JP2003227485A - Multi-cylinder compressors - Google Patents

Multi-cylinder compressors

Info

Publication number
JP2003227485A
JP2003227485A JP2002025043A JP2002025043A JP2003227485A JP 2003227485 A JP2003227485 A JP 2003227485A JP 2002025043 A JP2002025043 A JP 2002025043A JP 2002025043 A JP2002025043 A JP 2002025043A JP 2003227485 A JP2003227485 A JP 2003227485A
Authority
JP
Japan
Prior art keywords
cylinder
suction
cylinders
flow path
flow passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002025043A
Other languages
Japanese (ja)
Inventor
Masahiro Takebayashi
昌寛 竹林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2002025043A priority Critical patent/JP2003227485A/en
Priority to CNA2007101468610A priority patent/CN101158354A/en
Priority to CNB031034519A priority patent/CN100343518C/en
Publication of JP2003227485A publication Critical patent/JP2003227485A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the efficiency by reducing suction loss by preventing the interference of pressure pulsation generated by one of the cylinders disturbing suction to an operating chamber of the other cylinder. <P>SOLUTION: A compressing mechanism part is provided with a plurality of cylinders 6a, 6b, each cylinder 6a, 6b is provided with a plurality of operating chambers 51, 52 defined by a partition plate 50 and a pair of end plates 5, 8. A crank shaft 3 is provided with a plurality of crank pins 13, 14 of different phases. A suction chamber 51 is provided with suction ports 20a, 20b communicated to suction pipes 19a, 19b through a suction channel. The suction channel has a channel part 30 communicating a channel part of each cylinder 6a, and channel parts 23a, 23b of the cylinder enlarged to both end faces of the cylinder. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、複数シリンダ圧縮
機に係り、特に冷蔵庫や空調機等の冷凍サイクルに使用
される複数シリンダ圧縮機に好適なものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-cylinder compressor, and particularly to a multi-cylinder compressor used in a refrigeration cycle such as a refrigerator or an air conditioner.

【0002】[0002]

【従来の技術】従来の複数シリンダ圧縮機としては、特
開平8−270580号公報に示されているように、密
閉容器内に電動機部と圧縮機構部とをクランク軸によっ
て連結して収納し、この圧縮機構部は二つのシリンダを
備えると共に前記各シリンダに仕切り板及び一対の端板
によって区画された二つの作動室を形成し、前記クラン
ク軸は偏心した複数のクランクピンを位相を異ならせて
備えると共に前記各クランクピンにピストンを嵌めて前
記各作動室内を偏心回転するように配置し、前記作動室
は前記シリンダに接続した吸込みパイプに吸込み流路を
介して連通する吸込み口を有し、前記吸込み流路は前記
各シリンダの流路部分の間を連通する流路部分を有する
ように形成したものがある。
2. Description of the Related Art As a conventional multi-cylinder compressor, as disclosed in Japanese Patent Laid-Open No. 8-270580, an electric motor section and a compression mechanism section are connected by a crankshaft and housed in a closed container. This compression mechanism section is provided with two cylinders and each cylinder has two working chambers defined by a partition plate and a pair of end plates, and the crankshaft has a plurality of eccentric crankpins with different phases. Arranged so as to eccentrically rotate each working chamber by fitting a piston to each of the crank pins, the working chamber has a suction port communicating with a suction pipe connected to the cylinder via a suction flow path, There is one in which the suction flow passage is formed to have a flow passage portion that communicates between the flow passage portions of the cylinders.

【0003】そして、この従来技術には、特定シリンダ
に吸込みパイプを接続すると共に、この吸込みパイプの
内側から他のシリンダの吸込み口に連通する流路部分を
有するように形成した具体例が示されている。
In this prior art, there is shown a specific example in which a suction pipe is connected to a specific cylinder and a passage portion is formed which communicates from the inside of this suction pipe to the suction port of another cylinder. ing.

【0004】また、この従来技術には、二つのシリンダ
それぞれに吸込みパイプを接続すると共に、この吸込み
パイプを接続した部分の内側で二つのシリンダの流路部
分を連通する流路部分を有するように形成した具体例も
示されている。
Further, in this prior art, a suction pipe is connected to each of the two cylinders, and a flow passage portion for communicating the flow passage portions of the two cylinders is provided inside the portion where the suction pipe is connected. The example formed is also shown.

【0005】[0005]

【発明が解決しようとする課題】上述した従来技術にお
いて、圧縮機が運転されると、各作動室の容積変化によ
って吸込み流量が変化し、吸込み流路内に圧力脈動が発
生する。これによって、一方の作動室によって発生した
圧力脈動が他方の作動室への吸込み作用を阻害する干渉
を引き起こすおそれがある。しかし、従来技術にはこの
点に関して十分な配慮がなされていない。
In the above-mentioned prior art, when the compressor is operated, the suction flow rate changes due to the volume change of each working chamber, and pressure pulsation occurs in the suction flow passage. As a result, the pressure pulsation generated by one working chamber may cause interference that hinders the suction action to the other working chamber. However, the prior art does not give sufficient consideration to this point.

【0006】また、従来技術には、各シリンダの流路部
分の間を連通する流路部分において、特定シリンダの吸
込み口方向への流通抵抗と他のシリンダの吸込み口方向
への流通抵抗との関係については開示されていない。こ
こで、他のシリンダの吸込み口方向への流通抵抗より特
定のシリンダの吸込み口方向への流通抵抗の方が小さく
なっている場合には、特定のシリンダの作動室の吸込み
行程において、他のシリンダの作動室にいったん吸込ま
れたガスが特定のシリンダの作動室へ逆流することがあ
るという課題がある。
Further, according to the prior art, in a flow passage portion which communicates between the flow passage portions of each cylinder, a flow resistance in the suction port direction of a specific cylinder and a flow resistance in the suction port direction of another cylinder are No relationship was disclosed. Here, when the flow resistance in the suction port direction of the specific cylinder is smaller than the flow resistance in the suction port direction of the other cylinder, the other in the suction stroke of the working chamber of the specific cylinder There is a problem that the gas once sucked into the working chamber of the cylinder may flow back to the working chamber of a specific cylinder.

【0007】本発明の第1の目的は、一方のシリンダに
よって発生する圧力脈動が他方のシリンダの作動室への
吸込みを阻害する干渉を防止して吸込み損失を低減し、
効率を向上できる複数シリンダ圧縮機を提供することに
ある。
A first object of the present invention is to prevent the pressure pulsation generated by one cylinder from interfering with the suction of the other cylinder into the working chamber and reduce the suction loss.
It is to provide a multi-cylinder compressor that can improve efficiency.

【0008】本発明の第2の目的は、一方の作動室の吸
込み行程による他方の作動室の吸込みガスの逆流を防止
して吸込み損失を低減し、効率を向上できる複数シリン
ダ圧縮機を提供することにある。
A second object of the present invention is to provide a multi-cylinder compressor which can prevent backflow of suction gas in the other working chamber due to suction stroke of one working chamber to reduce suction loss and improve efficiency. Especially.

【0009】なお、本発明における前記以外の目的と有
利点は以下の記述から明らかにされる。
The objects and advantages of the present invention other than the above will be apparent from the following description.

【0010】[0010]

【課題を解決するための手段】前記第1の目的を達成す
るために、本発明の複数シリンダ圧縮機は、密閉容器内
に電動機部と圧縮機構部とをクランク軸によって連結し
て収納し、前記圧縮機構部は複数のシリンダを備えると
共に前記各シリンダに仕切り板及び端板によって区画さ
れた複数の作動室を形成し、前記クランク軸は偏心した
複数のクランクピンを位相を異ならせて備えると共に前
記各クランクピンにピストンを嵌めて前記各作動室内を
偏心回転するように配置し、前記作動室は前記シリンダ
に接続した吸込みパイプに吸込み流路を介して連通する
吸込み口を有する複数シリンダ圧縮機において、前記吸
込み流路は、前記各シリンダの流路部分の間を連通する
流路部分と、シリンダ両端面まで拡大したシリンダ流路
部分とを有する構成にしたことにある。
In order to achieve the first object, in a multi-cylinder compressor of the present invention, an electric motor part and a compression mechanism part are connected and housed in a closed container by a crankshaft, The compression mechanism unit includes a plurality of cylinders and a plurality of working chambers defined by partition plates and end plates in each of the cylinders, and the crankshaft includes a plurality of eccentric crankpins with different phases. A multi-cylinder compressor having pistons fitted to the crank pins so as to eccentrically rotate in the working chambers, and the working chambers have suction ports communicating with suction pipes connected to the cylinders through suction passages. In the above, the suction flow passage has a flow passage portion that communicates between the flow passage portions of the cylinders, and a cylinder flow passage portion that extends to both end surfaces of the cylinder. Lies in the thing.

【0011】前記第2の目的を達成するために、本発明
の複数シリンダ圧縮機は、密閉容器内に電動機部と圧縮
機構部とをクランク軸によって連結して収納し、前記圧
縮機構部は複数のシリンダを備えると共に前記各シリン
ダに仕切り板及び端板によって区画された複数の作動室
を形成し、前記クランク軸は偏心した複数のクランクピ
ンを位相を異ならせて備えると共に前記各クランクピン
にピストンを嵌めて前記各作動室内を偏心回転するよう
に配置し、前記作動室は前記シリンダに接続した吸込み
パイプに吸込み流路を介して連通する吸込み口を有する
複数シリンダ圧縮機において、前記シリンダは、前記吸
込みパイプを接続した特定シリンダと、前記吸込みパイ
プを接続していない他のシリンダとを有し、前記吸込み
流路は前記各吸込み口の間を連通する流路部分を有し、
この連通流路部分は前記他のシリンダの吸込み口方向へ
の流通抵抗より前記特定のシリンダの吸込み口方向への
流通抵抗の方が大きくなる流体ダイオード部を有する構
成にしたことにある。
In order to achieve the second object, a multi-cylinder compressor of the present invention has a hermetically sealed container in which an electric motor section and a compression mechanism section are connected by a crankshaft and housed, and the plurality of compression mechanism sections are provided. And a plurality of working chambers partitioned by partition plates and end plates are formed in each of the cylinders, and the crankshaft is provided with a plurality of eccentric crankpins with different phases and a piston at each of the crankpins. Is arranged so as to eccentrically rotate in each of the working chambers, and the working chambers have a suction port communicating with a suction pipe connected to the cylinder via a suction flow path, wherein the cylinders are: The suction pipe has a specific cylinder to which the suction pipe is connected, and another cylinder to which the suction pipe is not connected, and the suction flow path includes the suction pipes. Has a channel portion communicating between the mouth,
This communication flow path portion is configured to have a fluid diode portion in which the flow resistance in the suction port direction of the specific cylinder is larger than the flow resistance in the suction port direction of the other cylinder.

【0012】なお、本発明のその他の手段は以下の記述
から明らかにされる。
Other means of the present invention will be apparent from the following description.

【0013】[0013]

【発明の実施の形態】以下、本発明の実施例を図を参照
しながら説明する。なお、第2実施例においては第1実
施例と共通する構成の一部を省略すると共に、重複する
説明を省略する。各実施例形態の図における同一符号は
同一物または相当物を示す。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. In addition, in the second embodiment, a part of the configuration common to the first embodiment is omitted, and the duplicate description is omitted. The same reference numerals in the drawings of the respective embodiments indicate the same or equivalent components.

【0014】本発明の第1実施例の複数シリンダ圧縮機
を図1から図3を参照しながら説明する。図1は本発明
の第1実施例における複数シリンダロータリ圧縮機を示
す縦断図面、図2は図1の要部拡大図、図3は図1のA
−A断面図である。
A multi-cylinder compressor according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 3. 1 is a longitudinal sectional view showing a multi-cylinder rotary compressor according to a first embodiment of the present invention, FIG. 2 is an enlarged view of a main part of FIG. 1, and FIG.
FIG.

【0015】図1ないし図3において、1は密閉容器、
2は電動機部で、2aは電動機のロータ、2bはステー
タ、3はクランク軸、4は主軸受、5は圧縮機構部、6
aは第1のシリンダ、6bは第2のシリンダ、50は仕
切り板、8は副軸受、9はカバー、10aは第1のピス
トン、10bは第2のピストン、11はカバー、12
a、12bはベーン、13は第1のクランクピン、14
は第2のクランクピン、15は吐出室、16は吐出ガス
通路、17は吐出室、18は吐出パイプ、19a、19
bは吸込パイプ、20a、20bはシリンダの吸込み
口、21a、21bは吸込み口20a、20bに至る吸
込み流路部分、22a、22bは吸込みパイプ19a1
9bから延びる吸込み流路部分、23aは吸込み流路部
分21a、22aを連通する流路部分、23bは吸込み
流路部分21b、22bを連通する吸込み流路部分、3
0は吸込み流路部分23a、23bを連通する吸込み流
路部分である。
1 to 3, 1 is a closed container,
Reference numeral 2 is an electric motor portion, 2a is a rotor of the electric motor, 2b is a stator, 3 is a crankshaft, 4 is a main bearing, 5 is a compression mechanism portion, 6
a is a first cylinder, 6b is a second cylinder, 50 is a partition plate, 8 is a sub-bearing, 9 is a cover, 10a is a first piston, 10b is a second piston, 11 is a cover, 12
a, 12b are vanes, 13 is the first crank pin, 14
Is a second crank pin, 15 is a discharge chamber, 16 is a discharge gas passage, 17 is a discharge chamber, 18 is a discharge pipe, 19a, 19
Reference numeral b is a suction pipe, 20a and 20b are suction ports of the cylinder, 21a and 21b are suction flow passage portions reaching the suction ports 20a and 20b, and 22a and 22b are suction pipes 19a1.
9b is a suction flow passage portion, 23a is a flow passage portion connecting the suction flow passage portions 21a and 22a, 23b is a suction flow passage portion connecting the suction flow passage portions 21b and 22b, 3
Reference numeral 0 is a suction flow passage portion that connects the suction flow passage portions 23a and 23b.

【0016】このこの第1実施例は、2個のシリンダを
備えた2シリンダロータリ圧縮機を対象にしている。
This first embodiment is intended for a two-cylinder rotary compressor having two cylinders.

【0017】クランク軸3を支持する主軸受4が密閉容
器1の内壁に溶接などによって固定されている。そし
て、この主軸受4の一方の空間には電動機部2が収納さ
れ、他方には圧縮機構部5が収納されている。電動機部
2は、クランク軸3が嵌着されたロータ2aとこれに対
向かつ同軸のステータ2bとからなり、ステータ2bは
密閉容器1に固定されている。
A main bearing 4 for supporting the crankshaft 3 is fixed to the inner wall of the closed container 1 by welding or the like. The electric motor unit 2 is housed in one space of the main bearing 4, and the compression mechanism unit 5 is housed in the other space. The electric motor unit 2 is composed of a rotor 2a fitted with a crankshaft 3 and a stator 2b which is opposed to and coaxial with the rotor 2a, and the stator 2b is fixed to the closed casing 1.

【0018】圧縮機構部5では、クランク軸3が主軸受
4からさらに延びており、その先端部が副軸受8によっ
て支持されている。これら主軸受4と副軸受8との間に
は、2つのシリンダ6a、6bと仕切り板50によって
仕切られ、2組の作動空間が形成されている。これらシ
リンダ6a、6b内には、クランク軸3に形成されたク
ランクピン部13、14がそれぞれ配置されている。ま
た、これらシリンダ6a、6b内には、ピストン10
a、10bがそれぞれ収納されている。これらピストン
10a、10bはクランクピン部13、14にそれぞれ
嵌入されている。クランクピン13、14はクランク軸
3の周方向で180°の位相差を有して形成されてい
る。
In the compression mechanism portion 5, the crankshaft 3 further extends from the main bearing 4, and the tip end portion thereof is supported by the auxiliary bearing 8. Between the main bearing 4 and the sub bearing 8, two cylinders 6a and 6b and a partition plate 50 are partitioned to form two sets of working spaces. Crank pin portions 13 and 14 formed on the crank shaft 3 are arranged in the cylinders 6a and 6b, respectively. In addition, in the cylinders 6a and 6b, the piston 10
a and 10b are stored respectively. The pistons 10a and 10b are fitted in the crank pin portions 13 and 14, respectively. The crankpins 13 and 14 are formed with a phase difference of 180 ° in the circumferential direction of the crankshaft 3.

【0019】電動機部2によってクランク軸3が回転駆
動されると、クランクピン部13、14の回転にしたが
ってピストン10a、10bが互いに180゜の位相差
で回転する。これらピストン10a、10bには、バネ
部材によってベーン12a、12bが常に圧接されてい
る。なお、ベーン12bは図示されていないが、理解を
容易にするために符号12bをつけた説明とする。シリ
ンダ6aではピストン10aとベーン12aとにより吸
込み室51と圧縮室52からなる作動室が形成される。
また、シリンダ6bではピストン10bとベーン12b
とにより、吸込み室51と圧縮室52からなる作動室が
形成される。なお、シリンダ6b側における吸込室51
は図示されていないが、理解を容易にするために符号6
bを付けた説明とする。
When the crankshaft 3 is rotationally driven by the electric motor portion 2, the pistons 10a and 10b rotate with a phase difference of 180 ° with each other as the crankpin portions 13 and 14 rotate. The vanes 12a and 12b are constantly pressed against the pistons 10a and 10b by a spring member. Although the vane 12b is not shown, the description is given with the reference numeral 12b for easy understanding. In the cylinder 6a, a working chamber including a suction chamber 51 and a compression chamber 52 is formed by the piston 10a and the vane 12a.
Further, in the cylinder 6b, the piston 10b and the vane 12b are
With the above, a working chamber including the suction chamber 51 and the compression chamber 52 is formed. The suction chamber 51 on the cylinder 6b side
Is not shown, the reference numeral 6 is provided for easy understanding.
The description will be given with b.

【0020】クランク軸3の回転によるピストン10
a、10bの偏心回転により、シリンダ6a、6b内の
吸込み室51と圧縮室52は縮小と拡大を繰り返す。シ
リンダ6a、6bの吸込み室51が拡大するとき、冷凍
サイクルから吸込パイプ19a、19bを通して冷媒ガ
スが供給され、さらに吸込み流路を通りそれぞれの吸込
み室51に吸い込まれる。
The piston 10 by the rotation of the crankshaft 3
Due to the eccentric rotation of a and 10b, the suction chamber 51 and the compression chamber 52 in the cylinders 6a and 6b repeatedly contract and expand. When the suction chambers 51 of the cylinders 6a and 6b are expanded, the refrigerant gas is supplied from the refrigeration cycle through the suction pipes 19a and 19b, and is further sucked into the respective suction chambers 51 through the suction passage.

【0021】クランク軸3の回転とともに圧縮室52が
縮小することにより冷媒ガスが圧縮され、これらの圧力
がある大きさ(吐出圧力)になると、シリンダ6a内の
圧縮冷媒ガスは主軸受4とそのカバー11によって形成
される吐出室17に吐出されると共に、シリンダ6b内
の圧縮冷媒ガスは副軸受8とそのカバー9によって形成
される吐出室15に吐出される。冷媒ガスは、シリンダ
6a、6bによって交互に圧縮され、吐出室17、15
を介して密閉容器1内に吐出され、さらに密閉容器1か
ら吐出パイプ18を通って冷凍サイクルへ吐出される。
As the compression chamber 52 shrinks as the crankshaft 3 rotates, the refrigerant gas is compressed and when these pressures reach a certain level (discharge pressure), the compressed refrigerant gas in the cylinder 6a and the main bearing 4 and its While being discharged to the discharge chamber 17 formed by the cover 11, the compressed refrigerant gas in the cylinder 6b is discharged to the discharge chamber 15 formed by the auxiliary bearing 8 and its cover 9. The refrigerant gas is alternately compressed by the cylinders 6a and 6b, and is discharged into the discharge chambers 17 and 15
Is discharged into the closed container 1 through the discharge pipe 18, and further discharged from the closed container 1 to the refrigeration cycle through the discharge pipe 18.

【0022】吸込みパイプ19a、19bはシリンダ6
a、6bの密閉容器1の方向に延びた部分に接続され、
シリンダ6a、6bに形成された吸込み流路を介して吸
込み室51に形成された吸込み口20a、20bに連通
されている。この吸込み流路は、シリンダ6aに形成さ
れた吸込み流路部分22a、23a、21aと、シリン
ダ6bに形成された吸込み流路部分22b、23b、2
1bと、仕切り板50に形成された吸込み流路部分30
とから構成されている。
The suction pipes 19a and 19b are the cylinder 6
a, 6b connected to the portion extending in the direction of the closed container 1,
It communicates with the suction ports 20a, 20b formed in the suction chamber 51 via the suction flow passages formed in the cylinders 6a, 6b. The suction flow passages include suction flow passage portions 22a, 23a, 21a formed in the cylinder 6a and suction flow passage portions 22b, 23b, 2 formed in the cylinder 6b.
1b and the suction flow path portion 30 formed in the partition plate 50
It consists of and.

【0023】吸込み流路部分23a、30、23bはシ
リンダ6a、6bおよび仕切り板50のフランジ部を貫
通して設けられ、横断面積が円形の穴で構成されてい
る。吸込み流路部分23a、30、23bはクランク軸
心と平行に(図では上下方向)に連通して構成され、そ
の両端が主軸受5及び副軸受8のフランジ面で閉塞され
ている。
The suction passage portions 23a, 30 and 23b are provided so as to penetrate through the cylinders 6a and 6b and the flange portion of the partition plate 50, and are constituted by holes having a circular cross-sectional area. The suction flow passage portions 23a, 30 and 23b are configured to communicate with each other in parallel to the crankshaft center (vertical direction in the drawing), and both ends thereof are closed by the flange surfaces of the main bearing 5 and the sub bearing 8.

【0024】吸込み流路部分22a、22bは、吸込み
パイプ19a、19bと吸込み流路部分23a、23b
とを連通するように半径方向に延びている。吸込み流路
部分21a、21bは、吸込み流路部分23a、23b
と吸込み口20a、20bとを連通するように半径方向
に延びている。したがって、吸込み口20a、20bは
吸込み流路部分21a、23a、30、23b、21b
を介して相互に連通されている。また、吸込み口20a
は吸込み流路部分21a、23a、30、23b、22
bを介して吸込みパイプ19bと連通されている。そし
て、吸込み口20bは吸込み流路部分21b、23b、
30、23a、22aを介して吸込みパイプ19aに連
通されている。
The suction flow passage portions 22a and 22b include the suction pipes 19a and 19b and the suction flow passage portions 23a and 23b.
And extend in the radial direction so as to communicate with. The suction flow path portions 21a and 21b are the suction flow path portions 23a and 23b.
And the suction ports 20a and 20b communicate with each other in the radial direction. Therefore, the suction ports 20a, 20b are connected to the suction flow path portions 21a, 23a, 30, 23b, 21b.
Are communicated with each other via. Also, the suction port 20a
Is a suction flow path portion 21a, 23a, 30, 23b, 22
It communicates with the suction pipe 19b through b. The suction port 20b is connected to the suction flow path portions 21b, 23b,
It is connected to the suction pipe 19a via 30, 23a, 22a.

【0025】本実施例によれば、第1のシリンダ6aの
吸込み室51の容積変化が大きく吸込み流量が大きい
時、冷媒ガスは主に第1の吸込みパイプ19aから吸込
み流路部分22a23a、21aを通って第1の吸込み
口20aに吸込まれるが、第2の吸込みパイプ19bか
らも吸込み流路部分22b、23b、30、23a、2
1aを通って第1の吸込み口20aに吸込まれる。この
時、第2のシリンダ6bの吸込み室51の容積変化は位
相が180°ずれるために小さくその吸込み流量が小さ
い。
According to this embodiment, when the volume change of the suction chamber 51 of the first cylinder 6a is large and the suction flow rate is large, the refrigerant gas mainly flows from the first suction pipe 19a to the suction flow passage portions 22a23a, 21a. Although it is sucked into the first suction port 20a through it, the suction flow path portions 22b, 23b, 30, 23a, 2 are also sucked from the second suction pipe 19b.
It is sucked into the first suction port 20a through 1a. At this time, the volume change of the suction chamber 51 of the second cylinder 6b is small because the phase is shifted by 180 °, and the suction flow rate is small.

【0026】反対に、第2のシリンダ6bの吸込み室5
1の容積変化が大きく吸込み流量が大きい時、冷媒ガス
は主に第2の吸込みパイプ19bから吸込み流路部分2
2b、23b、21bを通って第2の吸込み口20bに
吸込まれるが、第1の吸込みパイプ19aからも吸込み
流路部分22a、23a、30、23b、21bを通っ
て第2の吸込み口20bに吸込まれる。この時、第1の
シリンダ6aの吸込み室の容積変化は位相が180°ず
れるために小さくその吸込み流量が小さい。
On the contrary, the suction chamber 5 of the second cylinder 6b
When the volume change of 1 is large and the suction flow rate is large, the refrigerant gas mainly flows from the second suction pipe 19b to the suction flow path portion 2
The second suction port 20b is sucked into the second suction port 20b through 2b, 23b, 21b, but also through the suction flow path portions 22a, 23a, 30, 23b, 21b from the first suction pipe 19a. Is sucked into. At this time, the volume change of the suction chamber of the first cylinder 6a is small because the phase is shifted by 180 °, and the suction flow rate is small.

【0027】2シリンダロータリ圧縮機は、一回転中の
容積変化が大きく、吸込み流量の変化も大きいが、それ
ぞれのシリンダ6a、6bの吸込み流量の最大値は18
0°位相がずれて現れ、そして、本実施例では、上述し
たように、それぞれのシリンダ6a、6bの吸込み流路
を吸込み流路部分30を介して連通しているため、一方
の吸込み口20aまたは20bに両方の吸込みパイプ1
9a、19bから冷媒ガスを吸込むことができるように
なり、吸込みパイプ19a、19bにおける流路抵抗に
よる損失を低減できる。
The two-cylinder rotary compressor has a large change in volume during one rotation and a large change in suction flow rate, but the maximum suction flow rate of each cylinder 6a, 6b is 18
The phases appear 0 ° out of phase, and in the present embodiment, as described above, since the suction flow passages of the cylinders 6a and 6b communicate with each other through the suction flow passage portion 30, one suction port 20a is connected. Or both suction pipes 1 to 20b
The refrigerant gas can be sucked from 9a and 19b, and the loss due to the flow path resistance in the suction pipes 19a and 19b can be reduced.

【0028】ところが、それぞれのシリンダ6a、6b
の吸込み室51の容積変化によって、それぞれのシリン
ダ6a、6bの吸込み流路に圧力脈動が生じるため、単
にそれぞれの吸込み流路を連通すると、お互いの圧力脈
動の影響を受け、吸込み状態が不安定になったり、吸込
み流量が低下したりすることが有る。本実施例では、そ
れぞれのシリンダ6a、6bの吸込み流路部分23a、
23bをシリンダ両端面に開口するまで拡大した端板と
なる主軸受4や副軸受8に接する極めて大きな流路部分
を形成している。流路部23a、23bは、シリンダ6
a、6bの軸方向に長さを有すると共に、吸込み流路部
分21a、21b、22a、および22bのガスの流れ
る方向の断面積よりも、流路部23a、23bのシリン
ダ6a、6bの軸方向の断面積の方が大きい構造を備え
る。そのため、吸込みパイプ19a、19bから流入す
るガス流速が吸込み流路部分23a、23bで減速し、
発生する圧力脈動を小さくできる効果がある。加えて、
それぞれの吸込み流路部分23a、23bが吸込み流路
部分30によって連通されているため、吸込み流路部分
23a、23bに流入する流量が平均化され、発生する
圧力脈動が格段に小さくなる効果がある。
However, each cylinder 6a, 6b
Since pressure pulsation occurs in the suction flow passages of the respective cylinders 6a and 6b due to the volume change of the suction chamber 51, if the respective suction flow passages are simply made to communicate with each other, they are affected by the pressure pulsation of each other and the suction state becomes unstable. Or the suction flow rate may decrease. In the present embodiment, the suction passage portions 23a of the cylinders 6a and 6b,
An extremely large flow path portion is formed in contact with the main bearing 4 and the sub bearing 8 which are end plates enlarged to open both ends of the cylinder 23b. The flow path portions 23a and 23b are the cylinder 6
a, 6b has a length in the axial direction, and the axial direction of the cylinders 6a, 6b of the flow passage portions 23a, 23b is larger than the cross-sectional area of the suction flow passage portions 21a, 21b, 22a, 22b in the gas flow direction. The structure has a larger cross-sectional area. Therefore, the gas flow velocity flowing from the suction pipes 19a and 19b is reduced in the suction flow passage portions 23a and 23b,
This has the effect of reducing the pressure pulsation that occurs. in addition,
Since the respective suction flow passage portions 23a and 23b are communicated with each other by the suction flow passage portion 30, there is an effect that the flow rates flowing into the suction flow passage portions 23a and 23b are averaged and the generated pressure pulsation is significantly reduced. .

【0029】したがって、本実施例によれば、それぞれ
のシリンダ6a、6bの吸込み流路において発生する圧
力脈動を小さくし、互いのシリンダ6a、6bの吸込み
の干渉を防ぐことができ、吸込み流量損失を低減し、圧
縮機の効率を向上できる効果がある。
Therefore, according to this embodiment, the pressure pulsation generated in the suction passages of the respective cylinders 6a and 6b can be reduced, interference between the suctions of the cylinders 6a and 6b can be prevented, and the suction flow rate loss can be prevented. And the efficiency of the compressor can be improved.

【0030】次に、本発明の第2実施例を図4及び図5
を参照しながら説明する。図4は本発明の第2実施例に
おける複数シリンダ圧縮機の要部断面図、図5は図4の
B−B断面図である。この第2実施例は、次に述べる通
り第1実施例と相違するものであり、その他の点につい
ては第1実施例と基本的には同一である。
Next, a second embodiment of the present invention will be described with reference to FIGS.
Will be described with reference to. FIG. 4 is a sectional view of a main part of a multi-cylinder compressor according to a second embodiment of the present invention, and FIG. 5 is a sectional view taken along line BB of FIG. The second embodiment is different from the first embodiment as described below, and is basically the same as the first embodiment in other points.

【0031】図4及び図5において、横断面積が円形の
吸込み流路部分23aは第1のシリンダ6aに設けら
れ、吸込みパイプ19aに吸込み流路部分22aを介し
て連通されている。吸込み流路部分30は、仕切り板5
0に設けられ、テーパ部30aとエッジ部30bとから
構成されている。テーパ部30aは第1のシリンダ6a
側から第2のシリンダ6b側に狭くなっている。エッジ
部30bはテーパ部30aの狭い径に一致した小径に形
成され、第2のシリンダ6a側に開口されている。円形
断面の吸込み流路部分23bは第2のシリンダ6bの端
面から形成され、他側の端面まで至ることなく途中まで
延びている。また、横断面積が円形の吸込み流路部分2
3bは第2のシリンダ6aに設けられ、上面開口を介し
て吸込み流路部分30に連通されている。吸込み口20
a、20bは各シリンダ6a、6bの吸込み室51に細
い幅の溝で開口されている。吸込み流路部分21a、2
1bは吸込み口20a、20bと吸込み流路部分23
a、23bとを連通すると共に、吸込み流路部分23
a、23bの円に内接するように接続されている。この
第2実施例ではシリンダ6bに吸込みパイプが接続され
ていない。
4 and 5, the suction passage portion 23a having a circular cross-sectional area is provided in the first cylinder 6a and communicates with the suction pipe 19a through the suction passage portion 22a. The suction flow path portion 30 is formed by the partition plate 5.
0, and is composed of a tapered portion 30a and an edge portion 30b. The tapered portion 30a is the first cylinder 6a.
From the side toward the second cylinder 6b side. The edge portion 30b is formed to have a small diameter that matches the narrow diameter of the tapered portion 30a, and is opened to the side of the second cylinder 6a. The suction flow passage portion 23b having a circular cross section is formed from the end surface of the second cylinder 6b and extends partway without reaching the end surface on the other side. Further, the suction flow path portion 2 having a circular cross-sectional area
3b is provided in the second cylinder 6a and communicates with the suction flow passage portion 30 through the upper surface opening. Suction port 20
The a and 20b are opened in the suction chamber 51 of each cylinder 6a and 6b by a groove having a narrow width. Suction channel portions 21a, 2
1b is a suction port 20a, 20b and a suction flow path portion 23
a, 23b, and a suction flow path portion 23
It is connected so as to inscribe the circles a and 23b. In the second embodiment, the suction pipe is not connected to the cylinder 6b.

【0032】この第2実施例において、それぞれのシリ
ンダ6a、6bの容積変化によって冷媒ガスが吸込まれ
るが、第1のシリンダ6aの吸込み流量が大きい時、冷
媒ガスは、吸込みパイプ19aから吸込み流路部分23
aに流入して流路断面積が拡大し、ここで流速が低下し
た後、吸込み流路部分21a、吸込み口20aを通り第
1のシリンダ6aの吸込み室51に吸込まれる。この
時、吸込み流路部分23aで生じる圧力変化によって、
吸込み流路部分23b側からもガスが逆流しようとする
が、吸込み流路部分21b、23b及び吸込み流路部分
30の流体ダイオード作用によってその流量を減少させ
ることができる。即ち、第2のシリンダ6bから吸出さ
れるような逆流が生じた場合、吸込み流路部分23bに
内接するように設けた吸込み流路部分21bから吸込み
流路部分23bに接線方向に冷媒ガスが流入し、この中
で渦流を生じ、さらにエッジ部30bによって絞られた
吸込み流路部分30からの逆流が減じられる。
In the second embodiment, the refrigerant gas is sucked due to the volume change of the respective cylinders 6a and 6b, but when the suction flow rate of the first cylinder 6a is large, the refrigerant gas is sucked from the suction pipe 19a. Road part 23
After flowing into a, the cross-sectional area of the flow passage is enlarged, and the flow velocity is reduced there, and then is sucked into the suction chamber 51 of the first cylinder 6a through the suction flow passage portion 21a and the suction port 20a. At this time, due to the pressure change generated in the suction flow path portion 23a,
The gas also tries to flow backward from the suction flow passage portion 23b side, but the flow rate can be reduced by the fluid diode action of the suction flow passage portions 21b and 23b and the suction flow passage portion 30. That is, when a backflow that is sucked out from the second cylinder 6b occurs, the refrigerant gas flows tangentially from the suction flow passage portion 21b provided so as to be inscribed in the suction flow passage portion 23b into the suction flow passage portion 23b. However, a vortex flow is generated therein, and the backflow from the suction flow passage portion 30 narrowed by the edge portion 30b is reduced.

【0033】一方、第2のシリンダ6bの吸込み流量が
大きい時、冷媒ガスは吸込みパイプ19aから吸込み流
路部分23aに流入し、吸込み流路部分30、23b、
21b、及び吸込み口20bを通って第2のシリンダ6
bの吸込み室51に吸込まれる。この時、吸込み流路部
分23aによって流速が減少し、圧力脈動が減じると共
に、曲がりによる流路抵抗が低下する。また、テーパ部
30aによって吸込み方向の流路抵抗は殆ど増加しな
い。さらに、吸込み流路部分23bから内壁に沿って吸
込み流路部分21bに流れるため、ここでの流路抵抗も
殆ど増加しない。この第2のシリンダ6bの吸込み流量
が多い時、第1のシリンダ6aの吸込み室51から吸出
されるように逆流が生じるが、吸込みパイプ19aから
流入するガスの慣性力によって吸込み流路部分21aか
ら流出する流れを押し込み、逆流を減少させている。
On the other hand, when the suction flow rate of the second cylinder 6b is large, the refrigerant gas flows from the suction pipe 19a into the suction passage portion 23a, and the suction passage portions 30, 23b,
21b and the suction port 20b, and the second cylinder 6
It is sucked into the suction chamber 51 of b. At this time, the suction flow passage portion 23a reduces the flow velocity, reduces the pressure pulsation, and reduces the flow passage resistance due to bending. Further, the flow passage resistance in the suction direction hardly increases due to the tapered portion 30a. Furthermore, since the flow flows from the suction flow path portion 23b to the suction flow path portion 21b along the inner wall, the flow path resistance here hardly increases. When the suction flow rate of the second cylinder 6b is high, a backflow is generated so as to be sucked out from the suction chamber 51 of the first cylinder 6a. However, due to the inertial force of the gas flowing from the suction pipe 19a, the suction flow passage portion 21a is discharged. It pushes the outflow and reduces backflow.

【0034】また、この第2実施例のように、シリンダ
6a、6bに開口する吸込み口20a、20bを吸込み
流路および吸込みパイプ19a内径より小さい幅の溝に
よって構成することは、さらに次の作用、効果がある。
ロータリ圧縮機では、一回転の間における圧縮開始時に
吸込み口20a、20bがシリンダ6a、6bの吸込み
室51に開口しているため、この吸込み口20a、20
bがピストン10a、10bによって閉塞されるまで圧
縮開始が遅れると共に、吐出し孔24に残された圧縮ガ
スが再膨張し吸込み口20a、20bから逆流する。し
たがって、吸込み口20a、20bが大きい場合には、
この圧縮開始が遅れて逆流量が増加する。そこで、この
第2実施例では、細い幅の吸込み口20a、20bとし
ているので、圧縮開始を早めて逆流量を低下させる効果
がある。さらに吸込み流路部分23bの円形断面の内壁
に沿って吸込み流路部分21bに流入させているので、
吸込み流路21bにおける抵抗も小さくなり、吸込み流
量損失を低減できる効果がある。
Further, as in the second embodiment, the suction ports 20a, 20b opening in the cylinders 6a, 6b are constituted by a groove having a width smaller than the inner diameter of the suction passage and the suction pipe 19a. ,effective.
In the rotary compressor, since the suction ports 20a, 20b open to the suction chamber 51 of the cylinders 6a, 6b at the start of compression during one rotation, the suction ports 20a, 20b
The start of compression is delayed until b is closed by the pistons 10a and 10b, and the compressed gas left in the discharge hole 24 re-expands and flows backward from the suction ports 20a and 20b. Therefore, when the suction ports 20a and 20b are large,
The start of compression is delayed and the reverse flow rate increases. Therefore, in the second embodiment, since the suction ports 20a and 20b having a narrow width are used, there is an effect of accelerating the start of compression and reducing the reverse flow rate. Furthermore, since it is made to flow into the suction flow passage portion 21b along the inner wall of the circular cross section of the suction flow passage portion 23b,
The resistance in the suction flow passage 21b is also reduced, and the suction flow rate loss can be reduced.

【0035】[0035]

【発明の効果】以上の説明から明らかように、本発明に
よれば、一方のシリンダによって発生する圧力脈動が他
方のシリンダの作動室への吸込みを阻害する干渉を防止
して吸込み損失を低減し、効率を向上できる複数シリン
ダ圧縮機が得られる。
As is apparent from the above description, according to the present invention, it is possible to prevent the pressure pulsation generated by one cylinder from interfering with the suction of the other cylinder into the working chamber and reduce the suction loss. A multi-cylinder compressor that can improve efficiency is obtained.

【0036】また、本発明によれば、一方の作動室の吸
込み行程による他方の作動室の吸込みガスの逆流を防止
して吸込み損失を低減し、効率を向上できる複数シリン
ダ圧縮機が得られる。
Further, according to the present invention, it is possible to obtain the multi-cylinder compressor which can prevent the backflow of the suction gas in the other working chamber due to the suction stroke of the one working chamber to reduce the suction loss and improve the efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1実施例における複数シリンダロー
タリ圧縮機を示す縦断図面である。
FIG. 1 is a vertical cross-sectional view showing a multi-cylinder rotary compressor according to a first embodiment of the present invention.

【図2】図1の要部拡大図である。FIG. 2 is an enlarged view of a main part of FIG.

【図3】図1のA−A断面図である。3 is a cross-sectional view taken along the line AA of FIG.

【図4】本発明の第2実施例における複数シリンダ圧縮
機の要部横断面図である。
FIG. 4 is a lateral cross-sectional view of a main part of a multi-cylinder compressor according to a second embodiment of the present invention.

【図5】図4のB−B断面図である。5 is a sectional view taken along line BB of FIG.

【符号の説明】[Explanation of symbols]

1…密閉容器、2…電動機部、2a…ロータ、2b…ス
テータ、3…クランク軸、4…主軸受、5…圧縮機構
部、6a、6b…シリンダ、8…副軸受、9…カバー、
10a、10b…ピストン、11…カバー、12a、1
2b…ベーン、13…第1のクランクピン、14…第2
のクランクピン、15…吐出室、16…吐出ガス通路、
17…吐出室、…吐出パイプ、19a、19b…吸込み
パイプ、20a、20b…吸込み口、21a、21b、
22a、22b、23a、23b…吸込流路部分、24
…吐出し孔、30…吸込流路部分、30a…テーパ部、
30b…エッジ部、50…仕切り板、51…吸込み室、
52…圧縮室。
DESCRIPTION OF SYMBOLS 1 ... Airtight container, 2 ... Electric motor part, 2a ... Rotor, 2b ... Stator, 3 ... Crank shaft, 4 ... Main bearing, 5 ... Compression mechanism part, 6a, 6b ... Cylinder, 8 ... Sub bearing, 9 ... Cover,
10a, 10b ... Piston, 11 ... Cover, 12a, 1
2b ... Vane, 13 ... First crank pin, 14 ... Second
Crank pin, 15 ... discharge chamber, 16 ... discharge gas passage,
Reference numeral 17 ... Discharge chamber, ... Discharge pipe, 19a, 19b ... Suction pipe, 20a, 20b ... Suction port, 21a, 21b,
22a, 22b, 23a, 23b ... Suction flow path part, 24
... Discharge hole, 30 ... Suction flow path part, 30a ... Tapered part,
30b ... Edge portion, 50 ... Partition plate, 51 ... Suction chamber,
52 ... compression chamber.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】密閉容器内に電動機部と圧縮機構部とをク
ランク軸によって連結して収納し、 前記圧縮機構部は複数のシリンダを備えると共に前記各
シリンダに仕切り板及び端板によって区画された複数の
作動室を形成し、 前記クランク軸は偏心した複数のクランクピンを位相を
異ならせて備えると共に前記各クランクピンに嵌められ
たピストンは前記各作動室内を偏心回転するように配置
してあり、 前記作動室は前記シリンダに接続した吸込みパイプに吸
込み流路を介して連通する吸込み口を有する複数シリン
ダ圧縮機において、 前記吸込み流路は、前記各シリンダの流路部分の間を連
通する流路部分と、シリンダ両端面まで拡大したシリン
ダ流路部分とを有することを特徴とする複数シリンダ圧
縮機。
1. An electric motor unit and a compression mechanism unit are connected and housed in a closed container by a crankshaft, and the compression mechanism unit includes a plurality of cylinders, and each cylinder is partitioned by a partition plate and an end plate. A plurality of working chambers are formed, the crankshaft is provided with a plurality of eccentric crankpins with different phases, and pistons fitted to the crankpins are arranged so as to eccentrically rotate in the working chambers. A multi-cylinder compressor in which the working chamber has a suction port that communicates with a suction pipe connected to the cylinder via a suction flow path, wherein the suction flow path is a flow path that communicates between the flow path portions of the cylinders. A multi-cylinder compressor having a passage portion and a cylinder passage portion that extends to both end surfaces of the cylinder.
【請求項2】請求項1において、前記シリンダ全てに吸
込みパイプを接続すると共に、前記シリンダ全てにシリ
ンダ両端面まで拡大したシリンダ流路部分を有すること
を特徴とする複数シリンダ圧縮機。
2. A multi-cylinder compressor according to claim 1, wherein a suction pipe is connected to all of said cylinders, and each of said cylinders has a cylinder flow path portion which extends to both end surfaces of the cylinder.
【請求項3】請求項1において、前記吸込み空間の容積
は前記作動室の1つの最大容積より大きいことを特徴と
する複数シリンダ圧縮機。
3. The multi-cylinder compressor according to claim 1, wherein the volume of the suction space is larger than the maximum volume of one of the working chambers.
【請求項4】密閉容器内に電動機部と圧縮機構部とをク
ランク軸によって連結して収納し、 前記圧縮機構部は複数のシリンダを備えると共に前記各
シリンダに仕切り板及び端板によって区画された複数の
作動室を形成し、 前記クランク軸は偏心した複数のクランクピンを位相を
異ならせて備えると共に前記各クランクピンにピストン
を嵌めて前記各作動室内を偏心回転するように配置し、 前記作動室は前記シリンダに接続した吸込みパイプに吸
込み流路を介して連通する吸込み口を有する複数シリン
ダ圧縮機において、 前記吸込み流路は、前記各シリンダの流路部分の間を連
通する流路部分と、軸方向に延びる断面積が円形な流路
部分と、前記吸込み口から前記軸方向に延びる流路部分
に内接するように連通する流路部分とを有することを特
徴とする複数シリンダ圧縮機。
4. An electric motor section and a compression mechanism section are connected and housed in a closed container by a crankshaft, and the compression mechanism section is provided with a plurality of cylinders, and each cylinder is divided by a partition plate and an end plate. A plurality of working chambers are formed, the crankshaft is provided with a plurality of eccentric crankpins with different phases, and a piston is fitted to each of the crankpins so as to eccentrically rotate in each of the working chambers; In a multi-cylinder compressor in which the chamber has a suction port communicating with a suction pipe connected to the cylinder via a suction flow passage, the suction flow passage has a flow passage portion communicating between the flow passage portions of each cylinder. A flow path portion having a circular cross-sectional area extending in the axial direction and a flow path portion communicating from the suction port so as to be inscribed in the flow path portion extending in the axial direction. A characteristic multi-cylinder compressor.
【請求項5】密閉容器内に電動機部と圧縮機構部とをク
ランク軸によって連結して収納し、 前記圧縮機構部は複数のシリンダを備えると共に前記各
シリンダに仕切り板及び端板によって区画された複数の
作動室を形成し、 前記クランク軸は偏心した複数のクランクピンを位相を
異ならせて備えると共に前記各クランクピンにピストン
を嵌めて前記各作動室内を偏心回転するように配置し、 前記作動室は前記シリンダに接続した吸込みパイプに吸
込み流路を介して連通する吸込み口を有する複数シリン
ダ圧縮機において、 前記シリンダは、前記吸込みパイプを接続した特定シリ
ンダと、前記吸込みパイプを接続していない他のシリン
ダとを有し、 前記吸込み流路は前記各シリンダの流路部分の間を連通
する流路部分を有し、 この連通流路部分は前記他のシリンダの吸込み口方向へ
の流通抵抗より前記特定のシリンダの吸込み口方向への
流通抵抗の方が大きくなる流体ダイオード部を有するこ
とを特徴とする複数シリンダ圧縮機。
5. An electric motor section and a compression mechanism section are connected and housed in a closed container by a crankshaft, and the compression mechanism section is provided with a plurality of cylinders, and each cylinder is divided by a partition plate and an end plate. A plurality of working chambers are formed, the crankshaft is provided with a plurality of eccentric crankpins with different phases, and a piston is fitted to each of the crankpins so as to eccentrically rotate in each of the working chambers; In a multi-cylinder compressor having a suction port in which a chamber communicates with a suction pipe connected to the cylinder via a suction flow path, the cylinder does not connect the suction pipe to a specific cylinder to which the suction pipe is connected. And a cylinder, and the suction flow passage has a flow passage portion that communicates between the flow passage portions of the cylinders. Multiple cylinder compressors, characterized in that it comprises a fluid diode portion towards the flow resistance increases in the inlet direction of the specific cylinder from the flow resistance in the inlet direction of the other cylinder.
【請求項6】請求項5において、前記流体ダイオード部
を前記仕切り板に形成したことを特徴とする複数シリン
ダ圧縮機。
6. The multi-cylinder compressor according to claim 5, wherein the fluid diode section is formed on the partition plate.
JP2002025043A 2002-02-01 2002-02-01 Multi-cylinder compressors Pending JP2003227485A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002025043A JP2003227485A (en) 2002-02-01 2002-02-01 Multi-cylinder compressors
CNA2007101468610A CN101158354A (en) 2002-02-01 2003-01-30 Multi-cylinder compressors
CNB031034519A CN100343518C (en) 2002-02-01 2003-01-30 Multi-cylinder compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002025043A JP2003227485A (en) 2002-02-01 2002-02-01 Multi-cylinder compressors

Publications (1)

Publication Number Publication Date
JP2003227485A true JP2003227485A (en) 2003-08-15

Family

ID=27654513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002025043A Pending JP2003227485A (en) 2002-02-01 2002-02-01 Multi-cylinder compressors

Country Status (2)

Country Link
JP (1) JP2003227485A (en)
CN (2) CN101158354A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207306A (en) * 2004-01-22 2005-08-04 Mitsubishi Electric Corp Two cylinder rotary compressor
KR20160072764A (en) * 2014-12-15 2016-06-23 삼성전자주식회사 Rotary compressor
US20170335848A1 (en) * 2014-12-19 2017-11-23 Fujitsu General Limited Rotary compressor
US20170350394A1 (en) * 2014-12-15 2017-12-07 Samsung Electronics Co., Ltd. Rotary-type compressor
US10563655B2 (en) 2016-11-14 2020-02-18 Fujitsu General Limited Rotary compressor for compressing refrigerant using cylinder

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070097B2 (en) * 2007-08-28 2012-11-07 東芝キヤリア株式会社 Two-cylinder rotary compressor and refrigeration cycle apparatus using the same
CN101169117A (en) * 2007-11-17 2008-04-30 美的集团有限公司 Air suction device of capacity control rotary compressor
CN104806528B (en) * 2014-01-23 2017-02-22 珠海格力电器股份有限公司 Compressor air suction structure and compressor
CN105756930A (en) * 2014-12-19 2016-07-13 珠海格力节能环保制冷技术研究中心有限公司 Compressor
CN105545754B (en) * 2016-03-01 2019-01-15 珠海凌达压缩机有限公司 Refrigeration plant and double suction gas compressor thereof
CN105626529A (en) * 2016-03-04 2016-06-01 广东美芝制冷设备有限公司 Multi-cylinder rotary compressor and refrigeration circulating device provided with same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3408005B2 (en) * 1995-01-30 2003-05-19 三洋電機株式会社 Multi-cylinder rotary compressor
JPH08270580A (en) * 1995-03-31 1996-10-15 Sanyo Electric Co Ltd Hermetically sealed rotary compressor
KR19990081137A (en) * 1998-04-27 1999-11-15 윤종용 Hermetic Rotary Compressor
JP3389539B2 (en) * 1999-08-31 2003-03-24 三洋電機株式会社 Internal intermediate pressure type two-stage compression type rotary compressor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207306A (en) * 2004-01-22 2005-08-04 Mitsubishi Electric Corp Two cylinder rotary compressor
KR20160072764A (en) * 2014-12-15 2016-06-23 삼성전자주식회사 Rotary compressor
US20170350394A1 (en) * 2014-12-15 2017-12-07 Samsung Electronics Co., Ltd. Rotary-type compressor
US10851782B2 (en) * 2014-12-15 2020-12-01 Samsung Electronics Co., Ltd. Rotary-type compressor
KR102376260B1 (en) * 2014-12-15 2022-03-21 삼성전자주식회사 Rotary compressor
US20170335848A1 (en) * 2014-12-19 2017-11-23 Fujitsu General Limited Rotary compressor
US10458408B2 (en) * 2014-12-19 2019-10-29 Fujitsu General Limited Rotary compressor having communication path hole overlap with discharge chamber concave portion
US10563655B2 (en) 2016-11-14 2020-02-18 Fujitsu General Limited Rotary compressor for compressing refrigerant using cylinder

Also Published As

Publication number Publication date
CN1435572A (en) 2003-08-13
CN100343518C (en) 2007-10-17
CN101158354A (en) 2008-04-09

Similar Documents

Publication Publication Date Title
AU2005240929B2 (en) Rotary compressor
US7780427B2 (en) Two-stage rotary compressor
EP2119916B1 (en) Rotary compressor
KR100497924B1 (en) Closed type rotary compressor
KR101386481B1 (en) Hermetic compressor
US20140119968A1 (en) Rotary compressor
JP2003227485A (en) Multi-cylinder compressors
US8007250B2 (en) Compressor
US6270329B1 (en) Rotary compressor
KR19980063888A (en) Rotary compressor with discharge chamber pressure release groove
JP2008240666A (en) Rotary compressor and heat pump system
JP2009085027A (en) Two-stage compression rotary compressor
KR101587174B1 (en) Rotary compressor
KR101418288B1 (en) Hermetic compressor
JP3972548B2 (en) Rotary compressor
KR101964957B1 (en) Compressor having micro groove
US10968911B2 (en) Oscillating piston-type compressor
JPH11294355A (en) Rolling piston type rotary compressor
KR100324771B1 (en) Double-stage enclosed compressor
JP5423538B2 (en) Rotary compressor
WO2023181362A1 (en) Rotary compressor and refrigeration cycle device
JP4489514B2 (en) Gas compressor
KR20090012866A (en) Rotary compressor
KR100531286B1 (en) Rotary compressor
CN116538086A (en) Compression mechanism unit, compressor, and refrigeration cycle device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041115

A711 Notification of change in applicant

Effective date: 20070205

Free format text: JAPANESE INTERMEDIATE CODE: A712

A521 Written amendment

Effective date: 20070223

Free format text: JAPANESE INTERMEDIATE CODE: A523

A977 Report on retrieval

Effective date: 20071026

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080110

A02 Decision of refusal

Effective date: 20080205

Free format text: JAPANESE INTERMEDIATE CODE: A02