JPH11173628A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPH11173628A
JPH11173628A JP9345460A JP34546097A JPH11173628A JP H11173628 A JPH11173628 A JP H11173628A JP 9345460 A JP9345460 A JP 9345460A JP 34546097 A JP34546097 A JP 34546097A JP H11173628 A JPH11173628 A JP H11173628A
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
air temperature
suction air
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP9345460A
Other languages
Japanese (ja)
Inventor
Shigeki Ozeki
茂樹 大関
Takashi Ogawa
孝 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP9345460A priority Critical patent/JPH11173628A/en
Publication of JPH11173628A publication Critical patent/JPH11173628A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a liquid refrigerant from being retained in an indoor unit and rapid change of diffusing temperature. SOLUTION: This air conditioner is equipped with an outdoor unit A which has a compressor 1, an outdoor heat exchanger 3 being a heat exchanger on heat source side, and an outdoor electric motor operated expansion valve 4 being a pressure reducing valve on heat source side, a plurality of indoor units B, C, and D which have indoor heat exchangers 7 being heat exchangers on utilization side and indoor electric motor operated expansion valves 6 being flow control valves, a refrigerant pipe 10 which connects the plural indoor units B, C, and D in parallel to the outdoor unit A, a gas pipe temperature detection means Th2 which detects the indoor gas pipe temperature of the indoor heat exchanger 7, a suction air temperature detection means Th1 which detects the indoor suction air temperature of the indoor heat exchanger 7, and an aperture control means 52A which controls the aperture of the said indoor electric motor operated expansion valve 6 so that the difference between the temperatures detected in thermostat off condition by the gas pipe temperature detection means Th2 and the suction air temperature detection means Th1 may come to a specified value.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、室外ユニットに対
して複数の室内ユニットを並列に接続したマルチタイプ
の空気調和装置に関し、特にはその運転制御に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a multi-type air conditioner in which a plurality of indoor units are connected in parallel to an outdoor unit, and more particularly to an operation control thereof.

【0002】[0002]

【従来の技術】従来より、圧縮機、熱源側熱交換機及び
熱源側減圧弁を有する室外ユニットに、利用側熱交換機
及び流量制御弁を有する室外ユニットを複数並列的に接
続し、暖房運転時、各室内の空調負荷に応じた流量制御
弁の開度調節をするようにしたマルチタイプの空気調和
装置はよく知られている。
2. Description of the Related Art Conventionally, a plurality of outdoor units having a use side heat exchanger and a flow control valve are connected in parallel to an outdoor unit having a compressor, a heat source side heat exchanger and a heat source side pressure reducing valve. A multi-type air conditioner in which the opening of a flow control valve is adjusted according to the air conditioning load in each room is well known.

【0003】特許第2522065号公報には、サーモ
オフ状態にある室内ユニットにおいて、利用側熱交換器
に液冷媒が滞留したときに冷媒を主冷媒配管に戻す手段
を講じた空気調和装置が提案されている。図8にそれに
用いた冷媒配管系統図を示す。この空気調和装置は、1
台の室外ユニットAに対して、3台の室内ユニットB〜
Dが並列に接続されたマルチタイプの空気調和装置であ
る。
Japanese Patent No. 2522065 proposes an air conditioner in which a means for returning a refrigerant to a main refrigerant pipe when liquid refrigerant stays in a use side heat exchanger in an indoor unit in a thermo-off state is proposed. I have. FIG. 8 shows a refrigerant piping system diagram used in the method. This air conditioner has 1
For three outdoor units A, three indoor units B to
D is a multi-type air conditioner connected in parallel.

【0004】図8において、室外ユニットAは、圧縮機
1と、冷房運転時には図中実線のごとく、また暖房運転
時には図中波線のごとく切換る四路切換弁2と、冷房運
転時には凝縮器として、また暖房時には蒸発器として機
能する熱源側熱交換器である室外熱交換器3と、冷房運
転時には冷媒流量を調節し、暖房運転時には冷媒の減圧
を行う減圧弁としての室外電動膨張弁4と、液冷媒を貯
留するレシーバ5と、吸入冷媒中の液冷媒を分離するア
キュムレータ8とから構成される。
In FIG. 8, an outdoor unit A includes a compressor 1, a four-way switching valve 2 for switching as shown by a solid line in a cooling operation, and a dashed line in a heating operation, and as a condenser in a cooling operation. An outdoor heat exchanger 3 that is a heat source side heat exchanger that functions as an evaporator during heating; and an outdoor electric expansion valve 4 as a pressure reducing valve that adjusts a refrigerant flow rate during a cooling operation and reduces a refrigerant pressure during a heating operation. A receiver 5 for storing the liquid refrigerant, and an accumulator 8 for separating the liquid refrigerant in the suction refrigerant.

【0005】一方、各室内ユニットB〜Dは何れも同一
構成を有しており、冷房運転時には冷媒を減圧し、暖房
運転時には冷媒流量を調節する機能を有する流量制御弁
としての室内電動膨張弁6と、冷房運転時には蒸発器と
して、また暖房時には凝縮器として機能する利用側熱交
換器である室内熱交換器7と、室内熱交換器7に付設さ
れた室内ファン7aとをそれぞれ備えている。
On the other hand, each of the indoor units B to D has the same structure. The indoor electric expansion valve as a flow control valve having a function of reducing the pressure of the refrigerant during the cooling operation and adjusting the flow rate of the refrigerant during the heating operation. 6, an indoor heat exchanger 7 serving as a use-side heat exchanger functioning as an evaporator during cooling operation and as a condenser during heating, and an indoor fan 7a attached to the indoor heat exchanger 7. .

【0006】そして、室外ユニットAの圧縮機1、室外
熱交換器3、室外電動膨張弁4、レシーバ5及びアキュ
ムレータ8は、冷媒配管9の主冷媒配管9aにより冷媒
の流通が可能に接続され、各室内ユニットB〜Dの室内
電動膨張弁6及び室内熱交換器7は冷媒配管9の分岐管
9bにより冷媒の流通が可能に接続され、各分岐管9
b、・・・は主冷媒配管9aに対して並列に接続されて
いる。以上により、室外空気との熱交換で得た熱(また
は冷熱)を熱移動させて室内空気に付与するようにした
冷媒回路10が構成される。なお、図中の符号11は室
外ユニットAの主冷媒配管9aに介設された閉鎖弁、1
2は各室内ユニットB〜Dにおける分岐管9bに介設さ
れた閉鎖弁である。
[0006] The compressor 1, the outdoor heat exchanger 3, the outdoor electric expansion valve 4, the receiver 5, and the accumulator 8 of the outdoor unit A are connected by a main refrigerant pipe 9a of a refrigerant pipe 9 so that refrigerant can flow therethrough. The indoor electric expansion valves 6 and the indoor heat exchangers 7 of the indoor units B to D are connected to each other through a branch pipe 9b of the refrigerant pipe 9 so that the refrigerant can flow therethrough.
are connected in parallel to the main refrigerant pipe 9a. As described above, the refrigerant circuit 10 is configured such that heat (or cold heat) obtained by heat exchange with outdoor air is transferred to the indoor air by heat transfer. Note that reference numeral 11 in the figure denotes a shut-off valve interposed in the main refrigerant pipe 9a of the outdoor unit A, 1
Reference numeral 2 denotes a closing valve provided in the branch pipe 9b in each of the indoor units BD.

【0007】図8に示す空気調和装置は、暖房運転時、
圧縮機1から吐出された高圧のガス冷媒は、四路切換弁
2、主冷媒配管9a、閉鎖弁11を通り、各分岐管9
b、各閉鎖弁12を介して各室内ユニットB〜Dに流入
する。流入したガス冷媒は、室内電動膨張弁6で流量調
整され、各室内熱交換器7で凝縮されて液冷媒となり、
閉鎖弁12、各分岐管9bを通り、主冷媒配管9aに合
流してレシーバ5を通り、室外電動膨張弁4で減圧され
る。低圧になった冷媒は室外熱交換器3で蒸発して、四
路切換弁2を通過してアキュムレータ8に流入する。こ
のアキュムレータ8で未蒸発冷媒を分離し、ガス冷媒が
圧縮機1に吸入される。
[0008] The air conditioner shown in FIG.
The high-pressure gas refrigerant discharged from the compressor 1 passes through the four-way switching valve 2, the main refrigerant pipe 9 a, the closing valve 11, and passes through each branch pipe 9.
b, flows into each indoor unit BD through each closing valve 12. The flow rate of the inflowing gas refrigerant is adjusted by the indoor electric expansion valve 6 and condensed by each indoor heat exchanger 7 to become a liquid refrigerant.
After passing through the closing valve 12, each branch pipe 9 b, merging with the main refrigerant pipe 9 a, passing through the receiver 5, the pressure is reduced by the outdoor electric expansion valve 4. The low-pressure refrigerant evaporates in the outdoor heat exchanger 3, passes through the four-way switching valve 2, and flows into the accumulator 8. The non-evaporated refrigerant is separated by the accumulator 8, and the gas refrigerant is sucked into the compressor 1.

【0008】以上の従来の空気調和装置によれば、暖房
運転において、サーモオフした室内ユニットB〜Dに冷
媒が溜まり込み、冷媒回路を循環する冷媒量が不足する
のを防止するため以下の制御を行っている。すなわち、
室内電動膨張弁6の開度を所定の低開度に固定し、吸込
空気検出手段Th1で検出した室内吸込空気温度T1
と、液管温度検出手段Th4で検出した室内液管温度T
4の温度偏差(T4−T1)が所定値以下になったら、
室外ユニットに液冷媒が溜まりすぎの状態にあると判断
し、室内電動膨張弁6を所定開度以上(全開)にして室
内ユニット内に溜まった液冷媒を回収している。なお、
サーモオフ時の室内ファン7aによる風量は、暖房能力
が過剰とならないように微風としている。
According to the conventional air conditioner described above, in the heating operation, the following control is performed in order to prevent the refrigerant from accumulating in the indoor units B to D that have been thermo-off and the amount of refrigerant circulating in the refrigerant circuit being insufficient. Is going. That is,
The opening degree of the indoor electric expansion valve 6 is fixed to a predetermined low opening degree, and the indoor suction air temperature T1 detected by the suction air detection means Th1.
And the indoor liquid pipe temperature T detected by the liquid pipe temperature detecting means Th4.
When the temperature deviation (T4−T1) of No. 4 becomes equal to or less than a predetermined value,
It is determined that the liquid refrigerant is excessively accumulated in the outdoor unit, and the indoor electric expansion valve 6 is set to a predetermined opening degree or more (fully open) to collect the liquid refrigerant accumulated in the indoor unit. In addition,
The air volume of the indoor fan 7a at the time of the thermo-off is set to a slight wind so that the heating capacity is not excessive.

【0009】[0009]

【発明が解決しようとする課題】以上の制御を行う空気
調和装置には以下のような課題があることが判明した。
すなわち、暖房サーモオフ時の室内電動膨張弁6の開度
は低開度に固定されているため、室内ユニットに液冷媒
が徐々に溜まる。これにより室内への吹出温度も徐々に
低下する。ところが、電動膨張弁6を全開にして液冷媒
が回収されると、それに応じて吹出温度は大幅に上昇し
てしまう。このように吹出し温度が急激に変動すると、
暖房のフィーリングが悪くなる。
It has been found that the air conditioner which performs the above control has the following problems.
That is, since the opening degree of the indoor electric expansion valve 6 at the time of heating thermo-off is fixed to a low opening degree, the liquid refrigerant gradually accumulates in the indoor unit. This gradually lowers the temperature of the air blown into the room. However, when the liquid refrigerant is recovered by fully opening the electric expansion valve 6, the blow-out temperature increases significantly. When the outlet temperature fluctuates rapidly,
The feeling of heating gets worse.

【0010】そこで本発明は、室内ユニットに液冷媒が
溜まることを防止するとともに、吹出し温度の急激な変
動を防止することができる空気調和装置の提供を課題と
する。
[0010] Therefore, an object of the present invention is to provide an air conditioner that can prevent liquid refrigerant from accumulating in an indoor unit and prevent a sudden change in the outlet temperature.

【0011】[0011]

【課題を解決するための手段】本発明の空気調和装置
は、圧縮機、熱源側熱交換器及び熱源側減圧弁を有する
室外ユニットと、利用側熱交換器及び流量制御弁を有す
る複数の室内ユニットと、室外ユニットに対して複数の
室内ユニットを並列的に接続する冷媒配管と、利用側熱
交換器の室内ガス管温度を検出するガス管温度検出手段
と、利用側熱交換器の吸込空気温度を検出する吸込空気
温度検出手段と、サーモオフ状態においてガス管温度検
出手段及び吸込空気温度検出手段でそれぞれ検出した温
度の差が所定値となるように前記流量制御弁の開度を制
御する開度制御手段を備えるという手段を採用すること
により前記課題を解決した。
The air conditioner of the present invention comprises an outdoor unit having a compressor, a heat source side heat exchanger and a heat source side pressure reducing valve, and a plurality of indoor units having a use side heat exchanger and a flow control valve. Unit, a refrigerant pipe for connecting a plurality of indoor units in parallel to the outdoor unit, gas pipe temperature detecting means for detecting the temperature of the indoor gas pipe of the use side heat exchanger, and suction air of the use side heat exchanger A suction air temperature detecting means for detecting a temperature, and an opening for controlling an opening degree of the flow control valve such that a difference between the temperatures respectively detected by the gas pipe temperature detecting means and the suction air temperature detecting means in the thermo-off state becomes a predetermined value. The problem has been solved by adopting a means including a degree control means.

【0012】以上の本発明によれば、ガス管温度検出手
段により検出されたガス管温度T2と吸込空気温度検出
手段により検出された吸込空気温度T1との温度差(T
2−T1)が所定値x未満の場合には、温度差(T2−
T1)が所定値xに一致するように開度制御手段により
前記流量制御弁を所定量開ける。逆に温度差(T2−T
1)が所定値xより大きい場合には、温度差(T2−T
1)が所定値xに一致するように開度制御手段により前
記流量制御弁を所定量閉じる。
According to the present invention, the temperature difference (T) between the gas pipe temperature T2 detected by the gas pipe temperature detecting means and the suction air temperature T1 detected by the suction air temperature detecting means is determined.
If (2-T1) is smaller than the predetermined value x, the temperature difference (T2-
The flow control valve is opened by a predetermined amount by the opening control means so that T1) matches the predetermined value x. Conversely, the temperature difference (T2-T
1) is larger than the predetermined value x, the temperature difference (T2-T
The flow control valve is closed by a predetermined amount by the opening control means so that 1) coincides with the predetermined value x.

【0013】このように本発明によれば、サーモオフ時
にガス管温度T2と吸込空気温度T1との温度差(T2
−T1)を所定値xに維持するように制御するため、利
用側熱交換器内の液冷媒量を一定に保持することができ
るし、従来技術のように液冷媒の急激な移動を伴うこと
がないので吹出温度、つまり暖房能力の急激な変動を生
ずることもない。また本発明において、所定値xを小さ
い値に設定すれば、前記流量制御弁の開度が小さくな
り、冷媒流量が小さくなるので暖房能力が低下する結
果、サーモオフ時の暖まり過ぎを防止することもでき
る。
As described above, according to the present invention, the temperature difference between the gas pipe temperature T2 and the suction air temperature T1 (T2
−T1) is controlled to be maintained at the predetermined value x, so that the amount of liquid refrigerant in the use-side heat exchanger can be kept constant, and the rapid movement of liquid refrigerant as in the related art is required. There is no sudden change in the outlet temperature, that is, the heating capacity. Further, in the present invention, if the predetermined value x is set to a small value, the opening degree of the flow control valve is reduced, and the refrigerant flow rate is reduced, so that the heating capacity is reduced. As a result, it is possible to prevent overheating during thermo-off. it can.

【0014】また、本発明空気調和装置では、圧縮機、
熱源側熱交換器及び熱源側減圧弁を有する室外ユニット
と、利用側熱交換器及び流量制御弁を有する複数の室内
ユニットと、室外ユニットに対して複数の室内ユニット
を並列的に接続する冷媒配管と、利用側熱交換器の吹出
空気温度を検出する吹出空気温度検出手段と、利用側熱
交換器の吸込空気温度を検出する吸込空気温度検出手段
と、サーモオフ状態において吹出空気温度検出手段及び
吸込空気温度検出手段でそれぞれ検出した温度の差が所
定値となるように前記流量制御弁の開度を制御する開度
制御手段を備えるという手段を採用することによっても
前記課題を解決した。
Further, in the air conditioner of the present invention, a compressor,
An outdoor unit having a heat source side heat exchanger and a heat source side pressure reducing valve, a plurality of indoor units having a use side heat exchanger and a flow control valve, and a refrigerant pipe for connecting the plurality of indoor units to the outdoor unit in parallel An outlet air temperature detecting means for detecting an outlet air temperature of the use side heat exchanger; an intake air temperature detecting means for detecting an inlet air temperature of the use side heat exchanger; and an outlet air temperature detecting means and a suction in a thermo-off state. The object is also solved by adopting means including an opening control means for controlling the opening of the flow control valve so that the difference between the temperatures detected by the air temperature detecting means becomes a predetermined value.

【0015】以上の本発明によれば、吹出空気温度検出
手段により検出された室内吹出空気温度T3と吸込空気
温度検出手段により検出された室内吸込空気温度T1と
の温度差(T3−T1)が所定値x未満の場合には、温
度差(T3−T1)が所定値xに近づくように開度制御
手段により前記流量制御弁を所定量開ける。逆に温度差
(T3−T1)が所定値xより大きい場合は、温度差
(T3−T1)が所定値xに近づくように開度制御手段
により前記流量制御弁を所定量閉じる。
According to the present invention, the temperature difference (T3-T1) between the indoor air temperature T3 detected by the air temperature detecting means and the indoor air temperature T1 detected by the air temperature detecting means is obtained. If it is less than the predetermined value x, the opening degree control means opens the flow control valve by a predetermined amount so that the temperature difference (T3-T1) approaches the predetermined value x. Conversely, if the temperature difference (T3-T1) is larger than the predetermined value x, the opening control means closes the flow control valve by a predetermined amount so that the temperature difference (T3-T1) approaches the predetermined value x.

【0016】このように、サーモオフ時に室内吹出空気
温度T3と吸込空気温度T1との温度差(T3−T1)
を所定値xに維持するように制御するため、利用側熱交
換器内の液冷媒量を一定に保持することができるし、従
来技術のように液冷媒の急激な移動を伴うことがないの
で吹出温度、つまり暖房能力の急激な変動を生ずること
もない。また本発明において、所定値xを小さい値に設
定すれば、前記流量制御弁の開度が小さくなり、冷媒流
量が小さくなるので暖房能力が低下する結果、サーモオ
フ時の暖まり過ぎを防止することもできる。
As described above, the temperature difference (T3-T1) between the indoor air temperature T3 and the suction air temperature T1 when the thermostat is turned off.
Is controlled so as to maintain the predetermined value x, the liquid refrigerant amount in the use side heat exchanger can be kept constant, and the liquid refrigerant does not suddenly move unlike the related art. There is no sudden change in the blowout temperature, that is, the heating capacity. Further, in the present invention, if the predetermined value x is set to a small value, the opening degree of the flow control valve is reduced, and the refrigerant flow rate is reduced, so that the heating capacity is reduced. As a result, it is possible to prevent overheating during thermo-off. it can.

【0017】さらに、本発明空気調和装置では、圧縮
機、熱源側熱交換器及び熱源側減圧弁を有する室外ユニ
ットと、利用側熱交換器及び流量制御弁を有する複数の
室内ユニットと、室外ユニットに対して複数の室内ユニ
ットを並列的に接続する冷媒配管と、利用側熱交換器の
室内液管温度を検出する液管温度検出手段と、利用側熱
交換器の吸込空気温度を検出する吸込空気温度検出手段
と、サーモオフ状態において液管温度検出手段及び吸込
空気温度検出手段でそれぞれ検出した温度の差が所定値
となるように前記流量制御弁の開度を制御する開度制御
手段を備えるという手段を採用することによっても前記
課題を解決した。
Further, in the air conditioner of the present invention, an outdoor unit having a compressor, a heat source side heat exchanger and a heat source side pressure reducing valve, a plurality of indoor units having a use side heat exchanger and a flow control valve, and an outdoor unit A refrigerant pipe for connecting a plurality of indoor units in parallel to each other, a liquid pipe temperature detecting means for detecting a temperature of an indoor liquid pipe of the use side heat exchanger, and a suction for detecting a suction air temperature of the use side heat exchanger Air temperature detection means, and opening degree control means for controlling the opening degree of the flow control valve so that the difference between the temperatures respectively detected by the liquid pipe temperature detection means and the suction air temperature detection means in the thermo-off state becomes a predetermined value. The above problem has also been solved by adopting such means.

【0018】以上の本発明によれば、液管温度検出手段
により検出された室内液管温度T4と吸込空気温度検出
手段により検出された室内吸込空気温度T1との温度差
(T4−T1)が所定値x未満の場合には、温度差(T
4−T1)が所定値xに近づくように開度制御手段によ
り前記流量制御弁を所定量開ける。逆に温度差(T4−
T1)が所定値xより大きい場合は、温度差(T4−T
1)が所定値xに近づくように開度制御手段により前記
流量制御弁を所定量閉じる。
According to the present invention described above, the temperature difference (T4-T1) between the indoor liquid pipe temperature T4 detected by the liquid pipe temperature detecting means and the indoor suction air temperature T1 detected by the suction air temperature detecting means is obtained. If less than the predetermined value x, the temperature difference (T
The flow control valve is opened by a predetermined amount by the opening control means so that 4-T1) approaches the predetermined value x. Conversely, the temperature difference (T4-
If T1) is larger than the predetermined value x, the temperature difference (T4−T
The flow control valve is closed by a predetermined amount by the opening control means so that 1) approaches the predetermined value x.

【0019】このように、サーモオフ時に室内液管温度
T4と吸込空気温度T1との温度差(T4−T1)を所
定値xに維持するように制御するため、利用側熱交換器
内の液冷媒量を一定に保持することができるし、従来技
術のような液冷媒の急激な移動を伴うことがないので吹
出温度、つまり暖房能力の急激な変動を生ずることもな
い。また本発明において、所定値xを小さい値に設定す
れば、前記流量制御弁の開度が小さくなり、冷媒流量が
小さくなるので暖房能力が低下する結果、サーモオフ時
の暖まり過ぎを防止することもできる。
As described above, in order to control the temperature difference (T4-T1) between the indoor liquid pipe temperature T4 and the suction air temperature T1 at the time of the thermo-off to the predetermined value x, the liquid refrigerant in the use side heat exchanger is controlled. Since the amount can be kept constant and there is no abrupt movement of the liquid refrigerant as in the prior art, there is no abrupt change in the blowing temperature, that is, the heating capacity. Further, in the present invention, if the predetermined value x is set to a small value, the opening degree of the flow control valve is reduced, and the refrigerant flow rate is reduced, so that the heating capacity is reduced. As a result, it is possible to prevent overheating during thermo-off. it can.

【0020】[0020]

【発明の実施の形態】以下本発明の空気調和装置を実施
の形態に基づき説明する。 (第1の実施の形態)図1は本発明の第1の実施の形態
にかかる空気調和装置の基本構成を示すブロック図であ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An air conditioner of the present invention will be described below based on an embodiment. (First Embodiment) FIG. 1 is a block diagram showing a basic configuration of an air conditioner according to a first embodiment of the present invention.

【0021】図1に示すように、室外ユニットAは、圧
縮機1と、熱源側熱交換器である室外熱交換機3と、熱
源側減圧弁4とから基本的に構成され、この室外ユニッ
トAに対して、利用側熱交換器である室内熱交換機7、
室内熱交換器7に付設された室内ファン7a、及び流量
制御弁である室内電動膨張弁6を有する室内ユニットB
〜Dを並列に接続している。接続は、室外ユニットAに
おいては主冷媒配管9aにより、また室内ユニットB〜
Dを各分岐管9bで各々接続し、各分岐管9bを主冷媒
配管9aに並列に接続して冷媒回路10を構成してい
る。
As shown in FIG. 1, the outdoor unit A is basically composed of a compressor 1, an outdoor heat exchanger 3 which is a heat source side heat exchanger, and a heat source side pressure reducing valve 4. In contrast, the indoor heat exchanger 7, which is a use side heat exchanger,
An indoor unit B having an indoor fan 7a attached to the indoor heat exchanger 7 and an indoor electric expansion valve 6 as a flow control valve
To D are connected in parallel. The connection is made by the main refrigerant pipe 9a in the outdoor unit A and by the indoor units B to
D is connected to each branch pipe 9b, and each branch pipe 9b is connected in parallel to the main refrigerant pipe 9a to form the refrigerant circuit 10.

【0022】以上の空気調和装置は、室内熱交換器7の
室内ガス管温度を検出するガス管温度検出手段Th2
と、室内熱交換器7の吸込空気温度を検出する吸込空気
温度検出手段Th1と、暖房運転時にガス管温度検出手
段Th2及び吸込空気温度検出手段Th1からの各温度
情報T2及びT1の差(T2−T1)を求めるととも
に、(T2−T1)が所定値x未満の場合には、温度差
(T2−T1)が所定値xに一致するように室内ユニッ
トB〜Dの室内電動膨張弁6を所定量開け、逆に温度差
(T2−T1)が所定値xより大きい場合は、温度差
(T2−T1)が所定値xに一致するように室内電動膨
張弁6を所定量閉じる開度制御手段52Aとからなる運
転制御装置を備えている。
The above air conditioner is provided with gas pipe temperature detecting means Th2 for detecting the temperature of the indoor gas pipe of the indoor heat exchanger 7.
The difference (T2) between the temperature information T2 and T1 from the suction air temperature detection means Th1 for detecting the suction air temperature of the indoor heat exchanger 7 and the gas pipe temperature detection means Th2 and the suction air temperature detection means Th1 during the heating operation. −T1), and when (T2−T1) is less than the predetermined value x, the indoor electric expansion valves 6 of the indoor units B to D are set so that the temperature difference (T2−T1) matches the predetermined value x. When the temperature difference (T2−T1) is larger than a predetermined value x, the indoor electric expansion valve 6 is closed by a predetermined amount so that the temperature difference (T2−T1) matches the predetermined value x. An operation control device including the means 52A is provided.

【0023】図2は図1に示したブロック図からなる空
気調和装置をより具体化した冷媒配管系統図であり、図
1と同一部分には同一の符号を付してある。室外ユニッ
トAは、圧縮機1と、冷房運転時には図中実線のごと
く、また暖房運転時には図中波線のごとく切換る四路切
換弁2と、熱源側熱交換器である室外熱交換器3と、減
圧弁としての室外電動膨張弁4と、液冷媒を貯留するレ
シーバ5と、吸入冷媒中の液冷媒を分離するアキュムレ
ータ8とから構成される。
FIG. 2 is a refrigerant piping system diagram more concretely showing the air conditioner having the block diagram shown in FIG. 1, and the same parts as those in FIG. 1 are denoted by the same reference numerals. The outdoor unit A includes a compressor 1, a four-way switching valve 2 that switches as shown by the solid line in the drawing during the cooling operation, and a dotted line during the heating operation, and an outdoor heat exchanger 3 that is a heat source side heat exchanger. It comprises an outdoor electric expansion valve 4 as a pressure reducing valve, a receiver 5 for storing liquid refrigerant, and an accumulator 8 for separating liquid refrigerant in the suction refrigerant.

【0024】そして、室外ユニットAの圧縮機1、室外
熱交換器3、室外電動膨張弁4、レシーバ5及びアキュ
ムレータ8は、冷媒配管9の主冷媒配管9aにより冷媒
の流通が可能に接続され、各室内ユニットB〜Dの室内
電動膨張弁6及び室内熱交換器7は冷媒配管9の分岐管
9bにより冷媒の流通が可能に接続され、各分岐管9
b、・・・は主冷媒配管9aに対して並列に接続されて
いる。以上により、室外空気との熱交換で得た熱(また
は冷熱)を熱移動させて室内空気に付与するようにした
冷媒回路10が構成される。なお、図中の符号11は室
外ユニットAの主冷媒配管9aに介設された閉鎖弁、1
2は各室内ユニットB〜Dにおける分岐管9bに介設さ
れた閉鎖弁である。
The compressor 1, the outdoor heat exchanger 3, the outdoor electric expansion valve 4, the receiver 5, and the accumulator 8 of the outdoor unit A are connected by a main refrigerant pipe 9a of a refrigerant pipe 9 so that refrigerant can flow therethrough. The indoor electric expansion valves 6 and the indoor heat exchangers 7 of the indoor units B to D are connected to each other through a branch pipe 9b of the refrigerant pipe 9 so that the refrigerant can flow therethrough.
are connected in parallel to the main refrigerant pipe 9a. As described above, the refrigerant circuit 10 is configured such that heat (or cold heat) obtained by heat exchange with outdoor air is transferred to the indoor air by heat transfer. Note that reference numeral 11 in the figure denotes a shut-off valve interposed in the main refrigerant pipe 9a of the outdoor unit A, 1
Reference numeral 2 denotes a closing valve provided in the branch pipe 9b in each of the indoor units BD.

【0025】各室内ユニットB〜Dには、室内熱交換器
7の室内ガス管温度を検出するガス管温度検出手段Th
2と、室内熱交換器7の吸込空気温度を検出する吸込空
気温度検出手段Th1が設けられ、各ガス管温度検出手
段Th2及び各吸込空気温度検出手段Th1は、前述の
開度制御手段52Aに接続されている。
Each of the indoor units B to D has a gas pipe temperature detecting means Th for detecting the temperature of the indoor gas pipe of the indoor heat exchanger 7.
2, suction air temperature detection means Th1 for detecting the suction air temperature of the indoor heat exchanger 7, and each gas pipe temperature detection means Th2 and each suction air temperature detection means Th1 are provided to the above-mentioned opening degree control means 52A. It is connected.

【0026】以上の空気調和装置により暖房運転を行う
場合には、冷媒は圧縮機1から吐出された後主冷媒配管
9aを通過して各分岐管9bにて分岐し各室内ユニット
B〜Dに流れ込む。その後各室内交換器7,・・・で凝
縮されて主冷媒配管9aに戻り室外電動膨張弁4で減圧
された後、室外熱交換器3で蒸発して圧縮機1に吸入さ
れる。
When a heating operation is performed by the above-described air conditioner, the refrigerant is discharged from the compressor 1, passes through the main refrigerant pipe 9a, branches off at each branch pipe 9b, and branches to each of the indoor units BD. Flow in. After being condensed in each indoor exchanger 7 and returned to the main refrigerant pipe 9a and decompressed by the outdoor electric expansion valve 4, it is evaporated in the outdoor heat exchanger 3 and sucked into the compressor 1.

【0027】室内ユニットB〜Dが設置された各室内の
暖房負荷に対応するために、暖房負荷を各室内の設定温
度と吸込空気温度検出手段Th1による吸込空気温度T
1の差を把握し、この差が大きければ暖房負荷が大きい
ことになるので室内電動膨張弁6の開度を大きく、逆に
この差が小さければ暖房負荷が小さいことになるので室
内電動膨張弁6の開度を小さくするように制御して、各
室内熱交換器7,・・・の能力調整を行う。
In order to cope with the heating load in each room in which the indoor units B to D are installed, the heating load is set by the set temperature in each room and the suction air temperature T by the suction air temperature detecting means Th1.
1 is grasped, and if this difference is large, the heating load is large, so the opening degree of the indoor electric expansion valve 6 is large. Conversely, if this difference is small, the heating load is small, so the indoor electric expansion valve is small. 6 is controlled so as to reduce the opening degree, and the capacity of each of the indoor heat exchangers 7,... Is adjusted.

【0028】設定温度と吸込空気温度T1の差が極めて
小さい場合にはサーモオフ状態となる。サーモオフ状態
にある室内ユニット(例えばC)においては、吸込空気
温度検出手段Th1による吸込空気温度T1とガス管温
度検出手段Th2によるガス管温度T2とに基づき開度
制御手段52AによりT2及びT1の差(T2−T1)
を求めるとともに、(T2−T1)が所定値x未満の場
合には、温度差(T2−T1)が所定値xに一致するよ
うに室内ユニットCの室内電動膨張弁6を所定量開け、
逆に温度差(T2−T1)が所定値xより大きい場合
は、温度差(T2−T1)が所定値xに一致するように
室内電動膨張弁6を所定量閉じる。
When the difference between the set temperature and the intake air temperature T1 is extremely small, the thermo-off state is set. In the indoor unit (for example, C) in the thermo-off state, the difference between T2 and T1 by the opening control means 52A based on the suction air temperature T1 by the suction air temperature detection means Th1 and the gas pipe temperature T2 by the gas pipe temperature detection means Th2. (T2-T1)
When (T2−T1) is less than the predetermined value x, the indoor electric expansion valve 6 of the indoor unit C is opened by a predetermined amount so that the temperature difference (T2−T1) matches the predetermined value x.
Conversely, when the temperature difference (T2-T1) is larger than the predetermined value x, the indoor electric expansion valve 6 is closed by a predetermined amount so that the temperature difference (T2-T1) matches the predetermined value x.

【0029】以上の制御を図3に示すフローチャートの
各ステップS1〜S7の順に説明する。ステップS1で
は室内ユニットがサーモオフ状態か否かを判断する。サ
ーモオフ状態であればステップS3に進み、サーモオフ
状態でなければステップS2に進む。ステップS2では
室内電動膨張弁6を全開度にする。ステップS3ではT
2−T1が所定値xに一致するか否かを判断し、一致し
ていればステップS4へ、また一致していなければステ
ップS5へ進む。
The above control will be described in the order of steps S1 to S7 in the flowchart shown in FIG. In step S1, it is determined whether or not the indoor unit is in a thermo-off state. If it is in the thermo-off state, the process proceeds to step S3. If it is not in the thermo-off state, the process proceeds to step S2. In step S2, the indoor electric expansion valve 6 is set to the full opening. In step S3, T
It is determined whether or not 2-T1 matches the predetermined value x. If they match, the process proceeds to step S4, and if they do not match, the process proceeds to step S5.

【0030】ステップS4では室内電動膨張弁6の開度
を維持するように制御する。ステップS5ではT2−T
1が所定値x未満であるか否かを判断し、x未満の場合
にはステップS6へ進み、所定値xを超える場合にはス
テップS7へ進む。ステップS6ではT2−T1が所定
値xに一致するように室内電動膨張弁6の開度を所定量
開けるように制御する。ステップS7ではT2−T1が
所定値xに一致するように室内電動膨張弁6の開度を所
定量閉じるように制御する。
In step S4, control is performed to maintain the opening of the indoor electric expansion valve 6. In step S5, T2-T
It is determined whether or not 1 is less than a predetermined value x. If it is less than x, the process proceeds to step S6, and if it is more than the predetermined value x, the process proceeds to step S7. In step S6, the opening degree of the indoor electric expansion valve 6 is controlled to be opened by a predetermined amount so that T2-T1 matches the predetermined value x. In step S7, the opening degree of the indoor electric expansion valve 6 is controlled to be closed by a predetermined amount so that T2-T1 matches the predetermined value x.

【0031】したがって、室内ユニットCの室内熱交換
器7内の液冷媒量を一定に保持することができるし、暖
房能力の急激な変動を生ずることもない。また、所定値
xを小さい値に設定すれば、前記流量制御弁の開度が小
さくなり、冷媒流量が小さくなるので暖房能力が低下す
る結果、サーモオフ時の暖まり過ぎを防止することがで
きる。
Therefore, the amount of the liquid refrigerant in the indoor heat exchanger 7 of the indoor unit C can be kept constant, and there is no sudden change in the heating capacity. If the predetermined value x is set to a small value, the opening degree of the flow control valve becomes small, and the flow rate of the refrigerant becomes small. As a result, the heating capacity is reduced. As a result, it is possible to prevent excessive heating during thermo-off.

【0032】(第2の実施の形態)図4は本発明の第2
の実施形態にかかる空気調和装置の基本構成を示すブロ
ック図である。
(Second Embodiment) FIG. 4 shows a second embodiment of the present invention.
It is a block diagram showing the basic composition of the air conditioner concerning an embodiment.

【0033】図4に示すように、室外ユニットAは、圧
縮機1と、熱源側熱交換器である室外熱交換器3と、熱
源側減圧弁である室外電動膨張弁4とから基本的に構成
され、この室外ユニットAに対して、室内熱交換器7、
室内熱交換器7に付設された室内ファン7a、及び流量
制御弁6を有する室内ユニットB〜Dを並列に接続して
いる。接続は、室外ユニットAにおいては主冷媒配管9
aにより、また室内ユニットB〜Dを各分岐管9bで各
々接続し、各分岐管9bを主冷媒配管9aに並列に接続
して冷媒回路10を構成している。
As shown in FIG. 4, the outdoor unit A basically comprises a compressor 1, an outdoor heat exchanger 3 as a heat source side heat exchanger, and an outdoor electric expansion valve 4 as a heat source side pressure reducing valve. And the indoor unit A,
An indoor fan 7a attached to the indoor heat exchanger 7 and indoor units BD having a flow control valve 6 are connected in parallel. The connection is made with the main refrigerant pipe 9 in the outdoor unit A.
a, the indoor units B to D are connected by the respective branch pipes 9b, and the respective branch pipes 9b are connected in parallel to the main refrigerant pipe 9a to form the refrigerant circuit 10.

【0034】この空気調和装置は、室内熱交換器7の室
内吹出空気温度を検出する吹出空気温度検出手段Th3
と、室内熱交換器7の吸込空気温度を検出する吸込空気
温度検出手段Th1と、暖房運転時に吹出空気温度検出
手段Th3及び吸込空気温度検出手段Th1からの各温
度情報T3及びT1の差(T3−T1)を求めるととも
に、(T3−T1)が所定値x未満の場合には、温度差
(T3−T1)が所定値xに一致するように室内ユニッ
トB〜Dの室内電動膨張弁6を所定量開け、逆に温度差
(T3−T1)が所定値xより大きい場合は、温度差
(T3−T1)が所定値xに一致するように室内電動膨
張弁6を所定量閉じる開度制御手段52Aとからなる運
転制御装置を備えている。
This air conditioner is provided with a blown air temperature detecting means Th3 for detecting the temperature of the indoor blown air of the indoor heat exchanger 7.
And a difference (T3) between the temperature information T3 and T1 from the suction air temperature detecting means Th1 for detecting the suction air temperature of the indoor heat exchanger 7 and the blow-out air temperature detecting means Th3 and the suction air temperature detecting means Th1 during the heating operation. -T1), and when (T3-T1) is less than the predetermined value x, the indoor electric expansion valves 6 of the indoor units B to D are set so that the temperature difference (T3-T1) matches the predetermined value x. When the temperature difference (T3-T1) is larger than the predetermined value x, the indoor electric expansion valve 6 is closed by a predetermined amount so that the temperature difference (T3-T1) becomes equal to the predetermined value x. An operation control device including the means 52A is provided.

【0035】図5は図4に示したブロック図からなる空
気調和装置をより具体化した冷媒配管系統図であり、図
4と同一部分には同一の符号を付してある。室外ユニッ
トAは、圧縮機1と、冷房運転時には図中実線のごと
く、また暖房運転時には図中波線のごとく切換る四路切
換弁2と、熱源側熱交換器である室外熱交換器3と、減
圧弁としての室外電動膨張弁4と、液冷媒を貯留するレ
シーバ5と、吸入冷媒中の液冷媒を分離するアキュムレ
ータ8とから構成される。
FIG. 5 is a refrigerant piping system diagram more concretely showing the air conditioner having the block diagram shown in FIG. 4, and the same parts as those in FIG. 4 are denoted by the same reference numerals. The outdoor unit A includes a compressor 1, a four-way switching valve 2 that switches as shown by the solid line in the drawing during the cooling operation, and a dotted line during the heating operation, and an outdoor heat exchanger 3 that is a heat source side heat exchanger. It comprises an outdoor electric expansion valve 4 as a pressure reducing valve, a receiver 5 for storing liquid refrigerant, and an accumulator 8 for separating liquid refrigerant in the suction refrigerant.

【0036】そして、室外ユニットAの圧縮機1、室外
熱交換器3、室外電動膨張弁4、レシーバ5及びアキュ
ムレータ8は、冷媒配管9の主冷媒配管9aにより冷媒
の流通が可能に接続され、各室内ユニットB〜Dの室内
電動膨張弁6及び室内熱交換器7は冷媒配管9の分岐管
9bにより冷媒の流通が可能に接続され、各分岐管9
b、・・・は主冷媒配管9aに対して並列に接続されて
いる。以上により、室外空気との熱交換で得た熱(また
は冷熱)を熱移動させて室内空気に付与するようにした
冷媒回路10が構成される。なお、図中の符号11は室
外ユニットAの主冷媒配管9aに介設された閉鎖弁、1
2は各室内ユニットB〜Dにおける分岐管9bに介設さ
れた閉鎖弁である。
The compressor 1, the outdoor heat exchanger 3, the outdoor electric expansion valve 4, the receiver 5, and the accumulator 8 of the outdoor unit A are connected by a main refrigerant pipe 9a of a refrigerant pipe 9 so that refrigerant can flow therethrough. The indoor electric expansion valves 6 and the indoor heat exchangers 7 of the indoor units B to D are connected to each other through a branch pipe 9b of the refrigerant pipe 9 so that the refrigerant can flow therethrough.
are connected in parallel to the main refrigerant pipe 9a. As described above, the refrigerant circuit 10 is configured such that heat (or cold heat) obtained by heat exchange with outdoor air is transferred to the indoor air by heat transfer. Note that reference numeral 11 in the figure denotes a shut-off valve interposed in the main refrigerant pipe 9a of the outdoor unit A, 1
Reference numeral 2 denotes a closing valve provided in the branch pipe 9b in each of the indoor units BD.

【0037】各室内ユニットB〜Dには、室内熱交換器
7の室内吹出空気温度を検出する吹出空気温度検出手段
Th3と、室内熱交換器7の室内吸込空気温度を検出す
る吸込空気温度検出手段Th1が設けられ、各ガ吹出空
気温度検出手段Th3及び各吸込空気温度検出手段Th
1は、前述の開度制御手段52Bに接続されている。
Each of the indoor units B to D has an outlet air temperature detecting means Th3 for detecting the indoor air temperature of the indoor heat exchanger 7, and an inlet air temperature detecting means for detecting the indoor air temperature of the indoor heat exchanger 7. Means Th1 is provided, and each gas outlet air temperature detecting means Th3 and each suction air temperature detecting means Th are provided.
1 is connected to the opening control means 52B described above.

【0038】以上の空気調和装置により暖房運転を行う
場合には、冷媒は圧縮機1から吐出された後主冷媒配管
9aを通過して各分岐管9bにて分岐し各室内ユニット
B〜Dに流れ込む。その後各室内交換器7,・・・で凝
縮されて主冷媒配管9aに戻り室外電動膨張弁4で減圧
された後、室外熱交換器3で蒸発して圧縮機1に吸入さ
れる。
When a heating operation is performed by the above-described air conditioner, the refrigerant is discharged from the compressor 1, passes through the main refrigerant pipe 9a, branches off at each branch pipe 9b, and is branched to each of the indoor units BD. Flow in. After being condensed in each indoor exchanger 7 and returned to the main refrigerant pipe 9a and decompressed by the outdoor electric expansion valve 4, it is evaporated in the outdoor heat exchanger 3 and sucked into the compressor 1.

【0039】室内ユニットB〜Dが設置された各室内の
暖房負荷に対応するために、暖房負荷を各室内の設定温
度と吸込空気温度検出手段Th1による室内吸込空気温
度T1の差を把握し、この差が大きければ暖房負荷が大
きいことになるので室内電動膨張弁6の開度を大きく、
逆にこの差が小さければ暖房負荷が小さいことになるの
で室内電動膨張弁6の開度を小さくするように制御し
て、各室内熱交換器7,・・・の能力調整を行う。
In order to cope with the heating load in each room in which the indoor units B to D are installed, the difference between the set temperature in each room and the room suction air temperature T1 by the suction air temperature detecting means Th1 is grasped. If this difference is large, the heating load is large, so the opening degree of the indoor electric expansion valve 6 is increased,
Conversely, if this difference is small, the heating load is small, so the opening degree of the indoor electric expansion valve 6 is controlled to be small, and the capacity of each indoor heat exchanger 7,... Is adjusted.

【0040】設定温度と吸込空気温度T1の差が極めて
小さい場合にはサーモオフ状態となる。サーモオフ状態
にある室内ユニット(例えばC)においては、吸込空気
温度検出手段Th1による室内吸込空気温度T1とガス
管温度検出手段Th3に室内吹出空気温度T3とに基づ
き開度制御手段52BによりT3及びT1の差(T3−
T1)を求めるとともに、(T3−T1)が所定値x未
満の場合には、温度差(T3−T1)が所定値xに一致
するように室内ユニットCの室内電動膨張弁6を所定量
開け、逆に温度差(T3−T1)が所定値xより大きい
場合は、温度差(T3−T1)が所定値xに一致するよ
うに室内電動膨張弁6を所定量閉じる。
When the difference between the set temperature and the suction air temperature T1 is extremely small, the thermo-off state is set. In the indoor unit (for example, C) in the thermo-off state, the opening degree control means 52B uses T3 and T1 based on the indoor suction air temperature T1 by the suction air temperature detection means Th1 and the indoor discharge air temperature T3 by the gas pipe temperature detection means Th3. Difference (T3-
T1) is obtained, and when (T3-T1) is smaller than the predetermined value x, the indoor electric expansion valve 6 of the indoor unit C is opened by a predetermined amount so that the temperature difference (T3-T1) matches the predetermined value x. Conversely, when the temperature difference (T3-T1) is larger than the predetermined value x, the indoor electric expansion valve 6 is closed by a predetermined amount so that the temperature difference (T3-T1) matches the predetermined value x.

【0041】以上の制御を図6に示すフローチャートの
各ステップS1〜S7の順に説明する。ステップS1で
は室内ユニットがサーモオフ状態か否かを判断する。サ
ーモオフ状態であればステップS3に進み、サーモオフ
状態でなければステップS2に進む。ステップS2では
室内電動膨張弁6を全開度にする。ステップS3ではT
3−T1が所定値xに一致するか否かを判断し、一致し
ていればステップS4へ、また一致していなければステ
ップS5へ進む。
The above control will be described in the order of steps S1 to S7 in the flowchart shown in FIG. In step S1, it is determined whether or not the indoor unit is in a thermo-off state. If it is in the thermo-off state, the process proceeds to step S3. If it is not in the thermo-off state, the process proceeds to step S2. In step S2, the indoor electric expansion valve 6 is set to the full opening. In step S3, T
It is determined whether 3-T1 matches the predetermined value x, and if they match, the process proceeds to step S4, and if they do not match, the process proceeds to step S5.

【0042】ステップS4では室内電動膨張弁6の開度
を維持するように制御する。ステップS5ではT3−T
1が所定値x未満であるか否かを判断し、x未満の場合
にはステップS6へ進み、所定値xを超える場合にはス
テップS7へ進む。ステップS6ではT3−T1が所定
値xに一致するように室内電動膨張弁6の開度を所定量
開けるように制御する。ステップS7ではT3−T1が
所定値xに一致するように室内電動膨張弁6の開度を所
定量閉じるように制御する。
In step S4, control is performed to maintain the opening of the indoor electric expansion valve 6. In step S5, T3-T
It is determined whether or not 1 is less than a predetermined value x. If it is less than x, the process proceeds to step S6, and if it is more than the predetermined value x, the process proceeds to step S7. In step S6, the opening degree of the indoor electric expansion valve 6 is controlled to be opened by a predetermined amount so that T3-T1 matches the predetermined value x. In step S7, the opening degree of the indoor electric expansion valve 6 is controlled to be closed by a predetermined amount so that T3-T1 matches the predetermined value x.

【0043】したがって、室内ユニットCの室内熱交換
器7内の液冷媒量を一定に保持することができるし、暖
房能力の急激な変動を生ずることもない。また、所定値
xを小さい値に設定すれば、前記流量制御弁の開度が小
さくなり、冷媒流量が小さくなるので暖房能力が低下す
る結果、サーモオフ時の暖まり過ぎを防止することがで
きる。
Therefore, the amount of liquid refrigerant in the indoor heat exchanger 7 of the indoor unit C can be kept constant, and there is no sudden change in the heating capacity. If the predetermined value x is set to a small value, the opening degree of the flow control valve becomes small, and the flow rate of the refrigerant becomes small. As a result, the heating capacity is reduced. As a result, it is possible to prevent excessive heating during thermo-off.

【0044】(第3の実施の形態)図7は本発明の第3
の実施の形態にかかる空気調和装置の基本構成を示すブ
ロック図である。
(Third Embodiment) FIG. 7 shows a third embodiment of the present invention.
It is a block diagram which shows the basic structure of the air conditioner concerning embodiment of this invention.

【0045】図7に示すように、室外ユニットAは、圧
縮機1と、熱源側熱交換器である室外熱交換器3と、熱
源側減圧弁である室外電動膨張弁4とから基本的に構成
され、この室外ユニットAに対して、利用側熱交換器で
ある室内熱交換器7、室内熱交換器7に付設された室内
ファン7a、及び流量制御弁である室内電動膨張弁6を
有する室内ユニットB〜Dを並列に接続している。接続
は、室外ユニットAにおいては主冷媒配管9aにより、
また室内ユニットB〜Dを各分岐管9bで各々接続し、
各分岐管9bを主冷媒配管9aに並列に接続して冷媒回
路10を構成している。
As shown in FIG. 7, the outdoor unit A basically includes a compressor 1, an outdoor heat exchanger 3 as a heat source side heat exchanger, and an outdoor electric expansion valve 4 as a heat source side pressure reducing valve. The outdoor unit A is provided with an indoor heat exchanger 7 as a use side heat exchanger, an indoor fan 7a attached to the indoor heat exchanger 7, and an indoor electric expansion valve 6 as a flow control valve. The indoor units BD are connected in parallel. The connection is made by the main refrigerant pipe 9a in the outdoor unit A.
Further, the indoor units B to D are respectively connected by the branch pipes 9b,
Each branch pipe 9b is connected in parallel to the main refrigerant pipe 9a to form a refrigerant circuit 10.

【0046】以上の空気調和装置は、室内熱交換器7の
室内液管温度を検出する液管温度検出手段Th4と、室
内熱交換器7の吸込空気温度を検出する吸込空気温度検
出手段Th1と、暖房運転時に液管温度検出手段Th4
及び吸込空気温度検出手段Th1からの各温度情報T4
及びT1の差(T4−T1)を求めるとともに、(T4
−T1)が所定値x未満の場合には、温度差(T4−T
1)が所定値xに一致するように室内ユニットB〜Dの
室内電動膨張弁6を所定量開け、逆に温度差(T4−T
1)が所定値xより大きい場合は、温度差(T4−T
1)が所定値xに一致するように室内電動膨張弁6を所
定量閉じる開度制御手段52Cとからなる運転制御装置
を備えている。
The air conditioner described above has a liquid pipe temperature detecting means Th4 for detecting the indoor liquid pipe temperature of the indoor heat exchanger 7, and a suction air temperature detecting means Th1 for detecting the suction air temperature of the indoor heat exchanger 7. The liquid pipe temperature detecting means Th4 during the heating operation.
And temperature information T4 from the suction air temperature detecting means Th1.
And T1 (T4−T1), and (T4
-T1) is less than the predetermined value x, the temperature difference (T4-T
The indoor electric expansion valves 6 of the indoor units B to D are opened by a predetermined amount so that 1) matches the predetermined value x, and conversely, the temperature difference (T4−T
1) is larger than the predetermined value x, the temperature difference (T4-T
The operation control device includes an opening control means 52C for closing the indoor electric expansion valve 6 by a predetermined amount so that 1) matches the predetermined value x.

【0047】図8は図7に示したブロック図からなる空
気調和装置をより具体化した冷媒配管系統図であり、図
7と同一部分には同一の符号を付してある。室外ユニッ
トAは、圧縮機1と、冷房運転時には図中実線のごと
く、また暖房運転時には図中波線のごとく切換る四路切
換弁2と、熱源側熱交換器である室外熱交換器3と、減
圧弁としての室外電動膨張弁4と、液冷媒を貯留するレ
シーバ5と、吸入冷媒中の液冷媒を分離するアキュムレ
ータ8とから構成される。
FIG. 8 is a refrigerant piping system diagram more concretely showing the air conditioner having the block diagram shown in FIG. 7, and the same parts as those in FIG. 7 are denoted by the same reference numerals. The outdoor unit A includes a compressor 1, a four-way switching valve 2 that switches as shown by the solid line in the drawing during the cooling operation, and a dotted line during the heating operation, and an outdoor heat exchanger 3 that is a heat source side heat exchanger. It comprises an outdoor electric expansion valve 4 as a pressure reducing valve, a receiver 5 for storing liquid refrigerant, and an accumulator 8 for separating liquid refrigerant in the suction refrigerant.

【0048】そして、室外ユニットAの圧縮機1、室外
熱交換器3、室外電動膨張弁4、レシーバ5及びアキュ
ムレータ8は、冷媒配管9の主冷媒配管9aにより冷媒
の流通が可能に接続され、各室内ユニットB〜Dの室内
電動膨張弁6及び室内熱交換器7は冷媒配管9の分岐管
9bにより冷媒の流通が可能に接続され、各分岐管9
b、・・・は主冷媒配管9aに対して並列に接続されて
いる。以上により、室外空気との熱交換で得た熱(また
は冷熱)を熱移動させて室内空気に付与するようにした
冷媒回路10が構成される。なお、図中の符号11は室
外ユニットAの主冷媒配管9aに介設された閉鎖弁、1
2は各室内ユニットB〜Dにおける分岐管9bに介設さ
れた閉鎖弁である。
The compressor 1, the outdoor heat exchanger 3, the outdoor electric expansion valve 4, the receiver 5, and the accumulator 8 of the outdoor unit A are connected by a main refrigerant pipe 9a of the refrigerant pipe 9 so that the refrigerant can flow therethrough. The indoor electric expansion valves 6 and the indoor heat exchangers 7 of the indoor units B to D are connected to each other through a branch pipe 9b of the refrigerant pipe 9 so that the refrigerant can flow therethrough.
are connected in parallel to the main refrigerant pipe 9a. As described above, the refrigerant circuit 10 is configured such that heat (or cold heat) obtained by heat exchange with outdoor air is transferred to the indoor air by heat transfer. Note that reference numeral 11 in the figure denotes a shut-off valve interposed in the main refrigerant pipe 9a of the outdoor unit A, 1
Reference numeral 2 denotes a closing valve provided in the branch pipe 9b in each of the indoor units BD.

【0049】各室内ユニットB〜Dには、室内熱交換器
7の室内液管温度を検出する液管温度検出手段Th4
と、室内熱交換器7の室内吸込空気温度を検出する吸込
空気温度検出手段Th1が設けられ、各液管温度検出手
段Th4及び各吸込空気温度検出手段Th1は、前述の
開度制御手段52Cに接続されている。
Each of the indoor units BD has a liquid pipe temperature detecting means Th4 for detecting the temperature of the indoor liquid pipe of the indoor heat exchanger 7.
And a suction air temperature detecting means Th1 for detecting the indoor suction air temperature of the indoor heat exchanger 7, and each liquid pipe temperature detecting means Th4 and each suction air temperature detecting means Th1 are provided to the opening degree control means 52C. It is connected.

【0050】以上の空気調和装置により暖房運転を行う
場合には、冷媒は圧縮機1から吐出された後主冷媒配管
9aを通過して各分岐管9bにて分岐し各室内ユニット
B〜Dに流れ込む。その後各室内交換器7,・・・で凝
縮されて主冷媒配管9aに戻り室外電動膨張弁4で減圧
された後、室外熱交換器3で蒸発して圧縮機1に吸入さ
れる。
When a heating operation is performed by the air conditioner described above, the refrigerant is discharged from the compressor 1, passes through the main refrigerant pipe 9a, branches off at each branch pipe 9b, and is branched to each of the indoor units BD. Flow in. After being condensed in each indoor exchanger 7 and returned to the main refrigerant pipe 9a and decompressed by the outdoor electric expansion valve 4, it is evaporated in the outdoor heat exchanger 3 and sucked into the compressor 1.

【0051】室内ユニットB〜Dが設置された各室内の
暖房負荷に対応するために、暖房負荷を各室内の設定温
度と吸込空気温度検出手段Th1による吸込空気温度T
1の差を把握し、この差が大きければ暖房負荷が大きい
ことになるので室内電動膨張弁6の開度を大きく、逆に
この差が小さければ暖房負荷が小さいことになるので室
内電動膨張弁6の開度を小さくするように制御して、各
室内熱交換器7,・・・の能力調整を行う。
In order to cope with the heating load in each room where the indoor units B to D are installed, the heating load is set to the set temperature in each room and the suction air temperature T by the suction air temperature detecting means Th1.
1 is grasped, and if this difference is large, the heating load is large, so the opening degree of the indoor electric expansion valve 6 is large. Conversely, if this difference is small, the heating load is small, so the indoor electric expansion valve is small. 6 is controlled so as to reduce the opening degree, and the capacity of each of the indoor heat exchangers 7,... Is adjusted.

【0052】設定温度と吸込空気温度T1の差が極めて
小さい場合にはサーモオフ状態となる。サーモオフ状態
にある室内ユニット(例えばC)においては、吸込空気
温度検出手段Th1による吸込空気温度T1と液管温度
検出手段Th4によるガス管温度T4とに基づき開度制
御手段52CによりT4及びT1の差(T4−T1)を
求めるとともに、(T4−T1)が所定値x未満の場合
には、温度差(T4−T1)が所定値xに一致するよう
に室内ユニットCの室内電動膨張弁6を所定量開け、逆
に温度差(T4−T1)が所定値xより大きい場合は、
温度差(T4T1)が所定値xに一致するように室内電
動膨張弁6を所定量閉じる。
When the difference between the set temperature and the suction air temperature T1 is extremely small, the thermo-off state is set. In the indoor unit (for example, C) in the thermo-off state, the difference between T4 and T1 is determined by the opening control means 52C based on the suction air temperature T1 by the suction air temperature detection means Th1 and the gas pipe temperature T4 by the liquid pipe temperature detection means Th4. (T4-T1) is obtained, and when (T4-T1) is less than the predetermined value x, the indoor electric expansion valve 6 of the indoor unit C is set so that the temperature difference (T4-T1) matches the predetermined value x. If the temperature difference (T4−T1) is larger than the predetermined value x,
The indoor electric expansion valve 6 is closed by a predetermined amount so that the temperature difference (T4T1) matches the predetermined value x.

【0053】以上の制御を図3に示すフローチャートの
各ステップS1〜S7の順に説明する。ステップS1で
は室内ユニットがサーモオフ状態か否かを判断する。サ
ーモオフ状態であればステップS3に進み、サーモオフ
状態でなければステップS2に進む。ステップS2では
室内電動膨張弁6を全開度にする。ステップS3ではT
4−T1が所定値xに一致するか否かを判断し、一致し
ていればステップS4へ、また一致していなければステ
ップS5へ進む。
The above control will be described in the order of steps S1 to S7 in the flowchart shown in FIG. In step S1, it is determined whether or not the indoor unit is in a thermo-off state. If it is in the thermo-off state, the process proceeds to step S3. If it is not in the thermo-off state, the process proceeds to step S2. In step S2, the indoor electric expansion valve 6 is set to the full opening. In step S3, T
It is determined whether 4-T1 matches the predetermined value x. If they match, the process proceeds to step S4, and if they do not match, the process proceeds to step S5.

【0054】ステップS4では室内電動膨張弁6の開度
を維持するように制御する。ステップS5ではT4−T
1が所定値x未満であるか否かを判断し、x未満の場合
にはステップS6へ進み、所定値xを超える場合にはス
テップS7へ進む。ステップS6ではT4−T1が所定
値xに一致するように室内電動膨張弁6の開度を所定量
開けるように制御する。ステップS7ではT4−T1が
所定値xに一致するように室内電動膨張弁6の開度を所
定量閉じるように制御する。
In step S4, control is performed to maintain the opening of the indoor electric expansion valve 6. In step S5, T4-T
It is determined whether or not 1 is less than a predetermined value x. If it is less than x, the process proceeds to step S6, and if it is more than the predetermined value x, the process proceeds to step S7. In step S6, the opening degree of the indoor electric expansion valve 6 is controlled to be opened by a predetermined amount so that T4-T1 matches the predetermined value x. In step S7, the opening degree of the indoor electric expansion valve 6 is controlled to be closed by a predetermined amount so that T4-T1 matches the predetermined value x.

【0055】したがって、室内ユニットCの室内熱交換
器7内の液冷媒量を一定に保持することができるし、暖
房能力の急激な変動を生ずることもない。また、所定値
xを小さい値に設定すれば、前記流量制御弁の開度が小
さくなり、冷媒流量が小さくなるので暖房能力が低下す
る結果、サーモオフ時の暖まり過ぎを防止することがで
きる。
Therefore, the amount of liquid refrigerant in the indoor heat exchanger 7 of the indoor unit C can be kept constant, and there is no sudden change in the heating capacity. If the predetermined value x is set to a small value, the opening degree of the flow control valve becomes small, and the flow rate of the refrigerant becomes small. As a result, the heating capacity is reduced. As a result, it is possible to prevent excessive heating during thermo-off.

【0056】[0056]

【発明の効果】以上説明のように、本発明ではサーモオ
フ状態において室内ガス管温度、室内吹出空気温度、又
は室内液管温度と吸込空気温度との差が所定値に一致す
るように流量制御弁の開度を制御するようにしたので、
利用側熱交換器内の液冷媒量を一定に保持することがで
きるとともに、暖房能力の急激な変動を生ずることもな
い。また本発明において、所定値を小さい値に設定すれ
ば、前記流量制御弁の開度が小さくなり、冷媒流量が小
さくなるので暖房能力が低下する結果、サーモオフ時の
暖まり過ぎを防止することもできる。
As described above, in the present invention, in the thermo-off state, the flow control valve is controlled so that the indoor gas pipe temperature, the indoor blow-out air temperature, or the difference between the indoor liquid pipe temperature and the suction air temperature coincides with a predetermined value. Control the opening of the
The amount of liquid refrigerant in the use-side heat exchanger can be kept constant, and the heating capacity does not suddenly fluctuate. Further, in the present invention, if the predetermined value is set to a small value, the opening degree of the flow control valve is reduced, and the refrigerant flow rate is reduced, so that the heating capacity is reduced. As a result, it is possible to prevent overheating during thermo-off. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明の第1の実施形態にかかる空気調和装
置の構成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of an air conditioner according to a first embodiment of the present invention.

【図2】 本発明の第1の実施形態にかかる空気調和装
置の冷媒配管系統図である。
FIG. 2 is a refrigerant piping system diagram of the air conditioner according to the first embodiment of the present invention.

【図3】 本発明の第1の実施形態にかかる空気調和装
置のサーモオフ時の弁制御を示すフローチャートであ
る。
FIG. 3 is a flowchart illustrating valve control at the time of thermo-off of the air-conditioning apparatus according to the first embodiment of the present invention.

【図4】 本発明の第2の実施形態にかかる空気調和装
置の構成を示すブロック図である。
FIG. 4 is a block diagram illustrating a configuration of an air conditioner according to a second embodiment of the present invention.

【図5】 本発明の第2の実施形態にかかる空気調和装
置の冷媒配管系統図である。
FIG. 5 is a refrigerant piping system diagram of an air conditioner according to a second embodiment of the present invention.

【図6】 本発明の第2の実施形態にかかる空気調和装
置のサーモオフ時の弁制御を示すフローチャートであ
る。
FIG. 6 is a flowchart illustrating valve control at the time of thermo-off of the air-conditioning apparatus according to Embodiment 2 of the present invention.

【図7】 本発明の第3の実施形態にかかる空気調和装
置の構成を示すブロック図である。
FIG. 7 is a block diagram illustrating a configuration of an air conditioner according to a third embodiment of the present invention.

【図8】 本発明の第3の実施形態にかかる空気調和装
置の冷媒配管系統図である。
FIG. 8 is a refrigerant piping system diagram of an air conditioner according to a third embodiment of the present invention.

【図9】 本発明の第3の実施形態にかかる空気調和装
置のサーモオフ時の弁制御を示すフローチャートであ
る。
FIG. 9 is a flowchart showing valve control at the time of thermo-off of the air-conditioning apparatus according to Embodiment 3 of the present invention.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室外熱交換器(熱源側熱交換器) 4 室外電動膨張弁(熱源側減圧弁) 6 室内電動膨張弁(流量制御弁) 7 室内熱交換器(利用側熱交換器) 9a 主冷媒配管 9b 分岐管 10 冷媒回路 Th1 吸込空気温度検出手段 Th2 ガス管温度検出手段 Th3 吹出空気温度検出手段 Th4 液管温度検出手段 52A、52B、52C 開度制御手段 1 Compressor 3 Outdoor heat exchanger (heat source side heat exchanger) 4 Outdoor electric expansion valve (heat source side pressure reducing valve) 6 Indoor electric expansion valve (flow control valve) 7 Indoor heat exchanger (use side heat exchanger) 9a Main Refrigerant piping 9b Branch pipe 10 Refrigerant circuit Th1 Suction air temperature detecting means Th2 Gas pipe temperature detecting means Th3 Blowing air temperature detecting means Th4 Liquid pipe temperature detecting means 52A, 52B, 52C Opening degree controlling means

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、熱源側熱交換器及び熱源側減圧
弁を有する室外ユニットと、 利用側熱交換器及び流量制御弁を有する複数の室内ユニ
ットと、 室外ユニットに対して複数の室内ユニットを並列的に接
続する冷媒配管と、 利用側熱交換器の室内ガス管温度を検出するガス管温度
検出手段と、 利用側熱交換器の室内吸込空気温度を検出する吸込空気
温度検出手段と、 サーモオフ状態においてガス管温度検出手段及び吸込空
気温度検出手段でそれぞれ検出した温度の差が所定値と
なるように前記流量制御弁の開度を制御する開度制御手
段とを備えたことを特徴とする空気調和装置。
1. An outdoor unit having a compressor, a heat source side heat exchanger and a heat source side pressure reducing valve, a plurality of indoor units having a use side heat exchanger and a flow control valve, and a plurality of indoor units with respect to the outdoor unit A refrigerant pipe for connecting in parallel, a gas pipe temperature detecting means for detecting the indoor gas pipe temperature of the use side heat exchanger, and a suction air temperature detecting means for detecting the indoor suction air temperature of the use side heat exchanger, Opening control means for controlling the opening of the flow control valve so that the difference between the temperatures detected by the gas pipe temperature detecting means and the suction air temperature detecting means in the thermo-off state becomes a predetermined value. Air conditioner.
【請求項2】 圧縮機、熱源側熱交換器及び熱源側減圧
弁を有する室外ユニットと、 利用側熱交換器及び流量制御弁を有する複数の室内ユニ
ットと、 室外ユニットに対して複数の室内ユニットを並列的に接
続する冷媒配管と、 利用側熱交換器の室内吹出空気温度を検出する吹出空気
温度検出手段と、 利用側熱交換器の室内吸込空気温度を検出する吸込空気
温度検出手段と、 サーモオフ状態において吹出空気温度検出手段及び吸込
空気温度検出手段でそれぞれ検出した温度の差が所定値
となるように前記流量制御弁の開度を制御する開度制御
手段とを備えたことを特徴とする空気調和装置。
2. An outdoor unit having a compressor, a heat source side heat exchanger and a heat source side pressure reducing valve, a plurality of indoor units having a use side heat exchanger and a flow control valve, and a plurality of indoor units for the outdoor unit. Refrigerant pipes that connect in parallel with each other, blow-out air temperature detecting means for detecting the indoor blow-out air temperature of the use side heat exchanger, and suction air temperature detecting means for detecting the indoor suction air temperature of the use side heat exchanger, Opening degree control means for controlling the opening degree of the flow rate control valve so that the difference between the temperatures detected by the blow-out air temperature detection means and the suction air temperature detection means in the thermo-off state is a predetermined value. Air conditioner.
【請求項3】 圧縮機、熱源側熱交換器及び熱源側減圧
弁を有する室外ユニットと、 利用側熱交換器及び流量制御弁を有する複数の室内ユニ
ットと、 室外ユニットに対して複数の室内ユニットを並列的に接
続する冷媒配管と、 利用側熱交換器の室内液管温度を検出する液管温度検出
手段と、 利用側熱交換器の室内吸込空気温度を検出する吸込空気
温度検出手段と、 サーモオフ状態においてガス管温度検出手段及び吸込空
気温度検出手段でそれぞれ検出した温度の差が所定値と
なるように前記流量制御弁の開度を制御する開度制御手
段とを備えたことを特徴とする空気調和装置。
3. An outdoor unit having a compressor, a heat source side heat exchanger and a heat source side pressure reducing valve, a plurality of indoor units having a use side heat exchanger and a flow control valve, and a plurality of indoor units for the outdoor unit. A refrigerant pipe for connecting in parallel, a liquid pipe temperature detecting means for detecting the indoor liquid pipe temperature of the use side heat exchanger, a suction air temperature detecting means for detecting the indoor suction air temperature of the use side heat exchanger, Opening control means for controlling the opening of the flow control valve so that the difference between the temperatures detected by the gas pipe temperature detecting means and the suction air temperature detecting means in the thermo-off state becomes a predetermined value. Air conditioner.
JP9345460A 1997-12-15 1997-12-15 Air conditioner Withdrawn JPH11173628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9345460A JPH11173628A (en) 1997-12-15 1997-12-15 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9345460A JPH11173628A (en) 1997-12-15 1997-12-15 Air conditioner

Publications (1)

Publication Number Publication Date
JPH11173628A true JPH11173628A (en) 1999-07-02

Family

ID=18376752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9345460A Withdrawn JPH11173628A (en) 1997-12-15 1997-12-15 Air conditioner

Country Status (1)

Country Link
JP (1) JPH11173628A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091178A3 (en) * 1999-10-06 2002-09-25 Matsushita Electric Industrial Co., Ltd. Multiroom air conditioner and control method therefor
WO2003083377A1 (en) * 2002-03-28 2003-10-09 Daikin Industries, Ltd. Air conditioner
JP2005207722A (en) * 2004-01-19 2005-08-04 Lg Electronics Inc Method for controlling multi-type air conditioner
JP2013002742A (en) * 2011-06-17 2013-01-07 Mitsubishi Heavy Ind Ltd Multi-split type air conditioning system
JP2016053437A (en) * 2014-09-03 2016-04-14 三菱電機株式会社 Refrigeration cycle device and air conditioning device
CN106352611A (en) * 2016-08-26 2017-01-25 芜湖美智空调设备有限公司 Multi-split air conditioner and control method of electronic expansion valve thereof
CN106440198A (en) * 2016-09-26 2017-02-22 广东美的暖通设备有限公司 Detection method for throttle valve body of indoor unit of air conditioning system
EP3336449A4 (en) * 2015-08-10 2018-06-27 Mitsubishi Electric Corporation Multiple-type air conditioner
JP2019168117A (en) * 2018-03-22 2019-10-03 株式会社富士通ゼネラル Air conditioner
EP3855089A4 (en) * 2018-09-20 2022-04-13 Toshiba Carrier Corporation Air conditioner and control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1091178A3 (en) * 1999-10-06 2002-09-25 Matsushita Electric Industrial Co., Ltd. Multiroom air conditioner and control method therefor
WO2003083377A1 (en) * 2002-03-28 2003-10-09 Daikin Industries, Ltd. Air conditioner
JP2005207722A (en) * 2004-01-19 2005-08-04 Lg Electronics Inc Method for controlling multi-type air conditioner
US7131283B2 (en) 2004-01-19 2006-11-07 Lg Electronics Inc. Method for controlling multi-type air conditioner
JP2013002742A (en) * 2011-06-17 2013-01-07 Mitsubishi Heavy Ind Ltd Multi-split type air conditioning system
JP2016053437A (en) * 2014-09-03 2016-04-14 三菱電機株式会社 Refrigeration cycle device and air conditioning device
EP3336449A4 (en) * 2015-08-10 2018-06-27 Mitsubishi Electric Corporation Multiple-type air conditioner
CN106352611A (en) * 2016-08-26 2017-01-25 芜湖美智空调设备有限公司 Multi-split air conditioner and control method of electronic expansion valve thereof
CN106440198A (en) * 2016-09-26 2017-02-22 广东美的暖通设备有限公司 Detection method for throttle valve body of indoor unit of air conditioning system
CN106440198B (en) * 2016-09-26 2019-07-26 广东美的暖通设备有限公司 The detection method of the throttle valve body of the indoor unit of air-conditioning system
JP2019168117A (en) * 2018-03-22 2019-10-03 株式会社富士通ゼネラル Air conditioner
EP3855089A4 (en) * 2018-09-20 2022-04-13 Toshiba Carrier Corporation Air conditioner and control method

Similar Documents

Publication Publication Date Title
US9791193B2 (en) Air conditioner and method of controlling the same
US20110154834A1 (en) Air conditioner and method for controlling the same
US20060123834A1 (en) Air conditioner
JP3263579B2 (en) Multi-room type air conditioner and heating method
JPWO2019053876A1 (en) Air conditioner
KR102082881B1 (en) Multi-air conditioner for heating and cooling operations at the same time
JPH11173628A (en) Air conditioner
US8205463B2 (en) Air conditioner and method of controlling the same
JPH05172429A (en) Air conditioner
KR101723689B1 (en) Air conditoner
JP3096687B2 (en) Air conditioner
JPH08159621A (en) Air conditioner
JP2966641B2 (en) Air conditioner
JPH0682113A (en) Multi-room air-conditioning apparatus
JP4186492B2 (en) Air conditioner
JP3059815B2 (en) Air conditioner
JPH1038422A (en) Air conditioner
JP3883725B2 (en) Method of operating air conditioner and air conditioner
JP2889762B2 (en) Air conditioner
JP3123873B2 (en) Air conditioner
JP2002277066A (en) Air conditioning equipment for vehicle
JPH0763429A (en) Mult-room type air conditioner
JP4391261B2 (en) Air conditioner
JPH10132406A (en) Refrigerating system
JP3059886B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050301