JP2008032234A - Compressor and heat pump device using the same - Google Patents

Compressor and heat pump device using the same Download PDF

Info

Publication number
JP2008032234A
JP2008032234A JP2004371854A JP2004371854A JP2008032234A JP 2008032234 A JP2008032234 A JP 2008032234A JP 2004371854 A JP2004371854 A JP 2004371854A JP 2004371854 A JP2004371854 A JP 2004371854A JP 2008032234 A JP2008032234 A JP 2008032234A
Authority
JP
Japan
Prior art keywords
working fluid
suction
pressure
compressor
expander
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004371854A
Other languages
Japanese (ja)
Inventor
Masaru Matsui
大 松井
Hiroshi Hasegawa
寛 長谷川
Atsuo Okaichi
敦雄 岡市
Yuji Ogata
雄司 尾形
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2004371854A priority Critical patent/JP2008032234A/en
Priority to PCT/JP2005/021349 priority patent/WO2006057212A1/en
Publication of JP2008032234A publication Critical patent/JP2008032234A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an expander integrated compressor for obtaining consistently high operating efficiency by reducing bypass pipe lines and embodying valve control to maximize power recovery from a high-pressure operating fluid while eliminating operating conditions (constraints) that "a density ratio is constant". <P>SOLUTION: The compressor comprises a compressor part 12 for compressing the operating fluid sucked into a compression chamber 13 by the rotation of a driving shaft 14, and an expander part 20 for expanding the operating fluid sucked into an expansion chamber 25 to obtain the rotating power of a power recovery shaft 26. There are provided a discharge pressure sensor 48 for detecting the discharge pressure of a discharge chamber 33 and a solenoid valve 40 for controlling the communication of a suction hole 27 with the expansion chamber 25. Opening/closing timing for the solenoid valve 40 is varied so that the amount of the operating fluid introduced into the expansion chamber 25 reaches a target amount which is found from discharge pressure obtained by the discharge pressure sensor 48 and target suction pressure for maximizing refrigerating cycle efficiency. Thus, consistently high operating efficiency can be obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高圧の作動流体を供給して回転動力を発生する膨張機と連結された膨張機一体型の圧縮機に関する。   The present invention relates to an expander-integrated compressor connected to an expander that supplies rotational pressure by supplying a high-pressure working fluid.

図5には、従来の一般的な動力回収式の空気調和装置のシステム構成を示している。図5において、本システムは、凝縮器101、蒸発器102、圧縮機103及び膨張機104を含み構成され、作動流体を圧縮する圧縮機103と、高圧の作動流体から回転動力を発生させる膨張機104とはモータ105に対して一軸に連結されている。すなわち、膨張機104では、高圧の作動流体が理想的には等エントロピー膨張することにより回転動力を発生させ、直接圧縮機103の駆動動力を補助する構成となっている。このように圧縮機103と膨張機104とを一軸に連結するのは、構造が単純で動力回収ロスが少ないためである。
このような従来の空気調和装置において、作動流体を二酸化炭素とした場合の、冷凍サイクル状態変化の様子を図6に示す。図6のモリエル線図(p−h線図)において、1→2は圧縮機103において作動流体を低圧圧力Plから高圧圧力Phに圧縮・昇圧する圧縮過程、2→3は凝縮器101における等圧放熱過程、3→4は膨張機104において作動流体を高圧圧力Phから低圧圧力Plに膨張させて動力回収を行う膨張過程、4→1は蒸発器102における等圧吸熱過程を示している。
しかし、圧縮機103と膨張機104とを一軸に連結した上記の構成では、圧縮機103と膨張機104とが常時同一回転数で回転するため、一定の冷媒循環量でシステムが運転される場合には、作動流体の「密度比=一定」の運転条件(制約)が発生し、例えば、システムの効率に影響を与える圧縮機103の吐出圧力(高圧圧力Ph)を適切に制御し難いなどの理由から、必ずしも高効率運転が実現できるとは限らない。
そこで、このような「密度比=一定」の運転条件(制約)を排除するための技術として、特許文献1記載の公知技術がある。図7に、従来の他の空気調和装置のシステム構成を示す。本空気調和装置では、膨張機104の吐出管路110と吸入管路111との間に、両者を連通させるバイパス管路112を設け、そのバイパス管路112にその通路面積を増減調整する制御弁106を設けている。
このような構成の空気調和装置は、以下の動作を行う。
圧縮機103の吐出温度の目標値を設定し、次に圧縮機103の吐出温度が該目標値になるように、制御弁106の開度を制御する。制御弁106が閉じる方向に制御されると、バイパス管路112を通る作動流体の量が少なくなり、膨張機104に入る作動流体の量が増加する。逆に、制御弁106が開く方向に制御されると、バイパス管路112を通る作動流体の量が多くなり、膨張機104に入る作動流体の量が減少する。このように制御弁106の開度を制御することによって、膨張機104を利用しながら高い運転効率を得るようにシステムの運転条件を自由に定めることができる。
また、「密度比=一定」の運転条件(制約)を排除するための別の技術として、特許文献2記載の公知技術がある。この技術は、システムの高圧圧力と低圧圧力との比(圧力比)が、膨張機設計の際に想定された圧力比よりも小さくなる運転条件において、作動流体の膨張後の圧力がシステムの低圧圧力より低くなり、動力回収量が低下すること(過膨張による損失)を防止するものである。即ち、膨張機の作動流体流入側から分岐して該膨張機の吸入/膨張過程位置に連通する連絡通路を備え、該連絡通路に作動流体の通過を制御するバルブを設ける構成とし、過膨張が発生する条件になると該バルブを開けて膨張機内に作動流体の一部を流入させ、膨張機に入る作動流体の量を増加させ、膨張後の作動流体の圧力を上昇させている。
特開2001−116371号公報 特開2004−197640号公報
FIG. 5 shows a system configuration of a conventional general power recovery type air conditioner. In FIG. 5, this system includes a condenser 101, an evaporator 102, a compressor 103, and an expander 104. The compressor 103 compresses the working fluid and an expander that generates rotational power from the high-pressure working fluid. 104 is connected to the motor 105 in one axis. That is, the expander 104 is configured to generate rotational power by ideally entropy expansion of the high-pressure working fluid and directly assist the driving power of the compressor 103. The reason why the compressor 103 and the expander 104 are connected to each other in this manner is that the structure is simple and the power recovery loss is small.
FIG. 6 shows how the refrigeration cycle changes when the working fluid is carbon dioxide in such a conventional air conditioner. In the Mollier diagram (ph diagram) in FIG. 6, 1 → 2 is a compression process in which the working fluid is compressed and boosted from the low pressure P1 to the high pressure Ph in the compressor 103, 2 → 3 is the condenser 101, etc. The pressure release process 3 → 4 indicates an expansion process in which the working fluid is expanded from the high pressure Ph to the low pressure Pl in the expander 104 to recover the power, and 4 → 1 indicates an isobaric heat absorption process in the evaporator 102.
However, in the above configuration in which the compressor 103 and the expander 104 are connected to one shaft, the compressor 103 and the expander 104 always rotate at the same rotation speed, and therefore the system is operated with a constant refrigerant circulation amount. The operating condition (constraint) of the working fluid “density ratio = constant” occurs, for example, it is difficult to appropriately control the discharge pressure (high pressure Ph) of the compressor 103 that affects the efficiency of the system. For the reason, high-efficiency operation cannot always be realized.
Thus, as a technique for eliminating such an operation condition (constraint) of “density ratio = constant”, there is a known technique described in Patent Document 1. FIG. 7 shows a system configuration of another conventional air conditioner. In the present air conditioner, a bypass pipe 112 is provided between the discharge pipe 110 and the suction pipe 111 of the expander 104 so as to communicate the both, and the control valve for adjusting the passage area to the bypass pipe 112 is increased or decreased. 106 is provided.
The air conditioner having such a configuration performs the following operations.
A target value of the discharge temperature of the compressor 103 is set, and then the opening degree of the control valve 106 is controlled so that the discharge temperature of the compressor 103 becomes the target value. When the control valve 106 is controlled in the closing direction, the amount of working fluid passing through the bypass line 112 decreases, and the amount of working fluid entering the expander 104 increases. Conversely, when the control valve 106 is controlled to open, the amount of working fluid that passes through the bypass line 112 increases, and the amount of working fluid that enters the expander 104 decreases. By controlling the opening degree of the control valve 106 in this way, the operating conditions of the system can be freely determined so as to obtain high operating efficiency while using the expander 104.
As another technique for eliminating the operation condition (constraint) of “density ratio = constant”, there is a known technique described in Patent Document 2. In this technique, the pressure after expansion of the working fluid is reduced under the operating conditions where the ratio between the high pressure and the low pressure of the system (pressure ratio) is smaller than the pressure ratio assumed during the design of the expander. It is lower than the pressure and prevents the power recovery amount from decreasing (loss due to overexpansion). That is, the communication passage is branched from the working fluid inflow side of the expander and communicates with the suction / expansion process position of the expander, and a valve for controlling the passage of the working fluid is provided in the communication passage. When the conditions arise, the valve is opened to allow a part of the working fluid to flow into the expander, the amount of working fluid entering the expander is increased, and the pressure of the working fluid after expansion is increased.
JP 2001-116371 A JP 2004-197640 A

しかしながら、上記特許文献1の技術では、バイパス管路を通る作動流体に関しては動力回収を行うことができず、高圧の作動流体の持つ潜在的なエネルギーを無条件に破棄することになっていた。また、上記特許文献2の技術では、過膨張の発生を防止しうる構成にはなっているものの、それを実現するためのバルブの具体的な制御方法については記されていない。   However, in the technique of Patent Document 1, power recovery cannot be performed for the working fluid passing through the bypass pipe, and the potential energy of the high-pressure working fluid is unconditionally discarded. Further, although the technique of Patent Document 2 is configured to prevent the occurrence of overexpansion, there is no description of a specific valve control method for realizing it.

したがって本発明は、上記従来の課題を解決するもので、バルブ制御を具体化し、高圧の作動流体から最大限に動力回収を行い、常時高い運転効率を得る膨張機一体型の圧縮機を提供することを目的とする。   Accordingly, the present invention solves the above-described conventional problems, and provides an expander-integrated compressor that embodies valve control, maximizes power recovery from a high-pressure working fluid, and always obtains high operating efficiency. For the purpose.

請求項1記載の本発明の圧縮機は、圧縮室と、駆動シャフトとを有し、前記駆動シャフトを回転させることにより前記圧縮室に吸入した作動流体を圧縮する圧縮機部と、膨張室と、前記膨張室に膨張機吸入圧力で作動流体を導く吸入孔と、前記膨張室から作動流体を吐出する吐出孔と、前記駆動シャフトに連結された動力回収シャフトとを有し、前記膨張室に吸入した作動流体を膨張させることにより前記動力回収シャフトの回転動力を得る膨張機部とを備える圧縮機であって、前記吐出孔から吐出される作動流体の膨張機吐出圧力を検知する圧力検知手段と、前記吸入孔に吸入バルブとを設け、前記吸入孔から前記膨張室に導かれる作動流体の量を、前記圧力検知手段により得る前記膨張機吐出圧力と冷凍サイクル効率を最大とするための目標とする前記膨張機吸入圧力とから求められる目標量にするように、前記吸入バルブの開閉タイミングを可変する構成にしたことを特徴とする。
請求項2記載の本発明は、請求項1に記載の圧縮機において、前記吸入孔に吸入される作動流体の吸入温度を計測する吸入温度センサと、前記吐出孔から吐出される作動流体の吐出温度を計測する吐出温度センサとを設け、前記吸入温度と前記吐出温度とから目標とする前記膨張機吸入圧力を演算する構成にしたことを特徴とする。
請求項3記載の本発明は、請求項2に記載の圧縮機において、前記圧力検知手段を、前記吐出温度センサで計測した前記吐出温度を元に換算して前記膨張機吐出圧力を得る構成にしたことを特徴とする。
請求項4記載の本発明は、請求項1から請求項3のいずれかに記載の圧縮機において、前記吸入バルブを電磁弁としたことを特徴とする。
請求項5記載の本発明は、請求項1から請求項4のいずれかに記載の圧縮機において、前記吸入バルブを閉から開にする前記開タイミングを前記膨張室の容積が最小となる吸入開始時間とし、前記吸入バルブを開から閉にする前記閉タイミングを前記吸入開始時間から前記膨張室の容積が最大となるまでの間の時間とする制御機能を有する構成にしたことを特徴とする。
請求項6記載の本発明は、請求項1から請求項5のいずれかに記載の圧縮機において、前記膨張室で膨張するときの作動流体の体積と圧力との関係を保持する作動流体状態保持部を設け、当該作動流体状態保持部が保持する作動流体の体積と圧力との関係を用いて前記目標量を求める構成にしたことを特徴とする。
請求項7記載の本発明は、請求項1から請求項6のいずれかに記載の圧縮機において、超臨界相から液相あるいは気液二相に膨張する作動流体を用いて運転することを特徴とする。
請求項8記載の本発明は、請求項1から請求項7のいずれかに記載の圧縮機において、二酸化炭素を主成分とする作動流体を用いて運転することを特徴とする。
請求項9記載の本発明のヒートポンプ装置は、前記吸入バルブの開閉タイミングを制御して前記膨張室に導く作動流体の量を冷凍サイクル効率が最大となる前記目標量にすることができる請求項1から請求項8のいずれかに記載の圧縮機を用いたことを特徴とする。
The compressor of the present invention according to claim 1 has a compression chamber and a drive shaft, and compresses the working fluid sucked into the compression chamber by rotating the drive shaft, an expansion chamber, A suction hole that guides the working fluid to the expansion chamber with an expander suction pressure; a discharge hole that discharges the working fluid from the expansion chamber; and a power recovery shaft connected to the drive shaft. A pressure detecting means for detecting an expander discharge pressure of the working fluid discharged from the discharge hole, the compressor including an expander unit that obtains rotational power of the power recovery shaft by expanding the sucked working fluid And a suction valve in the suction hole, and the amount of working fluid guided from the suction hole to the expansion chamber is obtained by the pressure detection means for maximizing the expander discharge pressure and the refrigeration cycle efficiency. Wherein as the target amount obtained from an expander suction pressure to target, characterized in that the arrangement for varying the opening and closing timing of the intake valve.
According to a second aspect of the present invention, in the compressor according to the first aspect, a suction temperature sensor for measuring a suction temperature of the working fluid sucked into the suction hole, and a discharge of the working fluid discharged from the discharge hole. A discharge temperature sensor for measuring temperature is provided, and the target expander suction pressure is calculated from the suction temperature and the discharge temperature.
According to a third aspect of the present invention, in the compressor according to the second aspect, the pressure detecting means converts the discharge temperature measured by the discharge temperature sensor to obtain the expander discharge pressure. It is characterized by that.
According to a fourth aspect of the present invention, in the compressor according to any one of the first to third aspects, the suction valve is an electromagnetic valve.
According to a fifth aspect of the present invention, in the compressor according to any one of the first to fourth aspects, the opening timing for opening the suction valve from the closed state to the open timing is the start of suction at which the volume of the expansion chamber is minimized. It is characterized by having a control function that sets the closing timing for opening and closing the suction valve from the opening start time to the time when the volume of the expansion chamber becomes maximum.
According to a sixth aspect of the present invention, in the compressor according to any one of the first to fifth aspects, the working fluid state is maintained to maintain the relationship between the volume of the working fluid and the pressure when expanding in the expansion chamber. And the target amount is obtained using the relationship between the volume and pressure of the working fluid held by the working fluid state holding unit.
A seventh aspect of the present invention is the compressor according to any one of the first to sixth aspects, wherein the compressor is operated using a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase. And
The present invention according to claim 8 is characterized in that the compressor according to any one of claims 1 to 7 is operated using a working fluid mainly composed of carbon dioxide.
According to a ninth aspect of the present invention, in the heat pump device of the present invention, the amount of working fluid guided to the expansion chamber by controlling the opening / closing timing of the suction valve can be set to the target amount that maximizes the refrigeration cycle efficiency. The compressor according to claim 8 is used.

本発明の圧縮機およびそれを用いたヒートポンプ装置によれば、吸入バルブの開閉タイミングを制御して膨張室に導く作動流体の量を高い運転効率となる目標量にすることができるので、バイパス管路の削減とバルブ制御の具体化を図り、「密度比=一定」の運転条件(制約)を排除しつつ、高圧の作動流体から最大限に動力回収を行い、常時高い運転効率を得ることができる。   According to the compressor of the present invention and the heat pump device using the compressor, the amount of working fluid guided to the expansion chamber by controlling the opening / closing timing of the suction valve can be set to a target amount that provides high operating efficiency. By reducing the number of passages and realizing valve control, eliminating the operating conditions (constraints) of “density ratio = constant”, the maximum power recovery from high-pressure working fluid can be achieved, and high operating efficiency can always be obtained. it can.

本発明の第1の実施の形態による圧縮機は、圧縮室と、駆動シャフトとを有し、駆動シャフトを回転させることにより圧縮室に吸入した作動流体を圧縮する圧縮機部と、膨張室と、膨張室に膨張機吸入圧力で作動流体を導く吸入孔と、膨張室から作動流体を吐出する吐出孔と、駆動シャフトに連結された動力回収シャフトとを有し、膨張室に吸入した作動流体を膨張させることにより動力回収シャフトの回転動力を得る膨張機部とを備える圧縮機に、吐出孔から吐出される作動流体の膨張機吐出圧力を検知する圧力検知手段と、吸入孔に吸入バルブとを設け、吸入孔から膨張室に導かれる作動流体の量を、圧力検知手段により得る膨張機吐出圧力と冷凍サイクル効率を最大とするための目標とする膨張機吸入圧力とから求められる目標量にするように、吸入バルブの開閉タイミングを可変する構成にしたものである。本実施の形態によれば、作動流体を吸入することができる膨張室の容積を理想的な容積とするように吸入バルブの開閉タイミングを可変することにより、常時高い運転効率を得ることが可能な膨張機一体型の圧縮機を提供する。
本発明の第2の実施の形態は、第1の実施の形態による圧縮機において、吸入孔に吸入される作動流体の吸入温度を計測する吸入温度センサと、吐出孔から吐出される作動流体の吐出温度を計測する吐出温度センサとを設け、吸入温度と吐出温度とから目標とする膨張機吸入圧力を演算する構成にしたものである。本実施の形態によれば、冷凍サイクル効率が最大となる目標吸入圧力を演算で得ることができる。
本発明の第3の実施の形態は、第2の実施の形態による圧縮機において、圧力検知手段を、吐出温度センサで計測した吐出温度を元に換算して膨張機吐出圧力を得る構成にしたものである。本実施の形態によれば、コスト低減に結び付けることができる。
本発明の第4の実施の形態は、第1から第3の実施の形態による圧縮機において、吸入バルブを電磁弁としたものである。本実施の形態によれば、開閉タイミングを容易に計ることができるとともに、不膨張弊害を防止することができる。
本発明の第5の実施の形態は、第1から第4の実施の形態による圧縮機において、吸入バルブを閉から開にする開タイミングを膨張室の容積が最小となる吸入開始時間とし、吸入バルブを開から閉にする閉タイミングを吸入開始時間から膨張室の容積が最大となるまでの間の時間とする制御機能を有する構成にしたものである。本実施の形態によれば、ブレーキロスを最小とすることができるとともに、作動流体が導入される膨張室の容積を理想的な容積とすることができる。
本発明の第6の実施の形態は、第1から第5の実施の形態による圧縮機において、膨張室で膨張するときの作動流体の体積と圧力との関係を保持する作動流体状態保持部を設け、当該作動流体状態保持部が保持する作動流体の体積と圧力との関係を用いて目標量を求める構成にしたものである。本実施の形態によれば、作動流体の体積と圧力との関係を例えば実際的な膨張過程の近似式とすることができ、より高い運転効率を得ることができる。
本発明の第7の実施の形態は、第1から第6の実施の形態による圧縮機において、超臨界相から液相あるいは気液二相に膨張する作動流体を用いて運転するものである。
本発明の第8の実施の形態は、第1から第7の実施の形態による圧縮機において、二酸化炭素を主成分とする作動流体を用いて運転するものである。
本発明の第9の実施の形態によるヒートポンプ装置は、吸入バルブの開閉タイミングを制御して膨張室に導かれる作動流体の量を冷凍サイクル効率が最大となる目標量にすることができる請求項1から請求項8のいずれかに記載の圧縮機を用いたものである。本実施の形態によれば、ヒートポンプ装置の運転効率を常に高いものとすることができる。
The compressor according to the first embodiment of the present invention has a compression chamber and a drive shaft, and compresses the working fluid sucked into the compression chamber by rotating the drive shaft, an expansion chamber, The working fluid has a suction hole for introducing the working fluid into the expansion chamber with the suction pressure of the expander, a discharge hole for discharging the working fluid from the expansion chamber, and a power recovery shaft connected to the drive shaft, and is sucked into the expansion chamber. A compressor including an expander unit that obtains rotational power of the power recovery shaft by expanding the pressure, a pressure detection means for detecting the expander discharge pressure of the working fluid discharged from the discharge hole, and a suction valve in the suction hole; The amount of working fluid guided from the suction hole to the expansion chamber is set to the target amount obtained from the expander discharge pressure obtained by the pressure detection means and the target expander suction pressure for maximizing the refrigeration cycle efficiency. You As, in which a configuration for varying the opening and closing timing of the intake valve. According to this embodiment, it is possible to always obtain high operating efficiency by varying the opening / closing timing of the suction valve so that the volume of the expansion chamber capable of sucking the working fluid is an ideal volume. An expander-integrated compressor is provided.
In the compressor according to the first embodiment, the second embodiment of the present invention includes a suction temperature sensor that measures the suction temperature of the working fluid sucked into the suction hole, and a working fluid discharged from the discharge hole. A discharge temperature sensor for measuring the discharge temperature is provided, and a target expander suction pressure is calculated from the suction temperature and the discharge temperature. According to the present embodiment, the target suction pressure that maximizes the refrigeration cycle efficiency can be obtained by calculation.
In the compressor according to the second embodiment, the third embodiment of the present invention is configured such that the pressure detecting means converts the discharge temperature measured by the discharge temperature sensor to obtain the expander discharge pressure in the compressor according to the second embodiment. Is. According to the present embodiment, it can be linked to cost reduction.
In the fourth embodiment of the present invention, in the compressors according to the first to third embodiments, the suction valve is an electromagnetic valve. According to the present embodiment, the opening / closing timing can be easily measured, and the non-expanding problem can be prevented.
In the fifth embodiment of the present invention, in the compressors according to the first to fourth embodiments, the opening timing for opening the intake valve from the closed state is set as the intake start time at which the volume of the expansion chamber is minimized, In this configuration, the closing timing for opening the valve from closing to closing is the time from the suction start time to the maximum expansion chamber volume. According to the present embodiment, the brake loss can be minimized, and the volume of the expansion chamber into which the working fluid is introduced can be set to an ideal volume.
According to a sixth embodiment of the present invention, in the compressor according to the first to fifth embodiments, a working fluid state holding unit that holds the relationship between the volume and pressure of the working fluid when expanding in the expansion chamber. The target amount is obtained by using the relationship between the volume of the working fluid held by the working fluid state holding unit and the pressure. According to the present embodiment, the relationship between the volume of the working fluid and the pressure can be an approximate expression of a practical expansion process, for example, and higher operating efficiency can be obtained.
In the seventh embodiment of the present invention, the compressors according to the first to sixth embodiments are operated using a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase.
In the eighth embodiment of the present invention, the compressors according to the first to seventh embodiments are operated using a working fluid mainly composed of carbon dioxide.
The heat pump device according to the ninth embodiment of the present invention can control the opening / closing timing of the intake valve to set the amount of working fluid guided to the expansion chamber to a target amount that maximizes the refrigeration cycle efficiency. The compressor according to any one of claims 8 to 8 is used. According to the present embodiment, the operation efficiency of the heat pump device can be constantly increased.

図1は本発明による実施例の圧縮機の縦断面図であり、図2は本実施例の圧縮機における膨張機部の横断面図である。図1及び図2には、ロータリーベーン式の圧縮機及び膨張機を示しているが、圧縮機及び膨張機の方式はこれに限るものではなく、ロータリー式、レシプロ式、スクロール式など何でも良い。また、作動流体としては、超臨界相から液相あるいは気液二相に膨張する作動流体、例えば二酸化炭素を主成分とする作動流体を用いる。
図1において、本実施例の圧縮機は、密閉容器10の内部に、圧縮機部12と、電動機部16と、膨張機部20と、さらに制御部とを備えて構成される。なお、この制御部の配備に関しては密閉容器10の内部や外部に拘泥するものではない。
そして、圧縮機部12は、圧縮室13と駆動シャフト14とロータ15とを有し、駆動シャフト14及びロータ15を回転させることにより圧縮室13に吸入した作動流体を低圧から高圧へと圧縮する。また、電動機部16は、固定子17と回転子18とを有し、回転子18は駆動シャフト14に固定されている。そして、膨張機部20は、シリンダ21とロータ23と動力回収シャフト26(以下、シャフト26)とを有し、作動流体を吸入経路32及び吸入孔27を経て吸入し、シリンダ21及びロータ23で形成する膨張室としての作動室25で高圧から低圧に膨張させ、作動室25から吐出室33及び吐出経路34を経て吐出することにより、シャフト26に回転動力を得る。この回転動力は、シャフト26から駆動シャフト14に伝達され、圧縮機部12の駆動力として回収される。
FIG. 1 is a longitudinal sectional view of a compressor according to an embodiment of the present invention, and FIG. 2 is a transverse sectional view of an expander section in the compressor according to the present embodiment. 1 and 2 show a rotary vane type compressor and an expander, but the method of the compressor and the expander is not limited to this, and any type such as a rotary type, a reciprocating type, and a scroll type may be used. As the working fluid, a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase, for example, a working fluid mainly composed of carbon dioxide is used.
In FIG. 1, the compressor according to the present embodiment is configured to include a compressor unit 12, an electric motor unit 16, an expander unit 20, and a control unit inside a sealed container 10. Note that the control unit is not restricted to the inside or outside of the sealed container 10.
The compressor unit 12 includes a compression chamber 13, a drive shaft 14, and a rotor 15, and compresses the working fluid sucked into the compression chamber 13 from a low pressure to a high pressure by rotating the drive shaft 14 and the rotor 15. . The electric motor unit 16 includes a stator 17 and a rotor 18, and the rotor 18 is fixed to the drive shaft 14. The expander unit 20 includes a cylinder 21, a rotor 23, and a power recovery shaft 26 (hereinafter referred to as a shaft 26). The expander unit 20 sucks a working fluid through a suction path 32 and a suction hole 27. In the working chamber 25 as an expansion chamber to be formed, the shaft 26 is expanded from a high pressure to a low pressure, and discharged from the working chamber 25 through the discharge chamber 33 and the discharge passage 34 to obtain rotational power for the shaft 26. This rotational power is transmitted from the shaft 26 to the drive shaft 14 and is collected as the drive force of the compressor unit 12.

また、膨張機部20は、図2において、シリンダ21と、ロータ23と、4個のベーン24と、シャフト26と、カバー31と、吸入管35と、電磁弁40とを含み構成される。
即ち、シリンダ21は、筒状の内壁21aを有し、その両端には側板21b,21c(図1参照)が設けられている。シリンダ21の内部には、円柱形状のロータ23が配設されていて、ロータ23の外周の一部がシリンダ21の内壁21aと小隙間22を形成している。そして、小隙間22の基点(接点)で内壁21aとロータ23の外周とが接している。
また、ロータ23には、90degのピッチで上下端面に垂直な溝23aが4箇所に設けられている。各溝23aには、各々のベーン24が摺動自在に挿入されており、ベーン24の先端はシリンダ21の内壁21aと接している。
作動室25は、シリンダ21の内壁21a、ロータ23および各々のベーン24に囲まれた空間25a,25b,25c,25d,25eとして形成されている。シャフト26は、ロータ23と一体的に形成され、側板21b,21cに回転自在に軸支持されているとともに、圧縮機部12の駆動シャフト14と連結されている。
2, the expander unit 20 includes a cylinder 21, a rotor 23, four vanes 24, a shaft 26, a cover 31, a suction pipe 35, and an electromagnetic valve 40.
That is, the cylinder 21 has a cylindrical inner wall 21a, and side plates 21b and 21c (see FIG. 1) are provided at both ends thereof. A cylindrical rotor 23 is disposed inside the cylinder 21, and a part of the outer periphery of the rotor 23 forms a small gap 22 with the inner wall 21 a of the cylinder 21. The inner wall 21 a and the outer periphery of the rotor 23 are in contact with each other at the base point (contact point) of the small gap 22.
The rotor 23 is provided with four grooves 23a perpendicular to the upper and lower end surfaces at a pitch of 90 deg. Each vane 24 is slidably inserted into each groove 23 a, and the tip of the vane 24 is in contact with the inner wall 21 a of the cylinder 21.
The working chamber 25 is formed as spaces 25a, 25b, 25c, 25d, and 25e surrounded by the inner wall 21a of the cylinder 21, the rotor 23, and the vanes 24. The shaft 26 is formed integrally with the rotor 23, is rotatably supported on the side plates 21 b and 21 c, and is connected to the drive shaft 14 of the compressor unit 12.

また、シリンダ21には、作動室25に作動流体を流入させる吸入孔27と、作動室25から作動流体を流出させる吐出孔28が設けられている。さらに、膨張室25(25a)と吸入孔27との間に電磁弁40が配設されている。
そして、吐出孔28の近傍には、シリンダ21の内壁21aの周方向にある範囲で開口させた開口部28aが設けられている。この開口部28aを設ける範囲は、ベーン24の枚数をnとすると、小隙間22の基点からシャフト26の矢印で示す回転方向に{180×(1+1/n)}degの開始位置28bに始まり、小隙間22の近傍にある終了位置28cで終わる範囲である。図2における開口部28aの開始位置28bは、ベーン24が4枚なので、225degの位置である。
また、シリンダ21の側方にはカバー31が備えられており、カバー31には吸入管35が挿入され、吸入管35の内部には吸入孔27に作動流体を導く吸入経路32が形成されている。そして、図1に示すように、密閉容器10の内部には、吐出孔28から流出した作動流体を一旦蓄える吐出室33が形成され、密閉容器10に接合された吐出管36の内部には、吐出室33から作動流体を外部へ流出させる吐出経路34が形成されている。
In addition, the cylinder 21 is provided with a suction hole 27 through which the working fluid flows into the working chamber 25 and a discharge hole 28 through which the working fluid flows out from the working chamber 25. Further, an electromagnetic valve 40 is disposed between the expansion chamber 25 (25a) and the suction hole 27.
In the vicinity of the discharge hole 28, an opening 28 a that is opened in a range in the circumferential direction of the inner wall 21 a of the cylinder 21 is provided. The range in which the opening 28a is provided starts from a starting position 28b of {180 × (1 + 1 / n)} deg from the base point of the small gap 22 in the rotation direction indicated by the arrow of the shaft 26, where n is the number of vanes 24, This is a range that ends at the end position 28 c in the vicinity of the small gap 22. The start position 28b of the opening 28a in FIG. 2 is a position of 225 deg because there are four vanes 24.
Further, a cover 31 is provided on the side of the cylinder 21, a suction pipe 35 is inserted into the cover 31, and a suction path 32 that guides the working fluid to the suction hole 27 is formed inside the suction pipe 35. Yes. As shown in FIG. 1, a discharge chamber 33 for temporarily storing the working fluid flowing out from the discharge hole 28 is formed inside the sealed container 10, and inside the discharge pipe 36 joined to the sealed container 10, A discharge path 34 is formed through which the working fluid flows out from the discharge chamber 33.

さらに、制御部の構成について説明する。
制御部は、図1に示すように、吐出圧力センサ48と、吸入温度センサ50と、吐出温度センサ51と、電磁弁制御部60と、作動流体状態保持部61とから構成される。
すなわち、電磁弁制御部60を介して電磁弁40に通電し、電磁弁40の開閉を電気的に行うことにより、膨張室25と吸入孔27との連通を制御する構成としている。ところで、電磁弁40は電気的なトラブルを想定して常時開、通電時(制御時)に閉となるものが望ましい。この理由は、電磁弁であれば、弁の開閉制御(開閉タイミングを計ること)が容易に可能であり、また電気的なトラブルが生じても閉じることのない常時開の電磁弁であれば、膨張機として機能しないという不膨張弊害が防止されるからである。
また、吸入温度センサ50は、吸入経路32あるいは吸入孔27の作動流体の温度を膨張機の吸入温度Tbとして計測する。また、吐出圧力センサ48及び吐出温度センサ51は、吐出室33あるいは吐出経路34の作動流体の圧力及び温度を膨張機の吐出圧力Pc及び吐出温度Tcとして計測する。なお、温度センサや圧力センサは、作動流体の温度や圧力を計測できるものであれば何でもよい。また、凝縮器(図5参照)と吸入管35との間で膨張機の吸入温度Tbを計測し、吐出管36と蒸発器(図5参照)との間で膨張機の吐出圧力Pc及び吐出温度Tcを計測する構成でも可である。
また、電磁弁制御部60は、電磁弁40の開閉を制御する。また、作動流体状態保持部61は、作動流体が膨張室25で膨張する際の作動流体の体積と圧力との関係を示すデータや近似式などを保持する部分で、例えば半導体メモリ等を用いて構成されている。なお、作動流体状態保持部61は電磁弁制御部60と一体化されている構成でも可である。
Further, the configuration of the control unit will be described.
As shown in FIG. 1, the control unit includes a discharge pressure sensor 48, a suction temperature sensor 50, a discharge temperature sensor 51, a solenoid valve control unit 60, and a working fluid state holding unit 61.
In other words, the solenoid valve 40 is energized via the solenoid valve control unit 60 and the solenoid valve 40 is electrically opened and closed to control the communication between the expansion chamber 25 and the suction hole 27. By the way, it is desirable that the solenoid valve 40 be normally opened and closed when energized (controlled) assuming an electrical trouble. The reason for this is that if it is a solenoid valve, it is possible to easily control the opening and closing of the valve (measure the timing of opening and closing), and if it is a normally open solenoid valve that does not close even if an electrical trouble occurs, This is because a non-inflating adverse effect of not functioning as an expander is prevented.
The suction temperature sensor 50 measures the temperature of the working fluid in the suction path 32 or the suction hole 27 as the suction temperature Tb of the expander. The discharge pressure sensor 48 and the discharge temperature sensor 51 measure the pressure and temperature of the working fluid in the discharge chamber 33 or the discharge path 34 as the discharge pressure Pc and the discharge temperature Tc of the expander. The temperature sensor and the pressure sensor may be anything as long as they can measure the temperature and pressure of the working fluid. Further, the suction temperature Tb of the expander is measured between the condenser (see FIG. 5) and the suction pipe 35, and the discharge pressure Pc and discharge of the expander are discharged between the discharge pipe 36 and the evaporator (see FIG. 5). A configuration for measuring the temperature Tc is also possible.
The electromagnetic valve control unit 60 controls the opening and closing of the electromagnetic valve 40. The working fluid state holding unit 61 is a part that holds data or an approximate expression indicating the relationship between the volume and pressure of the working fluid when the working fluid expands in the expansion chamber 25, and uses, for example, a semiconductor memory or the like. It is configured. The working fluid state holding unit 61 may be integrated with the electromagnetic valve control unit 60.

次に、以上のような構成の本実施例の圧縮機における膨張機部の動作を、まず、電磁弁40を常時開とした基本的な場合について説明する。図3は本実施例における電磁弁が常時開時の作動室のPV線図であり、即ち膨張機部20の作動室25のPV線図である。なお、本発明の特徴に関わらない圧縮機部の説明は省略する。
作動室25は小隙間22の吸入孔27側の空間25aで生成する。その後、ロータ23の回転に伴い容積を増加しつつ、吸入孔27から冷凍サイクルの高圧圧力Phに相当する吸入圧力Pbの作動流体を吸入する過程、すなわち、吸入過程を行う。吸入過程は図3のABに相当する。
作動室25が空間25bの位置に達すると、吸入孔27との連通が断たれて密閉空間となり、その後、ロータ23の回転に伴い容積は増加し、内部の作動流体の圧力が低下してゆく過程、すなわち、膨張過程を行う。膨張過程は図3のBCに相当する。
作動室25は空間25cの位置で容積が最大となる。この時点は図3のCに相当し、作動室25の吐出圧力はPcとなっている。ここからロータ23が僅かに回転した瞬間、空間25cに位置する作動室25は、開口部28aを介して吐出孔28と連通し、作動流体は作動室25から吐出室33に押し出される。ここで、Cにおける作動室25の吐出圧力Pcが冷凍サイクルの低圧圧力Plと等しい場合は、減圧された作動流体がスムーズに排出され、低圧圧力Plで作動室25の容積が減少していく。すなわち、図3のCからDに移行する吐出過程を行う。
その後、作動室25は再び吸入孔27と連通して、図3のAの状態に戻る。
Next, the operation of the expander section in the compressor of the present embodiment having the above configuration will be described first in the basic case where the electromagnetic valve 40 is normally open. FIG. 3 is a PV diagram of the working chamber when the solenoid valve in the present embodiment is normally open, that is, a PV diagram of the working chamber 25 of the expander unit 20. In addition, description of the compressor part which is not related to the characteristic of this invention is abbreviate | omitted.
The working chamber 25 is generated in the space 25 a on the suction hole 27 side of the small gap 22. Thereafter, the process of sucking the working fluid having the suction pressure Pb corresponding to the high pressure Ph of the refrigeration cycle from the suction hole 27 while increasing the volume with the rotation of the rotor 23, that is, the suction process is performed. The inhalation process corresponds to AB in FIG.
When the working chamber 25 reaches the position of the space 25b, the communication with the suction hole 27 is cut off to become a sealed space, and then the volume increases with the rotation of the rotor 23, and the pressure of the working fluid inside decreases. The process, that is, the expansion process is performed. The expansion process corresponds to BC in FIG.
The working chamber 25 has a maximum volume at the position of the space 25c. This time corresponds to C in FIG. 3, and the discharge pressure of the working chamber 25 is Pc. The moment the rotor 23 rotates slightly from here, the working chamber 25 located in the space 25c communicates with the discharge hole 28 through the opening 28a, and the working fluid is pushed out of the working chamber 25 to the discharge chamber 33. Here, when the discharge pressure Pc of the working chamber 25 in C is equal to the low-pressure pressure Pl of the refrigeration cycle, the decompressed working fluid is discharged smoothly, and the volume of the working chamber 25 decreases with the low-pressure pressure Pl. That is, a discharge process for shifting from C to D in FIG. 3 is performed.
Thereafter, the working chamber 25 communicates with the suction hole 27 again and returns to the state of A in FIG.

しかし実際は、冷凍サイクルの低圧圧力Plが蒸発器(図5参照)での熱交換条件や冷凍サイクルの運転条件等に応じて変動する。上述の膨張機の動作では、作動流体を密閉した瞬間(図2の空間25b)の容積と、作動流体を吐出する直前(図2の空間25c)の容積の比、すなわち膨張比が一定であるため、低圧圧力Plが変動した場合、膨張機の吐出圧力Pcと等しくすることはできない。そこで本実施例では、電磁弁40を用いて作動室25に吸入する作動流体の量を変更し、膨張機の吐出圧力Pcと冷凍サイクルの低圧圧力Plとが等しくなるように制御する動作が行われる。   However, in actuality, the low-pressure pressure Pl of the refrigeration cycle varies depending on the heat exchange conditions in the evaporator (see FIG. 5), the operating conditions of the refrigeration cycle, and the like. In the operation of the expander described above, the ratio of the volume at the moment when the working fluid is sealed (space 25b in FIG. 2) and the volume immediately before the working fluid is discharged (space 25c in FIG. 2), that is, the expansion ratio is constant. For this reason, when the low pressure P1 fluctuates, it cannot be made equal to the discharge pressure Pc of the expander. Therefore, in this embodiment, the operation of changing the amount of the working fluid sucked into the working chamber 25 using the electromagnetic valve 40 and performing control so that the discharge pressure Pc of the expander is equal to the low pressure Pl of the refrigeration cycle is performed. Is called.

次に電磁弁40の開閉動作について説明する。
図4に本実施例における電磁弁40の開閉タイミングと、吸入過程において作動流体が作動室25に入る流量の関係を示す。ここで、電磁弁40が閉から開となる時間を時間Top、開から閉となる時間を時間Tclと表記する。
まず、電磁弁40は作動室25が吸入孔27と連通する直前に開となるように制御される。なお、この時電磁弁40を閉じたままにしておくと、作動室25は回転に伴って真空引きを行うことになり、ロータ23の回転にブレーキをかけるロスが発生するので好ましくない。即ち、電磁弁40を閉から開にする開タイミング(すなわち時間Topの時点)を、作動室25の容積が最小となる吸入開始時間とする制御機能を有する構成により、ブレーキロスを最小とすることができる。
次に、時間Topから、作動室25は吸入孔27と連通し、作動流体が作動室25に吸入される。そして、作動室25が吸入可能な最大容積Vbとなる事前の時間Tclに電磁弁40を閉じる。この結果、作動流体の吸入量は、最大容積Vbより小さい容積Vb´に吸入される量となる。このように電磁弁40を閉じる時間Tclのタイミングを変えることにより、Vb´の大きさを可変する。換言すれば、電磁弁40を開から閉にする閉タイミング(すなわち時間Tclの時点)を、吸入開始時間から作動室25の容積が最大となるまでの間の時間とする制御機能を有する構成により、作動流体の吸入量を可変することができる。
Next, the opening / closing operation of the electromagnetic valve 40 will be described.
FIG. 4 shows the relationship between the opening / closing timing of the electromagnetic valve 40 in this embodiment and the flow rate of the working fluid entering the working chamber 25 during the suction process. Here, the time when the electromagnetic valve 40 is opened from the closed time is expressed as time Top, and the time when the electromagnetic valve 40 is opened from closed is expressed as time Tcl.
First, the solenoid valve 40 is controlled to be opened immediately before the working chamber 25 communicates with the suction hole 27. If the electromagnetic valve 40 is kept closed at this time, the working chamber 25 is evacuated as it rotates, and a loss of braking the rotation of the rotor 23 is not preferable. That is, the brake loss is minimized by a configuration having a control function that sets the opening timing (that is, the time Top) at which the solenoid valve 40 is opened from the closed state to the suction start time at which the volume of the working chamber 25 is minimized. Can do.
Next, from time Top, the working chamber 25 communicates with the suction hole 27 and the working fluid is sucked into the working chamber 25. Then, the electromagnetic valve 40 is closed at a previous time Tcl at which the working chamber 25 reaches the maximum volume Vb that can be sucked. As a result, the working fluid is sucked into the volume Vb ′ smaller than the maximum volume Vb. By changing the timing of the time Tcl for closing the electromagnetic valve 40 in this way, the magnitude of Vb ′ is varied. In other words, by a configuration having a control function that sets the closing timing (that is, the time Tcl) at which the electromagnetic valve 40 is closed from the opening to the time from the suction start time to the maximum volume of the working chamber 25. The working fluid suction amount can be varied.

次に電磁弁40を閉じる時間Tclの決定方法について説明する。
作動流体に二酸化炭素を用いた空気調和機を考えた場合、冷凍サイクルの効率と高圧圧力Phとは、ある高圧圧力でその効率が最大となるような関係を持つ。S.M.Liao氏によると、冷凍サイクル効率が最大となるような高圧圧力(以下、最適圧力Poptと呼ぶ)は、次式で表現できる。
Popt=(2.778−0.0157×te)tg+(0.381×te−9.34)
(数式1)
ここで、teは蒸発器温度(すなわち膨張機の吐出温度Tcに相当する温度)、tgは凝縮器出口温度(すなわち膨張機の吸入温度Tbに相当する温度)であり、それぞれの温度を吐出温度センサ51と吸入温度センサ50で計測することができる。そして、数式1を用いて、吸入温度Tbと吐出温度Tcとから目標とする膨張機吸入圧力Poptを演算することができる。
従って、冷凍サイクルは、高圧圧力Ph、すなわち高圧圧力Phに相当する膨張機の吸入圧力Pbが目標膨張機吸入圧力としての最適圧力Poptとなるように運転することが、空気調和機の冷凍サイクル効率を最大にするので望ましいと言える。
Next, a method for determining the time Tcl for closing the electromagnetic valve 40 will be described.
When an air conditioner using carbon dioxide as a working fluid is considered, the efficiency of the refrigeration cycle and the high pressure Ph have a relationship that maximizes the efficiency at a certain high pressure. S. M.M. According to Mr. Liao, a high pressure at which the refrigeration cycle efficiency is maximized (hereinafter referred to as the optimum pressure Popt) can be expressed by the following equation.
Popt = (2.778−0.0157 × te) tg + (0.381 × te−9.34)
(Formula 1)
Here, te is the evaporator temperature (that is, the temperature corresponding to the discharge temperature Tc of the expander), tg is the condenser outlet temperature (that is, the temperature corresponding to the suction temperature Tb of the expander), and each temperature is the discharge temperature. It can be measured by the sensor 51 and the suction temperature sensor 50. Then, the target expander suction pressure Popt can be calculated from the suction temperature Tb and the discharge temperature Tc using Formula 1.
Therefore, the refrigeration cycle is operated such that the high-pressure pressure Ph, that is, the suction pressure Pb of the expander corresponding to the high-pressure pressure Ph becomes the optimum pressure Popt as the target expander suction pressure. Can be said to be desirable.

ところで、本実施例の作動流体は、蒸発器温度teにおいて気液二相状態になっているため、この蒸発器温度teを元に、当該作動流体の飽和圧力・温度の関係から換算して、冷凍サイクルの低圧圧力Pl(蒸発器圧力)、すなわち低圧圧力Plに相当する膨張機の吐出圧力Pcを知ることができる。換言すれば、吐出圧力センサ48を設けなくても、吐出温度センサ51で計測した吐出温度Tcを元に換算して膨張機吐出圧力Pcを得る構成にすることができ、コスト低減に結び付けられる。
さらに、膨張機の膨張過程(図3の曲線BC)の最終状態C(図3の空間25c)における作動室25の容積Vcも設計仕様により既知である。そこで、作動室25の体積と圧力との関係が分かれば、膨張過程の最終状態Cから初期状態Bへ逆の状態遷移を辿ることにより、作動流体を吸入する膨張室の目標容積Vbo´を決定することができる。
例えば、作動流体が理想気体で、膨張過程で漏れや摩擦や熱の出入り等がなく、理想的な等エントロピー変化を行うものとすると、作動室25の体積と圧力の関係は、次式で表される。
PVκ=(一定) (数式2)
ただし、κは比熱比である。
この数式2を用いることにより、膨張過程の初期状態Bにおいて、吸入圧力Pbを目標とする最適圧力Poptにするには、最終状態Cの低圧圧力Pl(すなわち検知した吐出圧力Pc)、作動室容積Vc(設計仕様により既知)より、次式で表されるVbo´が、Bにおいて設定すべき目標容積、即ち作動流体の吸入量となる。
Vbo´=(Pl/Popt)1/κ・Vc (数式3)
そして、このVbo´を用いて電磁弁40を閉じる時間Tclのタイミングを決定する。
換言すれば、膨張室に導かれる作動流体の量を、膨張機吐出圧力Pc(すなわち低圧圧力Pl)と、吸入温度Tb及び吐出温度Tcから演算した冷凍サイクル効率を最大にする目標膨張機吸入圧力Poptとから求められる目標量にするように、時間Tclを決めることになる。なお、目標容積Vbo´から時間Tclを決定する方法の一例は、次のとおりである。基点から最大容積Vbとなる点までの膨張機の回転角度θb(設計仕様により既知)に、Vbo´とVb(設計仕様により既知)の比を掛けて、基点から目標容積Vbo´の点までの回転角度θboを求める。そして、膨張機の回転数と小隙間22の基点からの回転角度θxとを検出し、この回転角度θxが回転角度θboに達した時点を時間Tclとし、電磁弁40の閉タイミングとする。
By the way, since the working fluid of the present embodiment is in a gas-liquid two-phase state at the evaporator temperature te, based on the evaporator temperature te, it is converted from the relationship between the saturation pressure and temperature of the working fluid, The low-pressure pressure Pl (evaporator pressure) of the refrigeration cycle, that is, the discharge pressure Pc of the expander corresponding to the low-pressure pressure Pl can be known. In other words, even if the discharge pressure sensor 48 is not provided, a configuration in which the discharge temperature Tc measured by the discharge temperature sensor 51 is converted to obtain the expander discharge pressure Pc can be obtained, which leads to cost reduction.
Further, the volume Vc of the working chamber 25 in the final state C (the space 25c in FIG. 3) of the expansion process of the expander (curve BC in FIG. 3) is also known from the design specifications. Therefore, if the relationship between the volume of the working chamber 25 and the pressure is known, the target volume Vbo ′ of the expansion chamber for sucking the working fluid is determined by following the reverse state transition from the final state C to the initial state B of the expansion process. can do.
For example, if the working fluid is an ideal gas and there is no leakage, friction, or heat in / out during the expansion process, and an ideal isentropic change is performed, the relationship between the volume of the working chamber 25 and the pressure is expressed by the following equation. Is done.
PV κ = (constant) (Formula 2)
However, (kappa) is a specific heat ratio.
In order to make the suction pressure Pb the target optimum pressure Popt in the initial state B of the expansion process by using the mathematical formula 2, the low pressure pressure Pl in the final state C (that is, the detected discharge pressure Pc), the working chamber volume From Vc (known from the design specification), Vbo ′ represented by the following equation is the target volume to be set in B, that is, the working fluid suction amount.
Vbo ′ = (Pl / Popt) 1 / κ · Vc (Formula 3)
Then, the timing of the time Tcl for closing the electromagnetic valve 40 is determined using this Vbo ′.
In other words, the target expander suction pressure that maximizes the refrigeration cycle efficiency calculated from the expander discharge pressure Pc (that is, the low pressure P1), the suction temperature Tb, and the discharge temperature Tc is set to the amount of the working fluid guided to the expansion chamber. The time Tcl is determined so as to obtain a target amount obtained from Popt. An example of a method for determining the time Tcl from the target volume Vbo ′ is as follows. The expansion angle θb (known from the design specifications) of the expander from the base point to the maximum volume Vb is multiplied by the ratio of Vbo ′ and Vb (known from the design specifications) to obtain the target volume Vbo ′ from the base point. The rotation angle θbo is obtained. Then, the rotational speed of the expander and the rotational angle θx from the base point of the small gap 22 are detected, and the time when the rotational angle θx reaches the rotational angle θbo is defined as time Tcl, and the electromagnetic valve 40 is closed.

ところで、実際の膨張過程BCにおいては、作動流体はその膨張するときの体積と圧力との関係が数式2で表される理想気体として扱うことはできず、例えば二酸化炭素では膨張過程で超臨界状態から気液二相状態に遷移する。また、膨張過程BCは、漏れ、摩擦、流体抵抗の影響により理想的な等エントロピー変化にはならない。したがって、実際には、膨張過程における作動流体の体積と圧力との関係は、実験データ、もしくは、実験データから得られる近似式を用いて表現することが望ましく、このような近似式等を用いて目標容積Vbo´を求めることが、理想気体として求める場合と比べて、より高い運転効率を得ることになる。
そして、前述の作動流体状態保持部61には、上述の作動流体の体積と圧力の関係や、前述の作動流体の飽和圧力・温度の関係を表すデータや近似式などを保持している。言い換えれば、膨張室で膨張するときの作動流体の体積と圧力の関係を保持する作動流体状態保持部61を設け、この関係を用いて目標容積Vbo´(すなわち冷凍サイクル効率を最大にする目標量)を求める構成であれば、実際に則してより高い運転効率を得ることができる。
By the way, in the actual expansion process BC, the working fluid cannot be treated as an ideal gas in which the relationship between the volume and the pressure when expanding is expressed by Formula 2. Transition to a gas-liquid two-phase state. Further, the expansion process BC does not become an ideal isentropic change due to the influence of leakage, friction, and fluid resistance. Therefore, in practice, the relationship between the volume and pressure of the working fluid in the expansion process is preferably expressed using experimental data or an approximate expression obtained from the experimental data. Obtaining the target volume Vbo ′ obtains higher operating efficiency than when obtaining the ideal volume.
The above-described working fluid state holding unit 61 holds data and approximate expressions representing the relationship between the volume and pressure of the above-described working fluid and the relationship between the saturation pressure and temperature of the above-described working fluid. In other words, the working fluid state holding unit 61 that holds the relationship between the volume and pressure of the working fluid when expanding in the expansion chamber is provided, and the target volume Vbo ′ (that is, the target amount that maximizes the refrigeration cycle efficiency) is provided using this relationship. ), It is possible to obtain higher driving efficiency in practice.

以上により、本実施例では、膨張機部の膨張室25と吸入孔27との間に電磁弁40を設置し、冷凍サイクルの低圧圧力Plを検知し、この低圧圧力Plに基づいて冷凍サイクルの高圧圧力Phが冷凍サイクル効率を最大とする最適圧力Poptとなるように、電磁弁制御部60で電磁弁40の開く時間幅(Tcl−Top)を制御して、作動室25に入る作動流体の流量を調節するので、換言すれば、吸入バルブの開閉タイミングを可変して作動流体を吸入することができる膨張室の容積を理想的な容積とするので、膨張機のロータ23を圧縮機の駆動シャフトと直結した場合でも、「密度比=一定」の運転条件(制約)を排除でき、高圧の作動流体から常時最大限に動力回収を行う膨張機一体型の圧縮機を提供することができる。
なお、本実施例の圧縮機をヒートポンプ装置に用いて、圧縮機の吸入バルブの開閉タイミングを制御して、膨張室に導く作動流体の量を冷凍サイクル効率が最大となる目標量にすることにより、ヒートポンプ装置の運転効率を常に高いものとすることができる。
As described above, in this embodiment, the electromagnetic valve 40 is installed between the expansion chamber 25 and the suction hole 27 of the expander unit, and the low-pressure pressure Pl of the refrigeration cycle is detected. The electromagnetic valve control unit 60 controls the opening time (Tcl-Top) of the electromagnetic valve 40 so that the high pressure Ph becomes the optimum pressure Popt that maximizes the refrigeration cycle efficiency, and the working fluid entering the working chamber 25 is controlled. Since the flow rate is adjusted, in other words, the volume of the expansion chamber in which the working fluid can be sucked by varying the opening / closing timing of the suction valve is set to an ideal volume, so that the rotor 23 of the expander is driven by the compressor. Even when directly connected to the shaft, an operating condition (constraint) of “density ratio = constant” can be eliminated, and an expander-integrated compressor that always recovers power from a high-pressure working fluid to the maximum can be provided.
In addition, by using the compressor of the present embodiment for a heat pump device, controlling the opening / closing timing of the suction valve of the compressor, the amount of working fluid led to the expansion chamber is set to a target amount that maximizes the refrigeration cycle efficiency. The operating efficiency of the heat pump device can always be made high.

本発明にかかる圧縮機およびそれを用いたヒートポンプ装置は、膨張機の吸入孔に設置した吸入バルブを開閉し、作動流体の入る膨張機の膨張室体積を制御して、高圧の作動流体から最大限に動力回収を行うので、常時高い運転効率を得ることができ、膨張機一体型の圧縮機やそれを用いたヒートポンプ装置、空気調和装置等に適用される。   The compressor according to the present invention and the heat pump device using the compressor open and close the suction valve installed in the suction hole of the expander, and control the expansion chamber volume of the expander into which the working fluid enters to maximize the pressure from the high-pressure working fluid. Since power recovery is performed to the limit, high operating efficiency can be obtained at all times, and the compressor is applied to an expander-integrated compressor, a heat pump device using the compressor, an air conditioner, and the like.

本発明による実施例の圧縮機の縦断面図The longitudinal cross-sectional view of the compressor of the Example by this invention 本実施例の圧縮機における膨張機部の横断面図Cross-sectional view of the expander section in the compressor of the present embodiment 本実施例における電磁弁が常時開時の作動室のPV線図PV diagram of working chamber when solenoid valve is normally open in this embodiment 本実施例における電磁弁の開閉タイミングと作動室に入る作動流体の流量との関係を示した図The figure which showed the relationship between the opening / closing timing of the solenoid valve in this embodiment, and the flow rate of the working fluid entering the working chamber 従来の空気調和装置のシステム構成図System configuration diagram of conventional air conditioner 従来の空気調和装置において、作動流体を二酸化炭素とした場合のモリエル線図Mollier diagram when the working fluid is carbon dioxide in a conventional air conditioner 従来の他の空気調和装置のシステム構成図System configuration diagram of another conventional air conditioner

符号の説明Explanation of symbols

10 密閉容器
12 圧縮機部
13 圧縮室
14 駆動シャフト
15,23 ロータ
16 電動機部
17 固定子
18 回転子
20 膨張機部
21 シリンダ
22 小隙間
23 ロータ
24 ベーン
25 作動室
26 動力回収シャフト
27 吸入孔
28 吐出孔
31 カバー
32 吸入経路
33 吐出室
34 吐出経路
35 吸入管
36 吐出管
40 電磁弁
48 吐出圧力センサ
50 吸入温度センサ
51 吐出温度センサ
60 電磁弁制御部
61 作動流体状態保持部
DESCRIPTION OF SYMBOLS 10 Airtight container 12 Compressor part 13 Compression chamber 14 Drive shaft 15, 23 Rotor 16 Electric motor part 17 Stator 18 Rotor 20 Expander part 21 Cylinder 22 Small clearance 23 Rotor 24 Vane 25 Actuation chamber 26 Power recovery shaft 27 Suction hole 28 Discharge hole 31 Cover 32 Suction path 33 Discharge chamber 34 Discharge path 35 Suction pipe 36 Discharge pipe 40 Solenoid valve 48 Discharge pressure sensor 50 Suction temperature sensor 51 Discharge temperature sensor 60 Solenoid valve control section 61 Working fluid state holding section

Claims (9)

圧縮室と、駆動シャフトとを有し、前記駆動シャフトを回転させることにより前記圧縮室に吸入した作動流体を圧縮する圧縮機部と、
膨張室と、前記膨張室に膨張機吸入圧力で作動流体を導く吸入孔と、前記膨張室から作動流体を吐出する吐出孔と、前記駆動シャフトに連結された動力回収シャフトとを有し、前記膨張室に吸入した作動流体を膨張させることにより前記動力回収シャフトの回転動力を得る膨張機部とを備える圧縮機であって、
前記吐出孔から吐出される作動流体の膨張機吐出圧力を検知する圧力検知手段と、前記吸入孔に吸入バルブとを設け、
前記吸入孔から前記膨張室に導かれる作動流体の量を、前記圧力検知手段により得る前記膨張機吐出圧力と冷凍サイクル効率を最大とするための目標とする前記膨張機吸入圧力とから求められる目標量にするように、前記吸入バルブの開閉タイミングを可変する構成にしたことを特徴とする圧縮機。
A compressor section having a compression chamber and a drive shaft, and compressing the working fluid sucked into the compression chamber by rotating the drive shaft;
An expansion chamber, a suction hole for guiding the working fluid to the expansion chamber with an expander suction pressure, a discharge hole for discharging the working fluid from the expansion chamber, and a power recovery shaft connected to the drive shaft, An expander unit that obtains rotational power of the power recovery shaft by expanding the working fluid sucked into the expansion chamber,
A pressure detection means for detecting an expander discharge pressure of the working fluid discharged from the discharge hole, and a suction valve in the suction hole;
A target obtained from the expander discharge pressure obtained by the pressure detection means and the expander suction pressure as a target for maximizing the refrigeration cycle efficiency, with respect to the amount of working fluid guided from the suction hole to the expansion chamber A compressor characterized in that the opening / closing timing of the intake valve is variable so as to be a quantity.
前記吸入孔に吸入される作動流体の吸入温度を計測する吸入温度センサと、前記吐出孔から吐出される作動流体の吐出温度を計測する吐出温度センサとを設け、
前記吸入温度と前記吐出温度とから目標とする前記膨張機吸入圧力を演算する構成にしたことを特徴とする請求項1に記載の圧縮機。
A suction temperature sensor for measuring a suction temperature of the working fluid sucked into the suction hole, and a discharge temperature sensor for measuring a discharge temperature of the working fluid discharged from the discharge hole;
The compressor according to claim 1, wherein the compressor is configured to calculate a target expander suction pressure from the suction temperature and the discharge temperature.
前記圧力検知手段を、前記吐出温度センサで計測した前記吐出温度を元に換算して前記膨張機吐出圧力を得る構成にしたことを特徴とする請求項2に記載の圧縮機。   The compressor according to claim 2, wherein the pressure detection means is configured to obtain the expander discharge pressure by converting the discharge temperature measured by the discharge temperature sensor. 前記吸入バルブを電磁弁としたことを特徴とする請求項1から請求項3のいずれかに記載の圧縮機。   The compressor according to any one of claims 1 to 3, wherein the suction valve is an electromagnetic valve. 前記吸入バルブを閉から開にする前記開タイミングを前記膨張室の容積が最小となる吸入開始時間とし、前記吸入バルブを開から閉にする前記閉タイミングを前記吸入開始時間から前記膨張室の容積が最大となるまでの間の時間とする制御機能を有する構成にしたことを特徴とする請求項1から請求項4のいずれかに記載の圧縮機。   The opening timing at which the suction valve is opened from the closed time is defined as the suction start time at which the volume of the expansion chamber is minimized, and the closing timing at which the suction valve is opened from the closed time is defined as the volume of the expansion chamber from the suction start time. The compressor according to any one of claims 1 to 4, wherein the compressor has a control function of setting a time until the value reaches a maximum. 前記膨張室で膨張するときの作動流体の体積と圧力との関係を保持する作動流体状態保持部を設け、当該作動流体状態保持部が保持する作動流体の体積と圧力との関係を用いて前記目標量を求める構成にしたことを特徴とする請求項1から請求項5のいずれかに記載の圧縮機。   Provided is a working fluid state holding unit that holds the relationship between the volume and pressure of the working fluid when expanding in the expansion chamber, and uses the relationship between the volume and pressure of the working fluid held by the working fluid state holding unit. The compressor according to any one of claims 1 to 5, wherein a target amount is obtained. 超臨界相から液相あるいは気液二相に膨張する作動流体を用いて運転することを特徴とする請求項1から請求項6のいずれかに記載の圧縮機。   The compressor according to any one of claims 1 to 6, wherein the compressor is operated using a working fluid that expands from a supercritical phase to a liquid phase or a gas-liquid two phase. 二酸化炭素を主成分とする作動流体を用いて運転することを特徴とする請求項1から請求項7のいずれかに記載の圧縮機。   The compressor according to any one of claims 1 to 7, wherein the compressor is operated using a working fluid containing carbon dioxide as a main component. 前記吸入バルブの前記開閉タイミングを制御して前記膨張室に導く作動流体の量を冷凍サイクル効率が最大となる前記目標量にすることができる請求項1から請求項8のいずれかに記載の圧縮機を用いたことを特徴とするヒートポンプ装置。
The compression according to any one of claims 1 to 8, wherein an amount of the working fluid guided to the expansion chamber by controlling the opening / closing timing of the suction valve can be set to the target amount that maximizes the refrigeration cycle efficiency. A heat pump device using a machine.
JP2004371854A 2004-11-25 2004-12-22 Compressor and heat pump device using the same Withdrawn JP2008032234A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004371854A JP2008032234A (en) 2004-12-22 2004-12-22 Compressor and heat pump device using the same
PCT/JP2005/021349 WO2006057212A1 (en) 2004-11-25 2005-11-21 Fluid machine and heat pump employing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004371854A JP2008032234A (en) 2004-12-22 2004-12-22 Compressor and heat pump device using the same

Publications (1)

Publication Number Publication Date
JP2008032234A true JP2008032234A (en) 2008-02-14

Family

ID=39121860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004371854A Withdrawn JP2008032234A (en) 2004-11-25 2004-12-22 Compressor and heat pump device using the same

Country Status (1)

Country Link
JP (1) JP2008032234A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178954A (en) * 2008-10-01 2015-10-08 キャリア コーポレイションCarrier Corporation transcritical vapor compression system
KR20160082351A (en) * 2014-12-04 2016-07-08 광동 메이지 컴프레셔 컴퍼니 리미티드 Low backpressure rotary compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015178954A (en) * 2008-10-01 2015-10-08 キャリア コーポレイションCarrier Corporation transcritical vapor compression system
KR20160082351A (en) * 2014-12-04 2016-07-08 광동 메이지 컴프레셔 컴퍼니 리미티드 Low backpressure rotary compressor
KR101710350B1 (en) 2014-12-04 2017-02-27 광동 메이지 컴프레셔 컴퍼니 리미티드 Low backpressure rotary compressor
KR101751901B1 (en) 2014-12-04 2017-07-11 광동 메이지 컴프레셔 컴퍼니 리미티드 Low backpressure rotary compressor

Similar Documents

Publication Publication Date Title
JP5289433B2 (en) Two-stage rotary expander, expander-integrated compressor, and refrigeration cycle apparatus
JP4722493B2 (en) Fluid machinery
JP5306478B2 (en) Heat pump device, two-stage compressor, and operation method of heat pump device
US20090007590A1 (en) Refrigeration System
KR100747496B1 (en) Rotary compressor and control method thereof and air conditioner using the same
AU2007241901A1 (en) Refrigerating apparatus
JP2006242133A (en) Fluid machine
AU2007241900A1 (en) Refrigerating apparatus
JP2010053798A (en) Scroll compressor
WO2017145251A1 (en) Screw compressor and refrigeration cycle device
JP2011196223A (en) Single screw compressor
WO2012042894A1 (en) Positive displacement compressor
JP2004028574A (en) Freezer
JP2008032234A (en) Compressor and heat pump device using the same
JP2008106668A (en) Expander, expander-integrated compressor and refrigeration cycle device using same
JP2010150926A (en) Scroll expander and refrigerating/air-conditioning device including the same
WO2006057212A1 (en) Fluid machine and heat pump employing it
JP2006046223A (en) Scroll type expander
JP4784385B2 (en) Refrigeration cycle equipment
JP2013096602A (en) Refrigeration cycle device
JP2011027043A (en) Positive-displacement compressor and refrigeration cycle device using the same
JP2007240120A (en) Heat pump device
JP2008031845A (en) Compressor and heat pump device using the compressor
JP2007211784A (en) Refrigeration unit
KR200303187Y1 (en) A electric generation apparatus using scroll expander

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080304