、第2膨張弁5にて減圧された低圧冷媒を外気と熱交換させて蒸発させる吸熱用熱交換器である。 The gas-liquid separator 4 is a gas-liquid separator that separates the gas-liquid of the intermediate pressure refrigerant decompressed by the first expansion valve 3. The second expansion valve 5 is a low-stage decompression unit that decompresses the intermediate-pressure liquid-phase refrigerant flowing out from the liquid-phase refrigerant outlet of the gas-liquid separator 4 until it becomes a low-pressure refrigerant. The basic configuration of the second expansion valve 5 is the same as the basic configuration of the first expansion valve 3. The outdoor heat exchanger 6 is a heat absorption heat exchanger that evaporates the low-pressure refrigerant decompressed by the second expansion valve 5 by exchanging heat with the outside air.
 室外熱交換器6の冷媒出口側には、圧縮機1の吸入ポート30aが接続され、気液分離器4の気相冷媒流出口には、圧縮機1の中間圧吸入ポート30bが接続されている。従って、本実施形態では、気液分離器4にて分離された中間圧気相冷媒が圧縮機1の圧縮室Vcにて昇圧過程の冷媒に注入される。 A suction port 30 a of the compressor 1 is connected to the refrigerant outlet side of the outdoor heat exchanger 6, and an intermediate pressure suction port 30 b of the compressor 1 is connected to the gas-phase refrigerant outlet of the gas-liquid separator 4. Yes. Therefore, in this embodiment, the intermediate-pressure gas-phase refrigerant separated by the gas-liquid separator 4 is injected into the refrigerant in the pressurizing process in the compression chamber Vc of the compressor 1.
 また、本実施形態のヒートポンプサイクル100では、冷媒として二酸化炭素を採用している。ヒートポンプサイクル100は、圧縮機1の吐出ポートから第1膨張弁3入口へ至るサイクルの高圧側冷媒の圧力が臨界圧力以上となる超臨界冷凍サイクルを構成している。さらに、冷媒には、圧縮機1内部の各摺動部位を潤滑するオイル(冷凍機油)が混入されており、このオイルの一部は冷媒とともにサイクルを循環している。 Further, in the heat pump cycle 100 of the present embodiment, carbon dioxide is employed as the refrigerant. The heat pump cycle 100 constitutes a supercritical refrigeration cycle in which the pressure of the high-pressure side refrigerant in the cycle from the discharge port of the compressor 1 to the inlet of the first expansion valve 3 is equal to or higher than the critical pressure. Furthermore, the refrigerant is mixed with oil (refrigeration oil) that lubricates each sliding portion inside the compressor 1, and a part of this oil circulates in the cycle together with the refrigerant.
 なお、ヒートポンプ式給湯機は、ヒートポンプサイクル100の他に、貯湯タンク、給湯水循環回路、および水ポンプ(いずれも図示せず)等を有している。貯湯タンクは、水-冷媒熱交換器2にて加熱された給湯水を貯湯する。給湯水循環回路は、貯湯タンクと水-冷媒熱交換器2との間で給湯水を循環させる。水ポンプは、給湯水循環回路に配置されて給湯水を圧送する。 In addition, the heat pump type hot water heater has a hot water storage tank, a hot water circulation circuit, a water pump (all not shown) and the like in addition to the heat pump cycle 100. The hot water storage tank stores hot water heated by the water-refrigerant heat exchanger 2. The hot water circulation circuit circulates hot water between the hot water storage tank and the water-refrigerant heat exchanger 2. The water pump is disposed in the hot water circulation circuit and pumps hot water.
 次に、図2~図4を用いて、圧縮機1の詳細構成を説明する。なお、図2における上下の各矢印は、圧縮機1をヒートポンプ式給湯機に搭載した状態における上下の各方向を示している。圧縮機1は、圧縮機構部10、電動機部(電動モータ部)20、ハウジング30、および油分離器40等を有している。 Next, the detailed configuration of the compressor 1 will be described with reference to FIGS. In addition, the up and down arrows in FIG. 2 indicate the up and down directions in a state where the compressor 1 is mounted on the heat pump type hot water heater. The compressor 1 includes a compression mechanism unit 10, an electric motor unit (electric motor unit) 20, a housing 30, an oil separator 40, and the like.
 圧縮機構部10は、圧縮対象流体である冷媒を吸入し、圧縮して吐出する。電動機部20は、圧縮機構部10を駆動する回転駆動力を出力する。ハウジング30は、圧縮機1の外殻を形成するとともに、その内部に圧縮機構部10および電動機部20を収容する。油分離器40は、ハウジング30の外部に配置されて圧縮機構部10にて圧縮された高圧冷媒からオイルを分離する。 The compression mechanism unit 10 sucks, compresses and discharges a refrigerant that is a compression target fluid. The electric motor unit 20 outputs a rotational driving force that drives the compression mechanism unit 10. The housing 30 forms an outer shell of the compressor 1 and houses the compression mechanism unit 10 and the electric motor unit 20 therein. The oil separator 40 is disposed outside the housing 30 and separates oil from the high-pressure refrigerant compressed by the compression mechanism unit 10.
 また、本実施形態の圧縮機1は、図2に示すように、電動機部20から圧縮機構部10へ回転駆動力を伝達するシャフト(回転軸)25が鉛直方向(上下方向)に延びて、圧縮機構部10と電動機部20が鉛直方向に配置されている。つまり、本実施形態の圧縮機1は、いわゆる縦置きタイプである。より具体的には、本実施形態の圧縮機1では、圧縮機構部10が電動機部20の下方側に配置されている。 Further, in the compressor 1 of the present embodiment, as shown in FIG. 2, a shaft (rotating shaft) 25 that transmits a rotational driving force from the electric motor unit 20 to the compression mechanism unit 10 extends in the vertical direction (vertical direction). The compression mechanism unit 10 and the electric motor unit 20 are arranged in the vertical direction. That is, the compressor 1 of the present embodiment is a so-called vertical type. More specifically, in the compressor 1 of the present embodiment, the compression mechanism unit 10 is disposed on the lower side of the electric motor unit 20.
 ハウジング30は、中心軸が鉛直方向に延びる筒状部材31、筒状部材31の上端部を塞ぐ椀状の上蓋部材32および筒状部材31の下端部を塞ぐ椀状の下蓋部材33を有する。ハウジング30は、筒状部材31、上蓋部材32、および下蓋部材33を一体に接合した密閉容器構造を有する。筒状部材31、上蓋部材32および下蓋部材33は、いずれも鉄あるいは鉄系金属で形成されており、これらは溶接にて接合されている。 The housing 30 includes a cylindrical member 31 whose central axis extends in the vertical direction, a bowl-shaped upper lid member 32 that blocks the upper end of the cylindrical member 31, and a bowl-shaped lower lid member 33 that blocks the lower end of the cylindrical member 31. . The housing 30 has a sealed container structure in which a cylindrical member 31, an upper lid member 32, and a lower lid member 33 are integrally joined. The cylindrical member 31, the upper lid member 32, and the lower lid member 33 are all made of iron or an iron-based metal, and these are joined by welding.
 また、ハウジング30には、吸入ポート30a、中間圧吸入ポート30b(図2には図示せず)、高圧冷媒流出口(図2には図示せず)が形成されている。 The housing 30 is formed with a suction port 30a, an intermediate pressure suction port 30b (not shown in FIG. 2), and a high-pressure refrigerant outlet (not shown in FIG. 2).
 吸入ポート30aは、室外熱交換器6から流出した低圧冷媒を圧縮機構部10へ吸入させる冷媒吸入口である。中間圧吸入ポート30bは、気液分離器4の気相冷媒流出口から流出した中間圧気相冷媒を圧縮機構部10の圧縮室Vcにて圧縮過程の冷媒に合流させる中間圧冷媒吸入口である。高圧冷媒流出口は、圧縮機構部10から吐出された高圧冷媒をハウジング30の外部に配置された油分離器40に向けて流出させる冷媒流出口である。 The suction port 30a is a refrigerant suction port through which the low-pressure refrigerant flowing out of the outdoor heat exchanger 6 is sucked into the compression mechanism unit 10. The intermediate pressure suction port 30 b is an intermediate pressure refrigerant suction port that joins the intermediate pressure gas phase refrigerant flowing out from the gas phase refrigerant outlet of the gas-liquid separator 4 with the refrigerant in the compression process in the compression chamber Vc of the compression mechanism unit 10. . The high-pressure refrigerant outlet is a refrigerant outlet that allows the high-pressure refrigerant discharged from the compression mechanism unit 10 to flow out toward the oil separator 40 disposed outside the housing 30.
 電動機部20は、固定子をなすコイルステータ21と回転子をなすロータ22とを有して構成されている。このロータ22の軸中心穴にはシャフト25が圧入により固定されている。従って、制御装置からコイルステータ21のコイルへ電力が供給されて回転磁界が発生すると、ロータ22およびシャフト25が一体となって回転する。 The electric motor unit 20 includes a coil stator 21 that forms a stator and a rotor 22 that forms a rotor. A shaft 25 is fixed to the shaft center hole of the rotor 22 by press-fitting. Therefore, when electric power is supplied from the control device to the coils of the coil stator 21 and a rotating magnetic field is generated, the rotor 22 and the shaft 25 rotate together.
 シャフト25は、略円筒状に形成されており、その両端部は、それぞれすべり軸受けにて構成された第1軸受部26、第2軸受部27に回転可能に支持されている。また、シャフト25の内部には、シャフト25の外表面と第1、第2軸受部26、27との摺動部位にオイルを供給するための油供給通路25aが形成されている。 The shaft 25 is formed in a substantially cylindrical shape, and both end portions thereof are rotatably supported by a first bearing portion 26 and a second bearing portion 27 that are configured by sliding bearings, respectively. Further, an oil supply passage 25 a for supplying oil to the sliding portion between the outer surface of the shaft 25 and the first and second bearing portions 26 and 27 is formed inside the shaft 25.
 第1軸受部26は、ハウジング30内の空間を電動機部20が配置される空間と圧縮機構部10が配置される空間とに仕切るミドルハウジング28に形成されている。第1軸受部26は、シャフト25の下端側(圧縮機構部10側)を支持している。第2軸受部27は、介在部材を介してハウジング30の筒状部材31に固定されており、シャフト25の上端側(圧縮機構部10の反対側)を支持している。 The first bearing portion 26 is formed in a middle housing 28 that partitions the space in the housing 30 into a space in which the electric motor portion 20 is disposed and a space in which the compression mechanism portion 10 is disposed. The first bearing part 26 supports the lower end side (compression mechanism part 10 side) of the shaft 25. The 2nd bearing part 27 is being fixed to the cylindrical member 31 of the housing 30 via the interposition member, and is supporting the upper end side (opposite side of the compression mechanism part 10) of the shaft 25. FIG.
 圧縮機構部10は、それぞれ渦巻き状の歯部が形成された可動スクロール11および固定スクロール12を有するスクロール型の圧縮機構部として構成されている。可動スクロール11は、前述のミドルハウジング28の下方側に配置され、固定スクロール12は、可動スクロール11の下方側に配置されている。 The compression mechanism unit 10 is configured as a scroll type compression mechanism unit having a movable scroll 11 and a fixed scroll 12 each having a spiral tooth portion. The movable scroll 11 is disposed below the middle housing 28 described above, and the fixed scroll 12 is disposed below the movable scroll 11.
 より詳細には、可動スクロール11は、円板状の可動側基板部111、および可動側基板部111から固定スクロール12へ向かって突出する渦巻き状の可動側歯部112を有している。固定スクロール12は、円板状の固定側基板部121および固定側基板部121から可動スクロール11へ向かって突出する渦巻き状の固定側歯部122を有している。 More specifically, the movable scroll 11 has a disk-shaped movable side substrate portion 111 and a spiral movable side tooth portion 112 protruding from the movable side substrate portion 111 toward the fixed scroll 12. The fixed scroll 12 has a disk-shaped fixed side substrate portion 121 and a spiral fixed side tooth portion 122 protruding from the fixed side substrate portion 121 toward the movable scroll 11.
 さらに、固定スクロール12は、固定側基板部121の外周側面がハウジング30の筒状部材31の内周側面に圧入されていることによって、ハウジング30に固定されている。可動スクロール11は、ミドルハウジング28と固定スクロール12との間に形成される空間に配置されている。 Further, the fixed scroll 12 is fixed to the housing 30 by press-fitting the outer peripheral side surface of the fixed-side substrate 121 to the inner peripheral side surface of the cylindrical member 31 of the housing 30. The movable scroll 11 is disposed in a space formed between the middle housing 28 and the fixed scroll 12.
 可動スクロール11および固定スクロール12は、それぞれの基板部111、121の板面が対向するように配置されている。可動スクロール11の歯部112と固定スクロール12の歯部122同士が噛み合わされて、一方のスクロールの歯部の先端部が他方のスクロールの基板部に当接している。 The movable scroll 11 and the fixed scroll 12 are arranged so that the plate surfaces of the substrate portions 111 and 121 face each other. The tooth portion 112 of the movable scroll 11 and the tooth portion 122 of the fixed scroll 12 are engaged with each other, and the tip portion of the tooth portion of one scroll is in contact with the substrate portion of the other scroll.
 それぞれのスクロールの歯部の先端部には、圧縮室Vc(作動室V)の気密性を向上させるためのチップシールが配置されている。より具体的には、それぞれのスクロールの歯部の先端部には、先端部の形状に沿った渦巻き状の溝部が形成されており、チップシールはこの溝部に嵌め込まれることによって渦巻き状に配置されている。このようなチップシールは、例えばPEEK(ポリエーテルエーテルケトン)樹脂で形成されている。 A tip seal for improving the airtightness of the compression chamber Vc (working chamber V) is disposed at the tip of each scroll tooth. More specifically, a spiral groove along the shape of the tip is formed at the tip of each scroll tooth, and the tip seal is arranged in a spiral by being fitted into this groove. ing. Such a chip seal is made of, for example, PEEK (polyether ether ketone) resin.
 これにより、それぞれの歯部112、122同士が複数箇所で接触し、それぞれの歯部112、122同士の間には、シャフト25の中心軸の軸方向から見たときに三日月形状に形成される圧縮室Vcが複数個形成される。なお、図2、図3では、図示の明確化のため、複数個の圧縮室Vcのうち一部の圧縮室Vcのみに符号を付しており、他の圧縮室については符号を省略している。 Thereby, each tooth part 112,122 contacts in several places, and when it sees from the axial direction of the central axis of the shaft 25 between each tooth part 112,122, it forms in a crescent moon shape. A plurality of compression chambers Vc are formed. 2 and 3, for the sake of clarity of illustration, only some of the compression chambers Vc are provided with reference numerals, and other compression chambers are omitted. Yes.
 また、可動スクロール11の可動側基板部111の上面側の中心部には、シャフト25の下端部(圧縮機構部10側の端部)が挿入される円筒状のボス部113が形成されている。一方、シャフト25の下端部は、シャフト25の回転中心に対して偏心した偏心部25bになっている。従って、可動スクロール11の可動側基板部111のボス部113には、シャフト25の偏心部25bが挿入される。 A cylindrical boss portion 113 into which the lower end portion of the shaft 25 (end portion on the compression mechanism portion 10 side) is inserted is formed at the center portion on the upper surface side of the movable side substrate portion 111 of the movable scroll 11. . On the other hand, the lower end portion of the shaft 25 is an eccentric portion 25 b that is eccentric with respect to the rotation center of the shaft 25. Accordingly, the eccentric portion 25 b of the shaft 25 is inserted into the boss portion 113 of the movable side substrate portion 111 of the movable scroll 11.
 さらに、可動スクロール11およびミドルハウジング28の間には、可動スクロール11が偏心部25b周りに自転することを防止する図示しない自転防止機構が設けられている。このため、シャフト25が回転すると、可動スクロール11は偏心部25b周りに自転することなく、シャフト25の回転中心を公転中心として旋回(公転運動)する。 Furthermore, between the movable scroll 11 and the middle housing 28, a rotation prevention mechanism (not shown) for preventing the movable scroll 11 from rotating around the eccentric portion 25b is provided. For this reason, when the shaft 25 rotates, the movable scroll 11 turns (revolves) with the rotation center of the shaft 25 as the revolution center without rotating around the eccentric portion 25b.
 そして、この公転運動により、前述した圧縮室Vcが容積を減少させながら、シャフト25回りに、外周側から中心側へ容積を縮小させながら変位する。従って、本実施形態の圧縮機1は、回転型の容積圧縮機として構成されており、可動スクロール11および固定スクロール12は、圧縮室形成部材を構成している。 By this revolving motion, the compression chamber Vc described above is displaced around the shaft 25 while reducing the volume from the outer peripheral side to the center side while reducing the volume. Therefore, the compressor 1 of the present embodiment is configured as a rotary type volume compressor, and the movable scroll 11 and the fixed scroll 12 constitute a compression chamber forming member.
 また、ハウジング30に形成された吸入ポート30aは、圧縮室Vcのうち最外周側に位置付けられて容積が最も大きくなる吸入側の圧縮室Vcに連通している。中間圧吸入ポート30bは、圧縮室Vcのうち最外周側から中心側へ変位する過程の中間位置に位置付けられる中間位置の圧縮室Vcに連通している。 Further, the suction port 30a formed in the housing 30 communicates with the compression chamber Vc on the suction side which is positioned on the outermost peripheral side of the compression chamber Vc and has the largest volume. The intermediate pressure suction port 30b communicates with the compression chamber Vc at an intermediate position that is positioned at an intermediate position in the process of displacement from the outermost peripheral side to the center side of the compression chamber Vc.
 さらに、吸入ポート30aから吸入側の圧縮室Vcへ至る吸入用の冷媒通路の少なくとも一部、および中間圧吸入ポート30bから中間位置の圧縮室Vcへ至るインジェクション用の冷媒通路の少なくとも一部は、固定スクロール12の固定側基板部121の内部に形成されている。 Further, at least a part of the refrigerant passage for suction from the suction port 30a to the compression chamber Vc on the suction side, and at least a part of the refrigerant passage for injection from the intermediate pressure suction port 30b to the compression chamber Vc at the intermediate position are It is formed inside the fixed side substrate 121 of the fixed scroll 12.
 また、中間圧吸入ポート30bから中間位置の圧縮室Vcへ至るインジェクション用の冷媒通路には、逆流防止弁50が配置されている。逆流防止弁50は、圧縮室Vcから中間圧吸入ポート30bへ向かって冷媒が逆流することを防止するための逆流防止部である。 Further, a backflow prevention valve 50 is arranged in the refrigerant passage for injection from the intermediate pressure suction port 30b to the compression chamber Vc at the intermediate position. The backflow prevention valve 50 is a backflow prevention unit for preventing the refrigerant from flowing back from the compression chamber Vc toward the intermediate pressure suction port 30b.
 より具体的には、本実施形態の逆流防止弁50は、板状部材で形成されたリード弁50a、およびリード弁50aが開閉する通路が形成されたシート部材50bによって構成されている。このようなリード弁方式の逆流防止弁50は、比較的小さな収容空間内に収容することができるので、インジェクション用の冷媒通路のうち逆流防止弁50から下流側の冷媒通路の内容積(デッドボリューム)を不必要に拡大させない点で有効である。 More specifically, the backflow prevention valve 50 of the present embodiment is configured by a reed valve 50a formed of a plate-like member and a seat member 50b formed with a passage that opens and closes the reed valve 50a. Such a reed valve type backflow prevention valve 50 can be accommodated in a relatively small accommodation space, and therefore, the internal volume (dead volume) of the refrigerant passage downstream from the backflow prevention valve 50 in the injection refrigerant passage. ) Is effective in that it does not unnecessarily expand.
 また、本実施形態のスクロール型の圧縮機構部10では、図3の断面図に示すように、シャフト25の中心軸に対して対称となる位置に、独立した2つの圧縮室Vcが形成されている。従って、それぞれ独立して形成された圧縮室Vcからの逆流を防止できるように、圧縮室Vcと同数(本実施形態では2つ)の逆流防止弁50が設けられている。 Further, in the scroll type compression mechanism section 10 of the present embodiment, as shown in the cross-sectional view of FIG. 3, two independent compression chambers Vc are formed at positions symmetrical with respect to the central axis of the shaft 25. Yes. Therefore, the same number (two in the present embodiment) of backflow prevention valves 50 as the compression chambers Vc are provided so as to prevent backflow from the compression chambers Vc formed independently of each other.
 さらに、本実施形態では、インジェクション用の冷媒通路のうち逆流防止弁50の下流側の冷媒通路の延びる方向が、図3、図4に示すように、シャフト25の中心軸方向に対して傾斜している。当該冷媒通路は、すなわち、逆流防止弁50から中間位置の圧縮室Vcへ至る下流側冷媒通路(下流側流体通路)51である。 Furthermore, in the present embodiment, the direction in which the refrigerant passage on the downstream side of the backflow prevention valve 50 in the injection refrigerant passage extends is inclined with respect to the central axis direction of the shaft 25 as shown in FIGS. ing. That is, the refrigerant passage is a downstream refrigerant passage (downstream fluid passage) 51 from the backflow prevention valve 50 to the compression chamber Vc at the intermediate position.
 図3に示すように、シャフト25の中心軸の軸方向から見たとき、下流側冷媒通路51の入口部とシャフト25の中心軸とを通る線を線L1とし、下流側冷媒通路51の入口部と出口部とを通る線を線L2とし、シャフト25および可動スクロール11の回転方向に線L1から線L2へ至る角度をαとする。角度αは、以下数式F1を満たすように設定されている。 As shown in FIG. 3, when viewed from the axial direction of the central axis of the shaft 25, a line passing through the inlet portion of the downstream refrigerant passage 51 and the central axis of the shaft 25 is defined as a line L <b> 1 and the inlet of the downstream refrigerant passage 51. A line passing through the part and the outlet part is defined as a line L2, and an angle from the line L1 to the line L2 in the rotational direction of the shaft 25 and the movable scroll 11 is defined as α. The angle α is set so as to satisfy the following formula F1.
 0°<α<180°…(F1)
 これにより、下流側冷媒通路51は、圧縮室Vcを形成する壁面に向かう方向成分を有して形成されることになる。
0 ° <α <180 ° (F1)
Thereby, the downstream side refrigerant passage 51 is formed having a directional component toward the wall surface forming the compression chamber Vc.
 また、図4に示すように、線L2と交差し、かつ、シャフト25の軸方向に平行な断面において、シャフト25の軸方向に延びる線を線L3とし、線L3と線L2との間に形成される角度のうち、小さい方の角度をβとする。角度βは、以下数式F2を満たすように設定されている。 Further, as shown in FIG. 4, in a cross section that intersects the line L2 and is parallel to the axial direction of the shaft 25, the line extending in the axial direction of the shaft 25 is defined as a line L3, and between the line L3 and the line L2. Of the formed angles, the smaller angle is β. The angle β is set so as to satisfy the following formula F2.
 0°<β<90°…(F2)
 これにより、下流側冷媒通路51は、シャフト25の軸方向に平行な方向成分を有して形成されることになる。
0 ° <β <90 °… (F2)
As a result, the downstream refrigerant passage 51 is formed with a directional component parallel to the axial direction of the shaft 25.
 そして、上記数式F1およびF2を満たすことによって、下流側冷媒通路51は、シャフト25および可動スクロール11の回転方向と逆方向に延びる方向成分を有して形成されることになる。さらに、本実施形態では、下流側冷媒通路51が、固定スクロール12のうち吸入側の圧縮室Vcを形成する壁面に向かう方向成分を有して形成されている。 And by satisfy | filling said numerical formula F1 and F2, the downstream refrigerant path 51 has a direction component extended in the reverse direction to the rotation direction of the shaft 25 and the movable scroll 11, and is formed. Furthermore, in the present embodiment, the downstream refrigerant passage 51 is formed to have a directional component toward the wall surface forming the suction-side compression chamber Vc of the fixed scroll 12.
 なお、本実施形態における下流側冷媒通路51とは、逆流防止弁50の下流側の冷媒通路である。従って、逆流防止弁50の一部として設けられたリード弁50aを変位させるための収容空間は、下流側冷媒通路51に含まれない。 Note that the downstream refrigerant passage 51 in the present embodiment is a refrigerant passage on the downstream side of the check valve 50. Accordingly, a housing space for displacing the reed valve 50 a provided as a part of the check valve 50 is not included in the downstream refrigerant passage 51.
 また、固定スクロール12側の固定側基板部121の中心部には、圧縮室Vcで圧縮された冷媒が吐出される吐出孔123が形成されている。さらに、吐出孔123の下方側には、吐出孔123と連通する吐出室124が形成されている。吐出室124には、吐出室124から圧縮室Vcへの冷媒の逆流を防止する逆止弁をなす吐出弁(リード弁)と、吐出弁の最大開度を規制するストッパ16が配置されている。 Further, a discharge hole 123 through which the refrigerant compressed in the compression chamber Vc is discharged is formed at the center of the fixed side substrate 121 on the fixed scroll 12 side. Further, a discharge chamber 124 communicating with the discharge hole 123 is formed below the discharge hole 123. The discharge chamber 124 is provided with a discharge valve (reed valve) that forms a check valve that prevents the refrigerant from flowing backward from the discharge chamber 124 to the compression chamber Vc, and a stopper 16 that regulates the maximum opening of the discharge valve. .
 ハウジング30の内部には、吐出室124からハウジング30に形成された冷媒流出口へと冷媒を導く図示しない冷媒通路が形成されている。さらに、この冷媒流出口には油分離器40の冷媒流入口40bが接続されている。油分離器40は、鉛直方向に延びる筒状部材41を有し、その内部に形成された空間で圧縮機構部10にて昇圧された冷媒を旋回させ、遠心力の作用によって気相冷媒とオイルとを分離する。 Inside the housing 30, a refrigerant passage (not shown) that guides the refrigerant from the discharge chamber 124 to the refrigerant outlet formed in the housing 30 is formed. Further, a refrigerant inlet 40b of the oil separator 40 is connected to the refrigerant outlet. The oil separator 40 includes a cylindrical member 41 extending in the vertical direction, and the refrigerant pressurized by the compression mechanism unit 10 is swirled in a space formed therein, and the gas phase refrigerant and the oil are subjected to centrifugal force. And are separated.
 油分離器40にて分離された高圧気相冷媒は、油分離器40の上方側に形成された吐出ポート40aから水-冷媒熱交換器2へ吐出される。一方、油分離器40にて分離されたオイルは、油分離器40の下方側の部位に蓄えられ、図示しない油通路を介してハウジング30内の圧縮機構部10や、シャフト25と第1、第2軸受部26、27との摺動部等へ供給される。 The high-pressure gas-phase refrigerant separated by the oil separator 40 is discharged to the water-refrigerant heat exchanger 2 from a discharge port 40a formed on the upper side of the oil separator 40. On the other hand, the oil separated by the oil separator 40 is stored in a lower part of the oil separator 40, and the compression mechanism portion 10 in the housing 30 and the shaft 25 and the first, Supplied to a sliding portion with the second bearing portions 26 and 27 and the like.
 次に、上記構成における本実施形態の圧縮機1の作動について説明する。圧縮機1の電動機部20に電力が供給されてロータ22およびシャフト25が回転すると、可動スクロール11がシャフト25に対して旋回(公転運動)する。これにより、可動スクロール11の可動側歯部112と固定スクロール12の固定側歯部122との間に形成された三日月状の圧縮室Vcが外周側から中心側へシャフト25回りに旋回しながら移動していく。 Next, the operation of the compressor 1 of the present embodiment having the above configuration will be described. When electric power is supplied to the electric motor unit 20 of the compressor 1 and the rotor 22 and the shaft 25 rotate, the movable scroll 11 turns (revolves) with respect to the shaft 25. Accordingly, the crescent-shaped compression chamber Vc formed between the movable side tooth portion 112 of the movable scroll 11 and the fixed side tooth portion 122 of the fixed scroll 12 moves while turning around the shaft 25 from the outer peripheral side to the center side. I will do it.
 この際、最外周側に位置付けられて吸入ポート30aに連通する吸入側の圧縮室Vcには、吸入ポート30aを介して室外熱交換器6から流出した低圧冷媒が吸入される。低圧冷媒が流入した圧縮室Vcは、シャフト25の回転に伴って、その容積を縮小させながら下流側冷媒通路51に連通する中間位置へ移動する。 At this time, the low-pressure refrigerant flowing out of the outdoor heat exchanger 6 is sucked into the suction-side compression chamber Vc positioned on the outermost peripheral side and communicated with the suction port 30a through the suction port 30a. The compression chamber Vc into which the low-pressure refrigerant has flowed moves to an intermediate position communicating with the downstream-side refrigerant passage 51 while reducing the volume of the compression chamber Vc as the shaft 25 rotates.
 圧縮室Vcが中間位置へ移動し、圧縮室Vc側の冷媒の圧力P1よりも中間圧吸入ポート30b側の中間圧気相冷媒の圧力P2が高くなっている状態では、圧力P1と圧力P2との圧力差によって、逆流防止弁50が開く。これにより、気液分離器4にて分離されて中間圧吸入ポート30bから吸入された中間圧気相冷媒が、圧縮室Vcへ注入される。 When the compression chamber Vc moves to the intermediate position and the pressure P2 of the intermediate-pressure gas-phase refrigerant on the intermediate pressure suction port 30b side is higher than the pressure P1 of the refrigerant on the compression chamber Vc side, the pressure P1 and the pressure P2 The check valve 50 opens due to the pressure difference. As a result, the intermediate-pressure gas-phase refrigerant separated by the gas-liquid separator 4 and sucked from the intermediate-pressure suction port 30b is injected into the compression chamber Vc.
 さらに、シャフト25の回転に伴って圧縮室Vcの容積が縮小し、圧縮室Vc側の冷媒の圧力P1が中間圧吸入ポート30b側の中間圧気相冷媒の圧力P2を上回ると、圧力P1と圧力P2との圧力差によって、逆流防止弁50が閉じる。これにより、圧縮室Vcから中間圧吸入ポート30bへ向けて冷媒が逆流してしまうことが防止される。 Further, when the volume of the compression chamber Vc is reduced with the rotation of the shaft 25 and the pressure P1 of the refrigerant on the compression chamber Vc side exceeds the pressure P2 of the intermediate pressure gas phase refrigerant on the intermediate pressure suction port 30b side, the pressure P1 and the pressure The backflow prevention valve 50 closes due to the pressure difference with P2. This prevents the refrigerant from flowing backward from the compression chamber Vc toward the intermediate pressure suction port 30b.
 さらに、シャフト25の回転に伴って圧縮室Vcが中心側の固定スクロール12の吐出孔123へ連通する位置に移動し、圧縮室Vc内の高圧冷媒の圧力が吐出弁の開弁圧を超えると吐出弁が開く。これにより、高圧冷媒が吐出室124へ吐出される。吐出室124へ吐出された高圧冷媒は、油分離器40にてオイルが分離されて吐出ポート40aから水-冷媒熱交換器2へ吐出される。 Further, when the compression chamber Vc moves to a position communicating with the discharge hole 123 of the fixed scroll 12 on the center side as the shaft 25 rotates, and the pressure of the high-pressure refrigerant in the compression chamber Vc exceeds the valve opening pressure of the discharge valve. The discharge valve opens. As a result, the high-pressure refrigerant is discharged into the discharge chamber 124. The high-pressure refrigerant discharged to the discharge chamber 124 is separated from the oil by the oil separator 40 and discharged from the discharge port 40a to the water-refrigerant heat exchanger 2.
 以上の如く、本実施形態の圧縮機1は、ヒートポンプサイクル100において、冷媒を吸入し、圧縮して吐出することができる。 As described above, in the heat pump cycle 100, the compressor 1 of the present embodiment can suck the refrigerant, compress it, and discharge it.
 ここで、本実施形態の圧縮機1(スクロール型圧縮機)では、圧縮室Vcを区画形成する圧縮室形成部材(具体的には、可動スクロール11および固定スクロール12)の一部を回転変位させて、圧縮室形成部材のうち実際に圧縮室Vcを区画形成する部位(壁面)を連続的に変化させることによって、圧縮室Vcをシャフト25回りに変位させている。さらに具体的には、本実施形態の圧縮機1では、可動スクロール11を回転変位させて、圧縮室形成部材のうち実際に圧縮室Vcを区画形成する壁面を連続的に変化させることによって、圧縮室Vcをシャフト25回りに変位させている。 Here, in the compressor 1 (scroll type compressor) of the present embodiment, a part of the compression chamber forming member (specifically, the movable scroll 11 and the fixed scroll 12) that partitions the compression chamber Vc is rotationally displaced. Thus, the compression chamber Vc is displaced around the shaft 25 by continuously changing the portion (wall surface) of the compression chamber forming member that actually forms the compression chamber Vc. More specifically, in the compressor 1 of the present embodiment, the movable scroll 11 is rotationally displaced, and the wall surface that actually defines the compression chamber Vc among the compression chamber forming members is continuously changed, thereby compressing. The chamber Vc is displaced around the shaft 25.
 つまり、本実施形態の圧縮機1では、吸入ポート30aに連通する吸入側の圧縮室Vcも、吐出ポート40a側に連通する吐出側の圧縮室Vcも、同一の圧縮室形成部材によって区画形成されている。 That is, in the compressor 1 of the present embodiment, both the suction side compression chamber Vc communicating with the suction port 30a and the discharge side compression chamber Vc communicating with the discharge port 40a are defined by the same compression chamber forming member. ing.
 さらに、圧縮室Vc内の冷媒は圧縮されるに伴って温度上昇するため、吐出側の圧縮室Vc内の高圧冷媒の温度は、吸入側の圧縮室Vcへ吸入される低圧冷媒の温度よりも高くなる。このため、スクロール型圧縮機に代表される回転型の容積圧縮機では、吐出側の圧縮室Vc内の高圧冷媒の有する熱が、圧縮室形成部材を介して吸入側の圧縮室Vcへ流入する低圧冷媒へ伝熱されやすい。 Further, since the temperature of the refrigerant in the compression chamber Vc increases as it is compressed, the temperature of the high-pressure refrigerant in the discharge-side compression chamber Vc is higher than the temperature of the low-pressure refrigerant sucked into the suction-side compression chamber Vc. Get higher. For this reason, in a rotary displacement compressor represented by a scroll compressor, the heat of the high-pressure refrigerant in the discharge-side compression chamber Vc flows into the suction-side compression chamber Vc via the compression chamber forming member. Heat is easily transferred to low-pressure refrigerant.
 そして、吐出側の圧縮室Vc内の高圧冷媒の有する熱が吸入側の圧縮室Vcへ流入する低圧冷媒へ伝達されると、吸入側の圧縮室Vcへ流入する流体の密度が低下して、圧縮機の体積効率が悪化する。 When the heat of the high-pressure refrigerant in the discharge-side compression chamber Vc is transferred to the low-pressure refrigerant flowing into the suction-side compression chamber Vc, the density of the fluid flowing into the suction-side compression chamber Vc decreases, The volumetric efficiency of the compressor deteriorates.
 これに対して、本実施形態の圧縮機1では、下流側冷媒通路51が、シャフト25の回転方向と逆方向に延びる方向成分を有して形成されている。従って、下流側冷媒通路51を流通する中間圧冷媒によって、固定スクロール12のうち、吸入側の圧縮室Vcを形成する部位を冷却することができる。 In contrast, in the compressor 1 of the present embodiment, the downstream refrigerant passage 51 has a directional component extending in the direction opposite to the rotation direction of the shaft 25. Therefore, the portion of the fixed scroll 12 that forms the suction-side compression chamber Vc can be cooled by the intermediate pressure refrigerant flowing through the downstream-side refrigerant passage 51.
 これにより、吐出側の圧縮室Vc内の高圧冷媒の有する熱が、固定スクロール12を介して、吸入側の圧縮室Vcへ流入する冷媒へ伝熱されるのを抑制して、圧縮機1の体積効率の悪化を抑制することができる。これにより、同一回転数における圧縮機1の吐出流量を向上させることができる。 Thereby, the heat of the high-pressure refrigerant in the compression chamber Vc on the discharge side is suppressed from being transferred to the refrigerant flowing into the compression chamber Vc on the suction side via the fixed scroll 12, and the volume of the compressor 1 is reduced. The deterioration of efficiency can be suppressed. Thereby, the discharge flow rate of the compressor 1 at the same rotation speed can be improved.
 その結果、水-冷媒熱交換器2にて同一の給湯水の加熱能力を発揮させるために必要な回転数を低下させることができる。従って、圧縮機1の信頼性を向上させることができるとともに、ヒートポンプサイクル100の成績係数(COP)を向上させることができる。 As a result, it is possible to reduce the number of revolutions necessary for the water-refrigerant heat exchanger 2 to exhibit the same hot water heating capability. Therefore, the reliability of the compressor 1 can be improved and the coefficient of performance (COP) of the heat pump cycle 100 can be improved.
 また、本実施形態の圧縮機1では、図3に示す角度αが上記数式F1を満たし、かつ、図4に示す角度βが上記数式F2を満たすように、下流側冷媒通路51がシャフト25の中心軸に対して傾斜している。従って、下流側冷媒通路51の通路構成を複雑化させてしまうことなく、極めて容易にシャフト25の回転方向と逆方向に延びる方向成分を有する形状とすることができる。 Further, in the compressor 1 of the present embodiment, the downstream side refrigerant passage 51 is connected to the shaft 25 so that the angle α shown in FIG. 3 satisfies the formula F1 and the angle β shown in FIG. 4 satisfies the formula F2. Inclined with respect to the central axis. Therefore, it is possible to make the shape having a direction component extending in the direction opposite to the rotation direction of the shaft 25 without complicating the passage configuration of the downstream refrigerant passage 51.
 さらに、下流側冷媒通路51が、固定スクロール12の内部に形成されているとともに、固定スクロール12のうち吸入側の圧縮室Vcを形成する壁面に向かう方向成分を有して形成されている。従って、吸入側の圧縮室Vcを形成する壁面の温度上昇を抑制して、吐出側の圧縮室Vc内の高圧冷媒の有する熱によって、吸入側の圧縮室Vcへ流入する冷媒が加熱されてしまうことを効果的に抑制することができる。 Furthermore, the downstream refrigerant passage 51 is formed inside the fixed scroll 12 and has a directional component toward the wall surface forming the suction-side compression chamber Vc in the fixed scroll 12. Therefore, the temperature rise of the wall surface forming the suction side compression chamber Vc is suppressed, and the refrigerant flowing into the suction side compression chamber Vc is heated by the heat of the high-pressure refrigerant in the discharge side compression chamber Vc. This can be effectively suppressed.
 さらに、下流側冷媒通路51が、軸方向に平行な方向成分を有して形成されている。これにより、下流側冷媒通路51を流通する中間圧冷媒によって、固定スクロール12のうち圧縮室Vcを形成する壁面の広い範囲を冷却することができる。従って、吐出側の圧縮室Vc内の高圧冷媒の有する熱によって、吸入側の圧縮室Vcへ流入する冷媒が加熱されてしまうことを効果的に抑制することができる。 Furthermore, the downstream refrigerant passage 51 is formed with a directional component parallel to the axial direction. Thereby, the wide range of the wall surface which forms the compression chamber Vc among the fixed scrolls 12 can be cooled by the intermediate pressure refrigerant flowing through the downstream refrigerant passage 51. Therefore, it is possible to effectively prevent the refrigerant flowing into the suction-side compression chamber Vc from being heated by the heat of the high-pressure refrigerant in the discharge-side compression chamber Vc.
 また、本実施形態のヒートポンプサイクル100では、冷媒として二酸化炭素を採用し、高圧側冷媒の圧力が臨界圧力以上となる超臨界冷凍サイクルを構成している。このような超臨界冷凍サイクルでは、圧縮機1から吐出される吐出冷媒の温度が比較的高温(例えば、90℃以上)となりやすく、吐出側の圧縮室Vc内の高圧冷媒の有する熱によって、吸入側の圧縮室Vcへ流入する冷媒が加熱されてしまいやすい。従って、本実施形態の圧縮機1による体積効率の悪化抑制効果は、極めて有効である。
(第2実施形態)
 本実施形態では、第1実施形態に対して、図5に示すように、下流側冷媒通路51の形状を変更している。なお、図5は、第1実施形態の図4に対応する図面であって、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
Further, in the heat pump cycle 100 of the present embodiment, carbon dioxide is employed as the refrigerant, and a supercritical refrigeration cycle is configured in which the pressure of the high-pressure side refrigerant is equal to or higher than the critical pressure. In such a supercritical refrigeration cycle, the temperature of the discharge refrigerant discharged from the compressor 1 tends to be relatively high (for example, 90 ° C. or higher), and is sucked by the heat of the high-pressure refrigerant in the discharge-side compression chamber Vc. The refrigerant flowing into the compression chamber Vc on the side is likely to be heated. Therefore, the effect of suppressing the deterioration of volume efficiency by the compressor 1 of the present embodiment is extremely effective.
(Second Embodiment)
In the present embodiment, the shape of the downstream refrigerant passage 51 is changed as shown in FIG. 5 with respect to the first embodiment. FIG. 5 is a drawing corresponding to FIG. 4 of the first embodiment, and the same or equivalent parts as in the first embodiment are denoted by the same reference numerals. The same applies to the following drawings.
 具体的には、本実施形態の下流側冷媒通路51は、固定スクロール12の固定側歯部122の内部に形成されている。さらに、下流側冷媒通路51の出口部が固定側歯部122の側面に開口している。その他の構成および作動は第1実施形態と同様である。 Specifically, the downstream-side refrigerant passage 51 of the present embodiment is formed inside the fixed-side tooth portion 122 of the fixed scroll 12. Further, the outlet portion of the downstream refrigerant passage 51 is open to the side surface of the fixed side tooth portion 122. Other configurations and operations are the same as those in the first embodiment.
 従って、本実施形態の圧縮機1においても、第1実施形態と同様に、体積効率の悪化抑制効果を得ることができる。さらに、本実施形態では、下流側冷媒通路51が、固定スクロール12の固定側歯部122の内部に形成されている。これにより、下流側冷媒通路51を吸入側の圧縮室Vcに近づけて、固定スクロール12のうち吸入側の圧縮室Vcを形成する部位を効果的に冷却することができる。
(第3実施形態)
 本実施形態では、第1実施形態に対して、図6に示すように、下流側冷媒通路51の形状を変更している。なお、図6は、第1実施形態の図4に対応する図面である。具体的には、本実施形態の下流側冷媒通路51は、その通路断面積が中間圧冷媒の流れ方向に向かって徐々に拡大している。本実施形態のその他の構成および作動は第1実施形態と同様である。
Therefore, also in the compressor 1 of this embodiment, the effect of suppressing the deterioration of volume efficiency can be obtained as in the first embodiment. Further, in the present embodiment, the downstream refrigerant passage 51 is formed inside the fixed side tooth portion 122 of the fixed scroll 12. Thereby, the downstream refrigerant passage 51 can be brought close to the suction-side compression chamber Vc, and the portion of the fixed scroll 12 that forms the suction-side compression chamber Vc can be effectively cooled.
(Third embodiment)
In the present embodiment, the shape of the downstream refrigerant passage 51 is changed as shown in FIG. 6 with respect to the first embodiment. FIG. 6 is a drawing corresponding to FIG. 4 of the first embodiment. Specifically, the downstream refrigerant passage 51 of the present embodiment has its passage cross-sectional area gradually expanding toward the flow direction of the intermediate pressure refrigerant. Other configurations and operations of the present embodiment are the same as those of the first embodiment.
 従って、本実施形態の圧縮機1においても、第1実施形態と同様に、体積効率の悪化抑制効果を得ることができる。さらに、本実施形態では、下流側冷媒通路51の通路断面積が中間圧冷媒の流れ方向に向かって徐々に拡大しているので、中間圧流体を中間位置の圧縮室Vc内の広範囲に噴出させることができる。 Therefore, also in the compressor 1 of the present embodiment, the effect of suppressing the deterioration of the volume efficiency can be obtained as in the first embodiment. Furthermore, in this embodiment, since the passage cross-sectional area of the downstream refrigerant passage 51 gradually increases in the flow direction of the intermediate pressure refrigerant, the intermediate pressure fluid is ejected over a wide range in the compression chamber Vc at the intermediate position. be able to.
 従って、中間位置の圧縮室Vc内に噴射される中間圧冷媒によって、圧縮室Vcの広範囲を効率的に冷却して、吐出側の圧縮室Vc内の高圧冷媒の有する熱によって、吸入側の圧縮室Vcへ流入する冷媒が加熱されてしまうことを抑制することができる。
(他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
Therefore, the intermediate pressure refrigerant injected into the compression chamber Vc at the intermediate position efficiently cools the wide range of the compression chamber Vc, and the suction side compression is performed by the heat of the high-pressure refrigerant in the discharge side compression chamber Vc. It can suppress that the refrigerant | coolant which flows in into the chamber Vc will be heated.
(Other embodiments)
The present disclosure is not limited to the above-described embodiment, and can be variously modified as follows without departing from the spirit of the present disclosure.
 (1)上述の実施形態では、本開示に係る圧縮機1をヒートポンプ式給湯機のヒートポンプサイクル100に適用した例を説明したが、圧縮機1の適用はこれに限定されない。つまり、圧縮機1は、種々の流体を圧縮する圧縮機として幅広い用途に適用可能である。 (1) In the above-described embodiment, the example in which the compressor 1 according to the present disclosure is applied to the heat pump cycle 100 of the heat pump hot water heater has been described. However, the application of the compressor 1 is not limited thereto. That is, the compressor 1 can be applied to a wide range of uses as a compressor that compresses various fluids.
 さらに、圧縮機1を、圧縮機、放熱器、分岐部、高段側膨張弁、内部熱交換器、低段側膨張弁、および蒸発器を備えるガスインジェクションサイクルに適用してもよい。圧縮機は、冷媒を圧縮して吐出する。放熱器は、圧縮機から吐出された高圧冷媒と加熱対象流体(あるいは外気)とを熱交換させる。分岐部は、放熱器から流出した高圧冷媒の流れを分岐する。高段側膨張弁は、分岐部にて分岐された一方の高圧冷媒を中間圧冷媒となるまで減圧させる。内部熱交換器は、分岐部にて分岐された他方の高圧冷媒と高段側膨張弁にて減圧された中間圧冷媒とを熱交換させる。低段側膨張弁は、内部熱交換器から流出した高圧冷媒を低圧冷媒となるまで減圧させる。蒸発器は、低段側膨張弁から流出した低圧冷媒と外気(あるいは冷却対象流体)とを熱交換させて低圧冷媒を蒸発させる。内部熱交換器から流出した中間圧冷媒は、圧縮機1の中間圧吸入ポート30bへ吸入される。蒸発器から流出した低圧冷媒は、圧縮機1の吸入ポート30aへ吸入される。 Furthermore, the compressor 1 may be applied to a gas injection cycle including a compressor, a radiator, a branching section, a high stage side expansion valve, an internal heat exchanger, a low stage side expansion valve, and an evaporator. The compressor compresses and discharges the refrigerant. The radiator causes heat exchange between the high-pressure refrigerant discharged from the compressor and the fluid to be heated (or outside air). The branch portion branches the flow of the high-pressure refrigerant that has flowed out of the radiator. The high stage side expansion valve depressurizes one of the high-pressure refrigerants branched at the branching portion until it becomes an intermediate-pressure refrigerant. The internal heat exchanger exchanges heat between the other high-pressure refrigerant branched at the branch portion and the intermediate-pressure refrigerant decompressed by the high-stage side expansion valve. The low stage side expansion valve depressurizes the high-pressure refrigerant that has flowed out of the internal heat exchanger until it becomes a low-pressure refrigerant. The evaporator exchanges heat between the low-pressure refrigerant flowing out from the low-stage side expansion valve and the outside air (or the fluid to be cooled) to evaporate the low-pressure refrigerant. The intermediate pressure refrigerant flowing out from the internal heat exchanger is sucked into the intermediate pressure suction port 30b of the compressor 1. The low-pressure refrigerant flowing out from the evaporator is sucked into the suction port 30a of the compressor 1.
 (2)上述の実施形態では、スクロール型圧縮機として構成された圧縮機1について説明したが、圧縮機の形式はこれに限定されない。つまり、本開示の圧縮機には、回転軸回りに変位しながら容積を縮小させる圧縮室にて流体を圧縮する形式のものが広く含まれる。 (2) In the above-described embodiment, the compressor 1 configured as a scroll compressor has been described, but the type of the compressor is not limited to this. That is, the compressor of the present disclosure includes a wide variety of compressors that compress fluid in a compression chamber that reduces the volume while being displaced around the rotation axis.
 例えば、圧縮室形成部材が、円柱状空間を形成するシリンダ、円柱状空間の中心軸に対して偏心して配置される円柱状のロータ、およびシリンダの内周面側からロータの外周面に当接するように突出するベーンを有してもよい。圧縮室が、シリンダの内周面、ロータの外周面およびベーンによって仕切られた空間によって形成される、いわゆるローリングピストン型圧縮機として構成されていてもよい。 For example, the compression chamber forming member is in contact with the outer peripheral surface of the rotor from the inner peripheral surface side of the cylinder that forms a cylindrical space, the cylindrical rotor that is arranged eccentrically with respect to the central axis of the cylindrical space You may have the vane which protrudes like this. The compression chamber may be configured as a so-called rolling piston compressor formed by a space partitioned by the inner peripheral surface of the cylinder, the outer peripheral surface of the rotor, and the vanes.
 また、圧縮室形成部材が、断面楕円形状の柱状空間を形成するシリンダ、柱状空間の内部に配置される円柱状のロータ、およびロータの外周面側からシリンダの内周面に当接するように突出するベーンを有してもよい。圧縮室が、シリンダの内周面、ロータの外周面およびベーンによって仕切られた空間によって形成される、いわゆるベーン型圧縮機として構成されていてもよい。 Further, the compression chamber forming member protrudes so as to come into contact with the inner peripheral surface of the cylinder from the cylinder forming the columnar space having an elliptical cross section, the columnar rotor disposed inside the columnar space, and the outer peripheral surface side of the rotor. You may have a vane to do. The compression chamber may be configured as a so-called vane type compressor formed by a space partitioned by the inner peripheral surface of the cylinder, the outer peripheral surface of the rotor, and the vanes.
 (3)上述の実施形態では、縦置きタイプの圧縮機1について説明した。しかしながら、シャフト(回転軸)25が水平方向に延びて、圧縮機構部10と電動機部20が水平方向(横方向)に配置された横置きタイプの圧縮機であってもよい。 (3) In the above-described embodiment, the vertical type compressor 1 has been described. However, a horizontal type compressor in which the shaft (rotating shaft) 25 extends in the horizontal direction and the compression mechanism unit 10 and the electric motor unit 20 are arranged in the horizontal direction (lateral direction) may be used.
 (4)上述の実施形態では、逆流防止部として、リード弁50aを有して構成された逆流防止弁50を作用した例を説明したが、逆流防止部はこれに限定されない。例えば、圧縮室Vc側の冷媒の圧力P1と中間圧吸入ポート30b側の冷媒の圧力P2との差圧に応じて変位するフリーバルブ(スプール弁)を有して構成された逆流防止部を採用してもよい。 (4) In the above-described embodiment, an example in which the backflow prevention valve 50 configured to include the reed valve 50a is used as the backflow prevention unit has been described, but the backflow prevention unit is not limited thereto. For example, a backflow prevention unit that includes a free valve (spool valve) that is displaced according to the differential pressure between the refrigerant pressure P1 on the compression chamber Vc side and the refrigerant pressure P2 on the intermediate pressure suction port 30b side is employed. May be.

Claims (8)

  1.  回転軸(25)回りに変位しながら容積を縮小させる圧縮室(Vc)を形成する圧縮室形成部材(11、12)と、外部から吸入された中間圧流体を前記圧縮室(Vc)にて圧縮過程の流体へ合流させる中間圧吸入ポート(30b)とを備える圧縮機であって、
     前記圧縮室(Vc)から中間圧吸入ポート(30b)へ向けて前記流体が逆流することを防止する逆流防止部(50)をさらに備え、
     前記逆流防止部(50)から前記圧縮室(Vc)へ至る下流側流体通路(51)が、少なくとも前記回転軸(25)の回転方向と逆方向に延びる方向成分を有して形成されている圧縮機。
    A compression chamber forming member (11, 12) that forms a compression chamber (Vc) that reduces the volume while being displaced around the rotation axis (25), and intermediate pressure fluid sucked from outside is compressed in the compression chamber (Vc). A compressor comprising an intermediate pressure suction port (30b) for joining the fluid in the compression process,
    A backflow prevention unit (50) for preventing the fluid from flowing back from the compression chamber (Vc) toward the intermediate pressure suction port (30b);
    A downstream fluid passage (51) extending from the backflow prevention part (50) to the compression chamber (Vc) is formed to have at least a directional component extending in the direction opposite to the rotation direction of the rotation shaft (25). Compressor.
  2.  前記下流側流体通路(51)は、前記圧縮室形成部材(12)に形成されているとともに、前記圧縮室形成部材(12)のうち前記圧縮室(Vc)を形成する壁面に向かう方向成分を有して形成されている請求項1に記載の圧縮機。 The downstream fluid passage (51) is formed in the compression chamber forming member (12) and has a directional component toward the wall surface forming the compression chamber (Vc) of the compression chamber forming member (12). The compressor according to claim 1, wherein the compressor is formed.
  3.  さらに、前記下流側流体通路(51)は、前記圧縮室形成部材(12)のうち低圧流体を吸入する吸入ポート(30a)側に連通する吸入側の前記圧縮室(Vc)を形成する壁面に向かう方向成分を有して形成されている請求項2に記載の圧縮機。 Furthermore, the downstream fluid passage (51) is formed on a wall surface forming the compression chamber (Vc) on the suction side communicating with the suction port (30a) side for sucking low-pressure fluid in the compression chamber forming member (12). The compressor according to claim 2, wherein the compressor is formed to have a directional component.
  4.  前記下流側流体通路(51)は、前記回転軸(25)の軸方向に平行な方向成分を有して形成されている請求項1ないし3のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 3, wherein the downstream fluid passage (51) is formed to have a direction component parallel to an axial direction of the rotating shaft (25).
  5.  前記下流側流体通路(51)の通路断面積が、前記中間圧流体の流れ方向に向かって徐々に拡大している請求項1ないし4のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 4, wherein a passage cross-sectional area of the downstream fluid passage (51) gradually increases in a flow direction of the intermediate pressure fluid.
  6.  前記圧縮室形成部材は、
      前記回転軸(25)から伝達される回転駆動力によって公転運動するとともに渦巻き状の可動側歯部(112)を有する可動スクロール(11)、および
      前記可動側歯部(112)と噛み合う渦巻き状の固定側歯部(122)を有する固定スクロール(12)を備え、
     前記圧縮室(Vc)は、前記可動側歯部(112)と前記固定側歯部(122)との間に形成されている請求項1ないし5のいずれか1つに記載の圧縮機。
    The compression chamber forming member is
    A movable scroll (11) that revolves by a rotational driving force transmitted from the rotary shaft (25) and has a spiral movable side tooth portion (112), and a spiral shape that meshes with the movable side tooth portion (112). A fixed scroll (12) having fixed side teeth (122);
    The compressor according to any one of claims 1 to 5, wherein the compression chamber (Vc) is formed between the movable side tooth portion (112) and the fixed side tooth portion (122).
  7.  前記下流側流体通路(51)は、前記固定側歯部(122)の内部に形成されている請求項6に記載の圧縮機。 The compressor according to claim 6, wherein the downstream fluid passage (51) is formed inside the fixed tooth portion (122).
  8.  前記流体は、二酸化炭素である請求項1ないし7のいずれか1つに記載の圧縮機。 The compressor according to any one of claims 1 to 7, wherein the fluid is carbon dioxide.
PCT/JP2015/000552 2014-02-28 2015-02-06 Compressor WO2015129169A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112015001018.1T DE112015001018T5 (en) 2014-02-28 2015-02-06 compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-038337 2014-02-28
JP2014038337A JP6399637B2 (en) 2014-02-28 2014-02-28 Compressor

Publications (1)

Publication Number Publication Date
WO2015129169A1 true WO2015129169A1 (en) 2015-09-03

Family

ID=54008507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000552 WO2015129169A1 (en) 2014-02-28 2015-02-06 Compressor

Country Status (3)

Country Link
JP (1) JP6399637B2 (en)
DE (1) DE112015001018T5 (en)
WO (1) WO2015129169A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102332212B1 (en) 2017-06-22 2021-11-29 엘지전자 주식회사 Scroll compressor and air conditioner having the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105633A (en) * 1961-09-20 1963-10-01 Gen Electric Rotary compressor injection cooling arrangement
JPS5332412A (en) * 1976-09-07 1978-03-27 Ishikawajima Harima Heavy Ind Co Ltd Oil feeding method for rotary vane compressor and its apparatus
JPS57153984A (en) * 1981-03-19 1982-09-22 Hitachi Ltd Scroll compressor
JPS62173585U (en) * 1986-04-23 1987-11-04
JPS63177687U (en) * 1987-04-30 1988-11-17
JPH05195974A (en) * 1992-01-16 1993-08-06 Hitachi Ltd Closed type horizontal type rotary compressor
JP2007064005A (en) * 2005-08-29 2007-03-15 Mitsubishi Heavy Ind Ltd Scroll compressor and air conditioner
JP2011163326A (en) * 2010-02-15 2011-08-25 Daikin Industries Ltd Scroll compressor
JP2012219791A (en) * 2011-04-14 2012-11-12 Hitachi Appliances Inc Hermetic scroll compressor
JP2013209954A (en) * 2012-03-30 2013-10-10 Nippon Soken Inc Injection device for compressor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3105633A (en) * 1961-09-20 1963-10-01 Gen Electric Rotary compressor injection cooling arrangement
JPS5332412A (en) * 1976-09-07 1978-03-27 Ishikawajima Harima Heavy Ind Co Ltd Oil feeding method for rotary vane compressor and its apparatus
JPS57153984A (en) * 1981-03-19 1982-09-22 Hitachi Ltd Scroll compressor
JPS62173585U (en) * 1986-04-23 1987-11-04
JPS63177687U (en) * 1987-04-30 1988-11-17
JPH05195974A (en) * 1992-01-16 1993-08-06 Hitachi Ltd Closed type horizontal type rotary compressor
JP2007064005A (en) * 2005-08-29 2007-03-15 Mitsubishi Heavy Ind Ltd Scroll compressor and air conditioner
JP2011163326A (en) * 2010-02-15 2011-08-25 Daikin Industries Ltd Scroll compressor
JP2012219791A (en) * 2011-04-14 2012-11-12 Hitachi Appliances Inc Hermetic scroll compressor
JP2013209954A (en) * 2012-03-30 2013-10-10 Nippon Soken Inc Injection device for compressor

Also Published As

Publication number Publication date
JP2015161268A (en) 2015-09-07
JP6399637B2 (en) 2018-10-03
DE112015001018T5 (en) 2016-12-22

Similar Documents

Publication Publication Date Title
JP2008163894A (en) Multiple stage compressor
JP6460595B2 (en) Compressor
JP2015129475A (en) Electric compressor
JP2015113817A (en) Scroll type compressor
US9803643B2 (en) Scroll-type compressor
WO2013005568A1 (en) Multi-cylinder rotary compressor and refrigeration cycle device
JPWO2011148453A1 (en) Two-stage rotary compressor and heat pump device
JP5338314B2 (en) Compressor and refrigeration equipment
JP2012127565A (en) Refrigeration cycle device
WO2015129169A1 (en) Compressor
JP6059452B2 (en) Compressor backflow prevention structure
JP2012093017A (en) Refrigerating cycle device
JP5656691B2 (en) Refrigeration equipment
JP2002062020A (en) Refrigerator
JP2010085001A (en) Refrigerating device
JP2018127903A (en) Compressor
JP6160502B2 (en) Refrigeration cycle equipment
JP2009085189A (en) Displacement type expander, expander-integrated compressor, and refrigeration cycle equipment
JP6285816B2 (en) Compressor
JP6130759B2 (en) Compressor
JP7372581B2 (en) Screw compressor and refrigeration equipment
JP2015028313A (en) Axial vane type compressor
JP2019002611A (en) Refrigeration cycle device
JP5321055B2 (en) Refrigeration equipment
JP5304679B2 (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15754607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 112015001018

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15754607

Country of ref document: EP

Kind code of ref document: A1