WO2023181362A1 - Rotary compressor and refrigeration cycle device - Google Patents

Rotary compressor and refrigeration cycle device Download PDF

Info

Publication number
WO2023181362A1
WO2023181362A1 PCT/JP2022/014438 JP2022014438W WO2023181362A1 WO 2023181362 A1 WO2023181362 A1 WO 2023181362A1 JP 2022014438 W JP2022014438 W JP 2022014438W WO 2023181362 A1 WO2023181362 A1 WO 2023181362A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression chamber
pressure side
partition plate
eccentric
compression
Prior art date
Application number
PCT/JP2022/014438
Other languages
French (fr)
Japanese (ja)
Inventor
明 森嶋
フェルディ モナスリ ジャフェット
昌宏 畑山
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to PCT/JP2022/014438 priority Critical patent/WO2023181362A1/en
Priority to JP2024509663A priority patent/JPWO2023181362A1/ja
Priority to CN202280093465.9A priority patent/CN118843745A/en
Publication of WO2023181362A1 publication Critical patent/WO2023181362A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids

Definitions

  • Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle device.
  • a rotary compressor is known that includes a rotating shaft. The rotation axis extends along a center line extending vertically of the closed container.
  • the compression mechanism section is connected to the motor via a rotating shaft. The compression mechanism compresses refrigerant gas flowing from outside the closed container using the power of the rotating shaft.
  • the compression mechanism unit is connected to the first compression chamber, a first annular roller fitted in the first eccentric portion of the rotating shaft, a first blade that partitions an internal space of the first compression chamber, and the first compression chamber. It has a second compression chamber, a second annular roller fitted into a second eccentric portion of the rotating shaft, and a second blade that partitions an internal space of the second compression chamber.
  • the first roller revolves along the inner wall surface of the first compression chamber, and the second roller revolves along the inner wall surface of the second compression chamber.
  • the first compression chamber compresses refrigerant gas flowing in from the outside by the revolution of the first roller and discharges the compressed gas. This discharged refrigerant gas is further compressed in the second compression chamber by the revolution of the second roller.
  • the volume of the space in which the roller moves one rotation is called the excluded volume.
  • the pressure of the refrigerant gas discharged from the first compression chamber is further increased in the second compression chamber, and a predetermined amount of refrigerant gas is made to have a high pressure, so the displaced volume of the first compression chamber is , is set larger than the predetermined displacement volume of the second compression chamber.
  • the height of the first compression chamber is set larger than the height of the second compression chamber.
  • the height of the first blade arranged in the first compression chamber is greater than the height of the second blade arranged in the second compression chamber.
  • the height of the first compression chamber is greater than the height of the second compression chamber, the height of the first blade will be greater than the height of the second blade.
  • the load on the blade from, for example, refrigerant gas increases, which tends to reduce the reliability of blade operation.
  • the height of the first compression chamber is made larger than the height of the second compression chamber, it will help to increase the size of the compression mechanism section and, in turn, increase the size of the compressor.
  • an object of the present invention is to provide a rotary compressor that can prevent the reliability of a multistage compression mechanism from decreasing and can be downsized.
  • a rotary compressor includes a closed container having a central axis extending in the vertical direction, an electric motor section provided in the closed container, and a rotary compressor having a central axis extending in the vertical direction.
  • a low-pressure side eccentric part that is eccentric from the central axis by a first eccentric length; and a high-pressure side eccentric part that is provided below the low-pressure side eccentric part and is eccentric from the central axis by a second eccentric length; a low-pressure side cylinder having a low-pressure side compression chamber that compresses and discharges an introduced gaseous refrigerant by the power of the low-pressure side eccentric part; a high-pressure side cylinder having a high-pressure side compression chamber that compresses the refrigerant discharged from the side compression chamber by the power of the high-pressure side eccentric part; a partition plate provided between the low-pressure side cylinder and the high-pressure side cylinder; a compression mechanism section having a compression mechanism, wherein the height of the low-pressure side compression chamber is the same as the height of the high-pressure side compression chamber, and the inner diameter dimension of the low-pressure side compression chamber is the inner diameter dimension of the high-pressure side compression chamber. bigger.
  • the first eccentric length of the rotary compressor according to the embodiment of the present invention is preferably larger than the second eccentric length.
  • the compression start angle of the high pressure side compression chamber of the rotary compressor according to the embodiment of the present invention is preferably larger than the compression start angle of the low pressure side compression chamber.
  • the high-pressure side cylinder of the rotary compressor according to the embodiment of the present invention has a groove that is provided on a wall surface that partitions the high-pressure side compression chamber and connects to the suction portion of the high-pressure side compression chamber.
  • the partition plate and the high pressure side cylinder of the rotary compressor according to the embodiment of the present invention have an intermediate pressure passage, and the intermediate pressure passage includes a discharge part of the low pressure side compression chamber and a discharge part of the high pressure side compression chamber. It is preferable to connect it to the suction part.
  • the partition plate of the rotary compressor according to the embodiment of the present invention includes a first partition plate half and a second partition plate half stacked below the first partition plate half, A portion of the medium pressure flow path is provided on the mating surfaces of the first partition plate half and the second partition plate half, and the thickness of the second partition plate half below the portion of the medium pressure flow path is , is preferably larger than the thickness of the first partition plate half above a part of the medium pressure flow path.
  • the rotary compressor according to an embodiment of the present invention includes an intermediate pipe provided outside the closed container, and the intermediate pressure flow path may be connected to the suction part of the high pressure side compression chamber via the intermediate pipe. preferable.
  • a refrigeration cycle device includes the rotary compressor, the radiator, the expansion device, the heat absorber, the rotary compressor, the radiator, A refrigerant pipe is provided that connects the expansion device and the heat absorber and allows the refrigerant to flow therethrough.
  • FIG. 1 is a schematic diagram of a refrigeration cycle device and a compressor according to an embodiment of the present invention.
  • FIG. 2 is a plan cross-sectional view passing over the first cylinder of the compressor according to the embodiment of the present invention.
  • FIG. 3 is a plan cross-sectional view passing over the second cylinder of the compressor according to the embodiment of the present invention.
  • FIG. 1 is a longitudinal sectional view of a partition plate of a compressor according to an embodiment of the present invention.
  • FIG. 7 is a vertical cross-sectional view of another example of the partition plate of the compressor according to the embodiment of the present invention.
  • (a) is a cross-sectional view taken along line B-B' shown in FIG. 3
  • (b) is a partial cross-sectional view taken along line D-D' shown in (a).
  • (a) is a cross-sectional view showing a modified example of the groove in the embodiment of the present invention, and (b) is a partial cross-sectional view taken along the line E-E' shown in (a).
  • (a) is a sectional view showing a modified example of the groove in the embodiment of the present invention, and (b) is a partial sectional view taken along the line F-F' shown in (a).
  • (a) is a sectional view showing a modified example of the groove in the embodiment of the present invention, and (b) is a partial sectional view taken along the line GG' shown in (a).
  • FIGS. 1 to 6 Embodiments of a compressor and a refrigeration cycle device according to the present invention will be described with reference to FIGS. 1 to 6.
  • symbol is attached
  • FIG. 1 is a schematic diagram of a refrigeration cycle device and a compressor according to an embodiment of the present invention.
  • the compressor is shown in a longitudinal section.
  • FIG. 2 is a plan cross-sectional view passing over the first cylinder of the compressor according to the embodiment of the present invention.
  • FIG. 3 is a plan cross-sectional view passing over the second cylinder of the compressor according to the embodiment of the present invention.
  • the refrigeration cycle device 1 is, for example, an air conditioner.
  • the refrigeration cycle device 1 includes a hermetic rotary compressor 2 (hereinafter simply referred to as "compressor 2") that compresses a gaseous refrigerant as a working fluid, such as carbon dioxide (CO2), and a compressor 2.
  • compressor 2 hermetic rotary compressor 2
  • CO2 carbon dioxide
  • a radiator 3 that cools the high temperature and high pressure refrigerant discharged from the refrigerant, a first expansion device 4 (expansion valve) and a second expansion device 5 (expansion valve) that reduce the pressure of the cooled refrigerant, and a It includes a heat absorber 6 (evaporator) that evaporates the refrigerant, an accumulator 7 that separates the refrigerant into gas and liquid, a first refrigerant pipe 8, and a second refrigerant pipe 9.
  • a heat absorber 6 evaporator
  • the first refrigerant pipe 8 sequentially connects the compressor 2, the radiator 3, the first expansion device 4, the second expansion device 5, the heat absorber 6, and the accumulator 7 to flow the refrigerant.
  • the accumulator 7 has an outlet pipe 12 that is connected to the compressor 2 and allows refrigerant to flow into the compressor 2.
  • One end of the second refrigerant pipe 9 is connected to the first refrigerant pipe 8 between the first expansion device 4 and the second expansion device 5.
  • the other end of the second refrigerant pipe 9 is connected to an intermediate pipe 13 of the compressor 2.
  • the second refrigerant pipe 9 allows the refrigerant, which has been reduced in pressure to, for example, an intermediate pressure, in the first expansion device 4 to flow into the compressor 2 via the intermediate pipe 13 .
  • the compressor 2 includes a cylindrical airtight container 16 placed vertically, an electric motor section 17 housed in the upper half of the airtight container 16, and a compression mechanism section 18 housed in the lower half of the airtight container 16. , a crankshaft 19 that transmits the rotational driving force of the electric motor section 17 to the compression mechanism section 18 , a main bearing 21 that is provided below the electric motor section 17 and rotatably supports the crankshaft 19 , and A sub-bearing 22 that is provided below and cooperates with the main bearing 21 to rotatably support the crankshaft 19, a frame 23 that is fixed to the closed container 16 and supports the compression mechanism section 18, and an outer side of the closed container 16. An intermediate piping 13 provided in the intermediate piping 13 is provided.
  • the center line of the vertically placed closed container 16 extends in the vertical direction.
  • the compressor 2 is installed with the center line of the closed container 16 facing vertically.
  • the airtight container 16 includes a cylindrical body 26 extending in the vertical direction, an upper end plate 27 that closes the upper end of the body 26, and a lower end plate 28 that closes the lower end of the body 26.
  • the closed container 16 stores lubricating oil for lubricating the compression mechanism section 18. Lubricating oil is supplied to the compression mechanism section 18 through an oil supply mechanism provided within the lower end of the crankshaft 19 .
  • the upper end plate 27 of the closed container 16 is equipped with a discharge pipe 31 that discharges the high temperature and high pressure refrigerant discharged into the closed container 16 from the compression mechanism section 18 to the outside of the closed container 16.
  • the discharge pipe 31 is connected to the first refrigerant pipe 8.
  • the upper mirror plate 27 includes a terminal block 32 having a sealed terminal for guiding power from an external power source to the motor section 17.
  • the sealed terminal of the terminal block 32 is provided across the outside and inside of the upper mirror plate 27.
  • the body 26 of the closed container 16 has a suction end 35 connected to the outlet pipe 12 of the accumulator 7, an intermediate discharge end 36 connected to one end of the intermediate piping 13, and an intermediate discharge end 36 connected to the other end of the intermediate piping 13. an intermediate suction end 37 connected to the end.
  • the suction end 35 , the intermediate discharge end 36 , and the intermediate suction end 37 have a central portion fixed to the closed container 16 , an inner end located within the closed container 16 , and an inner end located outside the closed container 16 . and an outer end.
  • the body 26 of the airtight container 16 is provided with a fixture 38 such as a holder for fixing the accumulator 7 to the outer surface of the body 26 .
  • the intermediate pipe 13 allows the refrigerant compressed to an intermediate pressure by the compression mechanism section 18 to flow to the outside of the closed container 16.
  • the intermediate pipe 13 is connected to a cylindrical external muffler 39 and an intercooler 41.
  • the intermediate pipe 13 sequentially connects the intermediate discharge end 36, the external muffler 39, the intercooler 41, and the intermediate suction end 37 to allow the refrigerant to flow therethrough.
  • the external muffler 39 has a cylindrical shape extending in the vertical direction, and is fixed to the outer surface of the closed container 16 by a fixture 38 such as a holder provided on the body 26 of the closed container 16.
  • the intermediate pipe 13 allows the refrigerant compressed to an intermediate pressure by the compression mechanism section 18 to flow therethrough.
  • the electric motor section 17 generates a driving force that rotates the compression mechanism section 18.
  • the electric motor section 17 includes a cylindrical stator 43 fixed to the inner surface of the airtight container 16, a rotor 44 disposed inside the stator 43 to generate rotational driving force for the compression mechanism section 18, and the stator 43.
  • a plurality of lead wires 45 are drawn out from the terminal block 32 and electrically connected to the sealed terminals of the terminal block 32.
  • the motor section 17 may be an open-winding type motor, a star-connected motor, or a motor having multiple systems, for example, two systems of three-phase windings.
  • the rotor 44 includes a rotor core (not shown) having a magnet housing hole, and a permanent magnet (not shown) accommodated in the magnet housing hole.
  • the rotor 44 is fixed to the crankshaft 19.
  • the rotation center line C of the rotor 44 and the crankshaft 19 substantially coincides with the center line of the stator 43. Further, the rotation center line C of the rotor 44 and the crankshaft 19 substantially coincides with the center line of the closed container 16.
  • the plurality of lead wires 45 are power lines that supply power to the stator 43, and are so-called lead wires.
  • a plurality of lead wires 45 are wired depending on the type of motor section 17, that is, open winding type or star connection.
  • the crankshaft 19 connects the electric motor section 17 and the compression mechanism section 18.
  • the crankshaft 19 rotates integrally with the rotor 44 and extends downward from the rotor 44.
  • the crankshaft 19 includes a main shaft portion 47 located in an intermediate portion, a plurality of eccentric portions 48 located below the main shaft portion 47, and a counter shaft portion 49 located below the plurality of eccentric portions 48. There is.
  • the main shaft portion 47 is rotatably supported by the main bearing 21
  • the counter shaft portion 49 is rotatably supported by the counter bearing 22 .
  • the main bearing 21 and the sub-bearing 22 are also part of the compression mechanism section 18. In other words, the crankshaft 19 is disposed to penetrate the compression mechanism section 18.
  • Each eccentric portion 48 is a so-called crank pin.
  • the plurality of eccentric parts 48 include, for example, a first eccentric part 51 and a second eccentric part 52.
  • the first eccentric portion 51 and the second eccentric portion 52 have a disk shape or a cylindrical shape with centers that do not match the rotation center line C of the crankshaft 19.
  • the compression mechanism section 18 sucks and compresses gaseous refrigerant from the outlet pipe 12 and the intermediate pipe 13 by rotation of the crankshaft 19, and discharges the refrigerant compressed to high temperature and high pressure into the closed container 16.
  • the compression mechanism section 18 is a multistage rotary compression mechanism.
  • the compression mechanism section 18 includes a first cylinder 55 disposed below the main bearing 21 , a partition plate 56 disposed below the first cylinder 55 , and a second cylinder disposed between the partition plate 56 and the sub-bearing 22 . It is equipped with two cylinders 57.
  • the main bearing 21, the first cylinder 55, the partition plate 56, the second cylinder 57, and the sub-bearing 22 are arranged to overlap in the vertical direction.
  • the main bearing 21 covers the upper surface of the first cylinder 55.
  • the secondary bearing 22 covers the lower surface of the second cylinder 57.
  • the partition plate 56 closes off the lower surface of the first cylinder 55 and the upper surface of the second cylinder 57.
  • the first cylinder 55 is fixed by fastening members 59 such as bolts to the frame 23 which is fixed to the body 26 of the closed container 16 at a plurality of locations by welding.
  • the main bearing 21, the first cylinder 55, the partition plate 56, the second cylinder 57, and the sub-bearing 22 are fixed to each other by a plurality of fastening members 59 such as bolts.
  • the main bearing 21 , the first cylinder 55 , the partition plate 56 , the second cylinder 57 , and the sub-bearing 22 are fixed within the closed container 16 via the frame 23 .
  • the first cylinder 55 has a first compression chamber 61 that passes through the first cylinder 55 in the vertical direction.
  • the second cylinder 57 has a second compression chamber 62 that passes through the second cylinder 57 in the vertical direction.
  • the first compression chamber 61 and the second compression chamber 62 are disk-shaped spaces, and overlap in the vertical direction with the partition plate 56 in between.
  • the center of the first compression chamber 61 and the center of the second compression chamber 62 are arranged on the rotation center line C.
  • the compression mechanism section 18 compresses the low-pressure gas refrigerant flowing from the accumulator 7 to an intermediate pressure in the first compression chamber 61 and discharges the compressed gas refrigerant.
  • the compression mechanism section 18 compresses the intermediate pressure gas refrigerant discharged from the first compression chamber 61 to a high pressure in the second compression chamber 62 and discharges the compressed gas refrigerant.
  • the first cylinder 55 and the second cylinder 57 may be collectively referred to as “cylinders 55, 57,” and the first compression chamber 61 and second compression chamber 62 may be collectively referred to as “compression chambers 61, 62.” There is.
  • the compression mechanism section 18 includes a first annular roller 63 disposed in the first compression chamber 61, a second annular roller 64 disposed in the second compression chamber 62, and a second annular roller 64 in the first cylinder 55.
  • the first blade 65 is arranged in the radial direction of the first compression chamber 61
  • the second blade 66 is arranged in the radial direction of the second compression chamber 62 in the second cylinder 57.
  • the first roller 63 and the second roller 64 may be collectively referred to as "rollers 63, 64”
  • the first blade 65 and second blade 66 may be collectively referred to as "blades 65, 66.”
  • the rollers 63, 64 are so-called rolling pistons
  • the blades 65, 66 are so-called vanes.
  • the first roller 63 is fitted into the first eccentric portion 51 of the crankshaft 19.
  • the second roller 64 fits into the second eccentric portion 52 of the crankshaft 19 .
  • the crankshaft 19 rotates counterclockwise when the compressor 2 is viewed from above.
  • the two eccentric parts 48 that is, the first eccentric part 51, the second eccentric part 52, the first roller 63, and the second roller 64, seen from above of the crankshaft 19 are , rotates counterclockwise around the rotation center line C (see FIG. 1) as indicated by the solid arrow R1 shown in FIG.
  • the rotation direction of the crankshaft 19 and the rollers 63 and 64 may be referred to as a "rotation direction R1," and the counter-rotation direction of the rotation direction R1 may be referred to as a "counter-rotation direction R2.”
  • rollers 63 and 64 rotate eccentrically with respect to the center axes of the cylinders 55 and 57 and the rotation center line C of the crankshaft 19 while contacting the inner walls of the cylinders 55 and 57 as the crankshaft 19 rotates.
  • the blades 65 and 66 are arranged in a straight line in the vertical direction. In other words, the two blades 65 and 66 are arranged at substantially the same position in the circumferential direction of the cylinders 55 and 57. Further, the blades 65 and 66 are pressed against the rollers 63 and 64 by blade springs (not shown). Therefore, the blades 65 and 66 reciprocate in the radial direction of the compression chambers 61 and 62 while being pushed by the rollers 63 and 64 due to the rotation of the crankshaft 19. As shown in FIGS. 2 and 3, the blades 65, 66 divide the space between the cylinders 55, 57 and the rollers 63, 64 into a suction space S1 (not shown in FIG. 2) and a compression space S2. The height of the first blade 65 is the same as the height of the second blade 66. The height of the blades 65, 66 is approximately the same as the height of the compression chambers 61, 62.
  • the first cylinder 55 has a first suction section 68 and a first discharge section 69 that are connected to the first compression chamber 61.
  • the first suction portion 68 extends outward from the inner wall surface of the first compression chamber 61 , and has an outer end connected to an inner end of the suction end portion 35 of the closed container 16 .
  • the first discharge portion 69 is, for example, recessed outward from the inner wall surface of the first compression chamber 61 and opens to the lower surface of the first cylinder 55.
  • the first suction part 68 is arranged adjacent to the first blade 65 in the rotational direction R1, and the first discharge part 69 is arranged adjacent to the first blade 65 in the opposite rotational direction R2.
  • the second cylinder 57 has a second suction section 71 and a second discharge section 72 that are connected to the second compression chamber 62.
  • the second suction portion 71 extends outward from the inner wall surface of the second compression chamber 62 and has an outer end connected to an inner end of the intermediate suction end portion 37 of the closed container 16 .
  • the second discharge portion 72 is, for example, recessed outward from the inner wall surface of the second compression chamber 62 and opens at the lower surface of the second cylinder 57 .
  • the second suction section 71 is arranged side by side on the rotational direction R1 side of the second blade 66, and the second discharge section 72 is arranged adjacent to the second blade 66 on the opposite rotational direction R2 side.
  • the first suction part 68 and the second suction part 71 may be collectively referred to as “suction parts 68, 71", and the first discharge part 69 and second discharge part 72 may be collectively referred to as “discharge parts 69, 72". It is sometimes called.
  • the partition plate 56 and the second cylinder 57 have an intermediate pressure passage 75 connected to the first discharge part 69 of the first compression chamber 61.
  • the intermediate pressure flow path 75 is a flow path for the refrigerant that has been compressed in the first compression chamber 61 and has an intermediate pressure.
  • the medium pressure passage 75 of the partition plate 56 includes a passage provided within the partition plate 56 and extending along the upper and lower surfaces of the partition plate 56.
  • the intermediate pressure passage 75 of the second cylinder 57 includes a crank-shaped passage provided outside the second compression chamber 62 and bent outward from the upper side.
  • the intermediate pressure passage 75 of the partition plate 56 is connected to the first discharge part 69 of the first compression chamber 61, and the intermediate pressure passage 75 of the second cylinder 57 is connected to the inner end of the intermediate discharge end 36 of the closed container 16. has been done.
  • the partition plate 56 is equipped with a first discharge valve 76 that discharges the refrigerant compressed within the first compression chamber 61 to the intermediate pressure flow path 75.
  • the first discharge valve 76 opens a discharge port (not shown) when the pressure difference between the pressure in the first compression chamber 61 and the pressure in the intermediate pressure channel 75 reaches a predetermined value due to the compression operation of the compression mechanism section 18. Then, the refrigerant compressed to medium pressure is discharged to the medium pressure flow path 75 of the partition plate 56.
  • the refrigerant discharged into the intermediate pressure passage 75 of the partition plate 56 is guided out of the closed container 16 from the intermediate discharge end 36 via the intermediate pressure passage 75 of the second cylinder 57 .
  • the refrigerant led out of the closed container 16 flows through the intermediate pipe 13, is led into the inside of the closed container 16 from the intermediate suction end 37, and is transferred from the second suction section 71 of the second cylinder 57 to the second compression chamber. 62.
  • the main bearing 21, the first cylinder 55, the partition plate 56, the second cylinder 57, and the sub-bearing 22 have a high-pressure passage 79 that passes through them in the vertical direction and is connected to each other.
  • the high-pressure flow path 79 is a high-pressure gas refrigerant flow path that extends linearly in the vertical direction across the main bearing 21, the first cylinder 55, the partition plate 56, the second cylinder 57, and the sub-bearing 22.
  • the compression mechanism section 18 includes a second discharge valve 81 that is provided in the sub-bearing 22 and discharges the refrigerant compressed in the second compression chamber 62, and a first discharge valve that covers the second discharge valve 81 and the high-pressure flow path 79. It is equipped with a muffler 82.
  • the second discharge valve 81 is connected to a discharge port (not shown) when the pressure difference between the pressure in the second compression chamber 62 and the pressure in the first discharge muffler 82 reaches a predetermined value due to the compression action of the compression mechanism section 18. ) is opened to discharge the highly compressed refrigerant into the first discharge muffler 82.
  • discharge valves 76, 81 The refrigerant discharged from the second discharge valve 81 into the first discharge muffler 82 is guided above the compression mechanism section 18 through the high-pressure flow path 79.
  • first discharge valve 76 and the second discharge valve 81 may be collectively referred to as “discharge valves 76, 81.”
  • the compression mechanism section 18 includes a second discharge muffler 83 that is provided on the main bearing 21 and covers the high pressure flow path 79.
  • the second discharge muffler 83 partitions a space into which high-pressure refrigerant is discharged from the high-pressure flow path 79.
  • the second discharge muffler 83 has a discharge hole (not shown) that connects the inside and outside of the second discharge muffler 83 .
  • the high-pressure refrigerant discharged into the second discharge muffler 83 is discharged into the closed container 16 through the discharge hole.
  • FIG. 4 is a longitudinal sectional view of a partition plate of a compressor according to an embodiment of the present invention.
  • the partition plate 56 is a laminate of a plurality of plates that are stacked one above the other.
  • the partition plate 56 includes a first partition plate half 91 and a second partition plate half 92 that overlap in the vertical direction.
  • the substantial shape of the first partition plate half 91 and the second partition plate half 92 is a disk shape with substantially the same thickness.
  • the first partition plate half 91 disposed on the upper side has a recess 91a (dent, groove) open to the lower surface of the first partition plate half 91.
  • the second partition plate half 92 arranged on the lower side has a recess 92a (dent, groove) open to the upper surface of the second partition plate half 92.
  • the medium pressure flow path 75 of the partition plate 56 is a space defined by a recess 91a (dent, recess) of the first partition plate half 91 and a recess 92a (dent, recess) of the second partition plate half 92. .
  • the first partition plate half 91 has a hole 91b that connects the recess 91a to the first compression chamber 61.
  • the first discharge valve 76 is provided in the recess 91a of the first partition plate half 91 to open and close the hole 91b.
  • the second partition plate half 92 has a hole 92b that connects the recess 92a to the medium pressure passage 75 of the second cylinder 57.
  • the vertical thickness of the first partition plate half 91 and the vertical thickness of the second partition plate half 92 are substantially the same, while the depth of the recess 92a of the second partition plate half 92 is substantially the same.
  • the depth is shallower than the depth of the recess 91a of the first partition plate half 91.
  • the thickness t2 of the bottom plate portion of the recess 92a of the second partition plate half 92 is thicker than the thickness t1 of the bottom plate portion of the recess 91a of the first partition plate half 91.
  • the bottom plate portion of the recess 91 a of the first partition plate half 91 closes the first compression chamber 61
  • the bottom plate portion of the recess 92 a of the second partition plate half 92 closes the second compression chamber 62 .
  • the multi-stage compression mechanism section 18 compresses low-pressure refrigerant into medium-pressure refrigerant in the first compression chamber 61, and compresses medium-pressure refrigerant into high-pressure refrigerant in the second compression chamber 62. That is, the second partition plate half 92 bears a higher pressure load than the first partition plate half 91. Therefore, by making the thickness t2 of the bottom plate portion of the recess 92a of the second partition plate half 92 thicker than the thickness t1 of the bottom plate portion of the recess 91a of the first partition plate half 91, the The rigidity of the first partition plate half 91 and the second partition plate half 92 overlapping the second cylinder 57 are optimized.
  • the rigidity of the partition plate 56 which is a laminate of the first partition plate half 91 and the second partition plate half 92, is optimized.
  • the partition plate 56 whose rigidity is optimized appropriately prevents refrigerant leakage at both the mating surfaces of the first compression chamber 61 and the partition plate 56 and the mating surfaces of the second compression chamber 62 and the partition plate 56.
  • the suction pressure Ps of the first compression chamber 61 has a relationship of (suction pressure Ps) ⁇ (intermediate pressure Pm) ⁇ (discharge pressure Pd).
  • suction pressure Ps is a relationship of (suction pressure Ps) ⁇ (intermediate pressure Pm) ⁇ (discharge pressure Pd).
  • the condition (Pd-Pm)>(Pm-Ps) always holds true. Under these conditions, each pressure will vary depending on the operating conditions.
  • the surface pressure load of the differential pressure acts on the recess 91a of the first partition plate half 91
  • the surface pressure load of the differential pressure acts on the recess 92 of the second partition plate half 92. 92a.
  • the first partition plate half 91 and the second partition plate half 92 have substantially the same thickness dimension, while the thickness t2 of the bottom plate portion of the second partition plate half 92 is different from that of the first partition plate half. It is thicker than the thickness t1 of the bottom plate portion of the half body 91.
  • the material of the first partition plate half 91 and the second partition plate half 92 can be made common.
  • the passage area of the intermediate pressure flow path 75 is maintained, and the entire partition plate 56 is The rigidity can be improved.
  • the rigidity of the partition plate 56 as a whole is improved, deformation of the partition plate 56 is suppressed, and refrigerant leakage from the intermediate pressure channel 75 is prevented.
  • the thickness t3 near the valve seat where the hole 91b and the first discharge valve 76 are arranged may be equal to or smaller than t1. Thereby, the volume of the hole 91b portion can be reduced while ensuring the necessary rigidity against the pressure difference.
  • the refrigerant in the volume of the hole 91b is not discharged from the first cylinder 55. Therefore, the holes 91b become dead volumes, resulting in a decrease in volumetric efficiency and a decrease in the efficiency of the compressor. Therefore, by setting the range of t3 ⁇ t1 ⁇ t2, the dead volume of the hole 91b is reduced, and a decrease in efficiency of the compressor 2 is suppressed.
  • the degree of freedom in arranging the passages inside and outside the compressor 2 is improved.
  • the mating surfaces of the first partition plate half 91 and the second partition plate half 92 will be the same as that of the partition plate half 91. 56 in the substantial center in the vertical direction.
  • the mating surfaces of the first partition plate half 91 and the second partition plate half 92 are arranged below the substantial center in the vertical direction of the partition plate 56, as indicated by the two-dot chain line MP1 in FIGS. It's okay.
  • the vertical thickness of the second partition plate half 92 is made thinner and uniform to eliminate the recess 92a, while the vertical thickness of the first partition plate half 91 is increased.
  • a deeper recess 91a may be provided only in the first partition plate half 91.
  • the depth of the recess 91a in this case should be equal to the recesses 91a and 92a in the case where the recesses 91a and 92a are provided in both the first partition plate half 91 and the second partition plate half 92, respectively.
  • the mating surfaces of the first partition plate half 91 and the second partition plate half 92 are moved upward from the substantial center in the vertical direction of the partition plate 56, as indicated by the two-dot chain line MP2 in FIGS.
  • the rigidity of the second partition plate half 92 is further improved.
  • the vertical thickness of the first partition plate half 91 is made thinner and uniform to eliminate the recess 91a, while the vertical thickness of the second partition plate half 92 is increased.
  • a deeper recess 92a may be provided only in the second partition plate half 92.
  • the depth of the recess 92a in this case should be equal to the recesses 91a and 92a in the case where the recesses 91a and 92a are provided in both the first partition plate half 91 and the second partition plate half 92, respectively. By doing so, the rigidity of the second partition plate half 92 that closes the second compression chamber 62 is further improved.
  • the partition plate 56 has a recess that defines the medium pressure flow path 75 in at least one of the first partition plate half 91 and the second partition plate half 92, that is, at least one of the recesses 91a and 92a. It's fine as long as it's there.
  • FIG. 5 is a longitudinal sectional view of another example of the partition plate of the compressor according to the embodiment of the present invention.
  • the partition plate 56A includes a second partition plate half 92 that is thicker than the first partition plate half 91, and a second partition plate half 92 that is deeper than the recess 91a of the first partition plate half 91.
  • the partition plate half body 92 may have a recessed portion 92a.
  • the partition plate 56A configured in this manner can have sufficient rigidity even when the pressure on the higher stage side becomes higher.
  • the compression mechanism including the first cylinder 55, the first eccentric portion 51, the first roller 63, and the first blade 65 disposed above and its components are referred to as “low pressure side” instead of “first”.
  • the compression mechanism and its components, including the second cylinder 57, second eccentric part 52, second roller 64, and second blade 66 arranged below, may be referred to as "second”. It is sometimes called with the ⁇ high pressure side'' added.
  • the first cylinder 55 is called the low pressure side cylinder 55
  • the second cylinder 57 is called the high pressure side cylinder 57.
  • the compression mechanism arranged above may be called a low-stage compression mechanism
  • the compression mechanism arranged below may be called a high-stage compression mechanism.
  • the intermediate pipe 13 includes an upstream intermediate pipe 13u that connects the first compression chamber 61 to the external muffler 39, a midway pipe 13m that connects the external muffler 39 to the intercooler 41, and a downstream side that connects the intercooler 41 to the second compression chamber 62. It includes an intermediate pipe 13d.
  • the upstream intermediate pipe 13u guides the medium-pressure refrigerant gas discharged from the first compression chamber 61 to the outside of the closed container 16.
  • the downstream intermediate pipe 13d joins the second refrigerant pipe 9 outside the closed container 16. Note that the pipe on the downstream side from the junction of the downstream intermediate pipe 13d and the second refrigerant pipe 9 serves both as the second refrigerant pipe 9 and the downstream intermediate pipe 13d.
  • the downstream intermediate pipe 13d guides the medium-pressure refrigerant gas discharged from the external muffler 39 and passed through the intercooler 41 to the second compression chamber 62 inside the closed container 16.
  • the compressor 2 may include a second external muffler 101 provided on the suction side of the second compression chamber 62.
  • the external muffler 39 reduces pressure pulsations of the medium-pressure refrigerant gas discharged from the first compression chamber 61. Reducing the pressure pulsation reduces vibrations in the intermediate pipe 13 that are excited by the refrigerant gas flowing downstream from the external muffler 39.
  • the second external muffler 101 is connected to a pipe that serves both as the second refrigerant pipe 9 and the downstream intermediate pipe 13d.
  • the second external muffler 101 reduces pressure pulsations of the medium-pressure refrigerant gas sucked into the second compression chamber 62. Reducing pressure pulsations reduces vibrations of the intermediate pipe 13, vibrations of the compressor 2, and ambient noise, thereby ensuring reliability.
  • the height of the first cylinder 55 is approximately the same as the height of the first compression chamber 61.
  • the height of the second cylinder 57 is approximately the same as the height of the second compression chamber 62.
  • the height of the first compression chamber 61 and the height of the second compression chamber 62 are the same.
  • the inner diameter dimension D1 of the first compression chamber 61 is larger than the inner diameter dimension D2 of the second compression chamber 62.
  • the volume of the first compression chamber 61 is larger than the volume of the second compression chamber 62.
  • the inner wall surface of the first compression chamber 61 having the inner diameter dimension D1 and the inner wall surface of the second compression chamber 62 having the inner diameter dimension D2 are provided inside the inner wall surface of the intermediate pressure flow path 75 provided in the partition plate 56 in plan view.
  • the inner wall surface of the intermediate pressure channel 75 provided in the partition plate 56 includes, for example, a surface parallel to the rotation center line C.
  • the first eccentric portion 51 of the crankshaft 19 is eccentric from the rotation center line C by a first eccentric length L1.
  • the first eccentric length L1 of the first eccentric portion 51 is the length from the rotation center line C to the center of the first eccentric portion 51.
  • the second eccentric portion 52 of the crankshaft 19 is eccentric from the rotation center line C by a second eccentric length L2.
  • the second eccentric length L2 of the second eccentric portion 52 is the length from the rotation center line C to the center of the second eccentric portion 52.
  • the second eccentric length L2 is preferably smaller than the first eccentric length L1. Note that the first eccentric part 51 and the second eccentric part 52 are eccentric with a phase difference of 180 degrees, and FIGS. 2 and 3 show the states of the eccentric parts at the same timing.
  • the center of the first roller 63 coincides with the center of the first eccentric portion 51.
  • the first roller 63 rotates eccentrically from the rotation center line C by a first eccentric length L1.
  • the center of the second roller 64 coincides with the center of the second eccentric portion 52.
  • the second roller 64 rotates eccentrically from the rotation center line C by a second eccentric length L2.
  • the suction space S1 of the compression chambers 61, 62 defined by the blades 65, 66 and the rollers 63, 64 is connected to the rollers 63, 64 and the inner wall surface of the compression chambers 61, 62 from the surface on the rotation direction R1 side of the blades 65, 66. This is the space up to the contact point.
  • the compression space S2 is a space from the surfaces of the blades 65 and 66 on the opposite rotational direction R2 to the contact points between the rollers 63 and 64 and the inner wall surfaces of the compression chambers 61 and 62.
  • the space connected to the suction parts 68, 71 is the suction space S1
  • the space connected to the discharge parts 69, 72 is the suction space S1.
  • the rollers 63 and 64 are located in the direction of the blades 65 and 66, the spaces connected to the suction sections 68 and 71 and the discharge sections 69 and 72 are not distinguished as a suction space S1 and a discharge space S2.
  • FIG. 6 (a) of FIG. 6 is a cross-sectional view taken along the line B-B' shown in FIG. 3, and (b) is a partial cross-sectional view taken along the line D-D' shown in (a).
  • the second eccentric portion 52, the second roller 64, and the second blade 66 are omitted.
  • the second cylinder 57 has a groove 104 between the second blade 66 and the second suction part 71.
  • the groove 104 is arranged adjacent to the second blade 66 on the rotation direction R1 side.
  • the groove 104 extends along the inner wall surface of the second compression chamber 62 from the rotational direction R1 side of the second blade 66 to the opposite rotational direction R2 side of the second suction section 71.
  • the edge of the groove 104 on the rotational direction side is connected to the second suction portion 71 .
  • the groove 104 is provided by recessing the upper part of the inner wall surface of the second compression chamber 62 toward the outside.
  • the rollers 63 and 64 of the compression mechanism section 18 are rotated within the compression chambers 61 and 62 of the cylinders 55 and 57 by the rotational power of the electric motor section 17.
  • the suction spaces S1 of the compression chambers 61 and 62 are expanded when the rollers 63 and 64 located in the direction of the blades 65 and 66 begin to rotate in the rotational direction R1, and refrigerant flows in from the suction portions 68 and 71.
  • the compression space S2 is reduced when the rollers 63 and 64 located in the direction of the blades 65 and 66 begin to rotate in the rotation direction R1, and the refrigerant in the compression space S2 is compressed and discharged from the discharge portions 69 and 72.
  • the suction start angle ⁇ at which suction of refrigerant starts in the suction space S1 is the angle at which the rollers 63 and 64 located in the direction of the blades 65 and 66 rotate in the rotation direction R1 and the refrigerant begins to flow from the suction portions 68 and 71. is the displacement angle.
  • the suction start angle ⁇ 1 of the first compression chamber 61 is the angle between the center line of the first blade 65 and the center line of the first suction portion 68 when the first compression chamber 61 is viewed from above.
  • the suction start angle ⁇ 2 of the second compression chamber 62 is a line connecting the center line of the second blade 66, the tip of the groove 104 on the second blade 66 side, and the rotation center line C when the second compression chamber 62 is viewed from above. is the angle between The suction start angle ⁇ 1 of the first compression chamber 61 and the suction start angle ⁇ 2 of the second compression chamber 62 are substantially the same.
  • the roller 64 rotates from the direction of the blade 66 to the compression start angle ⁇ 2, there is no distinction between the suction space S1 and the discharge space S2.
  • the refrigerant flows into the suction space S1 communicating with the suction part 71 until the roller 63 rotates in the rotation direction R1 from the position of the angle ⁇ 2, which is the orientation of the suction part 68, and reaches the discharge part 69.
  • the compression start angle ⁇ at which compression of the refrigerant starts in the compression space S2 is determined by the positions of the rollers 63 and 64 in the direction of the blades 65 and 66, and the position of the rollers 63 and 64 that rotate in the rotation direction R1 and start compression of the refrigerant. is the central angle with.
  • the compression start angle ⁇ 1 of the first compression chamber 61 is the angle between the center line of the first blade 65 and the center line of the first suction portion 68 when the first compression chamber 61 is viewed from above.
  • the compression start angle ⁇ 2 of the second compression chamber 62 is the angle between the center line of the second blade 66 and the center line of the second suction portion 71 when the second compression chamber 62 is viewed from above.
  • the compression start angle ⁇ 2 of the second compression chamber 62 is larger than the compression start angle ⁇ 1 of the first compression chamber 61.
  • the compression space S2 is (The compression space S2 of the second compression chamber 62 is connected to the second suction portion 71 and the groove 104). Therefore, the refrigerant flows out to the suction parts 68 and 71 (the second suction part 71 and the groove 104 in the compression space S2 of the second compression chamber 62), and the refrigerant is generally not compressed.
  • the displacement volume of the refrigerant discharged from the discharge portions 69, 72 of the compression space S2 is the volume of the compression chambers 61, 62, the volume of the rollers 63, 64, It is set by the outer diameter dimensions d1 and d2, the heights of the cylinders 55 and 57, and the compression start angle ⁇ . Therefore, the displacement volume of the first compression chamber 61 is set larger than the displacement volume of the second compression chamber 62, and the compression efficiency of the compressor 2 is effectively improved.
  • the groove 104 is provided by recessing only the upper part of the inner wall surface of the second compression chamber 62 toward the outside. It is not limited to this as long as it is connected to.
  • FIG. 7(a) is a sectional view showing a modified example of the groove in the embodiment of the present invention
  • FIG. 7(b) is a partial sectional view taken along the line E-E' shown in FIG. 7(a).
  • FIG. 8(a) is a sectional view showing a modification of the groove in the embodiment of the present invention
  • FIG. 8(b) is a partial sectional view taken along the line F-F' shown in FIG. 8(a).
  • FIG. 9(a) is a sectional view showing a modification of the groove in the embodiment of the present invention
  • FIG. 9(b) is a partial sectional view taken along the line GG' shown in FIG. 9(a).
  • 7(a), FIG. 8(a), and FIG. 9(a) are cross-sectional views of the same parts as FIG. 6(a), and show the second eccentric part 52, the second roller 64, and the second blade 66. It is omitted.
  • a groove 104e which is a modification of the groove 104, concave at least one of the upper and lower parts of the inner wall surface of the second compression chamber 62 outward. It may also be provided.
  • a groove 104f which is a modified example of the groove 104, extends only the intermediate portion between the upper and lower parts of the inner wall surface of the second compression chamber 62 toward the outside. It may be provided in a recessed manner.
  • cross-sectional shape of these grooves 104, 104e, and 104f is a stepped shape in which the inner wall surface of the second compression chamber 62 is recessed outward, but is not limited to this.
  • a groove 104g which is a modification of the groove 104, may have a tapered cross-sectional shape.
  • the groove 104 extends along the inner wall surface of the second compression chamber 62 from the rotation direction R1 side of the second blade 66 to the second suction portion 71, the groove 104 is not limited thereto. It is sufficient that the groove 104 is connected to the second suction portion 71 and that the compression start angle ⁇ 2 can be set larger than the compression start angle ⁇ 1 of the first compression chamber 61.
  • the groove 104 may extend along at least one of the rotation direction R1 side and the counter-rotation direction R2 side of the second suction portion 71. In this case, it is preferable that the suction start angle ⁇ 2 be substantially the same as the suction start angle ⁇ 1 of the first compression chamber 61.
  • the second suction part 71 is arranged adjacent to the rotational direction side of the second blade 66
  • the groove 104 is arranged adjacent to the rotational direction side of the second suction part 71, and It is sufficient that it extends along the rotation direction R1.
  • the refrigeration cycle device 1 and the compressor 2 have a compression mechanism that includes the low-pressure side cylinder 55 including the low-pressure side compression chamber 61 and the high-pressure side cylinder 57 including the high-pressure side compression chamber 62. 18.
  • the height of the low pressure side compression chamber 61 is the same as the height of the high pressure side compression chamber 62, and the inner diameter dimension D1 of the low pressure side compression chamber 61 is larger than the inner diameter dimension D2 of the high pressure side compression chamber 62. Therefore, the volume of the high-pressure side compression chamber 62 is smaller than the volume of the low-pressure side compression chamber 61, and the displaced volume of the high-pressure side compression chamber 62 is smaller than the displaced volume of the low-pressure side compression chamber 61.
  • the compression efficiency of the multi-stage compression compressor 2 is improved.
  • the heights of the cylinders 55 and 57 are the same, and the difference in volume between the cylinders 55 and 57 is not set by the difference in height, but by the difference in inner diameter dimensions of the compression chambers 61 and 62. . Therefore, the height dimensions of the blades 65 and 66 are substantially unified. The operation of blades 65 and 66 whose heights are unified is easy to stabilize. Furthermore, the compression mechanism section 18 is reduced in size mainly in the height direction.
  • the refrigeration cycle device 1 and the compressor 2 have a low-pressure side eccentric portion 51 that is eccentric from the central axis of the closed container 16 by a first eccentric length L1, and a second eccentric portion 51 that is eccentric from the central axis of the closed container 16.
  • the crankshaft 19 includes a high-pressure side eccentric portion 52 that is eccentric with a length L2.
  • the first eccentric length L1 of the low pressure side eccentric part 51 is larger than the second eccentric length L2 of the high pressure side eccentric part 52. Therefore, the outer diameter of the low-pressure side roller 63 that fits into the low-pressure side eccentric portion 51 becomes small, and the displacement volume of the low-pressure side compression chamber 61 becomes large.
  • the outer diameter of the high-pressure side roller 64 that fits into the high-pressure side eccentric portion 52 becomes large, and the displacement volume of the high-pressure side compression chamber 62 becomes small. Therefore, the compression efficiency of the compressor 2 is further improved, and expansion of the compression mechanism section 18 is suppressed.
  • the compression start angle ⁇ 1 of the high pressure side compression chamber 62 is set to be larger than the compression start angle ⁇ 2 of the low pressure side compression chamber 61. Therefore, the displacement volume of the high pressure side compression chamber 62 becomes small. Therefore, the compression efficiency of the compressor 2 is further improved, and expansion of the compression mechanism section 18 is suppressed.
  • the refrigeration cycle device 1 and the compressor 2 include a high-pressure side cylinder having a groove 104 provided in a wall surface that partitions a high-pressure side compression chamber 62 and connected to a high-pressure side suction part 71 of the high-pressure side compression chamber 62. It is equipped with 57. Therefore, the suction start angle ⁇ 2 of the suction space S1 of the high-pressure side compression chamber 62 can be set small, and the compression start angle ⁇ 2 of the compression space S2 can be set large. Therefore, the compression efficiency of the compressor 2 is further improved, and expansion of the compression mechanism section 18 is suppressed.
  • the refrigeration cycle device 1 and the compressor 2 include a compression mechanism section 18 having a partition plate 56 provided between the low pressure side cylinder 55 and the high pressure side cylinder 57 of the compression mechanism section 18. .
  • the partition plate 56 and the high pressure side cylinder 57 have an intermediate pressure passage 75.
  • the intermediate pressure passage 75 connects the low pressure side discharge section 69 of the low pressure side compression chamber 61 and the high pressure side suction section 71 of the high pressure side compression chamber 62. Therefore, expansion of the compression mechanism section 18 is suppressed by efficiently providing the intermediate pressure flow path 75.
  • the partition plate 56 of the refrigeration cycle device 1 and the compressor 2 includes a first partition plate half body 91 and a second partition plate half body 92 superimposed under the first partition plate half body 91. and has.
  • a part of the medium pressure flow path 75 that is, recesses 91a and 92a are provided on the mating surfaces of the first partition plate half 91 and the second partition plate half 92. Therefore, a part of the intermediate pressure flow path 75 is efficiently formed in the partition plate 56, and the degree of freedom in flow path arrangement is improved.
  • the thickness of the second partition plate half 92 below the part of the medium pressure passage 75 is greater than the thickness of the first partition plate half 91 above the part of the medium pressure passage 75. This optimizes the rigidity of the partition plate 56 and suppresses refrigerant leakage.
  • the medium pressure passage 75 of the partition plate 56 is connected to the discharge part 69 of the low pressure side compression chamber 61, and the medium pressure passage 75 of the high pressure side cylinder is connected to the partition plate 56. 56, and is arranged outside the high pressure side compression chamber 62. Therefore, expansion of the compression mechanism section 18 is suppressed by efficiently providing the intermediate pressure flow path 75.
  • the refrigeration cycle device 1 and the compressor 2 include an intermediate pipe 13 provided outside the closed container 16.
  • the intermediate pressure flow path 75 is connected to the high pressure side suction section 71 of the high pressure side compression chamber 62 via the intermediate pipe 13. Therefore, the intermediate pressure flow path 75 can be connected to the high pressure side suction portion 71 of the high pressure side compression chamber 62 via the intermediate pipe 13.
  • the reliability of the multi-stage compression mechanism section 18 can be prevented from decreasing and the size can be reduced.
  • Refrigeration cycle device 2... Compressor, 3... Heat radiator, 4... First expansion device, 5... Second expansion device, 6... Heat absorber, 7... Accumulator, 8... First refrigerant piping, 9... Third Two refrigerant pipes, 12... Outlet pipe, 13... Intermediate pipe, 13u... Upstream intermediate pipe, 13m... Midway pipe, 13d... Downstream intermediate pipe, 16... Sealed container, 17... Electric motor section, 18... Compression mechanism section, 19 ...Crankshaft, 21...Main bearing, 21...Main bearing, 22...Sub bearing, 22...Subshaft part, 23...Frame, 26...Body part, 27...Upper head plate, 28...Lower head plate, 31...Discharge pipe, 32 ... terminal block, 35 ...
  • First suction part 69...first discharge part, 71...second suction part, 72...second discharge part, 75...medium pressure passage, 76...first discharge valve, 79...high pressure passage, 81...second discharge valve, 82... First discharge muffler, 83... Second discharge muffler, 91... First partition plate half, 91a... Recess, 91b... Hole, 92... Second partition plate half, 92a... Recess, 92b... Hole, 101...

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

Provided is a rotary compressor that can be made compact and that can prevent a drop in reliability of a multi-stage compression mechanism. A compression mechanism (18) of a compressor (2) includes: a low pressure-side cylinder (55) having a low pressure-side compression chamber (61) that compresses an introduced gaseous refrigerant by the motive power of a low pressure-side eccentric part (51) and that discharges such refrigerant; a high pressure-side cylinder (57) that compresses the refrigerant discharged from the low pressure-side compression chamber (61) with the motive power of a high pressure-side eccentric part (52); and a partition plate (56) provided between the low pressure-side cylinder (55) and the high pressure-side cylinder (57). The height of the low pressure-side compression chamber (61) is the same as the height of the high pressure-side compression chamber (62), and the inner diameter dimension of the low pressure-side compression chamber (61) is greater than the inner diameter dimension of the high pressure-side compression chamber (62).

Description

ロータリー式圧縮機、および冷凍サイクル装置Rotary compressor and refrigeration cycle equipment
 本発明の実施形態は、ロータリー式圧縮機、および冷凍サイクル装置に関する。 Embodiments of the present invention relate to a rotary compressor and a refrigeration cycle device.
 縦置き円筒形状の密閉容器と、密閉容器内の下部に配置される圧縮機構部と、密閉容器内、かつ圧縮機構部の上方に配置されて圧縮機構部を駆動する電動機部としてのモーターと、回転軸と、を備えるロータリー圧縮機が知られている。回転軸は、密閉容器の上下に延びる中心線に沿って延びている。圧縮機構部は、回転軸を介してモーターに連結されている。圧縮機構部は、密閉容器の外部から流入する冷媒ガスを回転軸の動力により圧縮する。 A vertically placed cylindrical airtight container, a compression mechanism section disposed at a lower part of the airtight container, and a motor serving as an electric motor section arranged within the airtight container and above the compression mechanism section to drive the compression mechanism section; A rotary compressor is known that includes a rotating shaft. The rotation axis extends along a center line extending vertically of the closed container. The compression mechanism section is connected to the motor via a rotating shaft. The compression mechanism compresses refrigerant gas flowing from outside the closed container using the power of the rotating shaft.
 圧縮機構部は、第一圧縮室と、回転軸の第一偏心部にはめ込まれた環状の第一ローラーと、第一圧縮室の内部空間を区画する第一ブレードと、第一圧縮室に繋がる第二圧縮室と、回転軸の第二偏心部にはめ込まれた環状の第二ローラーと、第二圧縮室の内部空間を区画する第二ブレードと、を有する。第一ローラーは、第一圧縮室の内壁面に沿って公転し、第二ローラーは、第二圧縮室の内壁面に沿って公転する。第一圧縮室は、外部から流入する冷媒ガスを第一ローラーの公転によって圧縮して吐き出す。この吐出された冷媒ガスは、第二圧縮室で第二ローラーの公転によってさらに圧縮される。 The compression mechanism unit is connected to the first compression chamber, a first annular roller fitted in the first eccentric portion of the rotating shaft, a first blade that partitions an internal space of the first compression chamber, and the first compression chamber. It has a second compression chamber, a second annular roller fitted into a second eccentric portion of the rotating shaft, and a second blade that partitions an internal space of the second compression chamber. The first roller revolves along the inner wall surface of the first compression chamber, and the second roller revolves along the inner wall surface of the second compression chamber. The first compression chamber compresses refrigerant gas flowing in from the outside by the revolution of the first roller and discharges the compressed gas. This discharged refrigerant gas is further compressed in the second compression chamber by the revolution of the second roller.
国際公開第2021/033283号International Publication No. 2021/033283
 ここで、ローラーが1回転分移動する空間の体積を排除容積と呼ぶ。従来のロータリー式圧縮機では、第一圧縮室から吐き出された冷媒ガスの圧力を第二圧縮室でさらに高くし、かつ所定量の冷媒ガスを高圧にするため、第一圧縮室の排除容積は、第二圧縮室の所定の排除容積より大きく設定される。 Here, the volume of the space in which the roller moves one rotation is called the excluded volume. In a conventional rotary compressor, the pressure of the refrigerant gas discharged from the first compression chamber is further increased in the second compression chamber, and a predetermined amount of refrigerant gas is made to have a high pressure, so the displaced volume of the first compression chamber is , is set larger than the predetermined displacement volume of the second compression chamber.
 第一圧縮室の排除容積に関連する第一シリンダーの内部容積を大きくするために、例えば、第一圧縮室の高さは、第二圧縮室の高さより大きく設定される。第一圧縮室に配置される第一ブレードの高さは、第二圧縮室に配置される第二ブレードの高さより大きくなる。 In order to increase the internal volume of the first cylinder relative to the displacement volume of the first compression chamber, for example, the height of the first compression chamber is set larger than the height of the second compression chamber. The height of the first blade arranged in the first compression chamber is greater than the height of the second blade arranged in the second compression chamber.
 しかしながら、第一圧縮室の高さが第二圧縮室の高さより大きい場合には、第一ブレードの高さは、第二ブレードの高さより大きくなる。一般に、ブレードの高さを大きくすると、例えば冷媒ガスから受けるブレードの負荷が増えるため、ブレードの動作の信頼性が低下しやすい。また、第一圧縮室の高さを第二圧縮室の高さより大きくすれば、圧縮機構部の大型化を助長し、ひいては圧縮機の大型化を助長する。 However, if the height of the first compression chamber is greater than the height of the second compression chamber, the height of the first blade will be greater than the height of the second blade. Generally, as the height of the blade increases, the load on the blade from, for example, refrigerant gas increases, which tends to reduce the reliability of blade operation. Moreover, if the height of the first compression chamber is made larger than the height of the second compression chamber, it will help to increase the size of the compression mechanism section and, in turn, increase the size of the compressor.
 そこで、本発明は、多段型の圧縮機構部の信頼性の低下を防ぎ、かつ小型化可能なロータリー式圧縮機を提供することを目的とする。 Therefore, an object of the present invention is to provide a rotary compressor that can prevent the reliability of a multistage compression mechanism from decreasing and can be downsized.
 前記の課題を解決するため本発明の実施形態に係るロータリー式圧縮機は、上下方向に延びる中心軸を有する密閉容器と、前記密閉容器内に設けられる電動機部と、前記密閉容器の前記中心軸から第一偏心長さで偏心する低圧側偏心部と、前記低圧側偏心部の下方に設けられて前記中心軸から第二偏心長さで偏心する高圧側偏心部とを有し、かつ前記電動機部によって前記中心軸を中心に回転駆動されるクランク軸と、導入されるガス状の冷媒を前記低圧側偏心部の動力で圧縮して吐出する低圧側圧縮室を有する低圧側シリンダーと、前記低圧側圧縮室から吐出された前記冷媒を前記高圧側偏心部の動力で圧縮する高圧側圧縮室を有する高圧側シリンダーと、前記低圧側シリンダーおよび前記高圧側シリンダーの間に設けられた仕切板と、を有する圧縮機構部と、を備え、前記低圧側圧縮室の高さは、前記高圧側圧縮室の高さと同じであり、前記低圧側圧縮室の内径寸法は、前記高圧側圧縮室の内径寸法より大きい。 In order to solve the above problems, a rotary compressor according to an embodiment of the present invention includes a closed container having a central axis extending in the vertical direction, an electric motor section provided in the closed container, and a rotary compressor having a central axis extending in the vertical direction. a low-pressure side eccentric part that is eccentric from the central axis by a first eccentric length; and a high-pressure side eccentric part that is provided below the low-pressure side eccentric part and is eccentric from the central axis by a second eccentric length; a low-pressure side cylinder having a low-pressure side compression chamber that compresses and discharges an introduced gaseous refrigerant by the power of the low-pressure side eccentric part; a high-pressure side cylinder having a high-pressure side compression chamber that compresses the refrigerant discharged from the side compression chamber by the power of the high-pressure side eccentric part; a partition plate provided between the low-pressure side cylinder and the high-pressure side cylinder; a compression mechanism section having a compression mechanism, wherein the height of the low-pressure side compression chamber is the same as the height of the high-pressure side compression chamber, and the inner diameter dimension of the low-pressure side compression chamber is the inner diameter dimension of the high-pressure side compression chamber. bigger.
 本発明の実施形態に係るロータリー式圧縮機の前記第一偏心長さは、前記第二偏心長さより大きいことが好ましい。 The first eccentric length of the rotary compressor according to the embodiment of the present invention is preferably larger than the second eccentric length.
 本発明の実施形態に係るロータリー式圧縮機の前記高圧側圧縮室の圧縮開始角度は、前記低圧側圧縮室の圧縮開始角度より大きいことが好ましい。 The compression start angle of the high pressure side compression chamber of the rotary compressor according to the embodiment of the present invention is preferably larger than the compression start angle of the low pressure side compression chamber.
 本発明の実施形態に係るロータリー式圧縮機の前記高圧側シリンダーは、前記高圧側圧縮室を区画する壁面に設けられて前記高圧側圧縮室の吸込部に繋がる溝を有することが好ましい。 Preferably, the high-pressure side cylinder of the rotary compressor according to the embodiment of the present invention has a groove that is provided on a wall surface that partitions the high-pressure side compression chamber and connects to the suction portion of the high-pressure side compression chamber.
 本発明の実施形態に係るロータリー式圧縮機の前記仕切板および前記高圧側シリンダーは、中圧流路を有し、前記中圧流路は、前記低圧側圧縮室の吐出部と前記高圧側圧縮室の吸込部とを繋ぐことが好ましい。 The partition plate and the high pressure side cylinder of the rotary compressor according to the embodiment of the present invention have an intermediate pressure passage, and the intermediate pressure passage includes a discharge part of the low pressure side compression chamber and a discharge part of the high pressure side compression chamber. It is preferable to connect it to the suction part.
 本発明の実施形態に係るロータリー式圧縮機の前記仕切板は、第一仕切板半体と、前記第一仕切板半体の下方に重ね合わされる第二仕切板半体と、を有し、前記第一仕切板半体及び前記第二仕切板半体の合わせ面に前記中圧流路の一部が設けられ、前記中圧流路の一部の下の前記第二仕切板半体の厚みは、前記中圧流路の一部の上の前記第一仕切板半体の厚みより大きいことが好ましい。 The partition plate of the rotary compressor according to the embodiment of the present invention includes a first partition plate half and a second partition plate half stacked below the first partition plate half, A portion of the medium pressure flow path is provided on the mating surfaces of the first partition plate half and the second partition plate half, and the thickness of the second partition plate half below the portion of the medium pressure flow path is , is preferably larger than the thickness of the first partition plate half above a part of the medium pressure flow path.
 本発明の実施形態に係るロータリー式圧縮機は、前記密閉容器の外側に設けられる中間配管を備え、前記中圧流路は、前記中間配管を介して前記高圧側圧縮室の吸込部に繋がることが好ましい。 The rotary compressor according to an embodiment of the present invention includes an intermediate pipe provided outside the closed container, and the intermediate pressure flow path may be connected to the suction part of the high pressure side compression chamber via the intermediate pipe. preferable.
 また、前記の課題を解決するため本発明の実施形態に係る冷凍サイクル装置は、前記ロータリー式圧縮機と、放熱器と、膨張装置と、吸熱器と、前記ロータリー式圧縮機、前記放熱器、前記膨張装置、および前記吸熱器を接続して冷媒を流通させる冷媒配管と、を備えている。 Further, in order to solve the above-mentioned problems, a refrigeration cycle device according to an embodiment of the present invention includes the rotary compressor, the radiator, the expansion device, the heat absorber, the rotary compressor, the radiator, A refrigerant pipe is provided that connects the expansion device and the heat absorber and allows the refrigerant to flow therethrough.
 本発明によれば、多段型の圧縮機構部の信頼性の低下を防ぎ、かつ小型化可能なロータリー式圧縮機を提供できる。 According to the present invention, it is possible to provide a rotary compressor that can prevent the reliability of a multistage compression mechanism from decreasing and can be downsized.
本発明の実施形態に係る冷凍サイクル装置および圧縮機の概略的な図。1 is a schematic diagram of a refrigeration cycle device and a compressor according to an embodiment of the present invention. 本発明の実施形態に係る圧縮機の第一シリンダー上を通る平断面図。FIG. 2 is a plan cross-sectional view passing over the first cylinder of the compressor according to the embodiment of the present invention. 本発明の実施形態に係る圧縮機の第二シリンダー上を通る平断面図。FIG. 3 is a plan cross-sectional view passing over the second cylinder of the compressor according to the embodiment of the present invention. 本発明の実施形態に係る圧縮機の仕切板の縦断面図。FIG. 1 is a longitudinal sectional view of a partition plate of a compressor according to an embodiment of the present invention. 本発明の実施形態に係る圧縮機の仕切板の他の例の縦断面図。FIG. 7 is a vertical cross-sectional view of another example of the partition plate of the compressor according to the embodiment of the present invention. (a)は図3に示すB―B’線の断面図、(b)は(a)に示すD-D’線の部分断面図。(a) is a cross-sectional view taken along line B-B' shown in FIG. 3, and (b) is a partial cross-sectional view taken along line D-D' shown in (a). (a)は本発明の実施形態における溝の変形例を示す断面図、(b)は(a)に示すE-E’線の部分断面図。(a) is a cross-sectional view showing a modified example of the groove in the embodiment of the present invention, and (b) is a partial cross-sectional view taken along the line E-E' shown in (a). (a)は本発明の実施形態における溝の変形例を示す断面図、(b)は(a)に示すF-F’線の部分断面図。(a) is a sectional view showing a modified example of the groove in the embodiment of the present invention, and (b) is a partial sectional view taken along the line F-F' shown in (a). (a)は本発明の実施形態における溝の変形例を示す断面図、(b)は(a)に示すG-G’線の部分断面図。(a) is a sectional view showing a modified example of the groove in the embodiment of the present invention, and (b) is a partial sectional view taken along the line GG' shown in (a).
 本発明に係る圧縮機、および冷凍サイクル装置の実施形態について図1から図6を参照して説明する。なお、複数の図面中、同じまたは相当する構成には同一の符号が付されている。 Embodiments of a compressor and a refrigeration cycle device according to the present invention will be described with reference to FIGS. 1 to 6. In addition, the same code|symbol is attached|subjected to the same or equivalent structure in several drawings.
 図1は、本発明の実施形態に係る冷凍サイクル装置および圧縮機の概略的な図である。なお、図1において、圧縮機は縦断面で示されている。 FIG. 1 is a schematic diagram of a refrigeration cycle device and a compressor according to an embodiment of the present invention. In addition, in FIG. 1, the compressor is shown in a longitudinal section.
 図2は、本発明の実施形態に係る圧縮機の第一シリンダー上を通る平断面図である。 FIG. 2 is a plan cross-sectional view passing over the first cylinder of the compressor according to the embodiment of the present invention.
 図3は、本発明の実施形態に係る圧縮機の第二シリンダー上を通る平断面図である。 FIG. 3 is a plan cross-sectional view passing over the second cylinder of the compressor according to the embodiment of the present invention.
 本実施形態に係る冷凍サイクル装置1は、例えば空気調和機である。冷凍サイクル装置1は、作動流体であるガス状の冷媒、例えば二酸化炭素(CO2)を圧縮する密閉型のロータリー式圧縮機2(以下、単に「圧縮機2」と言う。)と、圧縮機2から吐出された高温高圧の冷媒を冷却する放熱器3(凝縮器)と、冷却された冷媒を減圧する第一膨張装置4(膨張弁)および第二膨張装置5(膨張弁)と、減圧された冷媒を蒸発させる吸熱器6(蒸発器)と、冷媒を気液分離するアキュムレーター7と、第一冷媒配管8と、第二冷媒配管9と、を備えている。 The refrigeration cycle device 1 according to this embodiment is, for example, an air conditioner. The refrigeration cycle device 1 includes a hermetic rotary compressor 2 (hereinafter simply referred to as "compressor 2") that compresses a gaseous refrigerant as a working fluid, such as carbon dioxide (CO2), and a compressor 2. A radiator 3 (condenser) that cools the high temperature and high pressure refrigerant discharged from the refrigerant, a first expansion device 4 (expansion valve) and a second expansion device 5 (expansion valve) that reduce the pressure of the cooled refrigerant, and a It includes a heat absorber 6 (evaporator) that evaporates the refrigerant, an accumulator 7 that separates the refrigerant into gas and liquid, a first refrigerant pipe 8, and a second refrigerant pipe 9.
 第一冷媒配管8は、圧縮機2、放熱器3、第一膨張装置4、第二膨張装置5、吸熱器6、およびアキュムレーター7を順次に接続して冷媒を流通させる。アキュムレーター7は、圧縮機2に接続されて冷媒を圧縮機2に流入させる導出管12を有している。第二冷媒配管9の一方の端は、第一膨張装置4と第二膨張装置5との間の第一冷媒配管8に接続されている。第二冷媒配管9の他方の端は、圧縮機2の中間配管13に接続されている。第二冷媒配管9は、中間配管13を介して第一膨張装置4で例えば中圧まで減圧された冷媒を圧縮機2に流入させる。 The first refrigerant pipe 8 sequentially connects the compressor 2, the radiator 3, the first expansion device 4, the second expansion device 5, the heat absorber 6, and the accumulator 7 to flow the refrigerant. The accumulator 7 has an outlet pipe 12 that is connected to the compressor 2 and allows refrigerant to flow into the compressor 2. One end of the second refrigerant pipe 9 is connected to the first refrigerant pipe 8 between the first expansion device 4 and the second expansion device 5. The other end of the second refrigerant pipe 9 is connected to an intermediate pipe 13 of the compressor 2. The second refrigerant pipe 9 allows the refrigerant, which has been reduced in pressure to, for example, an intermediate pressure, in the first expansion device 4 to flow into the compressor 2 via the intermediate pipe 13 .
 圧縮機2は、縦置きされる円筒形状の密閉容器16と、密閉容器16内の上半部に収容される電動機部17と、密閉容器16内の下半部に収容される圧縮機構部18と、電動機部17の回転駆動力を圧縮機構部18へ伝達するクランク軸19と、電動機部17の下側に設けられてクランク軸19を回転自在に支持する主軸受21と、主軸受21より下方に設けられて主軸受21と共働してクランク軸19を回転自在に支持する副軸受22と、密閉容器16に固定されて圧縮機構部18を支持するフレーム23と、密閉容器16の外側に設けられる中間配管13と、を備えている。 The compressor 2 includes a cylindrical airtight container 16 placed vertically, an electric motor section 17 housed in the upper half of the airtight container 16, and a compression mechanism section 18 housed in the lower half of the airtight container 16. , a crankshaft 19 that transmits the rotational driving force of the electric motor section 17 to the compression mechanism section 18 , a main bearing 21 that is provided below the electric motor section 17 and rotatably supports the crankshaft 19 , and A sub-bearing 22 that is provided below and cooperates with the main bearing 21 to rotatably support the crankshaft 19, a frame 23 that is fixed to the closed container 16 and supports the compression mechanism section 18, and an outer side of the closed container 16. An intermediate piping 13 provided in the intermediate piping 13 is provided.
 縦置きされる密閉容器16の中心線は、上下方向に延びている。圧縮機2は、密閉容器16の中心線を鉛直に向けて設置される。密閉容器16は、上下方向に延びる円筒形状の胴部26と、胴部26の上端部を塞ぐ上鏡板27と、胴部26の下端部を塞ぐ下鏡板28と、を備えている。密閉容器16は、圧縮機構部18を潤滑するための潤滑油を貯留している。潤滑油は、クランク軸19の下端部内に設けられた給油機構を通じて圧縮機構部18に給油される。 The center line of the vertically placed closed container 16 extends in the vertical direction. The compressor 2 is installed with the center line of the closed container 16 facing vertically. The airtight container 16 includes a cylindrical body 26 extending in the vertical direction, an upper end plate 27 that closes the upper end of the body 26, and a lower end plate 28 that closes the lower end of the body 26. The closed container 16 stores lubricating oil for lubricating the compression mechanism section 18. Lubricating oil is supplied to the compression mechanism section 18 through an oil supply mechanism provided within the lower end of the crankshaft 19 .
 密閉容器16の上鏡板27は、圧縮機構部18から密閉容器16内に吐出された高温高圧の冷媒を密閉容器16外へ吐出する吐出管31を備えている。吐出管31は第一冷媒配管8に繋がっている。また、上鏡板27は、外部電源から電動機部17へ電力を導く密閉端子を有する端子台32を備えている。端子台32の密閉端子は、上鏡板27の外側と内側とに渡って設けられている。 The upper end plate 27 of the closed container 16 is equipped with a discharge pipe 31 that discharges the high temperature and high pressure refrigerant discharged into the closed container 16 from the compression mechanism section 18 to the outside of the closed container 16. The discharge pipe 31 is connected to the first refrigerant pipe 8. Further, the upper mirror plate 27 includes a terminal block 32 having a sealed terminal for guiding power from an external power source to the motor section 17. The sealed terminal of the terminal block 32 is provided across the outside and inside of the upper mirror plate 27.
 密閉容器16の胴部26は、アキュムレーター7の導出管12に接続される吸込端部35と、中間配管13の一方の端に接続される中間吐出端部36と、中間配管13の他方の端に接続される中間吸込端部37と、を備えている。吸込端部35、中間吐出端部36、および中間吸込端部37は、密閉容器16に固定された中央部分と、密閉容器16内に配置される内端と、密閉容器16の外側に配置される外端と、を有している。また、密閉容器16の胴部26には、アキュムレーター7を胴部26の外側面に固定するホルダーなどの固定具38が設けられている。 The body 26 of the closed container 16 has a suction end 35 connected to the outlet pipe 12 of the accumulator 7, an intermediate discharge end 36 connected to one end of the intermediate piping 13, and an intermediate discharge end 36 connected to the other end of the intermediate piping 13. an intermediate suction end 37 connected to the end. The suction end 35 , the intermediate discharge end 36 , and the intermediate suction end 37 have a central portion fixed to the closed container 16 , an inner end located within the closed container 16 , and an inner end located outside the closed container 16 . and an outer end. Further, the body 26 of the airtight container 16 is provided with a fixture 38 such as a holder for fixing the accumulator 7 to the outer surface of the body 26 .
 中間配管13は、圧縮機構部18で中圧まで圧縮された冷媒を密閉容器16の外部に流通させる。中間配管13は、円筒形状の外部マフラー39およびインタークーラー41に接続されている。中間配管13は、中間吐出端部36と外部マフラー39とインタークーラー41と中間吸込端部37とを順次に接続して冷媒を流通させる。外部マフラー39は、上下方向に延びる円筒形状を有し、密閉容器16の胴部26に設けられたホルダーなどの固定具38によって密閉容器16の外側面に固定されている。中間配管13は、圧縮機構部18で中圧まで圧縮された冷媒を流通させる。 The intermediate pipe 13 allows the refrigerant compressed to an intermediate pressure by the compression mechanism section 18 to flow to the outside of the closed container 16. The intermediate pipe 13 is connected to a cylindrical external muffler 39 and an intercooler 41. The intermediate pipe 13 sequentially connects the intermediate discharge end 36, the external muffler 39, the intercooler 41, and the intermediate suction end 37 to allow the refrigerant to flow therethrough. The external muffler 39 has a cylindrical shape extending in the vertical direction, and is fixed to the outer surface of the closed container 16 by a fixture 38 such as a holder provided on the body 26 of the closed container 16. The intermediate pipe 13 allows the refrigerant compressed to an intermediate pressure by the compression mechanism section 18 to flow therethrough.
 電動機部17は、圧縮機構部18を回転させる駆動力を発生させる。電動機部17は、密閉容器16の内面に固定される筒状の固定子43と、固定子43の内側に配置されて圧縮機構部18の回転駆動力を発生させる回転子44と、固定子43から引き出されて端子台32の密閉端子に電気的に接続される複数の口出線45と、を備えている。電動機部17は、オープン巻線型電動機であっても良く、スター結線の電動機であっても良く、複数系統、例えば、二系統の三相巻線を備える電動機であっても良い。 The electric motor section 17 generates a driving force that rotates the compression mechanism section 18. The electric motor section 17 includes a cylindrical stator 43 fixed to the inner surface of the airtight container 16, a rotor 44 disposed inside the stator 43 to generate rotational driving force for the compression mechanism section 18, and the stator 43. A plurality of lead wires 45 are drawn out from the terminal block 32 and electrically connected to the sealed terminals of the terminal block 32. The motor section 17 may be an open-winding type motor, a star-connected motor, or a motor having multiple systems, for example, two systems of three-phase windings.
 回転子44は、磁石収容孔を有する回転子鉄心(図示省略)と、磁石収容孔に収容される永久磁石(図示省略)と、を備えている。回転子44は、クランク軸19に固定されている。回転子44およびクランク軸19の回転中心線Cは、固定子43の中心線に実質的に一致している。また、回転子44およびクランク軸19の回転中心線Cは、密閉容器16の中心線に実質的に一致している。 The rotor 44 includes a rotor core (not shown) having a magnet housing hole, and a permanent magnet (not shown) accommodated in the magnet housing hole. The rotor 44 is fixed to the crankshaft 19. The rotation center line C of the rotor 44 and the crankshaft 19 substantially coincides with the center line of the stator 43. Further, the rotation center line C of the rotor 44 and the crankshaft 19 substantially coincides with the center line of the closed container 16.
 複数の口出線45は、固定子43に電力を供給する電力線であり、いわゆるリード線である。口出線45は、電動機部17の種類、つまりオープン巻線型やスター結線に応じて複数配線される。 The plurality of lead wires 45 are power lines that supply power to the stator 43, and are so-called lead wires. A plurality of lead wires 45 are wired depending on the type of motor section 17, that is, open winding type or star connection.
 クランク軸19は、電動機部17と圧縮機構部18とを連結している。クランク軸19は、回転子44に回転一体であって、回転子44より下方へ延びている。クランク軸19は、中間部分に位置する主軸部47と、主軸部47の下方に位置する複数の偏心部48と、複数の偏心部48の下方に位置する副軸部49と、を有している。主軸部47は、主軸受21によって回転可能に支持され、副軸部49は、副軸受22によって回転可能に支持されている。主軸受21および副軸受22は、圧縮機構部18の一部でもある。換言すると、クランク軸19は、圧縮機構部18を貫通して配置されている。それぞれの偏心部48は、いわゆるクランクピンである。複数の偏心部48は、例えば第一偏心部51および第二偏心部52を含んでいる。第一偏心部51および第二偏心部52は、クランク軸19の回転中心線Cに不一致な中心を有する円盤形状、あるいは円柱形状である。 The crankshaft 19 connects the electric motor section 17 and the compression mechanism section 18. The crankshaft 19 rotates integrally with the rotor 44 and extends downward from the rotor 44. The crankshaft 19 includes a main shaft portion 47 located in an intermediate portion, a plurality of eccentric portions 48 located below the main shaft portion 47, and a counter shaft portion 49 located below the plurality of eccentric portions 48. There is. The main shaft portion 47 is rotatably supported by the main bearing 21 , and the counter shaft portion 49 is rotatably supported by the counter bearing 22 . The main bearing 21 and the sub-bearing 22 are also part of the compression mechanism section 18. In other words, the crankshaft 19 is disposed to penetrate the compression mechanism section 18. Each eccentric portion 48 is a so-called crank pin. The plurality of eccentric parts 48 include, for example, a first eccentric part 51 and a second eccentric part 52. The first eccentric portion 51 and the second eccentric portion 52 have a disk shape or a cylindrical shape with centers that do not match the rotation center line C of the crankshaft 19.
 圧縮機構部18は、クランク軸19の回転駆動により導出管12および中間配管13からガス状の冷媒を吸込んで圧縮し、高温高圧に圧縮された冷媒を密閉容器16内に吐出する。圧縮機構部18は、多段型のロータリー式圧縮機構である。圧縮機構部18は、主軸受21の下に配置される第一シリンダー55と、第一シリンダー55の下に配置される仕切板56と、仕切板56と副軸受22の間に配置される第二シリンダー57と、を備えている。 The compression mechanism section 18 sucks and compresses gaseous refrigerant from the outlet pipe 12 and the intermediate pipe 13 by rotation of the crankshaft 19, and discharges the refrigerant compressed to high temperature and high pressure into the closed container 16. The compression mechanism section 18 is a multistage rotary compression mechanism. The compression mechanism section 18 includes a first cylinder 55 disposed below the main bearing 21 , a partition plate 56 disposed below the first cylinder 55 , and a second cylinder disposed between the partition plate 56 and the sub-bearing 22 . It is equipped with two cylinders 57.
 主軸受21、第一シリンダー55、仕切板56、第二シリンダー57、および副軸受22は、上下方向に重なって配置されている。主軸受21は、第一シリンダー55の上面を塞いでいる。副軸受22は、第二シリンダー57の下面を塞いでいる。仕切板56は、第一シリンダー55の下面と第二シリンダー57の上面とを塞いでいる。 The main bearing 21, the first cylinder 55, the partition plate 56, the second cylinder 57, and the sub-bearing 22 are arranged to overlap in the vertical direction. The main bearing 21 covers the upper surface of the first cylinder 55. The secondary bearing 22 covers the lower surface of the second cylinder 57. The partition plate 56 closes off the lower surface of the first cylinder 55 and the upper surface of the second cylinder 57.
 第一シリンダー55は、密閉容器16の胴部26に複数箇所で溶接によって固定されたフレーム23にボルトなどの締結部材59で固定されている。主軸受21、第一シリンダー55、仕切板56、第二シリンダー57、および副軸受22は、ボルトなどの複数の締結部材59によって相互に固定されている。主軸受21、第一シリンダー55、仕切板56、第二シリンダー57、および副軸受22は、フレーム23を介して密閉容器16内に固定されている。 The first cylinder 55 is fixed by fastening members 59 such as bolts to the frame 23 which is fixed to the body 26 of the closed container 16 at a plurality of locations by welding. The main bearing 21, the first cylinder 55, the partition plate 56, the second cylinder 57, and the sub-bearing 22 are fixed to each other by a plurality of fastening members 59 such as bolts. The main bearing 21 , the first cylinder 55 , the partition plate 56 , the second cylinder 57 , and the sub-bearing 22 are fixed within the closed container 16 via the frame 23 .
 第一シリンダー55は、第一シリンダー55を上下方向に貫通する第一圧縮室61を有している。第二シリンダー57は、第二シリンダー57を上下方向に貫通する第二圧縮室62を有している。第一圧縮室61および第二圧縮室62は、円盤形状の空間であって、仕切板56を介して上下方向で重なり合っている。第一圧縮室61の中心と第二圧縮室62の中心とは、回転中心線C上に配置されている。圧縮機構部18は、アキュムレーター7から流入する低圧のガス冷媒を第一圧縮室61で中圧まで圧縮して吐出する。また、圧縮機構部18は、第一圧縮室61から吐出された中圧のガス冷媒を第二圧縮室62で高圧まで圧縮して吐出する。第一シリンダー55および第二シリンダー57を総称して「シリンダー55、57」と呼ぶ場合があり、第一圧縮室61および第二圧縮室62を総称して「圧縮室61、62」と呼ぶ場合がある。 The first cylinder 55 has a first compression chamber 61 that passes through the first cylinder 55 in the vertical direction. The second cylinder 57 has a second compression chamber 62 that passes through the second cylinder 57 in the vertical direction. The first compression chamber 61 and the second compression chamber 62 are disk-shaped spaces, and overlap in the vertical direction with the partition plate 56 in between. The center of the first compression chamber 61 and the center of the second compression chamber 62 are arranged on the rotation center line C. The compression mechanism section 18 compresses the low-pressure gas refrigerant flowing from the accumulator 7 to an intermediate pressure in the first compression chamber 61 and discharges the compressed gas refrigerant. Further, the compression mechanism section 18 compresses the intermediate pressure gas refrigerant discharged from the first compression chamber 61 to a high pressure in the second compression chamber 62 and discharges the compressed gas refrigerant. The first cylinder 55 and the second cylinder 57 may be collectively referred to as " cylinders 55, 57," and the first compression chamber 61 and second compression chamber 62 may be collectively referred to as " compression chambers 61, 62." There is.
 また、圧縮機構部18は、第一圧縮室61内に配置される環状の第一ローラー63と、第二圧縮室62内に配置される環状の第二ローラー64と、第一シリンダー55で第一圧縮室61の径方向に配置される第一ブレード65と、第二シリンダー57で第二圧縮室62の径方向に配置される第二ブレード66と、を備えている。第一ローラー63および第二ローラー64を総称して「ローラー63、64」と呼ぶ場合があり、第一ブレード65および第二ブレード66を総称して「ブレード65、66」と呼ぶ場合がある。ローラー63、64は、いわゆるローリングピストン(rolling piston)であり、ブレード65、66は、いわゆるベーン(vane)である。 Further, the compression mechanism section 18 includes a first annular roller 63 disposed in the first compression chamber 61, a second annular roller 64 disposed in the second compression chamber 62, and a second annular roller 64 in the first cylinder 55. The first blade 65 is arranged in the radial direction of the first compression chamber 61, and the second blade 66 is arranged in the radial direction of the second compression chamber 62 in the second cylinder 57. The first roller 63 and the second roller 64 may be collectively referred to as " rollers 63, 64," and the first blade 65 and second blade 66 may be collectively referred to as " blades 65, 66." The rollers 63, 64 are so-called rolling pistons, and the blades 65, 66 are so-called vanes.
 第一ローラー63は、クランク軸19の第一偏心部51に嵌合している。第二ローラー64は、クランク軸19の第二偏心部52に嵌合している。クランク軸19は、圧縮機2の平面視において反時計回りに回転する。クランク軸19が回転しているとき、クランク軸19の上方から見た2つの偏心部48、つまり第一偏心部51、第二偏心部52と、第一ローラー63と、第二ローラー64とは、回転中心線C(図1参照)を中心に、図2に示した実線矢印R1のように反時計回りに回転する。クランク軸19およびローラー63、64の回転方向を「回転方向R1」と呼ぶことがあり、回転方向R1の反回転方向を「反回転方向R2」と呼ぶことがある。 The first roller 63 is fitted into the first eccentric portion 51 of the crankshaft 19. The second roller 64 fits into the second eccentric portion 52 of the crankshaft 19 . The crankshaft 19 rotates counterclockwise when the compressor 2 is viewed from above. When the crankshaft 19 is rotating, the two eccentric parts 48, that is, the first eccentric part 51, the second eccentric part 52, the first roller 63, and the second roller 64, seen from above of the crankshaft 19 are , rotates counterclockwise around the rotation center line C (see FIG. 1) as indicated by the solid arrow R1 shown in FIG. The rotation direction of the crankshaft 19 and the rollers 63 and 64 may be referred to as a "rotation direction R1," and the counter-rotation direction of the rotation direction R1 may be referred to as a "counter-rotation direction R2."
 ローラー63、64は、クランク軸19の回転によりシリンダー55、57の内壁に接しながらシリンダー55、57の中心軸およびクランク軸19の回転中心線Cに対して偏心回転する。 The rollers 63 and 64 rotate eccentrically with respect to the center axes of the cylinders 55 and 57 and the rotation center line C of the crankshaft 19 while contacting the inner walls of the cylinders 55 and 57 as the crankshaft 19 rotates.
 ブレード65、66は、上下方向へ一直線上に並んで配置されている。換言すると、2つのブレード65、66は、シリンダー55、57の周方向において略同一の位置に配置されている。また、ブレード65、66は、ブレードスプリング(図示省略)によってローラー63、64に押し付けられている。そのため、ブレード65、66は、クランク軸19の回転によってローラー63、64に押されながら圧縮室61、62の径方向に往復運動する。図2および図3に示すように、ブレード65、66は、シリンダー55、57とローラー63、64との間の空間を吸込空間S1(図2では図示されない)と圧縮空間S2に区画する。第一ブレード65の高さは、第二ブレード66の高さと同一である。ブレード65、66の高さは、圧縮室61、62の高さと略同一である。 The blades 65 and 66 are arranged in a straight line in the vertical direction. In other words, the two blades 65 and 66 are arranged at substantially the same position in the circumferential direction of the cylinders 55 and 57. Further, the blades 65 and 66 are pressed against the rollers 63 and 64 by blade springs (not shown). Therefore, the blades 65 and 66 reciprocate in the radial direction of the compression chambers 61 and 62 while being pushed by the rollers 63 and 64 due to the rotation of the crankshaft 19. As shown in FIGS. 2 and 3, the blades 65, 66 divide the space between the cylinders 55, 57 and the rollers 63, 64 into a suction space S1 (not shown in FIG. 2) and a compression space S2. The height of the first blade 65 is the same as the height of the second blade 66. The height of the blades 65, 66 is approximately the same as the height of the compression chambers 61, 62.
 第一シリンダー55は、第一圧縮室61に繋がっている第一吸込部68および第一吐出部69を有している。第一吸込部68は、第一圧縮室61の内壁面から外側に向かって延び、外端が密閉容器16の吸込端部35の内端に接続されている。第一吐出部69は、例えば第一圧縮室61の内壁面から外側に向かって凹み、かつ第一シリンダー55の下面に開口している。第一吸込部68は、第一ブレード65の回転方向R1側に隣接して配置され、第一吐出部69は、第一ブレード65の反回転方向R2側に隣接して配置されている。 The first cylinder 55 has a first suction section 68 and a first discharge section 69 that are connected to the first compression chamber 61. The first suction portion 68 extends outward from the inner wall surface of the first compression chamber 61 , and has an outer end connected to an inner end of the suction end portion 35 of the closed container 16 . The first discharge portion 69 is, for example, recessed outward from the inner wall surface of the first compression chamber 61 and opens to the lower surface of the first cylinder 55. The first suction part 68 is arranged adjacent to the first blade 65 in the rotational direction R1, and the first discharge part 69 is arranged adjacent to the first blade 65 in the opposite rotational direction R2.
 第二シリンダー57は、第二圧縮室62に繋がっている第二吸込部71および第二吐出部72を有している。第二吸込部71は、第二圧縮室62の内壁面から外側に向かって延び、外端が密閉容器16の中間吸込端部37の内端に接続されている。第二吐出部72は、例えば第二圧縮室62の内壁面から外側に向かって凹み、かつ第二シリンダー57の下面に開口している。第二吸込部71は、第二ブレード66の回転方向R1側に並んで配置され、第二吐出部72は、第二ブレード66の反回転方向R2側に隣接して配置されている。第一吸込部68および第二吸込部71を総称して「吸込部68、71」と呼ぶ場合があり、第一吐出部69および第二吐出部72を総称して「吐出部69、72」と呼ぶ場合がある。 The second cylinder 57 has a second suction section 71 and a second discharge section 72 that are connected to the second compression chamber 62. The second suction portion 71 extends outward from the inner wall surface of the second compression chamber 62 and has an outer end connected to an inner end of the intermediate suction end portion 37 of the closed container 16 . The second discharge portion 72 is, for example, recessed outward from the inner wall surface of the second compression chamber 62 and opens at the lower surface of the second cylinder 57 . The second suction section 71 is arranged side by side on the rotational direction R1 side of the second blade 66, and the second discharge section 72 is arranged adjacent to the second blade 66 on the opposite rotational direction R2 side. The first suction part 68 and the second suction part 71 may be collectively referred to as " suction parts 68, 71", and the first discharge part 69 and second discharge part 72 may be collectively referred to as "discharge parts 69, 72". It is sometimes called.
 仕切板56および第二シリンダー57は、第一圧縮室61の第一吐出部69に繋がる中圧流路75を有している。中圧流路75は、第一圧縮室61で圧縮されて中圧になった冷媒の流路である。仕切板56の中圧流路75は、仕切板56内に設けられて仕切板56の上面および下面に沿って延びる流路を含んでいる。第二シリンダー57の中圧流路75は、第二圧縮室62の外側に設けられて上側から外側に屈曲したクランク状の流路を含んでいる。仕切板56の中圧流路75は、第一圧縮室61の第一吐出部69に接続され、第二シリンダー57の中圧流路75は、密閉容器16の中間吐出端部36の内端に接続されている。 The partition plate 56 and the second cylinder 57 have an intermediate pressure passage 75 connected to the first discharge part 69 of the first compression chamber 61. The intermediate pressure flow path 75 is a flow path for the refrigerant that has been compressed in the first compression chamber 61 and has an intermediate pressure. The medium pressure passage 75 of the partition plate 56 includes a passage provided within the partition plate 56 and extending along the upper and lower surfaces of the partition plate 56. The intermediate pressure passage 75 of the second cylinder 57 includes a crank-shaped passage provided outside the second compression chamber 62 and bent outward from the upper side. The intermediate pressure passage 75 of the partition plate 56 is connected to the first discharge part 69 of the first compression chamber 61, and the intermediate pressure passage 75 of the second cylinder 57 is connected to the inner end of the intermediate discharge end 36 of the closed container 16. has been done.
 仕切板56は、第一圧縮室61内で圧縮された冷媒を中圧流路75に吐出する第一吐出弁76を備えている。第一吐出弁76は、圧縮機構部18の圧縮動作によって第一圧縮室61の圧力と中圧流路75の圧力との圧力差が所定値に達したときに吐出ポート(図示省略)を開放して、中圧に圧縮された冷媒を仕切板56の中圧流路75に吐出する。仕切板56の中圧流路75に吐出した冷媒は、第二シリンダー57の中圧流路75を経て中間吐出端部36から密閉容器16の外へ導かれる。密閉容器16の外に導かれた冷媒は、中間配管13を流通し、中間吸込端部37から密閉容器16の内側へ導かれて、第二シリンダー57の第二吸込部71から第二圧縮室62に流入する。 The partition plate 56 is equipped with a first discharge valve 76 that discharges the refrigerant compressed within the first compression chamber 61 to the intermediate pressure flow path 75. The first discharge valve 76 opens a discharge port (not shown) when the pressure difference between the pressure in the first compression chamber 61 and the pressure in the intermediate pressure channel 75 reaches a predetermined value due to the compression operation of the compression mechanism section 18. Then, the refrigerant compressed to medium pressure is discharged to the medium pressure flow path 75 of the partition plate 56. The refrigerant discharged into the intermediate pressure passage 75 of the partition plate 56 is guided out of the closed container 16 from the intermediate discharge end 36 via the intermediate pressure passage 75 of the second cylinder 57 . The refrigerant led out of the closed container 16 flows through the intermediate pipe 13, is led into the inside of the closed container 16 from the intermediate suction end 37, and is transferred from the second suction section 71 of the second cylinder 57 to the second compression chamber. 62.
 主軸受21、第一シリンダー55、仕切板56、第二シリンダー57、および副軸受22は、上下方向に貫通し、かつ相互に繋がる高圧流路79を有している。高圧流路79は、主軸受21、第一シリンダー55、仕切板56、第二シリンダー57、および副軸受22に渡って上下方向に直線状に延びる高圧のガス冷媒の流路である。 The main bearing 21, the first cylinder 55, the partition plate 56, the second cylinder 57, and the sub-bearing 22 have a high-pressure passage 79 that passes through them in the vertical direction and is connected to each other. The high-pressure flow path 79 is a high-pressure gas refrigerant flow path that extends linearly in the vertical direction across the main bearing 21, the first cylinder 55, the partition plate 56, the second cylinder 57, and the sub-bearing 22.
 圧縮機構部18は、副軸受22に設けられて第二圧縮室62内で圧縮された冷媒を吐出する第二吐出弁81と、第二吐出弁81および高圧流路79に覆い被さる第一吐出マフラー82と、を備えている。第二吐出弁81は、圧縮機構部18の圧縮作用にともない第二圧縮室62内の圧力と第一吐出マフラー82内の圧力との圧力差が所定値に達したときに吐出ポート(図示省略)を開放して、高圧に圧縮された冷媒を第一吐出マフラー82内に吐出する。第二吐出弁81から第一吐出マフラー82内に吐出された冷媒は、高圧流路79を通じて圧縮機構部18の上方へ導かれる。なお、第一吐出弁76と第二吐出弁81を総称して「吐出弁76、81」と呼ぶ場合がある。 The compression mechanism section 18 includes a second discharge valve 81 that is provided in the sub-bearing 22 and discharges the refrigerant compressed in the second compression chamber 62, and a first discharge valve that covers the second discharge valve 81 and the high-pressure flow path 79. It is equipped with a muffler 82. The second discharge valve 81 is connected to a discharge port (not shown) when the pressure difference between the pressure in the second compression chamber 62 and the pressure in the first discharge muffler 82 reaches a predetermined value due to the compression action of the compression mechanism section 18. ) is opened to discharge the highly compressed refrigerant into the first discharge muffler 82. The refrigerant discharged from the second discharge valve 81 into the first discharge muffler 82 is guided above the compression mechanism section 18 through the high-pressure flow path 79. Note that the first discharge valve 76 and the second discharge valve 81 may be collectively referred to as "discharge valves 76, 81."
 また、圧縮機構部18は、主軸受21に設けられて高圧流路79に覆い被さる第二吐出マフラー83を備えている。第二吐出マフラー83は、高圧流路79から高圧の冷媒が吐出される空間を仕切っている。第二吐出マフラー83は、第二吐出マフラー83の内外を繋ぐ吐出孔(図示省略)を有している。第二吐出マフラー83内に吐出される高圧の冷媒は、吐出孔を通じて密閉容器16内へ吐出される。 Furthermore, the compression mechanism section 18 includes a second discharge muffler 83 that is provided on the main bearing 21 and covers the high pressure flow path 79. The second discharge muffler 83 partitions a space into which high-pressure refrigerant is discharged from the high-pressure flow path 79. The second discharge muffler 83 has a discharge hole (not shown) that connects the inside and outside of the second discharge muffler 83 . The high-pressure refrigerant discharged into the second discharge muffler 83 is discharged into the closed container 16 through the discharge hole.
 図4は、本発明の実施形態に係る圧縮機の仕切板の縦断面図である。 FIG. 4 is a longitudinal sectional view of a partition plate of a compressor according to an embodiment of the present invention.
 図1および図4に示すように、仕切板56は、上下に重なる複数の板の積層体である。仕切板56は、上下方向に重なる第一仕切板半体91と、第二仕切板半体92と、を備えている。第一仕切板半体91および第二仕切板半体92の実質的な形状は、実質的に同一の厚さの円板形状である。上側に配置される第一仕切板半体91は、第一仕切板半体91の下面に開放される凹部91a(窪み、溝)を有している。下側に配置される第二仕切板半体92は、第二仕切板半体92の上面に開放される凹部92a(窪み、溝)を有している。仕切板56の中圧流路75は、第一仕切板半体91の凹部91a(窪み、凹部)と第二仕切板半体92の凹部92a(窪み、凹部)と、によって区画される空間である。第一仕切板半体91は、凹部91aを第一圧縮室61に繋げる孔91bを有している。第一吐出弁76は、第一仕切板半体91の凹部91aに設けられて孔91bを開閉する。第二仕切板半体92は、凹部92aを第二シリンダー57の中圧流路75に繋げる孔92bを有している。 As shown in FIGS. 1 and 4, the partition plate 56 is a laminate of a plurality of plates that are stacked one above the other. The partition plate 56 includes a first partition plate half 91 and a second partition plate half 92 that overlap in the vertical direction. The substantial shape of the first partition plate half 91 and the second partition plate half 92 is a disk shape with substantially the same thickness. The first partition plate half 91 disposed on the upper side has a recess 91a (dent, groove) open to the lower surface of the first partition plate half 91. The second partition plate half 92 arranged on the lower side has a recess 92a (dent, groove) open to the upper surface of the second partition plate half 92. The medium pressure flow path 75 of the partition plate 56 is a space defined by a recess 91a (dent, recess) of the first partition plate half 91 and a recess 92a (dent, recess) of the second partition plate half 92. . The first partition plate half 91 has a hole 91b that connects the recess 91a to the first compression chamber 61. The first discharge valve 76 is provided in the recess 91a of the first partition plate half 91 to open and close the hole 91b. The second partition plate half 92 has a hole 92b that connects the recess 92a to the medium pressure passage 75 of the second cylinder 57.
 第一仕切板半体91の上下方向の板厚と第二仕切板半体92の上下方向の板厚とは、実質的に同じである一方、第二仕切板半体92の凹部92aの深さは、第一仕切板半体91の凹部91aの深さより浅い。換言すると、第二仕切板半体92の凹部92aの底板部分の厚さt2は、第一仕切板半体91の凹部91aの底板部分の厚さt1より厚い。第一仕切板半体91の凹部91aの底板部分は、第一圧縮室61を塞ぎ、第二仕切板半体92の凹部92aの底板部分は、第二圧縮室62を塞いでいる。 The vertical thickness of the first partition plate half 91 and the vertical thickness of the second partition plate half 92 are substantially the same, while the depth of the recess 92a of the second partition plate half 92 is substantially the same. The depth is shallower than the depth of the recess 91a of the first partition plate half 91. In other words, the thickness t2 of the bottom plate portion of the recess 92a of the second partition plate half 92 is thicker than the thickness t1 of the bottom plate portion of the recess 91a of the first partition plate half 91. The bottom plate portion of the recess 91 a of the first partition plate half 91 closes the first compression chamber 61 , and the bottom plate portion of the recess 92 a of the second partition plate half 92 closes the second compression chamber 62 .
 ところで、多段型の圧縮機構部18は、低圧の冷媒を第一圧縮室61で中圧の冷媒へ圧縮し、中圧の冷媒を第二圧縮室62で高圧の冷媒へ圧縮する。つまり、第二仕切板半体92は、第一仕切板半体91より高い圧力負荷を負担する。そこで、第二仕切板半体92の凹部92aの底板部分の厚さt2を第一仕切板半体91の凹部91aの底板部分の厚さt1より厚くすることで、第一シリンダー55に重なる第一仕切板半体91の剛性および第二シリンダー57に重なる第二仕切板半体92の剛性が最適化されている。換言すると、第一仕切板半体91と第二仕切板半体92との積層体である仕切板56の剛性が最適されている。剛性を最適化された仕切板56は、第一圧縮室61と仕切板56との合わせ面、および第二圧縮室62と仕切板56との合わせ面の双方における冷媒の漏洩を適切に防ぐ。 Incidentally, the multi-stage compression mechanism section 18 compresses low-pressure refrigerant into medium-pressure refrigerant in the first compression chamber 61, and compresses medium-pressure refrigerant into high-pressure refrigerant in the second compression chamber 62. That is, the second partition plate half 92 bears a higher pressure load than the first partition plate half 91. Therefore, by making the thickness t2 of the bottom plate portion of the recess 92a of the second partition plate half 92 thicker than the thickness t1 of the bottom plate portion of the recess 91a of the first partition plate half 91, the The rigidity of the first partition plate half 91 and the second partition plate half 92 overlapping the second cylinder 57 are optimized. In other words, the rigidity of the partition plate 56, which is a laminate of the first partition plate half 91 and the second partition plate half 92, is optimized. The partition plate 56 whose rigidity is optimized appropriately prevents refrigerant leakage at both the mating surfaces of the first compression chamber 61 and the partition plate 56 and the mating surfaces of the second compression chamber 62 and the partition plate 56.
 ここで、第一圧縮室61の吸込圧力Ps、第一圧縮室61から吐出され中圧流路75を介して第二圧縮室62へ供給される中間圧力Pm、および第二圧縮室62の吐出圧力Pdは、(吸込圧力Ps)<(中間圧力Pm)<(吐出圧力Pd)の関係にある。運転中には常に(Pd-Pm)>(Pm-Ps)の条件が成り立つ。これらの条件のもと、各圧力は運転条件によって異なる。中間圧力Pmは、Pm=√(Pd×Ps)の関係で変化する。 Here, the suction pressure Ps of the first compression chamber 61, the intermediate pressure Pm discharged from the first compression chamber 61 and supplied to the second compression chamber 62 via the intermediate pressure flow path 75, and the discharge pressure of the second compression chamber 62. Pd has a relationship of (suction pressure Ps)<(intermediate pressure Pm)<(discharge pressure Pd). During operation, the condition (Pd-Pm)>(Pm-Ps) always holds true. Under these conditions, each pressure will vary depending on the operating conditions. The intermediate pressure Pm changes according to the relationship Pm=√(Pd×Ps).
 したがって、差圧(Pm-Ps)の面圧荷重が、第一仕切板半体91の凹部91aに作用し、差圧(Pd-Pm)の面圧荷重が第二仕切板半体92の凹部92aに作用する。 Therefore, the surface pressure load of the differential pressure (Pm-Ps) acts on the recess 91a of the first partition plate half 91, and the surface pressure load of the differential pressure (Pd-Pm) acts on the recess 92 of the second partition plate half 92. 92a.
 第一仕切板半体91および第二仕切板半体92は、実質的に同一の厚さ寸法を有する一方で、第二仕切板半体92の底板部分の厚さt2は、第一仕切板半体91の底板部分の厚さt1より厚い。これらの寸法関係は、仕切板56に必要とされる剛性を最適化する。 The first partition plate half 91 and the second partition plate half 92 have substantially the same thickness dimension, while the thickness t2 of the bottom plate portion of the second partition plate half 92 is different from that of the first partition plate half. It is thicker than the thickness t1 of the bottom plate portion of the half body 91. These dimensional relationships optimize the required stiffness of the partition plate 56.
 第一仕切板半体91および第二仕切板半体92の厚さ寸法を同一にすることで、第一仕切板半体91および第二仕切板半体92の材料を共通化することができる。また、上下に対向する第一仕切板半体91および第二仕切板半体92の両方に凹部を設けることで、中圧流路75の通路面積が維持され、性能を低下なく、仕切板56全体の剛性を向上できる。仕切板56全体の剛性が向上すると、仕切板56の変形が抑制され、中圧流路75からの冷媒漏れが防止される。 By making the thickness dimensions of the first partition plate half 91 and the second partition plate half 92 the same, the material of the first partition plate half 91 and the second partition plate half 92 can be made common. . In addition, by providing recesses in both the first partition plate half 91 and the second partition plate half 92 that face each other vertically, the passage area of the intermediate pressure flow path 75 is maintained, and the entire partition plate 56 is The rigidity can be improved. When the rigidity of the partition plate 56 as a whole is improved, deformation of the partition plate 56 is suppressed, and refrigerant leakage from the intermediate pressure channel 75 is prevented.
 また、孔91bおよび第一吐出弁76が配置される弁座近傍の厚さt3は、t1と同等かさらに小さくても良い。これにより、圧力差に対して必要な剛性を確保しつつ、孔91b部分の容積を小さくすることができる。 Further, the thickness t3 near the valve seat where the hole 91b and the first discharge valve 76 are arranged may be equal to or smaller than t1. Thereby, the volume of the hole 91b portion can be reduced while ensuring the necessary rigidity against the pressure difference.
 孔91bの容積部分の冷媒は、第一シリンダー55から吐出されない。そのため、孔91bは、デッドボリュームとなり体積効率の低下を招き圧縮機の効率が低下させる。そこで、t3≦t1<t2の範囲に設定することで、孔91bのデッドボリュームが低減し、圧縮機2の効率低下が抑制される。 The refrigerant in the volume of the hole 91b is not discharged from the first cylinder 55. Therefore, the holes 91b become dead volumes, resulting in a decrease in volumetric efficiency and a decrease in the efficiency of the compressor. Therefore, by setting the range of t3≦t1<t2, the dead volume of the hole 91b is reduced, and a decrease in efficiency of the compressor 2 is suppressed.
 また、仕切板56の合わせ面に凹部91a、92aによる中圧流路75を配置することによって、圧縮機2内外における流路配置の自由度が向上する。 Further, by arranging the intermediate pressure passage 75 formed by the recesses 91a and 92a on the mating surfaces of the partition plate 56, the degree of freedom in arranging the passages inside and outside the compressor 2 is improved.
 なお、第一仕切板半体91の板厚と第二仕切板半体92とが同一であれば、第一仕切板半体91と第二仕切板半体92との合わせ面は、仕切板56の上下方向における実質的な中央に位置する。第一仕切板半体91と第二仕切板半体92との合わせ面を図1および図4の二点鎖線MP1のように、仕切板56の上下方向における実質的な中央より下方へ配置しても良い。例えば、第二仕切板半体92の上下方向の板厚を薄くして一様な板厚にして凹部92aをなくす一方、第一仕切板半体91の上下方向の板厚を厚くして、第一仕切板半体91のみに、より深い凹部91aを設けても良い。この場合の凹部91aの深さは、第一仕切板半体91および第二仕切板半体92の両方に凹部91a、92aを設ける場合のそれぞれの凹部91a、92aに等しければ良い。 Note that if the thickness of the first partition plate half 91 and the second partition plate half 92 are the same, the mating surfaces of the first partition plate half 91 and the second partition plate half 92 will be the same as that of the partition plate half 91. 56 in the substantial center in the vertical direction. The mating surfaces of the first partition plate half 91 and the second partition plate half 92 are arranged below the substantial center in the vertical direction of the partition plate 56, as indicated by the two-dot chain line MP1 in FIGS. It's okay. For example, the vertical thickness of the second partition plate half 92 is made thinner and uniform to eliminate the recess 92a, while the vertical thickness of the first partition plate half 91 is increased. A deeper recess 91a may be provided only in the first partition plate half 91. The depth of the recess 91a in this case should be equal to the recesses 91a and 92a in the case where the recesses 91a and 92a are provided in both the first partition plate half 91 and the second partition plate half 92, respectively.
 また、第一仕切板半体91と第二仕切板半体92との合わせ面を図1および図4の二点鎖線MP2のように、仕切板56の上下方向における実質的な中央より上方へ配置することで第二仕切板半体92の剛性はさらに向上する。例えば、第一仕切板半体91の上下方向の板厚を薄くして一様な板厚にして凹部91aをなくす一方、第二仕切板半体92の上下方向の板厚を厚くして、第二仕切板半体92のみに、より深い凹部92aを設けても良い。この場合の凹部92aの深さは、第一仕切板半体91および第二仕切板半体92の両方に凹部91a、92aを設ける場合のそれぞれの凹部91a、92aに等しければ良い。そうすることで、第二圧縮室62を閉じる第二仕切板半体92の剛性は、さらに向上する。 Further, the mating surfaces of the first partition plate half 91 and the second partition plate half 92 are moved upward from the substantial center in the vertical direction of the partition plate 56, as indicated by the two-dot chain line MP2 in FIGS. With this arrangement, the rigidity of the second partition plate half 92 is further improved. For example, the vertical thickness of the first partition plate half 91 is made thinner and uniform to eliminate the recess 91a, while the vertical thickness of the second partition plate half 92 is increased. A deeper recess 92a may be provided only in the second partition plate half 92. The depth of the recess 92a in this case should be equal to the recesses 91a and 92a in the case where the recesses 91a and 92a are provided in both the first partition plate half 91 and the second partition plate half 92, respectively. By doing so, the rigidity of the second partition plate half 92 that closes the second compression chamber 62 is further improved.
 つまり、仕切板56は、第一仕切板半体91および第二仕切板半体92の少なくともいずれか一方に中圧流路75を区画する凹部、つまり少なくとも凹部91a、92aのいずれか一方を有していれば良い。 That is, the partition plate 56 has a recess that defines the medium pressure flow path 75 in at least one of the first partition plate half 91 and the second partition plate half 92, that is, at least one of the recesses 91a and 92a. It's fine as long as it's there.
 図5は、本発明の実施形態に係る圧縮機の仕切板の他の例の縦断面図である。 FIG. 5 is a longitudinal sectional view of another example of the partition plate of the compressor according to the embodiment of the present invention.
 図5に示すように、仕切板56Aは、第一仕切板半体91よりも厚い第二仕切板半体92を備え、かつ第一仕切板半体91の凹部91aよりも深く窪んだ第二仕切板半体92の凹部92aを有していても良い。このように構成される仕切板56Aは、高段側の圧力がより高圧となる場合にも十分な剛性を有することができる。 As shown in FIG. 5, the partition plate 56A includes a second partition plate half 92 that is thicker than the first partition plate half 91, and a second partition plate half 92 that is deeper than the recess 91a of the first partition plate half 91. The partition plate half body 92 may have a recessed portion 92a. The partition plate 56A configured in this manner can have sufficient rigidity even when the pressure on the higher stage side becomes higher.
 なお、上方に配置される第一シリンダー55、第一偏心部51、第一ローラー63、および第一ブレード65を含む圧縮機構およびその構成要素を、「第一」に代えて「低圧側」を付して呼ぶ場合があり、下方に配置される第二シリンダー57、第二偏心部52、第二ローラー64、および第二ブレード66を含む圧縮機構およびその構成要素を、「第二」に代えて「高圧側」を付して呼ぶ場合がある。例えば、第一シリンダー55を低圧側シリンダー55と呼び、第二シリンダー57を高圧側シリンダー57と呼ぶ。上方に配置される圧縮機構を低段側圧縮機構と呼ぶ場合があり、下方に配置される圧縮機構を高段側圧縮機構と呼ぶ場合がある。 Note that the compression mechanism including the first cylinder 55, the first eccentric portion 51, the first roller 63, and the first blade 65 disposed above and its components are referred to as "low pressure side" instead of "first". The compression mechanism and its components, including the second cylinder 57, second eccentric part 52, second roller 64, and second blade 66 arranged below, may be referred to as "second". It is sometimes called with the ``high pressure side'' added. For example, the first cylinder 55 is called the low pressure side cylinder 55, and the second cylinder 57 is called the high pressure side cylinder 57. The compression mechanism arranged above may be called a low-stage compression mechanism, and the compression mechanism arranged below may be called a high-stage compression mechanism.
 また、中間配管13は、第一圧縮室61を外部マフラー39に繋げる上流側中間配管13uと、外部マフラー39をインタークーラー41に繋げる中途管13mと、インタークーラー41を第二圧縮室62に繋げる下流側中間配管13dと、を含んでいる。
 上流側中間配管13uは、第一圧縮室61から吐出される中圧の冷媒ガスを密閉容器16の外側へ導く。
Further, the intermediate pipe 13 includes an upstream intermediate pipe 13u that connects the first compression chamber 61 to the external muffler 39, a midway pipe 13m that connects the external muffler 39 to the intercooler 41, and a downstream side that connects the intercooler 41 to the second compression chamber 62. It includes an intermediate pipe 13d.
The upstream intermediate pipe 13u guides the medium-pressure refrigerant gas discharged from the first compression chamber 61 to the outside of the closed container 16.
 下流側中間配管13dは、密閉容器16外で第二冷媒配管9に合流する。なお、下流側中間配管13dと第二冷媒配管9との合流点から下流側の配管は、第二冷媒配管9と下流側中間配管13dとを兼務している。下流側中間配管13dは、外部マフラー39から吐出されてインタークーラー41を通過した中圧の冷媒ガスを密閉容器16の内側の第二圧縮室62へ導く。 The downstream intermediate pipe 13d joins the second refrigerant pipe 9 outside the closed container 16. Note that the pipe on the downstream side from the junction of the downstream intermediate pipe 13d and the second refrigerant pipe 9 serves both as the second refrigerant pipe 9 and the downstream intermediate pipe 13d. The downstream intermediate pipe 13d guides the medium-pressure refrigerant gas discharged from the external muffler 39 and passed through the intercooler 41 to the second compression chamber 62 inside the closed container 16.
 圧縮機2は、第一圧縮室61の吐出側に設けられる外部マフラー39に加えて、第二圧縮室62の吸込側に設けられる第二外部マフラー101を備えていても良い。外部マフラー39は、第一圧縮室61から吐出される中圧の冷媒ガスの圧力脈動を低減させる。圧力脈動の低減は、外部マフラー39から下流側へ流出する冷媒ガスによって励起される中間配管13の振動を低減させる。第二外部マフラー101は、第二冷媒配管9と下流側中間配管13dとを兼務する配管に接続されている。第二外部マフラー101は、第二圧縮室62に吸い込まれる中圧の冷媒ガスの圧力脈動を低減させる。圧力脈動の低減は、中間配管13の振動および圧縮機2の振動と周囲の騒音を低減し、信頼性を確保する。 In addition to the external muffler 39 provided on the discharge side of the first compression chamber 61, the compressor 2 may include a second external muffler 101 provided on the suction side of the second compression chamber 62. The external muffler 39 reduces pressure pulsations of the medium-pressure refrigerant gas discharged from the first compression chamber 61. Reducing the pressure pulsation reduces vibrations in the intermediate pipe 13 that are excited by the refrigerant gas flowing downstream from the external muffler 39. The second external muffler 101 is connected to a pipe that serves both as the second refrigerant pipe 9 and the downstream intermediate pipe 13d. The second external muffler 101 reduces pressure pulsations of the medium-pressure refrigerant gas sucked into the second compression chamber 62. Reducing pressure pulsations reduces vibrations of the intermediate pipe 13, vibrations of the compressor 2, and ambient noise, thereby ensuring reliability.
 以下、シリンダー55、57、ローラー63、64、およびクランク軸19の偏心部48についてさらに説明する。 Hereinafter, the cylinders 55 and 57, the rollers 63 and 64, and the eccentric portion 48 of the crankshaft 19 will be further explained.
 第一シリンダー55の高さは、第一圧縮室61の高さと略同一である。第二シリンダー57の高さは、第二圧縮室62の高さと略同一である。第一圧縮室61の高さと第二圧縮室62の高さは同一である。第一圧縮室61の内径寸法D1は、第二圧縮室62の内径寸法D2より大きい。第一圧縮室61の容積は、第二圧縮室62の容積より大きい。 The height of the first cylinder 55 is approximately the same as the height of the first compression chamber 61. The height of the second cylinder 57 is approximately the same as the height of the second compression chamber 62. The height of the first compression chamber 61 and the height of the second compression chamber 62 are the same. The inner diameter dimension D1 of the first compression chamber 61 is larger than the inner diameter dimension D2 of the second compression chamber 62. The volume of the first compression chamber 61 is larger than the volume of the second compression chamber 62.
 内径寸法D1の第一圧縮室61の内壁面および内径寸法D2の第二圧縮室62の内壁面は、平面視で仕切板56に設けられる中圧流路75の内壁面より内側に設けられている。仕切板56に設けられる中圧流路75の内壁面は、例えば回転中心線Cに平行な面を含んでいる。 The inner wall surface of the first compression chamber 61 having the inner diameter dimension D1 and the inner wall surface of the second compression chamber 62 having the inner diameter dimension D2 are provided inside the inner wall surface of the intermediate pressure flow path 75 provided in the partition plate 56 in plan view. . The inner wall surface of the intermediate pressure channel 75 provided in the partition plate 56 includes, for example, a surface parallel to the rotation center line C.
 図2に示すように、クランク軸19の第一偏心部51は、回転中心線Cから第一偏心長さL1で偏心している。換言すると、第一偏心部51の第一偏心長さL1は、回転中心線Cから第一偏心部51の中心までの長さである。図3に示すように、クランク軸19の第二偏心部52は、回転中心線Cから第二偏心長さL2で偏心している。換言すると、第二偏心部52の第二偏心長さL2は、回転中心線Cから第二偏心部52の中心までの長さである。第二偏心長さL2は、第一偏心長さL1より小さいことが好ましい。なお、第一偏心部51および第二偏心部52は、180度の位相差で偏心しており、図2と図3は同一タイミングでの偏心部の状態となっている。 As shown in FIG. 2, the first eccentric portion 51 of the crankshaft 19 is eccentric from the rotation center line C by a first eccentric length L1. In other words, the first eccentric length L1 of the first eccentric portion 51 is the length from the rotation center line C to the center of the first eccentric portion 51. As shown in FIG. 3, the second eccentric portion 52 of the crankshaft 19 is eccentric from the rotation center line C by a second eccentric length L2. In other words, the second eccentric length L2 of the second eccentric portion 52 is the length from the rotation center line C to the center of the second eccentric portion 52. The second eccentric length L2 is preferably smaller than the first eccentric length L1. Note that the first eccentric part 51 and the second eccentric part 52 are eccentric with a phase difference of 180 degrees, and FIGS. 2 and 3 show the states of the eccentric parts at the same timing.
 第一ローラー63の中心は、第一偏心部51の中心に一致している。第一ローラー63は、回転中心線Cから第一偏心長さL1で偏心して回転する。第二ローラー64の中心は、第二偏心部52の中心に一致している。第二ローラー64は、回転中心線Cから第二偏心長さL2で偏心して回転する。 The center of the first roller 63 coincides with the center of the first eccentric portion 51. The first roller 63 rotates eccentrically from the rotation center line C by a first eccentric length L1. The center of the second roller 64 coincides with the center of the second eccentric portion 52. The second roller 64 rotates eccentrically from the rotation center line C by a second eccentric length L2.
 ブレード65、66およびローラー63、64によって区画される圧縮室61、62の吸込空間S1は、ブレード65、66の回転方向R1側の面からローラー63、64と圧縮室61、62の内壁面との接点までの空間である。圧縮空間S2は、ブレード65、66の反回転方向R2側の面からローラー63、64と圧縮室61、62の内壁面との接点までの空間である。換言すれば、シリンダー55、57内のブレード65、66およびローラー63、64で区切られた空間の内、吸込部68、71に繋がる空間が吸込空間S1であり、吐出部69、72に繋がる空間が圧縮空間S2である。例えばローラー63、64がブレード65、66方向に位置する状態など、吸込部68、71および吐出部69、72に繋がる空間は、吸込空間S1および吐出空間S2で区別しない。 The suction space S1 of the compression chambers 61, 62 defined by the blades 65, 66 and the rollers 63, 64 is connected to the rollers 63, 64 and the inner wall surface of the compression chambers 61, 62 from the surface on the rotation direction R1 side of the blades 65, 66. This is the space up to the contact point. The compression space S2 is a space from the surfaces of the blades 65 and 66 on the opposite rotational direction R2 to the contact points between the rollers 63 and 64 and the inner wall surfaces of the compression chambers 61 and 62. In other words, among the spaces separated by the blades 65, 66 and rollers 63, 64 in the cylinders 55, 57, the space connected to the suction parts 68, 71 is the suction space S1, and the space connected to the discharge parts 69, 72 is the suction space S1. is the compressed space S2. For example, when the rollers 63 and 64 are located in the direction of the blades 65 and 66, the spaces connected to the suction sections 68 and 71 and the discharge sections 69 and 72 are not distinguished as a suction space S1 and a discharge space S2.
 図6の(a)は、図3に示すB―B’線の断面図であり、(b)は(a)に示すD-D’線の部分断面図である。図6(a)では、第二偏心部52、第二ローラー64および第二ブレード66を省略している。 (a) of FIG. 6 is a cross-sectional view taken along the line B-B' shown in FIG. 3, and (b) is a partial cross-sectional view taken along the line D-D' shown in (a). In FIG. 6A, the second eccentric portion 52, the second roller 64, and the second blade 66 are omitted.
 図3および図6に示すように、第二シリンダー57は、第二ブレード66と第二吸込部71の間に溝104を有している。溝104は、第二ブレード66の回転方向R1側に隣接して配置されている。溝104は、第二ブレード66の回転方向R1側から第二吸込部71の反回転方向R2側まで第二圧縮室62の内壁面に沿って延びている。溝104の回転方向側の端縁は、第二吸込部71に繋がっている。溝104は、第二圧縮室62の内壁面の上部を外側に向かって凹ませて設けられている。 As shown in FIGS. 3 and 6, the second cylinder 57 has a groove 104 between the second blade 66 and the second suction part 71. The groove 104 is arranged adjacent to the second blade 66 on the rotation direction R1 side. The groove 104 extends along the inner wall surface of the second compression chamber 62 from the rotational direction R1 side of the second blade 66 to the opposite rotational direction R2 side of the second suction section 71. The edge of the groove 104 on the rotational direction side is connected to the second suction portion 71 . The groove 104 is provided by recessing the upper part of the inner wall surface of the second compression chamber 62 toward the outside.
 以下、圧縮室61、62の冷媒の吸込動作および圧縮動作について説明する。 Hereinafter, the refrigerant suction operation and compression operation of the compression chambers 61 and 62 will be explained.
 圧縮機構部18のローラー63、64は、電動機部17の回転動力によってシリンダー55、57の圧縮室61、62内で回転する。圧縮室61、62の吸込空間S1は、ブレード65、66の方位に位置するローラー63、64が回転方向R1に回転し始めると拡張され、吸込部68、71から冷媒が流入する。圧縮空間S2は、ブレード65、66の方位に位置するローラー63、64が回転方向R1に回転し始めると縮小され、圧縮空間S2内の冷媒を圧縮して吐出部69、72から吐出する。 The rollers 63 and 64 of the compression mechanism section 18 are rotated within the compression chambers 61 and 62 of the cylinders 55 and 57 by the rotational power of the electric motor section 17. The suction spaces S1 of the compression chambers 61 and 62 are expanded when the rollers 63 and 64 located in the direction of the blades 65 and 66 begin to rotate in the rotational direction R1, and refrigerant flows in from the suction portions 68 and 71. The compression space S2 is reduced when the rollers 63 and 64 located in the direction of the blades 65 and 66 begin to rotate in the rotation direction R1, and the refrigerant in the compression space S2 is compressed and discharged from the discharge portions 69 and 72.
 吸込空間S1で冷媒の吸込が開始する吸込開始角度αは、ブレード65、66の方位にあるローラー63、64が、回転方向R1に回転して吸込部68、71から冷媒の流入が始まるまでの変位角である。第一圧縮室61の吸込開始角度α1は、第一圧縮室61を上方から見て、第一ブレード65の中心線と第一吸込部68の中心線との間の角度である。第二圧縮室62の吸込開始角度α2は、第二圧縮室62を上方から見て、第二ブレード66の中心線と溝104の第二ブレード66側の先端部および回転中心線Cを結ぶ線との間の角度である。第一圧縮室61の吸込開始角度α1と第二圧縮室62の吸込開始角度α2は、略同一である。 The suction start angle α at which suction of refrigerant starts in the suction space S1 is the angle at which the rollers 63 and 64 located in the direction of the blades 65 and 66 rotate in the rotation direction R1 and the refrigerant begins to flow from the suction portions 68 and 71. is the displacement angle. The suction start angle α1 of the first compression chamber 61 is the angle between the center line of the first blade 65 and the center line of the first suction portion 68 when the first compression chamber 61 is viewed from above. The suction start angle α2 of the second compression chamber 62 is a line connecting the center line of the second blade 66, the tip of the groove 104 on the second blade 66 side, and the rotation center line C when the second compression chamber 62 is viewed from above. is the angle between The suction start angle α1 of the first compression chamber 61 and the suction start angle α2 of the second compression chamber 62 are substantially the same.
 ローラー63、64が吸込部68、71の方位から回転方向R1に向かって吐出部69、72の方位に回転するまでの間、吸込部68、71に連通する吸込空間S1に冷媒が流入する。 Until the rollers 63 and 64 rotate from the direction of the suction parts 68 and 71 toward the direction of rotation R1 and the direction of the discharge parts 69 and 72, the refrigerant flows into the suction space S1 communicating with the suction parts 68 and 71.
 すなわち、第一シリンダー55において、ローラー63がブレード65の方位から吸込開始角度α1=β1まで回転する間、吸込空間S1と吐出空間S2の区別はない。ローラー63が吸込部68の方位である角度α1(=β1)の位置から回転方向R1に回転し吐出部69へ到達するまでの間、吸込部68に連通する吸込空間S1へ冷媒が流入する。 That is, in the first cylinder 55, while the roller 63 rotates from the direction of the blade 65 to the suction start angle α1=β1, there is no distinction between the suction space S1 and the discharge space S2. The refrigerant flows into the suction space S1 communicating with the suction part 68 until the roller 63 rotates in the rotation direction R1 from the position of the angle α1 (=β1), which is the direction of the suction part 68, and reaches the discharge part 69.
 また、第二シリンダー57において、ローラー64がブレード66の方位から圧縮開始角度β2まで回転する間、吸込空間S1と吐出空間S2の区別はない。ローラー63が吸込部68の方位である角度β2の位置から回転方向R1に回転し吐出部69へ到達するまでの間、吸込部71に連通する吸込空間S1には冷媒が流入する。 Furthermore, in the second cylinder 57, while the roller 64 rotates from the direction of the blade 66 to the compression start angle β2, there is no distinction between the suction space S1 and the discharge space S2. The refrigerant flows into the suction space S1 communicating with the suction part 71 until the roller 63 rotates in the rotation direction R1 from the position of the angle β2, which is the orientation of the suction part 68, and reaches the discharge part 69.
 圧縮空間S2で冷媒の圧縮が開始する圧縮開始角度βは、ブレード65、66の方位にあるローラー63、64の位置と、回転方向R1に回転して冷媒の圧縮が始まるローラー63、64の位置との中心角である。第一圧縮室61の圧縮開始角度β1は、第一圧縮室61を上方から見て、第一ブレード65の中心線と第一吸込部68の中心線との間の角度である。第二圧縮室62の圧縮開始角度β2は、第二圧縮室62を上方から見て、第二ブレード66の中心線と第二吸込部71の中心線との間の角度である。第二圧縮室62の圧縮開始角度β2は、第一圧縮室61の圧縮開始角度β1より大きい。 The compression start angle β at which compression of the refrigerant starts in the compression space S2 is determined by the positions of the rollers 63 and 64 in the direction of the blades 65 and 66, and the position of the rollers 63 and 64 that rotate in the rotation direction R1 and start compression of the refrigerant. is the central angle with. The compression start angle β1 of the first compression chamber 61 is the angle between the center line of the first blade 65 and the center line of the first suction portion 68 when the first compression chamber 61 is viewed from above. The compression start angle β2 of the second compression chamber 62 is the angle between the center line of the second blade 66 and the center line of the second suction portion 71 when the second compression chamber 62 is viewed from above. The compression start angle β2 of the second compression chamber 62 is larger than the compression start angle β1 of the first compression chamber 61.
 ローラー63、64がブレード65、66の方位から圧縮開始角度βまで回転する間、つまりローラー63、64がブレード65、66の方位からβ度回転する間、圧縮空間S2は、吸込部68、71(第二圧縮室62の圧縮空間S2では第二吸込部71および溝104)に繋がっている。そのため、冷媒が吸込部68、71(第二圧縮室62の圧縮空間S2では第二吸込部71および溝104)に流出し、冷媒は、概ね圧縮されない。ローラー63、64が吸込部68、71の方位からブレード65、66の方位に回転するまでの間、つまりローラー63、64が吸込部68、71から(360-β)度を回転する間、圧縮空間S2は吸込部68、71(第二圧縮室62の圧縮空間S2では第二吸込部71および溝104)に繋がっていない。そのため、冷媒は、圧縮される。このとき、圧縮空間S2の圧力が所定の圧力まで上昇すると吐出弁76、81の吐出孔が開放されて所定圧の冷媒が吐出部69、72から吐出される。 While the rollers 63, 64 rotate from the orientation of the blades 65, 66 to the compression start angle β, that is, while the rollers 63, 64 rotate by β degrees from the orientation of the blades 65, 66, the compression space S2 is (The compression space S2 of the second compression chamber 62 is connected to the second suction portion 71 and the groove 104). Therefore, the refrigerant flows out to the suction parts 68 and 71 (the second suction part 71 and the groove 104 in the compression space S2 of the second compression chamber 62), and the refrigerant is generally not compressed. Until the rollers 63, 64 rotate from the direction of the suction parts 68, 71 to the direction of the blades 65, 66, that is, while the rollers 63, 64 rotate (360-β) degrees from the suction parts 68, 71, compression The space S2 is not connected to the suction parts 68 and 71 (the second suction part 71 and the groove 104 in the compression space S2 of the second compression chamber 62). Therefore, the refrigerant is compressed. At this time, when the pressure in the compression space S2 rises to a predetermined pressure, the discharge holes of the discharge valves 76 and 81 are opened, and refrigerant at a predetermined pressure is discharged from the discharge portions 69 and 72.
 ローラー63、64がこのように(360-β)度を回転してブレード65、66の方位に位置した時に、圧縮空間S2は容積が零になり、圧縮空間S2内のすべての冷媒の吐出が完了する。ブレード65、66の方位にあるローラー63、64が一回転したときに圧縮空間S2の吐出部69、72から吐出される冷媒の排除容積は、圧縮室61、62の容積、ローラー63、64の外径寸法d1、d2、シリンダー55、57の高さ、および圧縮開始角度βによって設定される。このため、第一圧縮室61の排除容積は、第二圧縮室62の排除容積より大きく設定されて圧縮機2の圧縮効率は効果的に向上している。 When the rollers 63 and 64 rotate (360-β) degrees in this way and are positioned in the direction of the blades 65 and 66, the volume of the compression space S2 becomes zero, and all the refrigerant in the compression space S2 is discharged. Complete. When the rollers 63, 64 in the direction of the blades 65, 66 make one revolution, the displacement volume of the refrigerant discharged from the discharge portions 69, 72 of the compression space S2 is the volume of the compression chambers 61, 62, the volume of the rollers 63, 64, It is set by the outer diameter dimensions d1 and d2, the heights of the cylinders 55 and 57, and the compression start angle β. Therefore, the displacement volume of the first compression chamber 61 is set larger than the displacement volume of the second compression chamber 62, and the compression efficiency of the compressor 2 is effectively improved.
 図6(a)および図6(b)に示すように、溝104は、第二圧縮室62の内壁面の上部のみを外側に向かって凹ませて設けられているが、第二吸込部71に繋がっていればこれに限られない。 As shown in FIGS. 6(a) and 6(b), the groove 104 is provided by recessing only the upper part of the inner wall surface of the second compression chamber 62 toward the outside. It is not limited to this as long as it is connected to.
 図7の(a)は、本発明の実施形態における溝の変形例を示す断面図であり、(b)は(a)に示すE-E’線の部分断面図である。 FIG. 7(a) is a sectional view showing a modified example of the groove in the embodiment of the present invention, and FIG. 7(b) is a partial sectional view taken along the line E-E' shown in FIG. 7(a).
 図8の(a)は、本発明の実施形態における溝の変形例を示す断面図であり、(b)は(a)に示すF-F’線の部分断面図である。 FIG. 8(a) is a sectional view showing a modification of the groove in the embodiment of the present invention, and FIG. 8(b) is a partial sectional view taken along the line F-F' shown in FIG. 8(a).
 図9の(a)は、本発明の実施形態における溝の変形例を示す断面図であり、(b)は(a)に示すG-G’線の部分断面図である。図7(a)、図8(a)および図9(a)は、図6(a)と同様な箇所の断面図であり、第二偏心部52、第二ローラー64および第二ブレード66を省略している。 FIG. 9(a) is a sectional view showing a modification of the groove in the embodiment of the present invention, and FIG. 9(b) is a partial sectional view taken along the line GG' shown in FIG. 9(a). 7(a), FIG. 8(a), and FIG. 9(a) are cross-sectional views of the same parts as FIG. 6(a), and show the second eccentric part 52, the second roller 64, and the second blade 66. It is omitted.
 図7(a)および図7(b)に示すように、溝104の変形例である溝104eは、第二圧縮室62の内壁面の上部および下部の少なくともいずれか一方を外側に向かって凹ませて設けられても良い。図8(a)および図8(b)に示すように、溝104の変形例である溝104fは、第二圧縮室62の内壁面の上部と下部との間の中間部分のみを外側に向かって凹ませて設けられても良い。また、これらの溝104、104e、104fの断面形状は、第二圧縮室62の内壁面を外側に向かって凹ませた段差形状だが、これに限らない。例えば、図9(b)に示すように、溝104の変形例である溝104gの断面形状はテーパー状であっても良い。 As shown in FIGS. 7(a) and 7(b), a groove 104e, which is a modification of the groove 104, concave at least one of the upper and lower parts of the inner wall surface of the second compression chamber 62 outward. It may also be provided. As shown in FIGS. 8(a) and 8(b), a groove 104f, which is a modified example of the groove 104, extends only the intermediate portion between the upper and lower parts of the inner wall surface of the second compression chamber 62 toward the outside. It may be provided in a recessed manner. Further, the cross-sectional shape of these grooves 104, 104e, and 104f is a stepped shape in which the inner wall surface of the second compression chamber 62 is recessed outward, but is not limited to this. For example, as shown in FIG. 9(b), a groove 104g, which is a modification of the groove 104, may have a tapered cross-sectional shape.
 また、溝104は、第二ブレード66の回転方向R1側から第二吸込部71まで第二圧縮室62の内壁面に沿って延びているが、これに限られない。溝104は、第二吸込部71に繋がって、かつ圧縮開始角度β2を第一圧縮室61の圧縮開始角度β1より大きく設定可能であれば良い。例えば、溝104は、第二吸込部71の回転方向R1側および反回転方向R2側の少なくともいずれか一方に沿って延びていても良い。この場合、吸込開始角度α2を第一圧縮室61の吸込開始角度α1と略同一にすることが好ましい。そうするために、例えば、第二吸込部71は、第二ブレード66の回転方向側に隣接して配置され、溝104は、第二吸込部71の回転方向側に隣接して配置され、かつ回転方向R1に沿って延びていれば良い。 Further, although the groove 104 extends along the inner wall surface of the second compression chamber 62 from the rotation direction R1 side of the second blade 66 to the second suction portion 71, the groove 104 is not limited thereto. It is sufficient that the groove 104 is connected to the second suction portion 71 and that the compression start angle β2 can be set larger than the compression start angle β1 of the first compression chamber 61. For example, the groove 104 may extend along at least one of the rotation direction R1 side and the counter-rotation direction R2 side of the second suction portion 71. In this case, it is preferable that the suction start angle α2 be substantially the same as the suction start angle α1 of the first compression chamber 61. In order to do so, for example, the second suction part 71 is arranged adjacent to the rotational direction side of the second blade 66, the groove 104 is arranged adjacent to the rotational direction side of the second suction part 71, and It is sufficient that it extends along the rotation direction R1.
 以上のように、本実施形態に係る冷凍サイクル装置1および圧縮機2は、低圧側圧縮室61を含む低圧側シリンダー55と、高圧側圧縮室62を含む高圧側シリンダー57と、を有する圧縮機構部18を備えている。低圧側圧縮室61の高さは、高圧側圧縮室62の高さと同一であり、低圧側圧縮室61の内径寸法D1は、高圧側圧縮室62の内径寸法D2より大きい。そのため、高圧側圧縮室62の容積は低圧側圧縮室61の容積より小さくなり、高圧側圧縮室62の排除容積は低圧側圧縮室61の排除容積より小さくなる。これにより、多段階圧縮の圧縮機2の圧縮効率は向上される。また、シリンダー55、57の高さは同じであって、シリンダー55、57の容積差は、高さの差によって設定されるものではなく、圧縮室61、62の内径寸法差によって設定されている。そのため、ブレード65、66の高さ寸法は、実質的に統一される。高さが統一されるブレード65、66の動作は、安定化させ易い。さらに、圧縮機構部18は主に高さ方向で小型化される。 As described above, the refrigeration cycle device 1 and the compressor 2 according to the present embodiment have a compression mechanism that includes the low-pressure side cylinder 55 including the low-pressure side compression chamber 61 and the high-pressure side cylinder 57 including the high-pressure side compression chamber 62. 18. The height of the low pressure side compression chamber 61 is the same as the height of the high pressure side compression chamber 62, and the inner diameter dimension D1 of the low pressure side compression chamber 61 is larger than the inner diameter dimension D2 of the high pressure side compression chamber 62. Therefore, the volume of the high-pressure side compression chamber 62 is smaller than the volume of the low-pressure side compression chamber 61, and the displaced volume of the high-pressure side compression chamber 62 is smaller than the displaced volume of the low-pressure side compression chamber 61. Thereby, the compression efficiency of the multi-stage compression compressor 2 is improved. Further, the heights of the cylinders 55 and 57 are the same, and the difference in volume between the cylinders 55 and 57 is not set by the difference in height, but by the difference in inner diameter dimensions of the compression chambers 61 and 62. . Therefore, the height dimensions of the blades 65 and 66 are substantially unified. The operation of blades 65 and 66 whose heights are unified is easy to stabilize. Furthermore, the compression mechanism section 18 is reduced in size mainly in the height direction.
 また、本実施形態に係る冷凍サイクル装置1および圧縮機2は、密閉容器16の中心軸から第一偏心長さL1で偏心した低圧側偏心部51と、密閉容器16の中心軸から第二偏心長さL2で偏心した高圧側偏心部52と、を有するクランク軸19を備えている。低圧側偏心部51の第一偏心長さL1は、高圧側偏心部52の第二偏心長さL2より大きい。そのため、低圧側偏心部51に嵌合する低圧側ローラー63の外径は小さくなり、低圧側圧縮室61の排除容積は大きくなる。また、高圧側偏心部52に嵌合する高圧側ローラー64の外径は大きくなり、高圧側圧縮室62の排除容積は小さくなる。したがって、圧縮機2の圧縮効率はさらに向上され、かつ圧縮機構部18の拡張を抑止する。 Furthermore, the refrigeration cycle device 1 and the compressor 2 according to the present embodiment have a low-pressure side eccentric portion 51 that is eccentric from the central axis of the closed container 16 by a first eccentric length L1, and a second eccentric portion 51 that is eccentric from the central axis of the closed container 16. The crankshaft 19 includes a high-pressure side eccentric portion 52 that is eccentric with a length L2. The first eccentric length L1 of the low pressure side eccentric part 51 is larger than the second eccentric length L2 of the high pressure side eccentric part 52. Therefore, the outer diameter of the low-pressure side roller 63 that fits into the low-pressure side eccentric portion 51 becomes small, and the displacement volume of the low-pressure side compression chamber 61 becomes large. Further, the outer diameter of the high-pressure side roller 64 that fits into the high-pressure side eccentric portion 52 becomes large, and the displacement volume of the high-pressure side compression chamber 62 becomes small. Therefore, the compression efficiency of the compressor 2 is further improved, and expansion of the compression mechanism section 18 is suppressed.
 さらに、本実施形態に係る冷凍サイクル装置1および圧縮機2は、高圧側圧縮室62の圧縮開始角度β1を低圧側圧縮室61の圧縮開始角度β2より大きく設定している。そのため、高圧側圧縮室62の排除容積は小さくなる。したがって、圧縮機2の圧縮効率はさらに向上され、圧縮機構部18の拡張を抑止する。 Further, in the refrigeration cycle device 1 and compressor 2 according to the present embodiment, the compression start angle β1 of the high pressure side compression chamber 62 is set to be larger than the compression start angle β2 of the low pressure side compression chamber 61. Therefore, the displacement volume of the high pressure side compression chamber 62 becomes small. Therefore, the compression efficiency of the compressor 2 is further improved, and expansion of the compression mechanism section 18 is suppressed.
 また、本実施形態に係る冷凍サイクル装置1および圧縮機2は、高圧側圧縮室62を区画する壁面に設けられて高圧側圧縮室62の高圧側吸込部71に繋がる溝104を有する高圧側シリンダー57を備えている。そのため、高圧側圧縮室62の吸込空間S1の吸込開始角度α2を小さく設定でき、かつ圧縮空間S2の圧縮開始角度β2を大きく設定できる。したがって、圧縮機2の圧縮効率はさらに向上され、圧縮機構部18の拡張を抑止する。 Furthermore, the refrigeration cycle device 1 and the compressor 2 according to the present embodiment include a high-pressure side cylinder having a groove 104 provided in a wall surface that partitions a high-pressure side compression chamber 62 and connected to a high-pressure side suction part 71 of the high-pressure side compression chamber 62. It is equipped with 57. Therefore, the suction start angle α2 of the suction space S1 of the high-pressure side compression chamber 62 can be set small, and the compression start angle β2 of the compression space S2 can be set large. Therefore, the compression efficiency of the compressor 2 is further improved, and expansion of the compression mechanism section 18 is suppressed.
 さらに、本実施形態に係る冷凍サイクル装置1および圧縮機2は、圧縮機構部18の低圧側シリンダー55および高圧側シリンダー57の間に設けられた仕切板56を有する圧縮機構部18を備えている。仕切板56および高圧側シリンダー57は、中圧流路75を有している。中圧流路75は、低圧側圧縮室61の低圧側吐出部69と高圧側圧縮室62の高圧側吸込部71とを繋いでいる。そのため、圧縮機構部18は、中圧流路75を効率的に設けることで拡張が抑止される。 Furthermore, the refrigeration cycle device 1 and the compressor 2 according to the present embodiment include a compression mechanism section 18 having a partition plate 56 provided between the low pressure side cylinder 55 and the high pressure side cylinder 57 of the compression mechanism section 18. . The partition plate 56 and the high pressure side cylinder 57 have an intermediate pressure passage 75. The intermediate pressure passage 75 connects the low pressure side discharge section 69 of the low pressure side compression chamber 61 and the high pressure side suction section 71 of the high pressure side compression chamber 62. Therefore, expansion of the compression mechanism section 18 is suppressed by efficiently providing the intermediate pressure flow path 75.
 また、本実施形態に係る冷凍サイクル装置1および圧縮機2の仕切板56は、第一仕切板半体91と、第一仕切板半体91の下に重ね合わされる第二仕切板半体92と、を有する。仕切板56は、第一仕切板半体91及び第二仕切板半体92の合わせ面に、中圧流路75の一部、つまり凹部91a、92aが設けられている。このため、中圧流路75の一部は、仕切板56に効率的に形成され、流路配置の自由度が向上する。また、中圧流路75の一部の下の第二仕切板半体92の厚みは、中圧流路75の一部の上の第一仕切板半体91の厚みより大きい。これにより、仕切板56の剛性が最適化され、冷媒の漏洩が抑制される。 Furthermore, the partition plate 56 of the refrigeration cycle device 1 and the compressor 2 according to the present embodiment includes a first partition plate half body 91 and a second partition plate half body 92 superimposed under the first partition plate half body 91. and has. In the partition plate 56, a part of the medium pressure flow path 75, that is, recesses 91a and 92a are provided on the mating surfaces of the first partition plate half 91 and the second partition plate half 92. Therefore, a part of the intermediate pressure flow path 75 is efficiently formed in the partition plate 56, and the degree of freedom in flow path arrangement is improved. Further, the thickness of the second partition plate half 92 below the part of the medium pressure passage 75 is greater than the thickness of the first partition plate half 91 above the part of the medium pressure passage 75. This optimizes the rigidity of the partition plate 56 and suppresses refrigerant leakage.
 また、本実施形態に係る冷凍サイクル装置1および圧縮機2は、仕切板56の中圧流路75が低圧側圧縮室61の吐出部69に接続され、高圧側シリンダーの中圧流路75を仕切板56の中圧流路75に接続し、かつ高圧側圧縮室62の外側に配置している。そのため、圧縮機構部18は、中圧流路75を効率的に設けることで拡張が抑止される。 In addition, in the refrigeration cycle device 1 and the compressor 2 according to the present embodiment, the medium pressure passage 75 of the partition plate 56 is connected to the discharge part 69 of the low pressure side compression chamber 61, and the medium pressure passage 75 of the high pressure side cylinder is connected to the partition plate 56. 56, and is arranged outside the high pressure side compression chamber 62. Therefore, expansion of the compression mechanism section 18 is suppressed by efficiently providing the intermediate pressure flow path 75.
 さらに、本実施形態に係る冷凍サイクル装置1および圧縮機2は、密閉容器16の外側に設けられる中間配管13を備えている。中圧流路75は、中間配管13を介して高圧側圧縮室62の高圧側吸込部71に繋がっている。このため、中圧流路75は、中間配管13を介して高圧側圧縮室62の高圧側吸込部71に接続できる。 Further, the refrigeration cycle device 1 and the compressor 2 according to the present embodiment include an intermediate pipe 13 provided outside the closed container 16. The intermediate pressure flow path 75 is connected to the high pressure side suction section 71 of the high pressure side compression chamber 62 via the intermediate pipe 13. Therefore, the intermediate pressure flow path 75 can be connected to the high pressure side suction portion 71 of the high pressure side compression chamber 62 via the intermediate pipe 13.
 したがって、本実施形態に係る冷凍サイクル装置1および圧縮機2によれば、多段型の圧縮機構部18の信頼性の低下を防ぎ、かつ小型化できる。 Therefore, according to the refrigeration cycle device 1 and the compressor 2 according to the present embodiment, the reliability of the multi-stage compression mechanism section 18 can be prevented from decreasing and the size can be reduced.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, substitutions, and changes can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, as well as within the scope of the invention described in the claims and its equivalents.
 1…冷凍サイクル装置、2…圧縮機、3…放熱器、4…第一膨張装置、5…第二膨張装置、6…吸熱器、7…アキュムレーター、8…第一冷媒配管、9…第二冷媒配管、12…導出管、13…中間配管、13u…上流側中間配管、13m…中途管、13d…下流側中間配管、16…密閉容器、17…電動機部、18…圧縮機構部、19…クランク軸、21…主軸受、21…主軸受、22…副軸受、22…副軸部、23…フレーム、26…胴部、27…上鏡板、28…下鏡板、31…吐出管、32…端子台、35…吸込端部、36…中間吐出端部、37…中間吸込端部、38…固定具、39…外部マフラー、41…インタークーラー、43…固定子、44…回転子、45…口出線、47…主軸部、48…偏心部、49…副軸部、51…第一偏心部、52…第二偏心部、55…第一シリンダー、56…仕切板、57…第二シリンダー、59…締結部材、61…第一圧縮室、62…第二圧縮室、63…第一ローラー、64…第二ローラー、65…第一ブレード、66…第二ブレード、68…第一吸込部、69…第一吐出部、71…第二吸込部、72…第二吐出部、75…中圧流路、76…第一吐出弁、79…高圧流路、81…第二吐出弁、82…第一吐出マフラー、83…第二吐出マフラー、91…第一仕切板半体、91a…凹部、91b…孔、92…第二仕切板半体、92a…凹部、92b…孔、101…第二外部マフラー、104、104e、104f、104g・・・溝、d1、d2…外径寸法、D1、D2…内径寸法、S1…吸込空間、S2…圧縮空間、t1、t2…厚さ。 1... Refrigeration cycle device, 2... Compressor, 3... Heat radiator, 4... First expansion device, 5... Second expansion device, 6... Heat absorber, 7... Accumulator, 8... First refrigerant piping, 9... Third Two refrigerant pipes, 12... Outlet pipe, 13... Intermediate pipe, 13u... Upstream intermediate pipe, 13m... Midway pipe, 13d... Downstream intermediate pipe, 16... Sealed container, 17... Electric motor section, 18... Compression mechanism section, 19 ...Crankshaft, 21...Main bearing, 21...Main bearing, 22...Sub bearing, 22...Subshaft part, 23...Frame, 26...Body part, 27...Upper head plate, 28...Lower head plate, 31...Discharge pipe, 32 ... terminal block, 35 ... suction end, 36 ... intermediate discharge end, 37 ... intermediate suction end, 38 ... fixture, 39 ... external muffler, 41 ... intercooler, 43 ... stator, 44 ... rotor, 45 ... Lead line, 47... Main shaft part, 48... Eccentric part, 49... Subshaft part, 51... First eccentric part, 52... Second eccentric part, 55... First cylinder, 56... Partition plate, 57... Second cylinder , 59... Fastening member, 61... First compression chamber, 62... Second compression chamber, 63... First roller, 64... Second roller, 65... First blade, 66... Second blade, 68... First suction part , 69...first discharge part, 71...second suction part, 72...second discharge part, 75...medium pressure passage, 76...first discharge valve, 79...high pressure passage, 81...second discharge valve, 82... First discharge muffler, 83... Second discharge muffler, 91... First partition plate half, 91a... Recess, 91b... Hole, 92... Second partition plate half, 92a... Recess, 92b... Hole, 101... Second External muffler, 104, 104e, 104f, 104g...groove, d1, d2...outer diameter dimension, D1, D2...inner diameter dimension, S1...suction space, S2...compression space, t1, t2...thickness.

Claims (8)

  1. 上下方向に延びる中心軸を有する密閉容器と、
     前記密閉容器内に設けられる電動機部と、
     前記密閉容器の前記中心軸から第一偏心長さで偏心する低圧側偏心部と、前記低圧側偏心部の下方に設けられて前記中心軸から第二偏心長さで偏心する高圧側偏心部とを有し、かつ前記電動機部によって前記中心軸を中心に回転駆動されるクランク軸と、
     導入されるガス状の冷媒を前記低圧側偏心部の動力で圧縮して吐出する低圧側圧縮室を有する低圧側シリンダーと、前記低圧側圧縮室から吐出された前記冷媒を前記高圧側偏心部の動力で圧縮する高圧側圧縮室を有する高圧側シリンダーと、前記低圧側シリンダーおよび前記高圧側シリンダーの間に設けられた仕切板と、を有する圧縮機構部と、を備え、
     前記低圧側圧縮室の高さは、前記高圧側圧縮室の高さと同じであり、
     前記低圧側圧縮室の内径寸法は、前記高圧側圧縮室の内径寸法より大きいロータリー式圧縮機。
    an airtight container having a central axis extending in the vertical direction;
    an electric motor section provided in the sealed container;
    a low-pressure side eccentric part that is eccentric from the central axis of the sealed container by a first eccentric length; and a high-pressure side eccentric part that is provided below the low-pressure side eccentric part and is eccentric from the central axis by a second eccentric length. and a crankshaft that is rotationally driven about the central shaft by the electric motor section;
    a low-pressure side cylinder having a low-pressure side compression chamber that compresses and discharges the introduced gaseous refrigerant using the power of the low-pressure side eccentric part; A compression mechanism section having a high pressure side cylinder having a high pressure side compression chamber that is compressed by power, and a partition plate provided between the low pressure side cylinder and the high pressure side cylinder,
    The height of the low pressure side compression chamber is the same as the height of the high pressure side compression chamber,
    The rotary compressor has an inner diameter dimension of the low pressure side compression chamber that is larger than an inner diameter dimension of the high pressure side compression chamber.
  2. 前記第一偏心長さは、前記第二偏心長さより大きい請求項1記載のロータリー式圧縮機。 The rotary compressor according to claim 1, wherein the first eccentric length is greater than the second eccentric length.
  3. 前記高圧側圧縮室の圧縮開始角度は、前記低圧側圧縮室の圧縮開始角度より大きい請求項1または2に記載のロータリー式圧縮機。 The rotary compressor according to claim 1 or 2, wherein a compression start angle of the high pressure side compression chamber is larger than a compression start angle of the low pressure side compression chamber.
  4. 前記高圧側シリンダーは、前記高圧側圧縮室を区画する壁面に設けられて前記高圧側圧縮室の吸込部に繋がる溝を有する請求項1から3のいずれか1項に記載のロータリー式圧縮機。 The rotary compressor according to any one of claims 1 to 3, wherein the high-pressure side cylinder has a groove that is provided on a wall surface that partitions the high-pressure side compression chamber and connects to a suction section of the high-pressure side compression chamber.
  5. 前記仕切板および前記高圧側シリンダーは、中圧流路を有し、
     前記中圧流路は、前記低圧側圧縮室の吐出部と前記高圧側圧縮室の吸込部とを繋ぐ請求項1から4のいずれか1項に記載のロータリー式圧縮機。
    The partition plate and the high pressure side cylinder have an intermediate pressure flow path,
    The rotary compressor according to any one of claims 1 to 4, wherein the intermediate pressure flow path connects a discharge part of the low pressure side compression chamber and a suction part of the high pressure side compression chamber.
  6. 前記仕切板は、第一仕切板半体と、前記第一仕切板半体の下方に重ね合わされる第二仕切板半体と、を有し、前記第一仕切板半体及び前記第二仕切板半体の合わせ面に前記中圧流路の一部が設けられ、
     前記中圧流路の一部の下の前記第二仕切板半体の厚みは、前記中圧流路の一部の上の前記第一仕切板半体の厚みより大きい請求項5に記載のロータリー式圧縮機。
    The partition plate includes a first partition plate half, and a second partition plate half stacked below the first partition plate half, and the first partition plate half and the second partition plate half are separated from each other. A part of the medium pressure flow path is provided on the mating surface of the plate halves,
    The rotary type according to claim 5, wherein the thickness of the second partition plate half below the part of the medium pressure flow path is greater than the thickness of the first partition plate half above the part of the medium pressure flow path. compressor.
  7. 前記密閉容器の外側に設けられる中間配管を備え、
     前記中圧流路は、前記中間配管を介して前記高圧側圧縮室の吸込部に繋がる請求項5または6に記載のロータリー式圧縮機。
    comprising an intermediate pipe provided outside the sealed container,
    The rotary compressor according to claim 5 or 6, wherein the intermediate pressure flow path is connected to the suction part of the high pressure side compression chamber via the intermediate piping.
  8. 請求項1から7のいずれか1項に記載のロータリー式圧縮機と、
     放熱器と、
     膨張装置と、
     吸熱器と、
     前記ロータリー式圧縮機、前記放熱器、前記膨張装置、および前記吸熱器を接続して前記冷媒を流通させる冷媒配管と、を備える冷凍サイクル装置。
     
    A rotary compressor according to any one of claims 1 to 7,
    radiator and
    an expansion device;
    a heat absorber;
    A refrigeration cycle device comprising: the rotary compressor, the radiator, the expansion device, and a refrigerant pipe that connects the heat absorber and allows the refrigerant to flow.
PCT/JP2022/014438 2022-03-25 2022-03-25 Rotary compressor and refrigeration cycle device WO2023181362A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/014438 WO2023181362A1 (en) 2022-03-25 2022-03-25 Rotary compressor and refrigeration cycle device
JP2024509663A JPWO2023181362A1 (en) 2022-03-25 2022-03-25
CN202280093465.9A CN118843745A (en) 2022-03-25 2022-03-25 Rotary compressor and refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/014438 WO2023181362A1 (en) 2022-03-25 2022-03-25 Rotary compressor and refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023181362A1 true WO2023181362A1 (en) 2023-09-28

Family

ID=88100850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014438 WO2023181362A1 (en) 2022-03-25 2022-03-25 Rotary compressor and refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2023181362A1 (en)
CN (1) CN118843745A (en)
WO (1) WO2023181362A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272988A (en) * 1987-04-30 1988-11-10 Toshiba Corp Two stage compression type compressor
JP2004084568A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Multistage compression type rotary compressor and displacement capacity ratio setting method therefor
JP2006226179A (en) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd Rotary compressor
WO2021033283A1 (en) 2019-08-21 2021-02-25 東芝キヤリア株式会社 Multi-stage rotary compressor and refrigeration cycle device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63272988A (en) * 1987-04-30 1988-11-10 Toshiba Corp Two stage compression type compressor
JP2004084568A (en) * 2002-08-27 2004-03-18 Sanyo Electric Co Ltd Multistage compression type rotary compressor and displacement capacity ratio setting method therefor
JP2006226179A (en) * 2005-02-17 2006-08-31 Sanyo Electric Co Ltd Rotary compressor
WO2021033283A1 (en) 2019-08-21 2021-02-25 東芝キヤリア株式会社 Multi-stage rotary compressor and refrigeration cycle device

Also Published As

Publication number Publication date
CN118843745A (en) 2024-10-25
JPWO2023181362A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US20150125330A1 (en) Compressor
JP2007113542A (en) Hermetic two-stage rotary compressor
US20110150683A1 (en) Rotary compressor
US9004888B2 (en) Rotary compressor having discharge groove to communicate compression chamber with discharge port near vane groove
JP5905005B2 (en) Multi-cylinder rotary compressor and refrigeration cycle apparatus
WO2023084722A1 (en) Compressor and refrigeration cycle device
JP3963740B2 (en) Rotary compressor
WO2023181362A1 (en) Rotary compressor and refrigeration cycle device
JP2008128069A (en) Hermetic two stage rotary compressor
CN111836965B (en) Rotary compressor and refrigeration cycle device
WO2023181364A1 (en) Rotary compressor and refrigeration cycle device
JP2004308968A (en) Heat exchanger
US20110135526A1 (en) Rotary compressor
CN114174684B (en) Multistage rotary compressor and refrigeration cycle device
WO2016110982A1 (en) Multi-cylinder hermetic compressor
JP7495813B2 (en) Compressor and refrigeration cycle device
JP4024056B2 (en) Rotary compressor
US11933305B2 (en) Rotary compressor with an oil groove facing the vane and exposed to a gap between the vane and the piston
WO2022080179A1 (en) Compressor and refrigeration cycle apparatus
JP2003201982A (en) Rotary compressor
WO2022004028A1 (en) Rotary compressor and refrigeration cycle device
WO2024111194A1 (en) Scroll compressor
JP2007092738A (en) Compressor
JP4830708B2 (en) Compressor
JP5359376B2 (en) Compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22933501

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024509663

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2022933501

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022933501

Country of ref document: EP

Effective date: 20241025