JPH04222354A - Operation controller for refrigerating equipment - Google Patents

Operation controller for refrigerating equipment

Info

Publication number
JPH04222354A
JPH04222354A JP40497690A JP40497690A JPH04222354A JP H04222354 A JPH04222354 A JP H04222354A JP 40497690 A JP40497690 A JP 40497690A JP 40497690 A JP40497690 A JP 40497690A JP H04222354 A JPH04222354 A JP H04222354A
Authority
JP
Japan
Prior art keywords
compressor
oil
pipe
compressors
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP40497690A
Other languages
Japanese (ja)
Inventor
Nobuhide Yoshida
信英 吉田
Naoki Ueno
直樹 上野
Masaki Yamamoto
政樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP40497690A priority Critical patent/JPH04222354A/en
Publication of JPH04222354A publication Critical patent/JPH04222354A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • F25B2400/0751Details of compressors or related parts with parallel compressors the compressors having different capacities

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

PURPOSE:To prevent the shortage of oil in respective compressors by a method wherein two sets of compressors, connected in parallel, are connected by an oil equilibrating pipe and discharging refrigerant is bypassed into the oil equilibrating pipe when one of the compressor is operated with a low capacity while the other compressor is operated with a high capacity. CONSTITUTION:Domes of two sets of compressors 1A, 1B, connected in parallel to a refrigerant circuit 14, are connected through an oil equilibrating pipe 33. The amount of oil in the compressors 1A, 1B is retained uniformly through the oil equilibrating pipe 33 during normal operation. When one of the compressor 1A is operated with a high capacity and the other compressor 1B is operated with a low capacity, a pressure in the dome of the compressor 1A is reduced whereby lubricating oil tries to flow from the side of the compressor 1B through the oil equilibrating pipe 33. An opening and closing valve 36, provided on a bypass passage 35, is opened by an opening and closing control means 50 under such an operating condition and discharging refrigerant is introduced into the oil equilibrating pipe 33. Accordingly, the flow of oil in the oil equilibrating pipe 33 is precluded by the gas refrigerant and the shortage of oil in the compressor 1B due to the outflow of excessive oil into the compressor 1A can be prevented.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、互いに均油管で接続さ
れた複数の圧縮機を冷媒回路に並列に接続してなる冷凍
装置の運転制御装置に係り、特に油不足の解消対策に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an operation control device for a refrigeration system in which a plurality of compressors connected to each other via oil equalizing pipes are connected in parallel to a refrigerant circuit, and more particularly to a countermeasure against oil shortage.

【0002】0002

【従来の技術】従来より、例えば特開平2―12604
4号公報に開示される如く、冷媒回路に2台の圧縮機を
互いに並列に接続して、各圧縮機の運転容量をインバ―
タ,アンロ―ダ機構でそれぞれ可変に調節することによ
り圧縮機の能力を微細に調節するとともに、各圧縮機の
ド―ム間を均油管で接続することにより各圧縮機の潤滑
油をこの均油管を介して流通させて、各圧縮機の油量を
均一にするようにしたものは公知の技術である。
[Prior Art] Conventionally, for example, Japanese Patent Application Laid-Open No. 2-12604
As disclosed in Publication No. 4, two compressors are connected in parallel to a refrigerant circuit, and the operating capacity of each compressor is inverted.
The capacity of the compressor can be finely adjusted by variably adjusting the compressor and unloader mechanisms, and the lubricating oil of each compressor is evenly distributed by connecting the domes of each compressor with oil equalizing pipes. It is a known technique to distribute oil through oil pipes to make the amount of oil uniform in each compressor.

【0003】0003

【発明が解決しようとする課題】しかしながら、上記従
来のものにおいて、各圧縮機の容量差が大きいような条
件下での運転が長時間継続すると、高容量側の圧縮機の
ド―ム圧が低下するので、均油管を介して低容量側の圧
縮機から高容量側の圧縮機に油が流入し、この流入量の
増大により偏湯が生じて高容量側の圧縮機で潤滑油が不
足し、ひいては焼損等の故障を生じ、信頼性を損ねる虞
れがあった。
[Problem to be Solved by the Invention] However, in the above-mentioned conventional system, if operation continues for a long time under conditions where the capacity difference between the compressors is large, the dome pressure of the higher capacity compressor will increase. This causes oil to flow from the low-capacity compressor to the high-capacity compressor via the oil-equalizing pipe, and this increased flow causes uneven hot water, causing a shortage of lubricating oil in the high-capacity compressor. However, there is a risk that failures such as burnout may occur and reliability may be impaired.

【0004】ここで、上記のような偏油を防止するもの
として、一方の圧縮機の吸入管の圧力損失よりも他方の
圧縮機の吸入管の圧力損失を大きくするよう構成してお
き、高ド―ム圧側圧縮機に多く吸入した油を均油管を介
して低ド―ム圧側圧縮機に移動させることにより、均油
効果をもたせるようにしたいわゆる強制差圧方式も採ら
れている。
[0004] In order to prevent the above-mentioned unbalanced oil, the pressure loss in the suction pipe of one compressor is made larger than the pressure loss in the suction pipe of the other compressor. A so-called forced differential pressure system has also been adopted in which a large amount of oil sucked into the dome pressure side compressor is transferred to the low dome pressure side compressor via an oil equalization pipe to provide an oil equalization effect.

【0005】しかしながら、強制差圧方式による均油化
を図る場合であっても、運転条件によっては、各圧縮機
で油不足になる虞れがあった。すなわち、高ド―ム圧側
圧縮機が低容量でかつ低ド―ム圧側圧縮機が高容量で長
時間運転されると、各圧縮機間のド―ム差圧が過大にな
って油の移動量が過大になり、高ド―ム圧側圧縮機が油
不足の状態になる。また、逆に高ド―ム圧側の圧縮機が
高容量で低ド―ム圧側圧縮機が低容量で長時間運転され
ると、各圧縮機間の差圧が逆転して、低ド―ム圧側圧縮
機の油が高ド―ム圧側圧縮機に逆流して低ド―ム圧側圧
縮機が油不足の状態になる虞れがあった。
However, even when oil equalization is achieved using the forced differential pressure method, there is a risk that each compressor may run out of oil depending on operating conditions. In other words, if the high dome pressure side compressor has a low capacity and the low dome pressure side compressor has a high capacity and is operated for a long period of time, the dome differential pressure between each compressor becomes excessive and oil movement occurs. The amount becomes too large and the high dome pressure compressor becomes starved of oil. Conversely, if the compressor on the high dome pressure side is operated at high capacity and the compressor on the low dome pressure side is operated at low capacity for a long period of time, the differential pressure between each compressor will reverse, causing the low dome pressure side to There was a risk that the oil in the pressure side compressor would flow back into the high dome pressure side compressor, causing the low dome pressure side compressor to become starved of oil.

【0006】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、各圧縮機間で不均一な運転容量に起
因する油量の不足状態が生じうるような運転条件下では
、均油管における油の流通を阻止する手段を講ずること
により各圧縮機の油不足を未然に防止し、もって、信頼
性の向上を図ることにある。
[0006] The present invention has been made in view of the above-mentioned problems, and its purpose is to reduce the amount of oil under operating conditions in which an insufficient amount of oil may occur due to uneven operating capacity among the compressors. The purpose of this invention is to prevent oil shortages in each compressor by taking measures to prevent the flow of oil in the oil equalizing pipes, thereby improving reliability.

【0007】[0007]

【課題を達成するための手段】上記目的を達成するため
本発明の解決手段は、容量差の大きい運転条件下では、
吐出冷媒を均油管に導入させることにある。
[Means for achieving the object] In order to achieve the above object, the solution of the present invention provides that under operating conditions with large capacity differences,
The purpose is to introduce the discharged refrigerant into the oil equalizing pipe.

【0008】具体的には、請求項1の発明の講じた手段
は、図1に示すように、冷媒回路(14)に2台の可変
容量形圧縮機(1A),(1B)を互いに並列に接続す
るとともに、上記各圧縮機(1A),(1B)のド―ム
間をそれぞれ均油管(33)で接続してなる冷凍装置を
前提とする。
Specifically, the means taken by the invention of claim 1 is as shown in FIG. A refrigeration system is assumed in which the domes of the compressors (1A) and (1B) are connected to each other by oil equalizing pipes (33).

【0009】そして、冷凍装置の運転制御装置として、
上記圧縮機(1A),(1B)の吐出側と上記均油管(
33)とをバイパス接続するバイパス路(35)と、該
バイパス路(35)を開閉する開閉弁(36)と、上記
2台の圧縮機(1A),(1B)のうち一方の圧縮機(
1A)が低容量でかつ他方の圧縮機(1B)が高容量で
運転されるとき上記開閉弁(36)を開いて吐出冷媒を
均油管(33)にバイパスさせるよう制御する開閉制御
手段(50)とを設ける構成としたものである。  請
求項2の発明の講じた手段は、上記請求項1の発明にお
いて、2台の圧縮機(1A),(1B)のうち一方の圧
縮機(1A)の吸入管の圧力損失よりも他方の圧縮機(
1B)の吸入管の圧力損失を大きくするように構成し、
開閉制御手段(50)を、圧力損失の大きい側の圧縮機
(1B)が小容量でかつ圧力損失の大きい側の圧縮機(
1A)が高容量で運転されるときに開閉弁(36)を開
くよう制御する構成としたものである。
[0009] As an operation control device for a refrigeration system,
The discharge side of the compressors (1A) and (1B) and the oil equalizing pipe (
33), an on-off valve (36) that opens and closes the bypass passage (35), and one of the two compressors (1A) and (1B).
1A) is operated at a low capacity and the other compressor (1B) is operated at a high capacity, an opening/closing control means (50) opens the opening/closing valve (36) to bypass the discharged refrigerant to the oil equalizing pipe (33); ). The means taken by the invention of claim 2 is that in the invention of claim 1, the pressure loss in the suction pipe of one of the two compressors (1A) and (1B) is lower than the pressure loss of the suction pipe of the other compressor (1A). Compressor (
1B) is configured to increase the pressure loss of the suction pipe,
The opening/closing control means (50) is configured such that the compressor (1B) on the side with a large pressure loss has a small capacity and the compressor (1B) on the side with a large pressure loss (
1A) is configured to control the on-off valve (36) to open when it is operated at high capacity.

【0010】0010

【作用】以上の構成により、請求項1の発明では、冷媒
回路(14)に互いに並列に接続された2台の圧縮機(
1A),(1B)のド―ム間が均油管(33)で接続さ
れ、通常運転時には、均油管(33)を介して各圧縮機
(1A),(1B)の油量が均一に保持される。一方、
2台の圧縮機(1A),(1B)のうち一方の圧縮機(
例えば1A)が高容量で運転され、他方の圧縮機(1B
)が低容量で運転されると、一方の圧縮機(1A)側の
ド―ム内圧力が低下するので、均油管(33)を介して
潤滑油が他方の圧縮機(1B)側から流入しようとする
が、このような運転条件下では、開閉制御手段(50)
により、バイパス路(35)に設けられた開閉弁(36
)が開かれ、吐出冷媒が均油管(33)に導入されるの
で、均油管(33)における油の流通がこのガス冷媒の
存在により阻止され、一方の圧縮機(1A)への過剰な
油の流出による他方の圧縮機(1B)の油不足が未然に
防止されることになる。
[Operation] With the above configuration, in the invention of claim 1, two compressors (
The domes of 1A) and (1B) are connected by an oil equalizing pipe (33), and during normal operation, the oil amount in each compressor (1A) and (1B) is maintained uniformly through the oil equalizing pipe (33). be done. on the other hand,
One of the two compressors (1A) and (1B) (
For example, one compressor (1A) is operated at high capacity and the other compressor (1B
) is operated at a low capacity, the pressure inside the dome on the one compressor (1A) side decreases, so lubricating oil flows in from the other compressor (1B) side via the oil equalizing pipe (33). However, under such operating conditions, the opening/closing control means (50)
Therefore, the on-off valve (36) provided in the bypass path (35)
) is opened and the discharged refrigerant is introduced into the oil equalizing pipe (33), so the flow of oil in the oil equalizing pipe (33) is blocked by the presence of this gas refrigerant, and excess oil is not transferred to one compressor (1A). This will prevent oil shortage in the other compressor (1B) due to oil leakage.

【0011】請求項2の発明では、通常運転時には、油
量の多い一方の圧縮機(1A)から低ド―ム圧側圧縮機
(1B)に潤滑油が流入して両者の油量が均一に維持さ
れる。そして、一方の圧縮機(1A)が高容量でかつ他
方の圧縮機(1B)が低容量で運転されると、差圧が逆
転して他方の圧縮機(1B)から一方の圧縮機(1A)
に均油管(33)を介して油が逆流しようとするが、こ
のような運転条件下では、開閉制御手段(50)により
開閉弁(36)が開かれて吐出冷媒が均油管(33)に
導入されるので、差圧の逆転による油の逆流が未然に防
止されることになり、強制差圧による均油がより確実に
行われることになる。
In the invention of claim 2, during normal operation, lubricating oil flows from one compressor (1A) with a large amount of oil to the low dome pressure side compressor (1B), so that the amount of oil in both is uniform. maintained. Then, when one compressor (1A) is operated at high capacity and the other compressor (1B) is operated at low capacity, the differential pressure is reversed and from the other compressor (1B) to one compressor (1A). )
However, under such operating conditions, the on-off valve (36) is opened by the on-off control means (50) and the discharged refrigerant flows back into the oil equalizing pipe (33). Since this is introduced, backflow of oil due to reversal of differential pressure is prevented, and oil equalization by forced differential pressure is more reliably performed.

【0012】(実施例)以下、本発明の実施例について
、図2以下の図面に基づき説明する。
(Example) An example of the present invention will be described below with reference to FIG. 2 and subsequent drawings.

【0013】図2は本発明の実施例に係るマルチ型空気
調和装置の冷媒配管系統を示し、(A)は室外ユニット
、(B)〜(D)は該室外ユニット(A)に並列に接続
された室内ユニットである。上記室外ユニット(A)の
内部には、圧縮機(1)と、該圧縮機(1)から吐出さ
れるガス中の油をそれぞれ分離する油分離器(4)と、
冷房運転時には図中実線の如く切換わり暖房運転時には
図中破線の如く切換わる四路切換弁(5)と、冷房運転
時に凝縮器、暖房運転時に蒸発器となる室外熱交換器(
6)および該室外熱交換器(6)に付設された2台の室
外ファン(6a),(6b)と、冷房運転時には冷媒流
量を調節し、暖房運転時には冷媒の絞り作用を行う室外
電動膨張弁(8)と、液化した冷媒を貯蔵するレシ―バ
(9)と、吸入冷媒中の液冷媒を除去するためのアキュ
ムレ―タ(10)とが主要機器として内蔵されていて、
該各機器(1)〜(10)は各々冷媒の連絡配管(11
)で冷媒の流通可能に接続されている。また上記室内ユ
ニット(B)〜(D)は同一構成であり、各々、冷房運
転時には蒸発器、暖房運転時には凝縮器となる室内熱交
換器(12),…およびそのファン(12a ),…を
備え、かつ該室内熱交換器(12),…の液冷媒分岐管
(11a ),…には、暖房運転時に冷媒流量を調節し
、冷房運転時に冷媒の絞り作用を行う室内電動膨張弁(
13),…がそれぞれ介設され、合流後手動閉鎖弁(1
7),(17)を介し連絡配管(11b )によって室
外ユニット(A)との間を接続されている。すなわち、
以上の各機器は冷媒配管(11)により、冷媒の流通可
能に接続されていて、室外空気との熱交換により得た熱
を室内空気に放出するようにした主冷媒回路(14)が
構成されている。
FIG. 2 shows a refrigerant piping system of a multi-type air conditioner according to an embodiment of the present invention, in which (A) is an outdoor unit, and (B) to (D) are connected in parallel to the outdoor unit (A). This is an indoor unit. Inside the outdoor unit (A), a compressor (1) and an oil separator (4) that separates oil in the gas discharged from the compressor (1),
There is a four-way switching valve (5) that switches as shown in the solid line in the figure during cooling operation and as shown in the broken line in the figure during heating operation, and an outdoor heat exchanger (5) that functions as a condenser during cooling operation and as an evaporator during heating operation.
6) and two outdoor fans (6a), (6b) attached to the outdoor heat exchanger (6), and an outdoor electric expansion device that adjusts the refrigerant flow rate during cooling operation and throttles the refrigerant during heating operation. A valve (8), a receiver (9) for storing liquefied refrigerant, and an accumulator (10) for removing liquid refrigerant from the suction refrigerant are built-in as main equipment.
Each of the devices (1) to (10) is connected to a refrigerant connecting pipe (11).
) are connected to allow refrigerant flow. The indoor units (B) to (D) have the same configuration, and each has an indoor heat exchanger (12), which serves as an evaporator during cooling operation and a condenser during heating operation, and its fan (12a),... The liquid refrigerant branch pipes (11a), ... of the indoor heat exchangers (12), ... are equipped with indoor electric expansion valves (11a), which adjust the refrigerant flow rate during heating operation, and throttle the refrigerant during cooling operation.
13),... are respectively interposed, and after merging, a manual closing valve (1
7) and (17), and is connected to the outdoor unit (A) by a connecting pipe (11b). That is,
Each of the above devices is connected through refrigerant piping (11) so that refrigerant can flow, and a main refrigerant circuit (14) is configured to release heat obtained through heat exchange with outdoor air to indoor air. ing.

【0014】ここで、上記圧縮機(1)は、アンロ―ダ
機構(1a)により容量制御される第1圧縮機(1A)
と、インバ―タ(1b)により運転周波数が可変に調節
される第2圧縮機(1B)とからなり、上記各圧縮機(
1A),(1B)は上記主冷媒回路(14)において、
吸入管(31)の第1,第2吸入分岐管(31A),(
31B)及び吐出管(32)の第1,第2吐出分岐管(
32A),(32B)を介して互いに並列に接続されて
いるとともに、各圧縮機(1A),(1B)のド―ム間
はキャピラリチュ―ブ(33a)を介して均油管(33
)で接続されている。ここで、図示しないが、上記第2
吸入管(31B)はメインの太い配管が接続される第1
吸入管(31A)よりも小径にかつ第1吸入管(31A
)内に突出するように設けられていて、第2吸入管(3
1B)における圧力損失が第1吸入管(31A)におけ
る圧力損失よりも大きくなるように設定されている。す
なわち、このように強制差圧を設けることにより、通常
の運転状態、つまり各圧縮機(1A),(1B)の容量
がそれ程極端な容量差がない状態では、壁面に沿って流
れる性質を有する油を第2圧縮機(1B)よりも第1圧
縮機(1A)側に多く流入させる一方、各圧縮機(1A
),(1B)の運転中に生じるド―ム圧の差により、上
記均油管(33)を通じて第1圧縮機(1A)側から第
2圧縮機(1B)側に油を流入させて両者(1A),(
1B)の均油を行うようになされている。
Here, the compressor (1) is a first compressor (1A) whose capacity is controlled by an unloader mechanism (1a).
and a second compressor (1B) whose operating frequency is variably adjusted by an inverter (1b).
1A) and (1B) in the main refrigerant circuit (14),
The first and second suction branch pipes (31A) of the suction pipe (31), (
31B) and the first and second discharge branch pipes (32) of the discharge pipe (32)
The domes of each compressor (1A) and (1B) are connected in parallel to each other via capillary tubes (33a).
) are connected. Here, although not shown, the second
The suction pipe (31B) is the first pipe to which the main thick pipe is connected.
The first suction pipe (31A) is smaller in diameter than the suction pipe (31A).
) is provided so as to protrude into the second suction pipe (3
1B) is set to be larger than the pressure loss in the first suction pipe (31A). In other words, by providing a forced differential pressure in this way, under normal operating conditions, that is, when the capacities of the compressors (1A) and (1B) do not have such an extreme difference in capacity, the compressor has the property of flowing along the wall surface. While allowing more oil to flow into the first compressor (1A) than the second compressor (1B), each compressor (1A
) and (1B) during operation, oil flows from the first compressor (1A) side to the second compressor (1B) side through the oil equalizing pipe (33), causing oil to flow between both ( 1A), (
1B) is used to equalize the oil.

【0015】また、上記油回収器(4)から主冷媒回路
(14)のアキュムレ―タ(10)上流側に回収油を戻
すための油戻し通路(34)がキャピラリチュ―ブ(3
4a)を介して設けられており、さらに、該油戻し通路
(34)のキャピラリチュ―ブ(34a)下流側と上記
均油管(33)とは分岐路(35)により接続され、こ
の分岐路(35)には、分岐路(35)を開閉する開閉
弁(36)が介設されている。この開閉弁(36)は通
常閉じられていて、油の混ざった少量のガス冷媒を常時
油戻し通路(34)のみを通じて圧縮機(1)の吸入側
に戻す一方、開閉弁(36)が開いたときには、油の混
ざった多量のガス冷媒を均油管(33)に導入するよう
になされている。
Further, an oil return passage (34) for returning recovered oil from the oil recovery device (4) to the upstream side of the accumulator (10) of the main refrigerant circuit (14) is connected to the capillary tube (3).
4a), and furthermore, the downstream side of the capillary tube (34a) of the oil return passage (34) and the oil equalizing pipe (33) are connected by a branch passage (35), and this branch passage (35) is provided with an on-off valve (36) that opens and closes the branch path (35). This on-off valve (36) is normally closed, and a small amount of gas refrigerant mixed with oil is always returned to the suction side of the compressor (1) only through the oil return passage (34), while the on-off valve (36) is open. When this happens, a large amount of gas refrigerant mixed with oil is introduced into the oil equalizing pipe (33).

【0016】なお、(11e )は、吐出管と液管側と
を吐出ガス(ホットガス)のバイパス可能に接続する暖
房過負荷制御用バイパス路であって、該バイパス路(1
1e )には、室外熱交換器(6)と共通の空気通路に
設置された補助熱交換器(22)、キャピラリチュ―ブ
(28)及び冷媒の高圧時に開作動する電磁開閉弁(2
4)が順次直列にかつ室外熱交換器(6)とは並列に接
続されており、冷房運転時には常時、暖房運転時には高
圧が過上昇時に、上記電磁開閉弁(24)がオンつまり
開状態になって、吐出ガスの一部を主冷媒回路(14)
から暖房過負荷制御用バイパス路(11e)にバイパス
するようにしている。このとき、吐出ガスの一部を補助
熱交換器(22)で凝縮させて室外熱交換器(6)の能
力を補助するとともに、キャピラリチュ―ブ(28)で
室外熱交換器(6)側の圧力損失とのバランスを取るよ
うになされている。
Note that (11e) is a heating overload control bypass path that connects the discharge pipe and the liquid pipe side so that the discharge gas (hot gas) can be bypassed;
1e) includes an auxiliary heat exchanger (22) installed in the air passage common with the outdoor heat exchanger (6), a capillary tube (28), and an electromagnetic on-off valve (2) that opens when the refrigerant is at high pressure.
4) are sequentially connected in series and in parallel with the outdoor heat exchanger (6), and the electromagnetic shut-off valve (24) is turned on or opened at all times during cooling operation and when high pressure rises excessively during heating operation. A part of the discharged gas is transferred to the main refrigerant circuit (14).
He is trying to bypass from there to the heating overload control bypass path (11e). At this time, part of the discharged gas is condensed in the auxiliary heat exchanger (22) to support the capacity of the outdoor heat exchanger (6), and is also transferred to the outdoor heat exchanger (6) side through the capillary tube (28). This is done to balance the pressure loss.

【0017】さらに、(11g )は上記暖房過負荷バ
イパス路(11e)の液冷媒側配管と主冷媒回路(14
)の吸入ラインとの間を接続し、冷暖房運転時に吸入ガ
スの過熱度を調節するためのリキッドインジェクション
バイパス路であって、該バイパス路(11g )には圧
縮機(1)のオン・オフと連動して開閉するインジェク
ション用電磁弁(29a)と、キャピラリチュ―ブ(2
9b)とが介設されている。  なお、(30)は、吸
入管(11)中の吸入冷媒と液管(11)中の液冷媒と
の熱交換により吸入冷媒を冷却させて、連絡配管(11
b)における冷媒の過熱度の上昇を補償するための吸入
管熱交換器、(GP)はゲ―ジポ―トである。
Furthermore, (11g) is connected to the liquid refrigerant side piping of the heating overload bypass path (11e) and the main refrigerant circuit (14).
) is a liquid injection bypass passage for adjusting the degree of superheating of suction gas during cooling/heating operation, and is connected to the suction line of the compressor (1). An injection solenoid valve (29a) that opens and closes in conjunction with a capillary tube (29a)
9b) is interposed. Note that (30) cools the suction refrigerant through heat exchange between the suction refrigerant in the suction pipe (11) and the liquid refrigerant in the liquid pipe (11), and
The suction pipe heat exchanger (GP) for compensating for the increase in superheat of the refrigerant in b) is a gauge port.

【0018】また、装置には多くのセンサ類が配置され
ていて、(TH1),…は各室内温度を検出する室温サ
―モスタット、(TH2),…および(TH3),…は
各々室内熱交換器(12),…の液側およびガス側配管
における冷媒の温度を検出する室内液温センサ及び室内
ガス温センサ、(TH5)は暖房運転時に室外熱交換器
(6)の出口温度から着霜状態を検出するデフロストセ
ンサ、(TH6)は上記吸入管熱交換器(31)の下流
側の吸入管(11)に配置され、吸入管温度を検出する
吸入管センサ、(TH7)は室外熱交換器(6)の空気
吸込口に配置され、吸込空気温度を検出する外気温セン
サ、(P1)は冷房運転時には冷媒圧力の低圧つまり蒸
発圧力相当飽和温度を、暖房運転時には高圧つまり凝縮
圧力相当飽和温度を検出する圧力センサ、(HPS)は
圧縮機保護用の高圧圧力開閉器である。
[0018] In addition, many sensors are arranged in the device, (TH1),... are room temperature thermostats that detect the indoor temperature, (TH2),... and (TH3),... are the room temperature thermostats that detect the indoor temperature, respectively. The indoor liquid temperature sensor and the indoor gas temperature sensor (TH5) detect the temperature of the refrigerant in the liquid side and gas side piping of the exchanger (12),... during heating operation, from the outlet temperature of the outdoor heat exchanger (6). The defrost sensor (TH6) that detects the frost condition is arranged in the suction pipe (11) on the downstream side of the suction pipe heat exchanger (31), and the suction pipe sensor (TH7) that detects the temperature of the suction pipe is the outdoor heat The outside temperature sensor (P1) is placed at the air suction port of the exchanger (6) and detects the intake air temperature.The outside temperature sensor (P1) detects the low pressure of the refrigerant, that is, the saturation temperature equivalent to the evaporation pressure during cooling operation, and the high pressure that corresponds to the condensing pressure during heating operation. The pressure sensor (HPS) that detects the saturation temperature is a high-pressure pressure switch for compressor protection.

【0019】そして、上記各電磁弁およびセンサ類は各
主要機器と共に装置の運転を制御する室外制御ユニット
(15)に直接或いは室内制御ユニット(図示せず)を
介して信号線で接続され、該室外制御ユニット(15)
により、室外ユニット(A)の各機器を制御するように
なされている。
Each of the solenoid valves and sensors described above is connected to an outdoor control unit (15) that controls the operation of the device along with each main device by a signal line, either directly or via an indoor control unit (not shown). Outdoor control unit (15)
, each device of the outdoor unit (A) is controlled.

【0020】図2において、空気調和装置の冷房運転時
、四路切換弁(2)が図中実線側に切換わり、補助熱交
換器(22)の電磁開閉弁(24)が常時開いて、圧縮
機(1)で圧縮された冷媒が室外熱交換器(6)及び補
助熱交換器(22)で凝縮され、連絡配管(11b )
を経て各室内ユニット(B)〜(D)に分岐して送られ
る。そして、各室内ユニット(B)〜(D)では、各室
内電動膨張弁(13),…で減圧され、各室内熱交換器
(12),…で蒸発した後合流して、室外ユニット(A
)にガス状態で戻り、圧縮機(1)に吸入されるように
循環する。
In FIG. 2, during cooling operation of the air conditioner, the four-way switching valve (2) switches to the solid line side in the figure, and the electromagnetic on-off valve (24) of the auxiliary heat exchanger (22) is always open. The refrigerant compressed by the compressor (1) is condensed in the outdoor heat exchanger (6) and the auxiliary heat exchanger (22), and then transferred to the connecting pipe (11b).
It is then branched and sent to each indoor unit (B) to (D). In each of the indoor units (B) to (D), the pressure is reduced by each indoor electric expansion valve (13), . . . and evaporated in each indoor heat exchanger (12), .
) and circulated in a gaseous state to be sucked into the compressor (1).

【0021】一方、暖房運転時には、四路切換弁(5)
が図中破線側に切換わり、冷媒の流れは上記冷房運転時
と逆となって、圧縮機(1)で圧縮された冷媒が各室内
熱交換器(12),…で凝縮され、合流して液状態で室
外ユニット(A)に流れて室外電動膨張弁(8)により
減圧され、室外熱交換器(6)で蒸発した後圧縮機(1
)に戻るように循環する。
On the other hand, during heating operation, the four-way switching valve (5)
switches to the dashed line side in the figure, and the flow of the refrigerant is reversed to that during the above-mentioned cooling operation, and the refrigerant compressed by the compressor (1) is condensed in each indoor heat exchanger (12), and then merges. The liquid flows into the outdoor unit (A), is depressurized by the outdoor electric expansion valve (8), is evaporated in the outdoor heat exchanger (6), and is then transferred to the compressor (1).
).

【0022】そのとき、上記室外制御ユニット(15)
による空気調和装置の運転制御内容について、図3の状
態遷移図及び図4のフロ―チャ―トに基づき説明する。 図3は後述の偏油フラグHOLF の切換えを示す制御
状態遷移図であって、第1圧縮機(1A)の容量がフル
ロ―ドで第2圧縮機(1B)の運転周波数が48Hz 
以下になると、HOLF =0からHOLF =1の状
態に切換え、それ以外の運転状態ではHOLF =0と
設定するようになされている。
[0022] At that time, the outdoor control unit (15)
The details of the operation control of the air conditioner will be explained based on the state transition diagram of FIG. 3 and the flowchart of FIG. 4. FIG. 3 is a control state transition diagram showing switching of the biased oil flag HOLF, which will be described later, in which the capacity of the first compressor (1A) is at full load and the operating frequency of the second compressor (1B) is 48Hz.
When the condition is below, the state is switched from HOLF =0 to HOLF =1, and in other operating states, HOLF =0 is set.

【0023】次に、図4は空気調和装置の運転制御内容
を示し、ステップST1で圧縮機(1)の4分間待機時
か否かを、ステップST2で圧縮機(1)の起動後1分
間か否かを、さらにステップST3でデフロスト運転中
か否かをそれぞれ判別し、いずれの条件にも該当しない
ときのみステップST4に進む。そして、ステップST
4で、上記第3図の設定による偏油フラグHOLF が
「1」か否かを判別して、HLOF =0であれば、各
圧縮機(1A),(1B)間の差圧が適正に維持されて
いると判断して、ステップST5に進み、上記油戻し通
路(34)の分岐路(35)の開閉弁(36)を閉じた
ままに保持する一方、HOLF =1であれば、つまり
第1圧縮機(1A)がフルロ―ドで第2圧縮機(1B)
の運転周波数が48Hz 以下であれば、差圧の逆転に
よる第1圧縮機(1A)の油不足が生じる虞れがあると
判断して、ステップST6に移行し、上記開閉弁(36
)を開いてホットガスを均油管(33)に導入する。
Next, FIG. 4 shows the operation control contents of the air conditioner, in which it is determined in step ST1 whether or not the compressor (1) is on standby for 4 minutes, and in step ST2 it is determined whether or not the compressor (1) is on standby for 1 minute after starting the compressor (1). In step ST3, it is determined whether the defrost operation is in progress, and only when neither condition is met, the process proceeds to step ST4. And step ST
In step 4, it is determined whether the oil imbalance flag HOLF according to the settings shown in Fig. 3 above is "1" or not. If HLOF = 0, the differential pressure between each compressor (1A) and (1B) is appropriate. If it is determined that HOLF is maintained, the process proceeds to step ST5, where the on-off valve (36) of the branch passage (35) of the oil return passage (34) is kept closed. The first compressor (1A) is fully loaded and the second compressor (1B)
If the operating frequency of the on-off valve (36
) to introduce hot gas into the oil equalizing pipe (33).

【0024】上記フロ―において、ステップST5の制
御により、2台の圧縮機(1A),(1B)のうち一方
の圧縮機(第1圧縮機(1A))が低容量でかつ他方の
圧縮機(第2圧縮機(1B))が高容量で運転されると
き上記開閉弁(36)を開いて吐出冷媒を均油管(33
)にバイパスさせるよう制御する開閉制御手段(50)
が構成されている。
In the above flow, by the control in step ST5, one of the two compressors (1A) and (1B) (the first compressor (1A)) has a low capacity, and the other compressor has a low capacity. When the second compressor (1B) is operated at high capacity, the on-off valve (36) is opened and the discharged refrigerant is transferred to the oil equalizing pipe (33).
) opening/closing control means (50) for controlling the bypass.
is configured.

【0025】したがって、上記実施例では、主冷媒回路
(14)に互いに並列に接続された2台の圧縮機(1A
),(1B)のド―ム間が均油管(33)で接続され、
通常運転時には、均油管(33)を介して各圧縮機(1
A),(1B)の油量が均一に保持される。一方、2台
の圧縮機(1A),(1B)のうち一方の圧縮機(上記
実施例では第1圧縮機(1A))が高容量でかつ他方の
圧縮機(上記実施例では第2圧縮機(1B))が低容量
で運転される状態が長時間継続すると、第1圧縮機(1
A)側のド―ム内圧力が低下するので、均油管(33)
を介して潤滑油が第2圧縮機(1B)側から第1圧縮機
(1A)側に過剰に流入し、第2圧縮機(1B)が潤滑
油不足になる虞れがある。そして、このような潤滑油不
足により第2圧縮機(1B)の焼損等の故障を生ずる虞
れがあるが、本発明では、開閉制御手段(50)により
、一方の圧縮機(第1圧縮機(1A))が高容量でかつ
他方の圧縮機(第2圧縮機(1B))が低容量で運転さ
れるときには、油戻し通路(34)の分岐路(35)に
設けられた開閉弁(36)を開いて吐出冷媒を均油管(
33)にバイパスさせるよう制御されるので、均油管(
33)における油の流通がこのガス冷媒の存在により阻
止され、第2圧縮機(1B)の油不足が未然に防止され
ることになる。
Therefore, in the above embodiment, two compressors (1A
) and (1B) are connected by an oil equalizing pipe (33),
During normal operation, each compressor (1
The oil amounts in A) and (1B) are maintained uniformly. On the other hand, among the two compressors (1A) and (1B), one compressor (first compressor (1A) in the above embodiment) has a high capacity, and the other compressor (in the above embodiment, the second compressor If the compressor (1B)) continues to operate at low capacity for a long time, the first compressor (1B)
Since the pressure inside the dome on the A) side decreases, the oil equalizing pipe (33)
There is a risk that the lubricating oil may excessively flow from the second compressor (1B) side to the first compressor (1A) side via the lubricating oil, causing the second compressor (1B) to run out of lubricating oil. There is a risk that such a lack of lubricating oil may cause failures such as burnout of the second compressor (1B), but in the present invention, the opening/closing control means (50) controls one compressor (the first compressor). (1A)) is operated at high capacity and the other compressor (second compressor (1B)) is operated at low capacity, the on-off valve ( 36) to drain the discharged refrigerant into the oil equalizing pipe (
33), so the oil equalizing pipe (
33) is blocked by the presence of this gas refrigerant, thereby preventing oil shortage in the second compressor (1B).

【0026】特に、上記実施例のように、第1圧縮機(
1A)の第1吸入管(31A)よりも第2圧縮機(1B
)の第2吸入管(31B)の圧力損失を大きくして、第
2圧縮機(1B)のド―ム内圧力を低くするよう強制差
圧を設けたものでは、通常運転時には油量の多い第1圧
縮機(1A)から第2圧縮機(1B)に潤滑油が流入し
て両者の油量が均一に維持される一方、第1圧縮機(1
A)が高容量でかつ第2圧縮機(1B)が低容量で運転
される状態が長時間継続すると、差圧が逆転して第2圧
縮機(1B)から第1圧縮機(1A)に均油管(33)
を介して油が逆流し、第2圧縮機(1B)が油不足にな
る虞れがあるが、このような運転条件下では、上記のよ
うに開閉制御手段(50)により開閉弁(36)が開か
れて吐出冷媒が均油管(33)に導入されるので、差圧
の逆転による油の逆流が未然に防止されることになり、
強制差圧による均油効果と相俟って、著効を発揮するこ
とができる。
In particular, as in the above embodiment, the first compressor (
1A) than the first suction pipe (31A) of the second compressor (1B).
), which increases the pressure loss in the second suction pipe (31B) and provides a forced differential pressure to lower the pressure inside the dome of the second compressor (1B), the oil volume is large during normal operation. Lubricating oil flows from the first compressor (1A) to the second compressor (1B), and the oil amount in both is maintained uniformly.
If A) is operated at a high capacity and the second compressor (1B) is operated at a low capacity for a long time, the differential pressure will reverse and the pressure will flow from the second compressor (1B) to the first compressor (1A). Oil equalizing pipe (33)
However, under such operating conditions, the on-off valve (36) is turned off by the on-off control means (50) as described above. is opened and the discharged refrigerant is introduced into the oil equalizing pipe (33), which prevents the oil from flowing backwards due to the reversal of the differential pressure.
Combined with the oil equalization effect due to forced differential pressure, it can be extremely effective.

【0027】なお、上記実施例では、主冷媒回路(14
)に2台の圧縮機(1A),(1B)を並列に接続した
が、本発明は斯かる実施例に限定されるものではなく、
3台以上の圧縮機を配置するようにしてもよい。そして
、そのときにも、各2台の圧縮機について、本発明を適
用することにより上述のような効果が得られる。
In the above embodiment, the main refrigerant circuit (14
), two compressors (1A) and (1B) were connected in parallel, but the present invention is not limited to such an example.
Three or more compressors may be arranged. Even in that case, the above-described effects can be obtained by applying the present invention to each of the two compressors.

【0028】また、上記実施例では、強制差圧を設けた
ものについて説明したが、本発明は強制差圧を設けない
ものについても適用することができ、その場合、各圧縮
機が全てアンロ―ダ機構で容量制御される場合や、各圧
縮機が全てインバ―タにより運転周波数を調節されるも
のについても適用することができる。
Furthermore, although the above embodiment has been described with respect to a system in which a forced differential pressure is provided, the present invention can also be applied to a system in which a forced differential pressure is not provided. In that case, all compressors are unloaded. The present invention can also be applied to a case where the capacity is controlled by a compressor mechanism, or a case where the operating frequency of each compressor is adjusted by an inverter.

【0029】さらに、強制差圧方式の空気調和装置にお
いても、上記実施例では、請求項2の発明に対応して、
第1圧縮機(1A)が高容量でかつ第2圧縮機(1B)
が低容量の時のみ吐出冷媒を均油管(33)に導入する
ことにより油の逆流を防止するようにしたが、第1圧縮
機(1A)が低容量でかつ第2圧縮機(1B)が高容量
で運転されるときにも開閉弁(36)を開くようにして
もよい。その場合には、強制差圧が加重されて第1圧縮
機(1A)から第2圧縮機(1B)への油の流入量が過
剰になるのを防止することができる。
Furthermore, in the forced differential pressure type air conditioner, in the above embodiment, corresponding to the invention of claim 2,
The first compressor (1A) has a high capacity and the second compressor (1B)
The backflow of oil was prevented by introducing the discharged refrigerant into the oil equalizing pipe (33) only when the capacity of the first compressor (1A) was low and the capacity of the second compressor (1B) was low. The on-off valve (36) may also be opened when operating at high capacity. In that case, it is possible to prevent an excessive amount of oil from flowing from the first compressor (1A) to the second compressor (1B) due to the forced pressure difference.

【0030】また、上記実施例では、圧縮機(1)の吐
出側から均油管(33)へのバイパス路として、油戻し
通路(34)に分岐路(35)を設けたが、油戻し通路
(34)がないときには直接吐出管(32)から均油管
(33)にバイパス路を設けてもよいことはいうまでも
ない。ただし、上記実施例の場合、油戻し通路(34)
を利用することにより構成の簡素化を図りうる利点があ
る。
Furthermore, in the above embodiment, the oil return passage (34) is provided with a branch passage (35) as a bypass passage from the discharge side of the compressor (1) to the oil equalizing pipe (33). It goes without saying that if (34) is not provided, a bypass path may be provided directly from the discharge pipe (32) to the oil equalizing pipe (33). However, in the case of the above embodiment, the oil return passage (34)
The advantage of using this is that the configuration can be simplified.

【0031】[0031]

【発明の効果】以上説明したように、請求項1の発明に
よれば、冷媒回路に2台の圧縮機を並列に接続し、各圧
縮機間のド―ム間を均油管で接続してなる冷凍装置にお
いて、圧縮機の吐出側と均油管とを開閉弁を介してバイ
パス路で接続し、2台の圧縮機のうち一方の圧縮機が高
容量でかつ他方の圧縮機が低容量で運転されるときには
、開閉弁を開いて吐出冷媒を均油管に導入するようにし
たので、一方の圧縮機への過剰な油の流出による他方の
圧縮機の油不足を未然に防止することができ、よって、
信頼性の向上を図ることができる。
As explained above, according to the invention of claim 1, two compressors are connected in parallel to the refrigerant circuit, and the domes between the compressors are connected by an oil equalizing pipe. In the refrigeration system, the discharge side of the compressor and the oil equalizing pipe are connected by a bypass path via an on-off valve, and one of the two compressors has a high capacity and the other has a low capacity. When the compressor is operated, the on-off valve is opened to introduce the discharged refrigerant into the oil equalizing pipe, which prevents excess oil from leaking into one compressor and causing an oil shortage in the other compressor. , therefore,
Reliability can be improved.

【0032】請求項2の発明によれば、上記請求項1の
発明において、一方の圧縮機の吸入管よりも他方の圧縮
機の吸入管の圧力損失を大きくするよう構成して各圧縮
機のド―ム圧に強制差圧を設けたので、通常運転時には
、均油管を介して油量の多い一方の圧縮機から他方の圧
縮機に油を流入させて両圧縮機の油量を均一に保持しな
がら、一方の圧縮機が高容量でかつ他方の圧縮機が低容
量で運転されるときには、均油管への吐出冷媒ガスの導
入により油の逆流を阻止することができ、よって、強制
差圧による均油効果と相俟って著効を発揮することがで
きる。
According to the invention of claim 2, in the invention of claim 1, each compressor is configured to have a larger pressure loss in the suction pipe of one compressor than in the suction pipe of the other compressor. Since a forced differential pressure is provided for the dome pressure, during normal operation, oil flows from one compressor with a large amount of oil to the other compressor through an oil equalization pipe, making the oil amount uniform in both compressors. When one compressor is operated at a high capacity and the other at a low capacity, the backflow of oil can be prevented by introducing the discharge refrigerant gas into the oil equalizing pipe, thus reducing the forced differential. Combined with the oil equalization effect due to pressure, it can be extremely effective.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の構成を示すブロック図である。FIG. 1 is a block diagram showing the configuration of the present invention.

【図2】本発明の実施例に係る空気調和装置の冷媒配管
系統図である。
FIG. 2 is a refrigerant piping system diagram of an air conditioner according to an embodiment of the present invention.

【図3】実施例における偏油フラグの切換えを示す制御
状態遷移図である。
FIG. 3 is a control state transition diagram showing switching of the biased oil flag in the embodiment.

【図4】室外制御ユニットの制御内容を示すフロ―チャ
―ト図である。
FIG. 4 is a flowchart showing control details of the outdoor control unit.

【符号の説明】[Explanation of symbols]

1A  第1圧縮機 1B  第2圧縮機 14  主冷媒回路 33  均油管 35  分岐路(バイパス路) 36  開閉弁 50  開閉制御手段 1A 1st compressor 1B Second compressor 14 Main refrigerant circuit 33 Oil equalizing pipe 35 Branch road (bypass road) 36 On-off valve 50 Opening/closing control means

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  冷媒回路(14)に2台の可変容量形
圧縮機(1A),(1B)を互いに並列に接続するとと
もに、上記各圧縮機(1A),(1B)のド―ム間をそ
れぞれ均油管(33)で接続してなる冷凍装置において
、上記圧縮機(1A),(1B)の吐出側と上記均油管
(33)とをバイパス接続するバイパス路(35)と、
該バイパス路(35)を開閉する開閉弁(36)と、上
記2台の圧縮機(1A),(1B)のうち一方の圧縮機
(1A)が低容量でかつ他方の圧縮機(1B)が高容量
で運転されるとき上記開閉弁(36)を開いて吐出冷媒
を均油管(33)にバイパスさせるよう制御する開閉制
御手段(50)とを備えたことを特徴とする冷凍装置の
運転制御装置。
Claim 1: Two variable capacity compressors (1A), (1B) are connected in parallel to a refrigerant circuit (14), and a connection between the domes of each of the compressors (1A), (1B) is provided. a bypass path (35) connecting the discharge sides of the compressors (1A) and (1B) and the oil equalizing pipe (33) by bypass;
An on-off valve (36) that opens and closes the bypass passage (35), and one compressor (1A) of the two compressors (1A) and (1B) has a low capacity, and the other compressor (1B) Operation of a refrigeration system characterized by comprising an opening/closing control means (50) for controlling the opening/closing valve (36) to open the opening/closing valve (36) to bypass the discharged refrigerant to the oil equalizing pipe (33) when the refrigeration system is operated at a high capacity. Control device.
【請求項2】  請求項1記載の冷凍装置の運転制御装
置において、2台の圧縮機(1A),(1B)のうち一
方の圧縮機(1A)の吸入管の圧力損失よりも他方の圧
縮機(1B)の吸入管の圧力損失を大きくするように構
成されており、開閉制御手段(50)は、圧力損失の大
きい側の圧縮機(1B)が小容量でかつ圧力損失の大き
い側の圧縮機(1A)が高容量で運転されるときに開閉
弁(36)を開くよう制御することを特徴とする冷凍装
置の運転制御装置。
2. In the operation control device for a refrigeration system according to claim 1, the pressure loss in the suction pipe of one of the two compressors (1A) and (1B) is greater than the pressure loss in the suction pipe of the other compressor (1A). The opening/closing control means (50) is configured to increase the pressure loss of the suction pipe of the compressor (1B), and the opening/closing control means (50) is configured so that the compressor (1B) on the side with the large pressure loss has a small capacity and the compressor (1B) on the side with the large pressure loss An operation control device for a refrigeration system characterized by controlling an on-off valve (36) to open when a compressor (1A) is operated at high capacity.
JP40497690A 1990-12-21 1990-12-21 Operation controller for refrigerating equipment Pending JPH04222354A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40497690A JPH04222354A (en) 1990-12-21 1990-12-21 Operation controller for refrigerating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40497690A JPH04222354A (en) 1990-12-21 1990-12-21 Operation controller for refrigerating equipment

Publications (1)

Publication Number Publication Date
JPH04222354A true JPH04222354A (en) 1992-08-12

Family

ID=18514614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40497690A Pending JPH04222354A (en) 1990-12-21 1990-12-21 Operation controller for refrigerating equipment

Country Status (1)

Country Link
JP (1) JPH04222354A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390218B1 (en) * 2000-12-20 2003-07-07 위니아만도 주식회사 Capacity control apparatus of multi type air-conditioner and control method thereof
EP1510693A2 (en) * 2003-08-29 2005-03-02 Samsung Electronics Co., Ltd. Oil level equalizing system for multiple compressors
EP1548379A1 (en) 2003-12-24 2005-06-29 Samsung Electronics Co., Ltd. Refrigerating apparatus and control method thereof
CN104061162A (en) * 2013-03-21 2014-09-24 艾默生环境优化技术(苏州)有限公司 Compressor system and control method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949852B2 (en) * 1979-07-19 1984-12-05 株式会社 ソデイック How to adjust the mounting angle of the processing electrode of an electric processing machine
JPS63243658A (en) * 1987-03-30 1988-10-11 株式会社東芝 Refrigerator for loading on car
JPH01131850A (en) * 1987-11-13 1989-05-24 Toshiba Corp Air conditioner
JPH02126044A (en) * 1988-07-11 1990-05-15 Daikin Ind Ltd Operation control device for air conditioning device
JPH02272262A (en) * 1989-04-12 1990-11-07 Daikin Ind Ltd Refrigerating apparatus
JP4082663B2 (en) * 2002-08-26 2008-04-30 佳章 外川 Method of building the foundation of the place where the building is built

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5949852B2 (en) * 1979-07-19 1984-12-05 株式会社 ソデイック How to adjust the mounting angle of the processing electrode of an electric processing machine
JPS63243658A (en) * 1987-03-30 1988-10-11 株式会社東芝 Refrigerator for loading on car
JPH01131850A (en) * 1987-11-13 1989-05-24 Toshiba Corp Air conditioner
JPH02126044A (en) * 1988-07-11 1990-05-15 Daikin Ind Ltd Operation control device for air conditioning device
JPH02272262A (en) * 1989-04-12 1990-11-07 Daikin Ind Ltd Refrigerating apparatus
JP4082663B2 (en) * 2002-08-26 2008-04-30 佳章 外川 Method of building the foundation of the place where the building is built

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100390218B1 (en) * 2000-12-20 2003-07-07 위니아만도 주식회사 Capacity control apparatus of multi type air-conditioner and control method thereof
EP1510693A2 (en) * 2003-08-29 2005-03-02 Samsung Electronics Co., Ltd. Oil level equalizing system for multiple compressors
EP1510693A3 (en) * 2003-08-29 2009-09-23 Samsung Electronics Co., Ltd. Oil level equalizing system for multiple compressors
EP1548379A1 (en) 2003-12-24 2005-06-29 Samsung Electronics Co., Ltd. Refrigerating apparatus and control method thereof
CN1313782C (en) * 2003-12-24 2007-05-02 三星电子株式会社 Refrigerating apparatus and control method thereof
CN104061162A (en) * 2013-03-21 2014-09-24 艾默生环境优化技术(苏州)有限公司 Compressor system and control method thereof
CN104061162B (en) * 2013-03-21 2016-05-11 艾默生环境优化技术(苏州)有限公司 Compressor system and control method thereof

Similar Documents

Publication Publication Date Title
KR100795291B1 (en) Refrigeration unit
US20150059380A1 (en) Air-conditioning apparatus
JP7116346B2 (en) Heat source unit and refrigerator
US20210180802A1 (en) Air-conditioning system
KR102688990B1 (en) An air conditioning apparatus and control method thereof
JPH11142001A (en) Air conditioner
WO2016189739A1 (en) Air conditioning device
JP2002174463A (en) Refrigerating apparatus
JPH06341720A (en) Refrigerator
JPH11173628A (en) Air conditioner
JPH04222354A (en) Operation controller for refrigerating equipment
JPH04324069A (en) Refrigerating plant
JP2018096575A (en) Freezer
JPH03122460A (en) Operating controller for refrigerating machine
KR100621522B1 (en) A Device For Controlling The Compressor And Controlling Method Thereof
JPH0682113A (en) Multi-room air-conditioning apparatus
JP2007163011A (en) Refrigeration unit
JP2001099512A (en) Heat source unit for heat pump type air conditioner
JPH10132406A (en) Refrigerating system
JPH06341719A (en) Operation controller for air conditioner
JP2002228284A (en) Refrigerating machine
JPH03186156A (en) Pressure equalizer of air conditioner
JP2976905B2 (en) Air conditioner
JPH08128747A (en) Controller for air conditioner
JP2001280719A (en) Refrigerating system