JPH03122460A - Operating controller for refrigerating machine - Google Patents

Operating controller for refrigerating machine

Info

Publication number
JPH03122460A
JPH03122460A JP25906989A JP25906989A JPH03122460A JP H03122460 A JPH03122460 A JP H03122460A JP 25906989 A JP25906989 A JP 25906989A JP 25906989 A JP25906989 A JP 25906989A JP H03122460 A JPH03122460 A JP H03122460A
Authority
JP
Japan
Prior art keywords
compressor
bypass
oil
oil return
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25906989A
Other languages
Japanese (ja)
Inventor
Shinichi Nakaishi
中石 伸一
Masaki Yamamoto
山本 政樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP25906989A priority Critical patent/JPH03122460A/en
Publication of JPH03122460A publication Critical patent/JPH03122460A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To effectively avoid a risk of oil shortage at start-up for improving the reliability by a method wherein a bypass is provided parallel with an oil return line so as to bypass a flow restriction device and opened during start-up of a compressor for a specified time period. CONSTITUTION:An operating controller 15 controls a bypass on-off valve 35 to close it during normal operation, so that a small amount of gas refrigerant containing oil is returned from an oil separator to the suction side of a compressor 1 through an oil return line 33. On the other hand, the bypass valve 35 is controlled to be opened for a specified time period during start-up of the compressor 1 to expand the passage, so that a large amount of gas refrigerant containing oil is returned from the oil separator to the suction side of the compressor 1 through an oil return line 33 and an oil return bypass line 34. Therefore, the compressor 1 is started with avoiding the oil shortage in the compressor 1, and such troubles as seizure of the compressor 1 can be prevented.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、油戻し通路を備えた冷凍装置の運転制御装置
に係り、特に、起動時における運転機能の向上対策に関
する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an operation control device for a refrigeration system equipped with an oil return passage, and particularly relates to measures for improving the operation function at startup.

(従来の技術) 従来より、例えば特開昭63−73059号公報に開示
される如く、圧縮機の吐出側から吸入側に減圧機構を介
して冷媒をバイパスさせる均圧用バイパス路を設け、圧
縮機の起動時に該均圧用バイパス路を開いて高圧と低圧
とを均圧化させることにより、圧縮機の起動時における
負荷を軽減する一方、圧縮機の吐出側に油分離器を設け
、該油分離器から圧縮機の吸入側に油を戻す油戻し通路
を設けることにより、装置の運転中油の混ざった冷媒を
圧縮機に戻して、圧縮機の油上りによる焼き付き等の事
故を防止しようとするものは公知の技術である。
(Prior Art) Conventionally, as disclosed in, for example, Japanese Unexamined Patent Application Publication No. 63-73059, a pressure equalizing bypass path is provided from the discharge side of the compressor to the suction side through a pressure reducing mechanism to bypass the refrigerant. By opening the pressure equalization bypass passage and equalizing the high and low pressures when the compressor is started, the load at the start of the compressor is reduced, and an oil separator is installed on the discharge side of the compressor to separate the oil. By providing an oil return passageway that returns oil from the compressor to the suction side of the compressor, refrigerant mixed with oil is returned to the compressor while the equipment is in operation, thereby preventing accidents such as seizure due to oil leaking into the compressor. is a known technique.

(発明が解決しようとする課題) しかしながら、上記従来のもののように油分離器から圧
縮機に油を戻すようにしても、圧縮機の起動時において
は、必ずしも浦上りを防止することができない虞れがあ
る。
(Problem to be Solved by the Invention) However, even if the oil is returned to the compressor from the oil separator as in the above-mentioned conventional system, there is a risk that it may not necessarily be possible to prevent water from rising when the compressor is started. There is.

すなわち、圧縮機の起動時には通常高圧と低圧とが均圧
化されており、高低圧の差圧が小さいために、油戻し通
路の流量が少なく、油戻し通路を介して十分油が圧縮機
の吸入側に戻りにくい状態にある。したがって、特に圧
縮機の起動時の運転容量が小さく制御されるインバータ
付き圧縮機等、圧縮機の種類や運転状態によっては、圧
縮機の油上りを生じ、油不足による焼付き等を生じる虞
れがある。
In other words, when the compressor is started, the high pressure and low pressure are usually equalized, and the differential pressure between the high and low pressures is small, so the flow rate in the oil return passage is small, and the oil is not sufficiently supplied to the compressor through the oil return passage. It is difficult to return to the suction side. Therefore, depending on the type and operating conditions of the compressor, such as compressors with inverters whose operating capacity is controlled to be small when the compressor is started, oil may rise in the compressor and cause seizures due to lack of oil. There is.

本発明は斯かる点に鑑みてなされたものであり、その第
1の目的は、圧縮機の起動時における油戻し通路の流量
を増大させる手段を講することにより、圧縮機の起動時
における油上りを有効に防止し、信頼性の向上を図るこ
とにある。
The present invention has been made in view of the above, and its first object is to reduce the amount of oil at the time of starting the compressor by providing a means for increasing the flow rate of the oil return passage at the time of starting the compressor. The objective is to effectively prevent uplinks and improve reliability.

また、本発明の第2の目的は、圧縮機の起動時における
油戻し機能と、圧縮機の停止時における均圧機能とを行
わせる手段を講することにより、上記従来のもののよう
な均圧用バイパス路を不要とすることにある。
A second object of the present invention is to provide a means for performing an oil return function when the compressor is started and a pressure equalization function when the compressor is stopped. The purpose is to eliminate the need for a bypass road.

(課題を解決するための手段) 上記目的を達成するため本発明の解決手段は、第1図に
示すように(破線部分を含まず)、圧縮機(1)と、該
圧縮機(1)の吐出冷媒中の油を分離する油分離器(2
)と、該油分離器(2)から圧縮機(1)の吸入側に流
量絞り機構(32)を介して油を戻す油戻し通路(33
)とを備えた冷凍装置を前提とする。
(Means for Solving the Problems) In order to achieve the above object, the solving means of the present invention includes a compressor (1) and a Oil separator (2) that separates oil in the discharged refrigerant
), and an oil return passage (33) that returns oil from the oil separator (2) to the suction side of the compressor (1) via a flow restriction mechanism (32).
).

そして、上記油戻し通路(33)に上記流量絞り機構(
32)をバイパスするよう油戻しバイパス路(34)を
並列に設け、該油戻しバイパス路(34)を開閉するバ
イパス開閉弁(35)を設ける。
The oil return passageway (33) is connected to the flow rate restricting mechanism (
An oil return bypass path (34) is provided in parallel to bypass the oil return bypass path (32), and a bypass opening/closing valve (35) is provided to open and close the oil return bypass path (34).

さらに、上記圧縮機(1)の起動時、所定時間の間上記
バイパス開閉弁(35)を開くよう制御する運転制御手
段(15)を設ける構成と【7たものである。
Furthermore, an operation control means (15) is provided for controlling the bypass on-off valve (35) to be opened for a predetermined period of time when the compressor (1) is started.

第2の解決手段は、第1図に示すように(破線部分を含
む)、上記第1の解決手段に加えて、油戻しバイパス路
(34)に、バイパス量を絞るバイパス絞り機構(36
)を介設したものである。
As shown in FIG. 1 (including the broken line part), the second solution means, in addition to the first solution means, includes a bypass throttle mechanism (36
).

(作用) 以上の構成により、請求項(1)の発明では、運転制御
手段(15)により、通常運転時にはバイパス開閉弁(
35)が閉じるよう制御されて油分離器(4)から油戻
し通路(33)を介して油の混ざった少量のガス冷媒が
圧縮機0)の吸入側に戻る一方、圧縮機(1)の起動時
には、一定時間バイパス開閉弁(35)が開くよう制御
されて、通路の拡大により油の混ざった多量のガス冷媒
が油分離器(4)から油戻し通路(33)及び油戻し用
バイパス路(34)を介して圧縮機(1)の吸入側に戻
される。
(Function) With the above configuration, in the invention of claim (1), the operation control means (15) controls the bypass on-off valve (
35) is controlled to close, and a small amount of gas refrigerant mixed with oil returns from the oil separator (4) to the suction side of the compressor (1) via the oil return passage (33). At startup, the bypass on-off valve (35) is controlled to open for a certain period of time, and the expansion of the passage causes a large amount of gas refrigerant mixed with oil to flow from the oil separator (4) to the oil return passage (33) and the oil return bypass passage. (34) and is returned to the suction side of the compressor (1).

したがって、圧縮機(1)の油不足を招くことなく、圧
縮機(1)の起動が行われ、焼付き等の事故が防止され
ることになる。
Therefore, the compressor (1) is started without causing an oil shortage in the compressor (1), and accidents such as seizure are prevented.

請求項(2)の発明では、上記請求項(1)の発明の作
用に加えて、バイパス開閉弁(35)を開くことにより
高圧と低圧との均圧を行うことが可能となり、均圧用バ
イパス路を別途設ける必要がないので、コストの増大を
招くことなく上記請求項(1)の発明の作用が得られる
ことになる。
In the invention of claim (2), in addition to the effect of the invention of claim (1), it is possible to equalize high pressure and low pressure by opening the bypass on-off valve (35), and the pressure equalization bypass Since there is no need to provide a separate path, the effect of the invention of claim (1) can be obtained without increasing costs.

(実施例) 以下、本発明の実施例について、第2図以下の図面に基
づき説明する。
(Example) Hereinafter, an example of the present invention will be described based on the drawings from FIG. 2 onwards.

第2図は本発明の実施例に係るマルチ型空気調和装置の
冷媒配管系統を示し、(A)は室外ユニット、(B)〜
(F)は該室外ユニット(A)に並列に接続された室内
ユニットである。上記室外ユニット(A)の内部には、
インバータ(2)により容量が調整される圧縮機(1)
と、該圧縮機(1)から吐出されるガス中の油をそれぞ
れ分離する油分離器(4)と、冷房運転時には図中実線
の如く切換わり暖房運転時には図中破線の如く切換イツ
る四路切換弁(5)と、冷房運転時に凝縮器、暖房運転
時に蒸発器となる室外熱交換器(6)および該室外熱交
換器(6)に付設された2台の室外ファン(6a)、(
6b)と、冷房運転時には冷媒流量を調節し、暖房運転
時には冷媒の絞り作用を行う室外電動膨張弁(8)と、
液化した冷媒を貯蔵するレシーバ(9)と、吸入冷媒中
の液冷媒を除去するためのアキュムレータ(10)とが
主要機器として内蔵されていて、該各機器(1)〜(1
0)は各々冷媒の連絡配管(11)で冷媒の流通可能に
接続されている。また上記室内ユニット(B)〜(F)
は同一構成であり、各々、冷房運転時には蒸発器、暖房
運転時には凝縮器となる室内熱交換器(12)、・・・
およびそのファン(12a)、・・・を備え、かつ該室
内熱交換器(12)、・・・の液冷媒分岐管(11,a
)、・・・には、暖房運転時に冷媒流量を調節し、冷房
運転時に冷媒の絞り作用を行う室内電動膨張弁(13)
、・・・がそれぞれ介設され、合流後手動閉鎖弁(17
)。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner according to an embodiment of the present invention, in which (A) is an outdoor unit, (B) -
(F) is an indoor unit connected in parallel to the outdoor unit (A). Inside the outdoor unit (A),
Compressor (1) whose capacity is adjusted by an inverter (2)
and an oil separator (4) that separates oil from the gas discharged from the compressor (1), and an oil separator (4) that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation. a road switching valve (5), an outdoor heat exchanger (6) that serves as a condenser during cooling operation and an evaporator during heating operation, and two outdoor fans (6a) attached to the outdoor heat exchanger (6); (
6b), and an outdoor electric expansion valve (8) that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation;
A receiver (9) for storing liquefied refrigerant and an accumulator (10) for removing liquid refrigerant from suction refrigerant are built-in as main devices, and each of the devices (1) to (1)
0) are connected to each other through refrigerant communication pipes (11) so that refrigerant can flow therethrough. In addition, the above indoor units (B) to (F)
have the same configuration, and each has an indoor heat exchanger (12) that serves as an evaporator during cooling operation and a condenser during heating operation.
and a fan (12a), . . . , and a liquid refrigerant branch pipe (11, a) of the indoor heat exchanger (12), .
), ... are equipped with an indoor electric expansion valve (13) that adjusts the refrigerant flow rate during heating operation and throttles the refrigerant during cooling operation.
,... are interposed respectively, and a manual closing valve (17
).

(17)を介し連絡配管(1lb )によって室外ユニ
ット(A)との間を接続されている。すなわち、以上の
各機器は冷媒配管(11)により、冷媒の流通可能に接
続されていて、室外空気との熱交換により得た熱を室内
空気に放出するようにした主冷媒回路(14)が構成さ
れている。
(17) and is connected to the outdoor unit (A) by a connecting pipe (1lb). In other words, each of the above-mentioned devices is connected by refrigerant piping (11) so that refrigerant can flow, and a main refrigerant circuit (14) is configured to release heat obtained through heat exchange with outdoor air to indoor air. It is configured.

次に、(33)は上記油分離器(4)から圧縮機(1)
に油を戻すための油戻し通路であって、該油戻し通路(
33)には油戻し用キャピラリチューブ(32)が介設
されている。
Next, (33) connects the oil separator (4) to the compressor (1).
An oil return passage for returning oil to the oil return passage (
33) is provided with an oil return capillary tube (32).

また、(11e )は、吐出管と液管側とを吐出ガス(
ホットガス)のバイパス可能に接続する暖房過負荷制御
用バイパス路であって、該バイパス路(lie)には、
室外熱交換器(6)と共通の空気通路に設置された補助
熱交換器(22)、キャピラリチューブ(28)及び冷
媒の高圧時に開作動する電磁開閉弁(24)が順次直列
にかつ室外熱交換器(6)とは並列に接続されており、
冷房運転時には常時、暖房運転時には高圧が過上昇時に
、上記電磁開閉弁(24)がオンつまり開状態になって
、吐出ガスの一部を主冷媒回路(14)から暖房過負荷
制御用バイパス路(11e)にバイパスするようにして
いる。このとき、吐出ガスの一部を補助熱交換器(22
)で凝縮させて室外熱交換器(6)の能力を補助すると
ともに、キャピラリチューブ(28)で室外熱交換器(
6)側の圧力損失とのバランスを取るようになされてい
る。
In addition, (11e) connects the discharge pipe and the liquid pipe side to the discharge gas (
A bypass path for heating overload control connected to enable bypass of (hot gas), the bypass path (lie) including:
An auxiliary heat exchanger (22) installed in a common air passage with the outdoor heat exchanger (6), a capillary tube (28), and an electromagnetic shut-off valve (24) that opens when the refrigerant is at high pressure are connected in series and connected in sequence to the outdoor heat exchanger (6). It is connected in parallel with the exchanger (6),
At all times during cooling operation, and when high pressure rises excessively during heating operation, the electromagnetic on-off valve (24) is turned on or opened, and part of the discharged gas is transferred from the main refrigerant circuit (14) to the heating overload control bypass path. (11e) is bypassed. At this time, a part of the discharged gas is transferred to the auxiliary heat exchanger (22
) to support the capacity of the outdoor heat exchanger (6), and the capillary tube (28) to condense the outdoor heat exchanger (
The pressure loss on the 6) side is balanced.

さらに、(11g )は上記暖房過負荷バイノくス路(
11e )の液冷媒側配管と主冷媒回路(14)の吸入
ラインとの間を接続し、冷暖房運転時に吸入ガスの過熱
度を調節するためのリキ・ソドインジェクションバイパ
ス路であって、該バイパス路(11g )には圧縮機(
1)のオン・オフと連動して開閉するインジェクション
用電磁弁(29)と、キャピラリチューブ(30)とが
介設されている。
Furthermore, (11g) is the heating overload binox road (
11e) is a liquid injection bypass path that connects the liquid refrigerant side piping of 11e) and the suction line of the main refrigerant circuit (14) to adjust the degree of superheating of the suction gas during heating and cooling operation, the bypass path (11g) has a compressor (
An injection solenoid valve (29) that opens and closes in conjunction with the on/off of 1) and a capillary tube (30) are interposed.

なお、(31)は、吸入管(11)中の吸入冷媒と液管
(11)中の液冷媒との熱交換により吸入冷媒を冷却さ
せて、連絡配管(llb)における冷媒の過熱度の上昇
を補償するための吸入管熱交換器、(S P)はサービ
スポート、(GP)はゲージボートである。
In addition, (31) cools the suction refrigerant through heat exchange between the suction refrigerant in the suction pipe (11) and the liquid refrigerant in the liquid pipe (11), thereby increasing the degree of superheating of the refrigerant in the connecting pipe (llb). (SP) is the service port, (GP) is the gauge boat.

また、装置には多くのセンサ類が配置されていて、(T
HI)、・・・は各室内温度を検出する室温サーモスタ
ット、(TH2)、・・・および(TH3)・・・は各
々室内熱交換器(12)、・・・の液側およびガス側配
管における冷媒の温度を検出する室内液温センサ及び室
内ガス温センサ、(TH4)は圧縮機(1)の吐出管温
度を検出する吐出管センサ、(TH5)は暖房運転時に
室外熱交換器(6)の出口温度から着霜状態を検出する
デフロストセンサ、(TH6)は上記吸入管熱交換器(
31)の下流側の吸入管(11)に配置され、吸入管温
度を検出する吸入管センサ、(TH7)は室外熱交換器
(6)の空気吸込口に配置され、吸込空気温度を検出す
る外気温センサ、(Pl)は冷房運転時には冷媒圧力の
低圧つまり蒸発圧力相当飽和温度を、暖房運転時には高
圧つまり凝縮圧力相当飽和温度を検出する圧力センサ、
(HPS)は圧縮機保護用の高圧圧力開閉器である。
In addition, the device is equipped with many sensors (T
HI), ... are room temperature thermostats that detect each indoor temperature, (TH2), ... and (TH3) ... are the liquid side and gas side pipes of the indoor heat exchanger (12), ..., respectively. (TH4) is a discharge pipe sensor that detects the temperature of the discharge pipe of the compressor (1), and (TH5) is the outdoor heat exchanger (6) that detects the temperature of the refrigerant during heating operation. The defrost sensor (TH6) detects the frosting state from the outlet temperature of the suction pipe heat exchanger (
The suction pipe sensor (TH7) is placed at the air suction port of the outdoor heat exchanger (6) and detects the suction air temperature. The outside temperature sensor (Pl) is a pressure sensor that detects the low pressure of refrigerant pressure, that is, the saturation temperature equivalent to evaporation pressure, during cooling operation, and the high pressure, that is, the saturation temperature, equivalent to condensing pressure, during heating operation.
(HPS) is a high pressure switch for compressor protection.

そして、上記各電磁弁およびセンサ類は各主要機器と共
に装置の運転を制御する室外制御ユニツト(15)に直
接或いは室内制御ユニット(図示せず)を介して信号線
で接続され、該室外制御ユニット(15)により、室外
ユニット(A)の各機器を制御するようになされている
Each of the solenoid valves and sensors described above is connected to an outdoor control unit (15) that controls the operation of the device along with each main device by a signal line either directly or via an indoor control unit (not shown), and the outdoor control unit (15) controls each device of the outdoor unit (A).

ここで、本発明の特徴として、上記油戻し通路(33)
には、上記油戻し用キャピラリチューブ(32)をバイ
パスするよう並列に油戻しバイパス路(34)が設けら
れていて、該油戻しバイパス路(34)には、油戻しバ
イパス路(34)を開閉するバイパス開閉弁(35)と
、油戻しバイパス路(34)を流れる冷媒の流量を絞る
バイパス絞り機構としてのバイパス用キャピラリチュー
ブ(36)とが設けられている。
Here, as a feature of the present invention, the oil return passage (33)
An oil return bypass path (34) is provided in parallel to bypass the oil return capillary tube (32), and the oil return bypass path (34) is connected to the oil return bypass path (34). A bypass opening/closing valve (35) that opens and closes, and a bypass capillary tube (36) as a bypass throttling mechanism that throttles the flow rate of refrigerant flowing through the oil return bypass path (34) are provided.

第2図において、空気調和装置の冷房運転時、四路切換
弁(2)が図中実線側に切換わり、補助熱交換器(22
)の電磁開閉弁(24)が常時開いて、圧縮機(1)で
圧縮された冷媒が室外熱交換器(6)及び補助熱交換器
(22)で凝縮され、連絡配管(1lb )を経て各室
内ユニット(B)〜(F)に分岐して送られる。そして
、各室内ユニット(B)〜(F)では、各室内電動膨張
弁(1,3)、・・・で減圧され、各室内熱交換器(1
2)・・・で蒸発した後合流して、室外ユニット(A)
にガス状態で戻り、圧縮機(1)に吸入されるように循
環する。
In Fig. 2, during cooling operation of the air conditioner, the four-way switching valve (2) switches to the solid line side in the figure, and the auxiliary heat exchanger (22
) is always open, and the refrigerant compressed by the compressor (1) is condensed in the outdoor heat exchanger (6) and the auxiliary heat exchanger (22), and then passed through the connecting pipe (1 lb). It is branched and sent to each indoor unit (B) to (F). Then, in each indoor unit (B) to (F), the pressure is reduced by each indoor electric expansion valve (1, 3), etc., and the pressure is reduced by each indoor heat exchanger (1, 3), etc.
2) After being evaporated in..., they are combined and sent to the outdoor unit (A).
It returns to the gas state and is circulated so that it is sucked into the compressor (1).

一方、暖房運転時には、四路切換弁(5)が図中破線側
に切換わり、冷媒の流れは上記冷房運転時と逆となって
、圧縮機(])で圧縮された冷媒が各室内熱交換器(1
2)、・・・で凝縮され、合流して液状態で室外ユニッ
ト(A)に流れて室外電動膨張弁(8)により減圧され
、室外熱交換器(6)で蒸発した後圧縮機(1)に戻る
ように循環する。
On the other hand, during heating operation, the four-way selector valve (5) switches to the side shown by the broken line in the figure, and the flow of refrigerant is reversed to that during cooling operation, and the refrigerant compressed by the compressor (]) is transferred to each indoor heat source. Exchanger (1
2), . ).

ここで、上記空気調和装置の運転中、上記室外制御ユニ
ット(15)により、各室内ユニット(B)〜(F)が
いずれもサーモオフのときには、上記圧縮機(1)が停
止する一方、各室内ユニット(B)〜(F)のうち少な
くとも一台がサーモオン状態に回復したときには、圧縮
機(1)が再起動するよう制御される。
Here, during operation of the air conditioner, when each of the indoor units (B) to (F) is thermo-off, the outdoor control unit (15) stops the compressor (1), while each indoor unit When at least one of the units (B) to (F) returns to the thermo-on state, the compressor (1) is controlled to restart.

そして、上記バイパス開閉弁(35)は通常閉じられて
いて、油の混ざった少量のガス冷媒を常時油戻し通路(
33)のみを介して圧縮機(1)の吸入側に戻す一方、
圧縮機(1)のサーモオフ状態からサーモオンへ回復或
いは装置の運転開始による圧縮機(1)の起動時のみ、
上記バイパス開閉弁(35)を開いて、浦の混ざった多
量のガス冷媒を油戻し通路(33)及び油戻しバイパス
路(34)を介して油分離器(4)から圧縮機(1)の
吸入側に戻すようになされている。すなわち、上記室外
制御ユニット(15)は、圧縮機(1)の起動時のみバ
イパス開閉弁(35)を開くよう制御する運転制御手段
としての機能を有するものである。
The bypass on-off valve (35) is normally closed, and a small amount of gas refrigerant mixed with oil is always passed through the oil return passage (35).
33) only to the suction side of the compressor (1),
Only when the compressor (1) returns from the thermo-off state to the thermo-on state or when the compressor (1) starts up due to the start of operation of the device,
By opening the bypass on-off valve (35), a large amount of gas refrigerant mixed with Ura is passed from the oil separator (4) to the compressor (1) via the oil return passage (33) and the oil return bypass passage (34). It is designed to return to the suction side. That is, the outdoor control unit (15) has a function as an operation control means that controls the bypass on-off valve (35) to be opened only when the compressor (1) is started.

さらに、圧縮機(1)の停止時、上記バイパス開閉弁(
35)を一定時間の間開いて高圧と低圧との均圧を行う
ことにより、高低差圧が大きいことによる圧縮機(1)
の起動不良が生じないようになされている。
Furthermore, when the compressor (1) is stopped, the bypass on-off valve (
35) for a certain period of time to equalize high pressure and low pressure, the compressor (1)
The system is designed to prevent startup failures.

したがって、請求項(1)の発明では、室外制御ユニッ
ト(運転制御手段)(15)により、通常はバイパス開
閉弁(35)が閉じるよう制御されるので、油分離器(
4)から油戻し通路(33)を介して浦の混ざった少量
のガス冷媒が圧縮機(1)の吸入側に戻される。
Therefore, in the invention of claim (1), since the outdoor control unit (operation control means) (15) normally controls the bypass on-off valve (35) to close, the oil separator (
4), a small amount of gas refrigerant mixed with ura is returned to the suction side of the compressor (1) via the oil return passage (33).

ここで、圧縮機(1)の起動時には、高低圧の差圧が小
さくなるので、例えば上記実施例のようなインバータ(
2)により運転容量が調節される圧縮機(1)の場合に
は特に圧縮機(1)の起動時の運転容量が小さい(例え
ば上記実施例では30Hz程度の値)ために、油戻し通
路(33)における差圧不足により冷媒の流量が極度に
減少するので、圧縮機(1)の油不足による焼付き等の
事故を招く虞れが生じる。
Here, when the compressor (1) is started, the differential pressure between high and low pressures becomes small, so for example, the inverter (
In the case of the compressor (1) whose operating capacity is adjusted by 2), since the operating capacity of the compressor (1) at startup is small (for example, a value of about 30 Hz in the above embodiment), the oil return passage ( Since the flow rate of the refrigerant is extremely reduced due to the insufficient differential pressure in the compressor (1), there is a risk of an accident such as seizure due to lack of oil in the compressor (1).

それに対し、本発明では、圧縮機(1)の起動時には、
運転制御手段(15)により、一定時間バイパス開閉弁
(35)が開くよう制御されるので、浦の混ざった多量
のガス冷媒が油分離器(4)から油戻し通路(33)及
び油戻し用バイパス路(34)を介して圧縮機(1)の
吸入側に戻されることになり、上記のような圧縮機(]
−)の浦不足がf−T効に防止され、よって、信・頴性
の向上を図ることができるのである。
In contrast, in the present invention, when starting the compressor (1),
Since the operation control means (15) controls the bypass on-off valve (35) to open for a certain period of time, a large amount of gas refrigerant mixed with Ura flows from the oil separator (4) to the oil return passageway (33) and to the oil return passage. It will be returned to the suction side of the compressor (1) via the bypass path (34), and the compressor (]
-) lack of ura is prevented by the f-T effect, and therefore reliability and performance can be improved.

請求項(21の発明では、上記請求項fi+の発明にお
いて、油戻し用バイパス路(34)にガス冷媒の流量を
絞るためのバイパス用キャピラリチューブ(36)が介
設されているので、圧縮機(])の停止時、バイパス開
閉弁(35)を開いて油戻しバイパス路(34)を介し
て高圧と低圧との均圧をすることができ、均圧用ホット
ガスバイパス路を別途設ける必要がない。よって、コス
トの増大を招くことなく、上記請求項(1)の発明の効
果を得ることができる。
In the invention of claim 21, in the invention of claim fi+, a bypass capillary tube (36) for restricting the flow rate of the gas refrigerant is interposed in the oil return bypass path (34), so that the compressor When the ( ) is stopped, the bypass on-off valve (35) can be opened to equalize the high pressure and low pressure via the oil return bypass path (34), which eliminates the need to provide a separate hot gas bypass path for pressure equalization. Therefore, the effect of the invention of claim (1) above can be obtained without causing an increase in cost.

なお。上記実施例では、圧縮機(4)をインバータ(2
)により運転容量を調節されるタイプのものとしたが、
本発明は係る実施例に限定されるものではなく、アンロ
ーダ機構により容量を、調節されるタイプのものや、容
量1退部機構を有しないものについても適用しつる。た
だし、上記実施例のようなインバータ(2)を使用する
ものでは、特に起動時の運転容量が小さいので、油の戻
り量が少なく圧縮機(1)の油不足を招き易い。1.た
がって、本発明の効果を顕著に発揮することができるも
のである。
In addition. In the above embodiment, the compressor (4) is connected to the inverter (2).
), but the operating capacity was adjusted by
The present invention is not limited to such embodiments, but can also be applied to a type in which the capacity is adjusted by an unloader mechanism or a type without a capacity 1 withdrawal mechanism. However, in the case of using the inverter (2) as in the above embodiment, the operating capacity is small especially at startup, so the amount of oil returned is small and the compressor (1) is likely to run out of oil. 1. Therefore, the effects of the present invention can be significantly exhibited.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、油
分離器から圧縮機の吸入側に流量絞り機構を介して油を
戻す油戻し通路を設けるとともに、油戻し通路に流量絞
り機構をバイパスするよう並列にバイパス路を設け、圧
縮機の起動時、所定時間の間このバイパス路を開くよう
にしたので、起動時の油不足の虞れを有効に防止するこ
とができ、よって、信頼性の向上を図ることができる。
(Effects of the Invention) As explained above, according to the invention of claim (1), an oil return passage is provided for returning oil from the oil separator to the suction side of the compressor via a flow rate restricting mechanism, and A bypass path is provided in parallel in the passage to bypass the flow rate restricting mechanism, and this bypass path is opened for a predetermined period of time when the compressor is started, thereby effectively preventing the risk of oil shortage at the time of startup. Therefore, reliability can be improved.

請求項(2)の発明によれば、上記請求項(1)の発明
において、バイパス路にバイパス流量ヲ絞るためのバイ
パス絞り機構を設けたので、バイパス路を+1JJrJ
t、て圧縮機停止時の均圧化がiiJ能となり、よって
、コストの増大を招くことなく、上記請求項(1)の発
明の効果を発揮することができる。
According to the invention of claim (2), in the invention of claim (1), the bypass passage is provided with a bypass throttle mechanism for throttling the bypass flow rate, so that the bypass passage is increased by +1JJrJ.
The pressure equalization when the compressor is stopped at t and t is now possible, and therefore the effect of the invention of claim (1) above can be exhibited without causing an increase in cost.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図である。 第2図は本発明の実施例に係る空気調和装置の冷媒配管
系統図である。 1  圧縮機 15 室外制御ユニット (運転制御手段) 32 油戻し用キャピラリチューブ (流量絞り機構) 33 油戻し通路 34 曲戻しバイパス路 35 バイパス開閉弁 36 バイパス用キャピラリチューブ (バイパス絞り機構) 圧縮機 室外制御ユニット 油戻し用キャピラリチューブ (流量絞り機構) 油戻し通路 油戻しバイパス路 バイパス開閉弁 バイパス用キャピラリチューブ (バイパス絞り機構)
FIG. 1 is a block diagram showing the configuration of the present invention. FIG. 2 is a refrigerant piping system diagram of an air conditioner according to an embodiment of the present invention. 1 Compressor 15 Outdoor control unit (operation control means) 32 Capillary tube for oil return (flow rate throttling mechanism) 33 Oil return passage 34 Bending bypass passage 35 Bypass opening/closing valve 36 Capillary tube for bypass (bypass throttling mechanism) Compressor outdoor control Capillary tube for unit oil return (flow restriction mechanism) Oil return passage Oil return bypass passage Bypass on/off valve Capillary tube for bypass (bypass restriction mechanism)

Claims (2)

【特許請求の範囲】[Claims] (1)圧縮機(1)と、該圧縮機(1)の吐出冷媒中の
油を分離する油分離器(2)と、該油分離器(2)から
圧縮機(1)の吸入側に流量絞り機構(32)を介して
油を戻す油戻し通路(33)とを備えた冷凍装置におい
て、 上記油戻し通路(33)に上記流量絞り機構(32)を
バイパスするよう並列に設けられた油戻しバイパス路(
34)と、該油戻しバイパス路(34)を開閉するバイ
パス開閉弁(35)とを備えるとともに、 上記圧縮機(1)の起動時、所定時間の間上記バイパス
開閉弁(35)を開くよう制御する運転制御手段(15
)を備えたことを特徴とする冷凍装置の運転制御装置。
(1) A compressor (1), an oil separator (2) that separates oil in the refrigerant discharged from the compressor (1), and an oil separator (2) that separates oil from the refrigerant discharged from the compressor (1), and a In a refrigeration system equipped with an oil return passage (33) that returns oil via a flow rate restriction mechanism (32), an oil return passage (33) is provided in parallel to the oil return passage (33) so as to bypass the flow rate restriction mechanism (32). Oil return bypass path (
34) and a bypass on-off valve (35) that opens and closes the oil return bypass path (34), and opens the bypass on-off valve (35) for a predetermined period of time when the compressor (1) is started. Operation control means to control (15
) An operation control device for a refrigeration system.
(2)油戻しバイパス路(34)には、バイパス量を絞
るバイパス絞り機構(36)が介設されていることを特
徴とする請求項(1)記載の空気調和装置。
(2) The air conditioner according to claim (1), wherein the oil return bypass path (34) is provided with a bypass throttle mechanism (36) that throttles the amount of bypass.
JP25906989A 1989-10-04 1989-10-04 Operating controller for refrigerating machine Pending JPH03122460A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25906989A JPH03122460A (en) 1989-10-04 1989-10-04 Operating controller for refrigerating machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25906989A JPH03122460A (en) 1989-10-04 1989-10-04 Operating controller for refrigerating machine

Publications (1)

Publication Number Publication Date
JPH03122460A true JPH03122460A (en) 1991-05-24

Family

ID=17328893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25906989A Pending JPH03122460A (en) 1989-10-04 1989-10-04 Operating controller for refrigerating machine

Country Status (1)

Country Link
JP (1) JPH03122460A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139041A (en) * 2007-12-07 2009-06-25 Samsung Electronics Co Ltd Air conditioner
JP2010038503A (en) * 2008-08-08 2010-02-18 Fujitsu General Ltd Refrigeration cycle device
JP2010230233A (en) * 2009-03-26 2010-10-14 Mitsubishi Heavy Ind Ltd Air conditioner
JP2012225630A (en) * 2011-04-22 2012-11-15 Mitsubishi Electric Corp Heat source-side unit and refrigerating cycle device
CN114893932A (en) * 2022-05-24 2022-08-12 珠海格力电器股份有限公司 Compressor oil return system, control method and device thereof, storage medium and air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383561A (en) * 1986-09-26 1988-04-14 松下冷機株式会社 Air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6383561A (en) * 1986-09-26 1988-04-14 松下冷機株式会社 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009139041A (en) * 2007-12-07 2009-06-25 Samsung Electronics Co Ltd Air conditioner
JP2010038503A (en) * 2008-08-08 2010-02-18 Fujitsu General Ltd Refrigeration cycle device
JP2010230233A (en) * 2009-03-26 2010-10-14 Mitsubishi Heavy Ind Ltd Air conditioner
JP2012225630A (en) * 2011-04-22 2012-11-15 Mitsubishi Electric Corp Heat source-side unit and refrigerating cycle device
CN114893932A (en) * 2022-05-24 2022-08-12 珠海格力电器股份有限公司 Compressor oil return system, control method and device thereof, storage medium and air conditioner

Similar Documents

Publication Publication Date Title
US6883346B2 (en) Freezer
EP1666806A2 (en) Multi-air condition system and method for controlling the same
JPH03122460A (en) Operating controller for refrigerating machine
JP3143142B2 (en) Refrigeration equipment
JP3096687B2 (en) Air conditioner
JPH08128764A (en) Oil temperature sensor mounting structure for compressor
JP3584514B2 (en) Refrigeration equipment
JPH04324075A (en) Air conditioning apparatus
JPH04222354A (en) Operation controller for refrigerating equipment
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH0694954B2 (en) Refrigerator superheat control device
JPH05240522A (en) Air conditioning apparatus
JP2976905B2 (en) Air conditioner
JPH08128747A (en) Controller for air conditioner
JPH10132406A (en) Refrigerating system
JP2966635B2 (en) Air conditioner
JPH0772653B2 (en) Operation control device for air conditioner
JP4023385B2 (en) Refrigeration equipment
JP3301828B2 (en) Air conditioner
JP3048658B2 (en) Refrigeration equipment
JPH062974A (en) Air conditioner
JPH081338B2 (en) Operation control device for air conditioner
JPH10281576A (en) Multizone heat pump type air conditioner
JPH02272249A (en) Operation control device for air conditioner
JPH02208452A (en) Pressure equalizing control device for refrigerator