WO2003083377A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2003083377A1
WO2003083377A1 PCT/JP2003/002609 JP0302609W WO03083377A1 WO 2003083377 A1 WO2003083377 A1 WO 2003083377A1 JP 0302609 W JP0302609 W JP 0302609W WO 03083377 A1 WO03083377 A1 WO 03083377A1
Authority
WO
WIPO (PCT)
Prior art keywords
indoor
room temperature
temperature monitoring
monitoring
unit
Prior art date
Application number
PCT/JP2003/002609
Other languages
French (fr)
Japanese (ja)
Inventor
Hidehiko Kataoka
Mitsuaki Nagamine
Original Assignee
Daikin Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries, Ltd. filed Critical Daikin Industries, Ltd.
Priority to AU2003211720A priority Critical patent/AU2003211720B2/en
Priority to EP03745406.3A priority patent/EP1491826B1/en
Priority to ES03745406.3T priority patent/ES2598355T3/en
Publication of WO2003083377A1 publication Critical patent/WO2003083377A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0232Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/029Control issues
    • F25B2313/0293Control issues related to the indoor fan, e.g. controlling speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/031Sensor arrangements
    • F25B2313/0314Temperature sensors near the indoor heat exchanger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to an air conditioner, particularly to a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit.
  • a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit.
  • a multi-room air conditioner can perform air conditioning in a plurality of rooms by arranging indoor units in a plurality of rooms.
  • not all of the indoor units are always operating, and some of the indoor units are operating and other indoor units are not operating, or It may be in the thermo-off state. In this case, it is considered that there is no need to circulate the refrigerant in the indoor unit that is stopped or in the thermo-off state.
  • a very small amount of refrigerant is often flowed in order to suppress the occurrence of problems due to liquid pools.
  • many air conditioners are equipped with a room temperature sensor and have a room temperature monitoring function for detecting the room temperature.
  • the components of the air conditioner can be controlled, and the room can be controlled to a comfortable temperature.
  • the room temperature may be detected by taking indoor air into the indoor unit to prevent the room temperature sensor of the indoor unit in the thermo-off state from being affected by the temperature of the indoor heat exchanger. Therefore, when monitoring the room temperature, the indoor fan is driven even in the indoor unit in the thermo-off state. As a result, the room temperature can be detected more accurately.
  • each indoor unit often determines the start of room temperature monitoring independently.
  • each indoor unit measures the time with a timer and monitors the room temperature at regular time intervals, such as once every 5 minutes.
  • the indoor fans may be simultaneously driven in a plurality of indoor units in a thermo-off state.
  • the blow-out temperature drops sharply in the cab for the following reasons. That is, in the above-described multi-room air conditioner, since the refrigerant flows even in the thermo-off state, when the indoor fan is driven, the refrigerant condenses. If this occurs simultaneously in multiple indoor units, a sharp drop in pressure will occur in the cab. For this reason, a phenomenon in which the blow-out temperature drops rapidly in the operator's room is likely to occur.
  • An object of the present invention is to provide an air conditioner that can accurately detect the indoor temperature even in an indoor unit in a thermo-off state while suppressing a sharp drop in the blowout temperature in an operating room.
  • the air conditioner according to claim 1 includes a plurality of indoor units, an outdoor unit, and a room temperature monitoring control unit.
  • Each indoor unit has a room temperature sensor, an indoor heat exchanger, an indoor fan, and an indoor control unit.
  • the outdoor unit has an outdoor heat exchanger, and forms a refrigerant circuit with a plurality of indoor units.
  • the indoor control unit determines whether or not the start condition of the room temperature monitoring by the room temperature sensor is satisfied, and drives the indoor fan when the room temperature monitoring is performed when the heating operation is turned off.
  • the room temperature monitoring controller selects a predetermined indoor unit from the plurality of indoor units, and transmits a signal regarding permission of room temperature monitoring to the indoor controller of the selected indoor unit.
  • the indoor control unit determines whether or not to perform room temperature monitoring based on both the above signal and the room temperature monitoring start condition.
  • the indoor control unit determines whether to perform room temperature monitoring based on both the signal received from the room temperature monitoring control unit and the start condition of room temperature monitoring. For this reason, this air conditioner can limit the number of indoor units that perform room temperature monitoring simultaneously from the room temperature monitoring control unit. Therefore, at the same time , The number of indoor fans to be driven can be limited. As a result, in this air conditioner, it is possible to accurately detect the indoor temperature even in the thermo-off state indoor unit while suppressing a sharp drop in the outlet temperature in the operating room.
  • the invention according to claim 2 is the air conditioner according to claim 1, wherein the signal is a room temperature monitoring permission signal that permits room temperature monitoring. Then, the indoor control unit performs room temperature monitoring when the room temperature monitoring permission signal is received and the start condition of the room temperature monitoring is satisfied.
  • the indoor control unit receives the room temperature monitoring permission signal, and performs room temperature monitoring when the start condition of the room temperature monitoring is satisfied. Therefore, even if a certain indoor control unit determines that the conditions for starting room temperature monitoring are satisfied based on the conditions inside the indoor unit, room temperature monitoring is performed until the room temperature monitoring control unit permits room temperature monitoring. Absent. Therefore, the number of indoor units that perform room temperature monitoring at the same time can be limited by the room temperature monitoring control unit. As a result, in this air conditioner, it is possible to accurately detect the indoor temperature even in the indoor unit in the thermo-off state while suppressing a sharp decrease in the outlet temperature in the operating room.
  • the invention according to claim 3 is the air conditioner according to claim 2, wherein the room temperature monitoring control unit transmits a room temperature monitoring permission signal at a different time for each indoor control unit.
  • the room temperature monitoring permission signal is transmitted to each indoor control unit with a time lag, so that two or more indoor units do not perform room temperature monitoring at the same time. For this reason, in this air conditioner, it is possible to further suppress a sharp drop in the outlet temperature in the operating room.
  • the invention according to claim 4 is the air conditioner according to any one of claims 1 to 3, wherein the room temperature monitoring control unit transmits the signal at an equal timing to each of the indoor control units. To send.
  • the room temperature monitoring control unit transmits a signal to each of the indoor control units at an equal timing. This gives each indoor unit an opportunity to perform room temperature monitoring evenly. This enables monitoring of the room temperature of each indoor unit The occurrence of bias in the number of rings can be suppressed.
  • the invention according to claim 5 is the air conditioner according to any one of claims 1 to 4, wherein the room temperature monitoring control unit is an air conditioner of the indoor unit that is in a thermo-off state of the heating operation among the plurality of indoor units.
  • the above signal is transmitted only to the indoor control unit.
  • the room temperature monitoring control unit transmits a signal only to the indoor control unit of the indoor unit that is in the thermo-off state of the heating operation. For this reason, the probability that the indoor unit loses the opportunity for monitoring is lower than when the signal is transmitted to the indoor control units of all the indoor units.
  • the invention according to claim 6 is the air conditioner according to any one of claims 1 to 4, wherein the room temperature monitoring control unit transmits a signal to all indoor units.
  • the room temperature monitoring control unit transmits a signal to all indoor units. For this reason, the room temperature monitoring control unit does not need to determine whether the indoor unit is in the thermo-off state. This simplifies the control and reduces the load on the room temperature monitoring controller.
  • Fig. 1 is an external view of the air conditioner.
  • FIG. 2 is a schematic diagram of a refrigerant circuit of the air conditioner.
  • FIG. 3 is a control block diagram of the air conditioner.
  • FIG. 4 is a diagram showing the relationship between the timers.
  • FIG. 5 is a diagram showing a specific example of each timer.
  • FIG. 6 is a diagram showing a timer when one of the indoor units is turned off.
  • FIG. 1 shows an air conditioner 1 employing an embodiment of the present invention.
  • the air conditioner 1 is a so-called multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit. ⁇
  • This air conditioner 1 has four indoor units 3 a, 3 b, 3 c, and one outdoor unit 2. 3d is connected by refrigerant pipes 4a, 4b, 4c and 4d, respectively. These four indoor units 3a, 3b, 3c, 3d are arranged in separate rooms.
  • FIG. 2 schematically shows the refrigerant circuit of the air conditioner 1.
  • the refrigerant circuit includes one outdoor unit 2 and four indoor units 3 a, 3 b, 3 c, and 3 d connected in parallel to the outdoor unit 2.
  • the indoor unit 3a includes an indoor heat exchanger 30a, an electric valve 31a, an indoor fan 32a, a room temperature thermistor 33a, and an indoor control unit 34a (see Fig. 3). ing.
  • the indoor heat exchanger 30a and the electric valve 31a are connected in series, and constitute a refrigerant circuit with the outdoor unit 2.
  • the motor-operated valve 31a is provided on the outlet side of the indoor heat exchanger 30a and adjusts the amount of refrigerant flowing through the indoor heat exchanger 30a.
  • the room fan 32a is provided in the indoor unit 3a, and is driven by the indoor control unit 34a.
  • the indoor fan 32a takes in the indoor air in which the indoor unit 3a is arranged into the interior of the indoor unit 3a, and sends the air subjected to the heat exchange by the indoor heat exchanger 30a to the indoor.
  • the room temperature thermistor 33a is provided inside the indoor unit 3a, detects the indoor temperature, and transmits a detection signal to the indoor control unit 34a.
  • the indoor control unit 34a includes a microprocessor, a ROM, a RAM, various interfaces, and the like. As shown in Fig. 3, the indoor control section 34a is connected to the electric valve 31a, the indoor fan 32a, and the room temperature thermistor 33a, and receives the detection signal of the room temperature thermistor 33a. You. The indoor control unit 34a transmits a control signal to the motor-operated valve 31a to adjust the opening. Further, the indoor control unit 34a drives the indoor fan 32a when performing room temperature monitoring described later in a state where the thermostat is off.
  • the outdoor unit 2 includes a compressor 20, a four-way switching valve 21, an outdoor heat exchanger 22, an accumulator 23, a discharge pipe thermistor 24, an outdoor control unit 25 (see FIG. 3), and the like.
  • the compressor 20, the four-way switching valve 21, the outdoor heat exchanger 22, and the accumulator 23 constitute a refrigerant circuit between the indoor unit and the four-way switching valve 21. The flow of the refrigerant is switched at different times.
  • the discharge pipe thermistor is mounted on the discharge side of the compressor 20 and detects the temperature of the discharge pipe on the discharge side of the compressor 20.
  • the outdoor control unit 25 includes a microprocessor, a ROM, a RAM, various interfaces, and the like. As shown in FIG. 3, the outdoor control unit 25 is connected to a discharge pipe thermistor 24, and receives a detection signal of the discharge pipe thermistor 24. Further, the outdoor control unit 25 controls the air conditioning operation by controlling the operation frequency of the compressor 20 according to various conditions during operation. In addition, the outdoor control unit 25 determines the opening degree based on the discharge pipe temperature for the electrically operated valve of the indoor unit that is operating, and determines the opening of the electrically operated valve of the indoor unit that is not operating. The opening is determined to a value proportional to the opening of the motor-operated valve of the machine.
  • a transmission line 40a is provided between the outdoor control unit 25 and the indoor control unit 34a, and a control signal for the motor-operated valve 31a is transmitted through the transmission line 40a. It is possible to transmit and receive various signals such as signals related to permission to monitor room temperature.
  • the other indoor units 3b, 3c, 3d have the same configuration as the indoor unit 3a, and are connected to the outdoor unit 2.
  • the same components are shown with the symbols replaced.
  • the motorized valve 31a of the indoor unit 3b is expressed as the motorized valve 31b of the indoor unit 3b.
  • the room temperature monitor detects the room temperature periodically by the room temperature thermistors 33a, 33b, 33c, 33d in the indoor units 3a, 3b, 3c, 3d. A ring is performed.
  • the air conditioner 1 monitors the room temperature of the indoor unit in a thermo-off state, and detects the room temperature of the room where the indoor unit is arranged.
  • the indoor control unit 25 performs control to turn on the thermostat.
  • the indoor control unit of the indoor unit drives the indoor fan to control the room temperature. Is detected. In this way, when the indoor fan is driven during room temperature monitoring, room temperature monitoring is performed on the air taken in from the room. Therefore, the room temperature thermistor is affected by the heat of the indoor heat exchanger. Can be reduced. This enables accurate room temperature detection.
  • the room temperature monitoring is controlled so that the room temperature monitoring by the indoor unit in the thermo-off state does not start simultaneously in a plurality of indoor units.
  • the outdoor control unit 25 selects an indoor unit for performing room temperature monitoring, and transmits a room temperature monitoring permission signal to the indoor control unit of the selected indoor unit. At this time, the outdoor control unit 25 transmits the room temperature monitoring permission signal with a time lag between the indoor control units 34a, 34b, 34c, and 34d.
  • Each of the indoor control units 34a, 34b, 34c, 34d determines whether or not the conditions for starting room temperature monitoring are satisfied. The conditions for starting this room temperature monitoring are determined independently by each indoor unit 3a, 3b, 3c, 3d.
  • the indoor control units 34a, 34b, 34c, and 34d receive the room temperature monitoring permission signal from the outdoor control unit 25 and perform room temperature monitoring when the start condition of the room temperature monitoring is satisfied. I do.
  • the outdoor control unit 25 determines whether to start room temperature monitoring control on the outdoor unit 2 side.
  • the outdoor control unit 25 starts the room temperature monitoring control when both of the following two conditions are satisfied.
  • Air conditioner 1 is in heating operation.
  • Air conditioner 1 is not defrosting. [Start setting of room temperature monitoring timer for each indoor unit]
  • Tm2 (A) represents a room temperature monitoring permission timer that counts the time during which the indoor unit 3a is permitted to monitor the room temperature.
  • the other indoor units 3b, 3c, and 3d are shown by replacing the symbols in parentheses.
  • the monitoring permission timer for indoor unit 3b is expressed as Tm2 (B).
  • Tm2 (B) the monitoring permission timer for indoor unit 3b.
  • TmO 1 (B) represents the first prohibition timer of the indoor unit 3b.
  • the first prohibition timer is a timer that counts a time during which each indoor unit is initially prohibited from monitoring the room temperature after the outdoor control unit 25 starts the room temperature monitoring control. Note that the first-time prohibition timer TmO 1 (A) of the indoor unit 3a is set to zero as described later, and is not shown in FIG.
  • the outdoor control unit 25 sets the timer value of each timer as follows.
  • the time during which the indoor units 3a, 3b, 3c, and 3d are prohibited from monitoring the room temperature is the room temperature monitoring inhibition time T1
  • the indoor units 3a, 3b, 3c, and 3d are the room temperature monitoring times, respectively.
  • the time permitted for monitoring is referred to as the room temperature monitoring permitted time T2.
  • the room temperature monitoring prohibited time T1 and the room temperature monitoring permitted time T2 are the same for each indoor unit 3a, 3b, 3c, 3d. Accordingly, the timer values of the monitoring permission timers Tm2 (A), Tm2 (B), Tm2 (C), and Tm2 (D) of the indoor units 3a, 3b, 3c, and 3d are all T2.
  • the monitoring prohibition timers Tm 1 (A), Tml (B), Tm 1 (C), and Tml (D) of the indoor units 3 a, 3 b, 3 c, and 3 d are all Tl.
  • the monitoring prohibition timer is a timer that counts the time during which each of the indoor units 3a, 3b, 3c, and 3d is prohibited from monitoring the room temperature. Count down monitoring prohibition time.
  • the timer value of the first prohibition timer of each indoor unit 3a, 3b, 3c, 3d is set as follows.
  • each indoor unit 3a, 3 The monitoring interval ⁇ for b, 3c, 3d can be obtained by the following equation.
  • the monitoring interval of each indoor unit means the time from the end of the permission of monitoring of the room temperature of a certain indoor unit to the start of the permission of monitoring of the room temperature of the next indoor unit.
  • the timer value of the first prohibition timer of each indoor unit is given by the following equation, respectively.
  • TmO 1 (A) ( ⁇ + ⁇ 2) X 0
  • the outdoor control unit 25 sets and starts the initial prohibition timer of each of the indoor units 3a, 3b, 3c3d.
  • the outdoor control unit 25 permits monitoring of each of the indoor units 3a, 3b, 3c, and 3d.
  • Set and start the timer Thereafter, as long as the conditions for starting room temperature monitoring are satisfied, the set start of the monitoring disable timer and the monitoring enable timer for each indoor unit 3a, 3b, 3c, 3d is cyclically performed. .
  • the monitoring interval ⁇ 0. This means that if the monitoring permission timer of a certain indoor unit counts over, the monitoring permission timer of another indoor unit is set and started immediately without any time delay.
  • the initial prohibition timer for each indoor unit 3a, 3b, 3c, 3d is as follows. ⁇
  • TmO 1 (A) 0 s
  • TmO 1 (B) 90 s
  • the initial inhibition timer TmO 1 (A) O s
  • TmO 1 (B) 90 s
  • TmO of each of the indoor units 3 a, 3 b, 3 c, and 3 d TmO of each of the indoor units 3 a, 3 b, 3 c, and 3 d.
  • the timer Tm2 (A) for indoor unit 3a counts over and the timer for initial prohibition of indoor unit 3b TmO at the same time. 1 (B) counts over.
  • the monitoring permission timer Tm2 (B) of the indoor unit 3b is set and started.
  • the monitoring prohibition timer Tml (A) 270 (not shown) of the indoor unit 3a is set and started.
  • the timer TmO 1 (C) for the first time of the indoor unit 3 c is over counting.
  • the monitoring permission timer Tm2 (C) of the indoor unit 3c is set and started.
  • the monitoring permission timer Tm 2 (D) of the indoor unit 3 d When the monitoring permission timer Tm 2 (D) of the indoor unit 3 d is over, the monitoring prohibition timer Tml (A) (not shown) of the indoor unit 3 a is over, and the monitoring of the indoor unit 3 a is performed.
  • the permission timer Tm2 (A) is reset and started. Thereafter, this control is repeated.
  • the outdoor control unit 25 has the monitoring permission timer described above. During this time, a monitoring permission signal is sent to the target indoor unit. This makes it possible to transmit the monitoring permission signal to each of the indoor units 3a, 3b, 3c, and 3d with a simple control at a time interval.
  • thermo-off prohibition timer of the indoor unit is set and started.
  • the timer value of the thermo-off initial prohibition timer is the room temperature monitoring prohibition time T1.
  • the monitoring permission flag f (D) is determined as follows.
  • thermo-off initial prohibition timer Tm 3 (D) has counted over.
  • thermo-off initial prohibition timer Tm 3 (D) is counting.
  • the monitoring permission flag f (D) is set to 0.
  • the monitoring permission flag of each indoor unit is set to zero when monitoring control starts.
  • the thermostat first off timer Tm 3 (D) of indoor unit 3 d is not counting.
  • Indoor unit 3d is in the heating thermo-off state.
  • each of the indoor units 3a, 3b, 3c, and 3d the first thermo-off prohibition timer Tm3 (a), Tm3 (b), Tm3 (c), and Tm3 (d) start room temperature monitoring control. When you clear.
  • the indoor unit has a low probability of losing the monitoring opportunity.
  • the indoor control units 34a, 34b, 34c, and 34d perform room temperature monitoring when the room temperature monitoring permission signal is received and the room temperature monitoring start condition is satisfied. For this reason, even if a certain indoor control unit determines that the conditions for starting room temperature monitoring are satisfied from the conditions inside the indoor unit, the room temperature monitoring is not performed until the outdoor control unit 25 permits the room temperature monitoring. . Then, the outdoor control unit 25 does not transmit a monitoring permission signal to two or more indoor units at the same time, and monitors the indoor control units 34a, 34b, 34c, and 34d at staggered times. Send the permission signal. Therefore, two or more indoor units do not perform room temperature monitoring at the same time.
  • the indoor fans of two or more indoor units are not driven at the same time, and there is no sudden influence on the refrigerant.
  • the indoor fans 32a, 32b, 32c, and 32d are driven to take indoor air into the indoor units 3a, 3b, 3c, and 3d.
  • the indoor unit in the thermo-off state the room temperature can be accurately detected.
  • the timer values of the monitoring permission timer and the monitoring prohibition timer of each indoor unit 3a, 3b, 3c, 3d are the same. That is, the outdoor control unit 25 transmits a monitoring permission signal to each of the indoor control units 34a, 34b, 34c, and 34d at an equal timing. For this reason, the room temperature monitoring permission signal is transmitted to the indoor units 3a, 3b, 3c, and 3d in the same cycle with a delay. For this reason, each indoor unit 3a, 3b, 3c, 3d is given an even opportunity to perform room temperature monitoring. Thereby, it is possible to suppress the occurrence of bias in the number of room temperature monitoring of the indoor units 3a, 3b, 3c, 3d.
  • the number of indoor units connected to the outdoor unit 2 is not limited to the number described in the above embodiment, but may be two or three, or five or more.
  • the monitoring permission timer is not counted for two or more indoor units at the same time.However, if the effect on the refrigerant is small, monitoring permission for two or more indoor units at the same time is permitted.
  • the monitoring permission signal is transmitted from the outdoor control unit 25, and the monitoring start conditions of the indoor units 3a, 3b, 3c, and 3d are satisfied, and the monitoring permission signal is transmitted. Room temperature monitoring is performed when both receiving a signal are satisfied.
  • the signal transmitted by the outdoor control unit 25 is not limited to the monitoring permission signal, and a monitoring prohibition signal may be transmitted. In this case, room temperature monitoring is performed when both the monitoring start conditions of the indoor units 3a, 3b, 3c, and 3d are satisfied and the monitoring prohibition signal is not received.
  • the air conditioner according to the present invention it is possible to accurately detect the indoor temperature even in an indoor unit in a thermo-off state while suppressing a sharp drop in the outlet temperature in the operating room.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Air Conditioning Control Device (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

An air conditioner (1) in which indoor temperature can be detected accurately even in the case of an indoor unit in a thermostat-off state while suppressing abrupt lowering of supply air temperature in an operating room. The air conditioner (1) comprises a plurality of indoor units (3a-3d), an outdoor unit (2), and an outdoor control section (25). Each indoor unit (3a-3d) comprises a room temperature thermistor (33a-33d), an indoor heat exchanger, an indoor fan (32a-32d) and an indoor control section (34a-34d). The outdoor unit (2) comprises an outdoor heat exchanger and constitutes a refrigerant circuit with the plurality of indoor units (3a-3d). The indoor control section (34a-34d) makes a decision whether the conditions for starting room temperature monitoring by the room temperature thermistor (33a-33d) are satisfied or not and drives the indoor fan (32a-32d) if room temperature is monitored at the time of thermostat-off of heating operation. The outdoor control section (25) selects a specified indoor unit from among the plurality of indoor units (3a-3d) and transmits a signal concerning permission of room temperature monitoring to the indoor control section of a selected indoor unit. Furthermore, the indoor control section (34a-34d) makes a decision whether the room temperature monitoring is performed or not based on that signal and the conditions for starting room temperature monitoring.

Description

明 細 書 空気調和機 (技術分野)  Description Air conditioner (Technical field)
本発明は、 空気調和機、 特に、 1台の室外機に対して複数の室内機が接続され る多室用空気調和機に関する。  The present invention relates to an air conditioner, particularly to a multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit.
(背景技術) (Background technology)
空気調和機には、 一台の室外機に対して複数の室内機が接続される、 いわゆる 多室用空気調和機がある。 多室用空気調和機は、 室内機をそれぞれ複数の部屋に 配置することにより、 複数の部屋の空気調和を行うことができる。 この多室用空 気調和機では、 常にすベての室内機が運転を行っているとは限らず、 ある室內機 は運転を行い、 他の室内機は運転を停止しているか、 もしくは、 サーモオフ状態 の場合もある。 この場合、 運転停止もしくはサーモオフ状態である室内機では、 冷媒を循環させる必要はないとも考えられる。 しかし、 暖房運転の運転停止ゃサ ーモオフ状態である室内機では、 液溜りによる不具合の発生を抑えるために微小 量の冷媒を流すことが行われることが多い。  There is a so-called multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit. A multi-room air conditioner can perform air conditioning in a plurality of rooms by arranging indoor units in a plurality of rooms. In this multi-room air conditioner, not all of the indoor units are always operating, and some of the indoor units are operating and other indoor units are not operating, or It may be in the thermo-off state. In this case, it is considered that there is no need to circulate the refrigerant in the indoor unit that is stopped or in the thermo-off state. However, in indoor units in which the heating operation is stopped or the thermostat is off, a very small amount of refrigerant is often flowed in order to suppress the occurrence of problems due to liquid pools.
ところで、 空気調和機には、 室温センサを備え、 室内温度を検出する室温モ- タリング機能を有するものが多い。 これにより、 空気調和機の各構成装置を制御 し、 室内を快適な温度に制御することができる。 そして、 この室温モニタリング を行う場合、 サーモオフ状態の室内機の室温センサが室内熱交換器の温度の影響 を受けることを避けるために、 室内空気を室内機内に取り入れて室温を検出する ことがある。 このため、 室温モニタリングの際には、 サーモオフ状態の室内機に おいても室内ファンが駆動される。 これにより、 室内温度をより正確に検出する ことができる。 ここで、 上述した多室用空気調和機では、 各室内機が独自に室温 モニタリングの開始を判断していることが多い。 例えば、 各室内機が、 それぞれ タイマーにより時間を計り、 5分に 1回など一定時間間隔で室温モニタリングを 行っている。 このような多室用空気調和機では、 サーモオフ状態にある複数の室内機におい て、 室内ファンが同時に駆動される事態が起こりうる。 この場合、 以下の理由に より、 運転部屋において吹出し温度の急激な低下という問題が生じる。 つまり、 上記の多室用空気調和機では、 サーモオフ状態であっても冷媒を流しているため 、 室内ファンを駆動すると冷媒の凝縮が起こる。 これが複数の室内機に同時に発 生すると、 運転部屋において、 圧力の急激な低下が生じる。 このため、 運転部屋 で、 吹出し温度が急激に低下する現象が生じやすくなる。 また、 一定の冷媒量で 循環していた冷媒回路において、 急に複数の室内機で室内ファンが駆動を始める と、 全体として放熱される熱量が増加する。 このため、 運転部屋で放熱される熱 量が減少し、 吹出し温度が低下するのである。 By the way, many air conditioners are equipped with a room temperature sensor and have a room temperature monitoring function for detecting the room temperature. As a result, the components of the air conditioner can be controlled, and the room can be controlled to a comfortable temperature. When this room temperature monitoring is performed, the room temperature may be detected by taking indoor air into the indoor unit to prevent the room temperature sensor of the indoor unit in the thermo-off state from being affected by the temperature of the indoor heat exchanger. Therefore, when monitoring the room temperature, the indoor fan is driven even in the indoor unit in the thermo-off state. As a result, the room temperature can be detected more accurately. Here, in the multi-room air conditioner described above, each indoor unit often determines the start of room temperature monitoring independently. For example, each indoor unit measures the time with a timer and monitors the room temperature at regular time intervals, such as once every 5 minutes. In such a multi-room air conditioner, the indoor fans may be simultaneously driven in a plurality of indoor units in a thermo-off state. In this case, there is a problem that the blow-out temperature drops sharply in the cab for the following reasons. That is, in the above-described multi-room air conditioner, since the refrigerant flows even in the thermo-off state, when the indoor fan is driven, the refrigerant condenses. If this occurs simultaneously in multiple indoor units, a sharp drop in pressure will occur in the cab. For this reason, a phenomenon in which the blow-out temperature drops rapidly in the operator's room is likely to occur. Also, in a refrigerant circuit that circulates at a fixed refrigerant amount, when the indoor fans suddenly start to be driven by a plurality of indoor units, the amount of heat dissipated increases as a whole. As a result, the amount of heat dissipated in the cab is reduced, and the outlet temperature is reduced.
(発明の開示) (Disclosure of the Invention)
本発明の目的は、 運転部屋における吹出し温度の急激な低下を抑えつつサーモ オフ状態の室内機においても室内温度の検出を正確に行うことができる空気調和 機を提供することにある。  An object of the present invention is to provide an air conditioner that can accurately detect the indoor temperature even in an indoor unit in a thermo-off state while suppressing a sharp drop in the blowout temperature in an operating room.
請求項 1に記載の空気調和機は、 複数の室内機と、 室外機と、 室温モニタリン グ制御部とを備える。 室内機は、 それぞれ、 室温センサと室内熱交換器と室内フ アンと室内制御部とを有する。 室外機は、 室外熱交換器を有し、 複数の室内機と の間で冷媒回路を構成する。 室内制御部は、 室温センサによる室温モニタリング の開始条件が満たされるか否かを判断するとともに暖房運転のサーモオフ時に室 温モニタリングを行う場合は室内ファンを駆動させる。 室温モニタリング制御部 は、 複数の室内機から所定の室内機を選択し、 選択した室内機の室内制御部へと 室温モニタリング許可に関する信号を送信する。 また、 室内制御部は、 上記の信 号と、 室温モニタリングの開始条件との両方から、 室温モエタリングを行うか否 かを決定する。  The air conditioner according to claim 1 includes a plurality of indoor units, an outdoor unit, and a room temperature monitoring control unit. Each indoor unit has a room temperature sensor, an indoor heat exchanger, an indoor fan, and an indoor control unit. The outdoor unit has an outdoor heat exchanger, and forms a refrigerant circuit with a plurality of indoor units. The indoor control unit determines whether or not the start condition of the room temperature monitoring by the room temperature sensor is satisfied, and drives the indoor fan when the room temperature monitoring is performed when the heating operation is turned off. The room temperature monitoring controller selects a predetermined indoor unit from the plurality of indoor units, and transmits a signal regarding permission of room temperature monitoring to the indoor controller of the selected indoor unit. In addition, the indoor control unit determines whether or not to perform room temperature monitoring based on both the above signal and the room temperature monitoring start condition.
この空気調和機では、 室内制御部が、 室温モニタリング制御部から受信する信 号と、 室温モニタリングの開始条件との両方から、 室温モニタリングを行うか否 かを決定する。 このため、 この空気調和機は、 同時に室温モニタリングを行う室 内機の台数を室温モニタリング制御部から制限することができる。 よって、 同時 に駆動される室内ファンの台数を制限することができる。 これにより、 この空気 調和機では、 運転部屋における吹出し温度の急激な低下を抑えつつサーモオフ状 態の室内機においても室内温度の検出を正確に行うことができる。 In this air conditioner, the indoor control unit determines whether to perform room temperature monitoring based on both the signal received from the room temperature monitoring control unit and the start condition of room temperature monitoring. For this reason, this air conditioner can limit the number of indoor units that perform room temperature monitoring simultaneously from the room temperature monitoring control unit. Therefore, at the same time , The number of indoor fans to be driven can be limited. As a result, in this air conditioner, it is possible to accurately detect the indoor temperature even in the thermo-off state indoor unit while suppressing a sharp drop in the outlet temperature in the operating room.
請求項 2に記載の発明は、 請求項 1に記載の空気調和機であって、 信号は、 室 温モニタリングを行うことを許可する室温モニタリング許可信号である。 そして 、 室内制御部は、 室温モニタリング許可信号を受信し、 かつ、 室温モ-タリング の開始条件が満たされた場合に、 室温モニタリングを行う。  The invention according to claim 2 is the air conditioner according to claim 1, wherein the signal is a room temperature monitoring permission signal that permits room temperature monitoring. Then, the indoor control unit performs room temperature monitoring when the room temperature monitoring permission signal is received and the start condition of the room temperature monitoring is satisfied.
この空気調和機では、 室内制御部は、 室温モニタリング許可信号を受信し、 か つ、 室温モ-タリングの開始条件が満たされた場合に、 室温モニタリングを行う 。 このため、 ある室内制御部が、 その室内機内部の条件から室温モニタリングの 開始条件を満たすと判断した場合でも、 室温モニタリング制御部が室温モニタリ ングを許可するまでは、 室温モ^タリングは行われない。 したがって、 同時に室 温モニタリングを行う室内機の台数を室温モニタリング制御部から制限すること ができる。 これにより、 この空気調和機では、 運転部屋における吹出し温度の急 激な低下を抑えつつサーモオフ状態の室内機においても室内温度の検出を正確に 行うことができる。  In this air conditioner, the indoor control unit receives the room temperature monitoring permission signal, and performs room temperature monitoring when the start condition of the room temperature monitoring is satisfied. Therefore, even if a certain indoor control unit determines that the conditions for starting room temperature monitoring are satisfied based on the conditions inside the indoor unit, room temperature monitoring is performed until the room temperature monitoring control unit permits room temperature monitoring. Absent. Therefore, the number of indoor units that perform room temperature monitoring at the same time can be limited by the room temperature monitoring control unit. As a result, in this air conditioner, it is possible to accurately detect the indoor temperature even in the indoor unit in the thermo-off state while suppressing a sharp decrease in the outlet temperature in the operating room.
請求項 3に記載の発明は、 請求項 2に記載の空気調和機であって、 室温モニタ リング制御部は、 室温モニタリング許可信号を、 室内制御部ごとに時間をずらし て送信する。  The invention according to claim 3 is the air conditioner according to claim 2, wherein the room temperature monitoring control unit transmits a room temperature monitoring permission signal at a different time for each indoor control unit.
この空気調和機では、 室温モニタリング許可信号を室内制御部ごとに時間をず らして送信するため、 2以上の室内機が同時に室温モニタリングを行うことがな い。 このため、 この空気調和機では、 運転部屋における吹出し温度の急激な低下 をさらに抑えることができる。  In this air conditioner, the room temperature monitoring permission signal is transmitted to each indoor control unit with a time lag, so that two or more indoor units do not perform room temperature monitoring at the same time. For this reason, in this air conditioner, it is possible to further suppress a sharp drop in the outlet temperature in the operating room.
請求項 4に記載の発明は、 請求項 1から 3のいずれかに記載の空気調和機であ つて、 室温モニタリング制御部は、 上記の信号を前記室内制御部のそれぞれに対 して均等なタイミングで送信する。  The invention according to claim 4 is the air conditioner according to any one of claims 1 to 3, wherein the room temperature monitoring control unit transmits the signal at an equal timing to each of the indoor control units. To send.
この空気調和機では、 室温モニタリング制御部は、 信号を室内制御部のそれぞ れに対して均等なタイミングで送信する。 このため、 各室内機に対して、 室温モ ニタリングを行う機会が均等に与えられる。 これにより、 各室内機の室温モニタ リングの回数に偏りが生じることを抑制することができる。 In this air conditioner, the room temperature monitoring control unit transmits a signal to each of the indoor control units at an equal timing. This gives each indoor unit an opportunity to perform room temperature monitoring evenly. This enables monitoring of the room temperature of each indoor unit The occurrence of bias in the number of rings can be suppressed.
請求項 5に記載の発明は、 請求項 1から 4のいずれかに記載の空気調和機であ つて、 室温モニタリング制御部は、 複数の室内機のうち暖房運転のサーモオフ状 態にある室内機の室内制御部に対してのみ、 上記の信号を送信する。  The invention according to claim 5 is the air conditioner according to any one of claims 1 to 4, wherein the room temperature monitoring control unit is an air conditioner of the indoor unit that is in a thermo-off state of the heating operation among the plurality of indoor units. The above signal is transmitted only to the indoor control unit.
この空気調和機では、 室温モニタリング制御部は、 暖房運転のサーモオフ状態 にある室内機の室内制御部に対してのみ、 信号を送信する。 このため、 すべての 室内機の室内制御部に対して信号を送信する場合と比べて、 室内機がモニタリン グの機会を失う確率が少ない。  In this air conditioner, the room temperature monitoring control unit transmits a signal only to the indoor control unit of the indoor unit that is in the thermo-off state of the heating operation. For this reason, the probability that the indoor unit loses the opportunity for monitoring is lower than when the signal is transmitted to the indoor control units of all the indoor units.
請求項 6に記載の発明は、 請求項 1から 4のいずれかに記載の空気調和機であ つて、 室温モニタリング制御部は、 全ての室内機に対して、 信号を送信する。 この空気調和機では、 室温モニタリング制御部は、 全ての室内機に対して、 信 号を送信する。 このため、 室温モニタリング制御部は、 室内機がサーモオフ状態 にあるか否かを判断する必要がない。 これにより、 制御の内容が簡易になり、 室 温モニタリング制御部の負担が軽減される。  The invention according to claim 6 is the air conditioner according to any one of claims 1 to 4, wherein the room temperature monitoring control unit transmits a signal to all indoor units. In this air conditioner, the room temperature monitoring control unit transmits a signal to all indoor units. For this reason, the room temperature monitoring control unit does not need to determine whether the indoor unit is in the thermo-off state. This simplifies the control and reduces the load on the room temperature monitoring controller.
(図面の簡単な説明) (Brief description of drawings)
第 1図は、 空気調和機の外観図である。  Fig. 1 is an external view of the air conditioner.
第 2図は、 空気調和機の冷媒回路の概略図である。  FIG. 2 is a schematic diagram of a refrigerant circuit of the air conditioner.
第 3図は、 空気調和機の制御ブロック図である。  FIG. 3 is a control block diagram of the air conditioner.
第 4図は、 各タイマー間の関係を示す図である。  FIG. 4 is a diagram showing the relationship between the timers.
第 5図は、 各タイマーの具体例を示す図である。  FIG. 5 is a diagram showing a specific example of each timer.
第 6図は、 室内機の 1つがサーモオフした場合のタイマーを表す図である。  FIG. 6 is a diagram showing a timer when one of the indoor units is turned off.
(発明を実施するための最良の形態) (Best mode for carrying out the invention)
〈空気調和機の全体構成〉  <Overall configuration of air conditioner>
本発明の一実施形態が採用された空気調和機 1を図 1に示す。  FIG. 1 shows an air conditioner 1 employing an embodiment of the present invention.
空気調和機 1は、 1台の室外機に対して複数の室内機が接続される、 いわゆる 多室用空気調和機である。 ·  The air conditioner 1 is a so-called multi-room air conditioner in which a plurality of indoor units are connected to one outdoor unit. ·
この空気調和機 1は、 1台の室外機 2に対し 4台の室内機 3 a , 3 b, 3 c , 3 dが冷媒配管 4 a, 4 b , 4 c, 4 dによりそれぞれ接続されている。 この 4 台の室内機 3 a, 3 b , 3 c, 3 dは、 それぞれ別々の部屋に配置されている。 本空気調和機 1の冷媒回路の概略を図 2に示す。 This air conditioner 1 has four indoor units 3 a, 3 b, 3 c, and one outdoor unit 2. 3d is connected by refrigerant pipes 4a, 4b, 4c and 4d, respectively. These four indoor units 3a, 3b, 3c, 3d are arranged in separate rooms. FIG. 2 schematically shows the refrigerant circuit of the air conditioner 1.
冷媒回路は、 1台の室外機 2と、 室外機 2に並列に接続された 4台の室内機 3 a , 3 b, 3 c, 3 dとにより構成されている。  The refrigerant circuit includes one outdoor unit 2 and four indoor units 3 a, 3 b, 3 c, and 3 d connected in parallel to the outdoor unit 2.
室内機 3 aは、 室内熱交換器 3 0 aと、 電動弁 3 1 aと、 室内ファン 3 2 aと 、 室温サーミスタ 3 3 aと、 室内制御部 3 4 a (図 3参照) とを備えている。 室内熱交換器 3 0 aと電動弁 3 1 aとは、 直列に接続されており、 室外機 2と の間で冷媒回路を構成している。 電動弁 3 1 aは、 室内熱交換器 3 0 aの出口側 に設けられており室内熱交換器 3 0 aに流れる冷媒量を調整する。  The indoor unit 3a includes an indoor heat exchanger 30a, an electric valve 31a, an indoor fan 32a, a room temperature thermistor 33a, and an indoor control unit 34a (see Fig. 3). ing. The indoor heat exchanger 30a and the electric valve 31a are connected in series, and constitute a refrigerant circuit with the outdoor unit 2. The motor-operated valve 31a is provided on the outlet side of the indoor heat exchanger 30a and adjusts the amount of refrigerant flowing through the indoor heat exchanger 30a.
室內フアン 3 2 aは、 室内機 3 a内に設けられ、 室内制御部 3 4 aにより駆動 される。 室内ファン 3 2 aは、 室内機 3 aが配置されている室内の空気を室内機 3 aの内部に取り込み、 室内熱交換器 3 0 aにより熱交換が行われた空気を室内 へと送る。  The room fan 32a is provided in the indoor unit 3a, and is driven by the indoor control unit 34a. The indoor fan 32a takes in the indoor air in which the indoor unit 3a is arranged into the interior of the indoor unit 3a, and sends the air subjected to the heat exchange by the indoor heat exchanger 30a to the indoor.
室温サーミスタ 3 3 aは、 室内機 3 aの内部に設けられており、 室内温度を検 知して室内制御部 3 4 aへと検知信号を送信する。  The room temperature thermistor 33a is provided inside the indoor unit 3a, detects the indoor temperature, and transmits a detection signal to the indoor control unit 34a.
室内制御部 3 4 aは、 マイクロプロセッサ、 R OM、 R AM, 各種インターフ ェイスなどにより構成されている。 室内制御部 3 4 aは、 図 3に示すように、 電 動弁 3 1 a、 室内ファン 3 2 a、 室温サーミスタ 3 3 aと接続されており、 室温 サーミスタ 3 3 aの検知信号が入力される。 また、 室内制御部 3 4 aは、 電動弁 3 1 aに制御信号を送信して開度調整を行う。 さらに、 室内制御部 3 4 aは、 サ ーモオフしている状態で後述する室温モニタリングを行う場合は、 室内ファン 3 2 aを駆動させる。  The indoor control unit 34a includes a microprocessor, a ROM, a RAM, various interfaces, and the like. As shown in Fig. 3, the indoor control section 34a is connected to the electric valve 31a, the indoor fan 32a, and the room temperature thermistor 33a, and receives the detection signal of the room temperature thermistor 33a. You. The indoor control unit 34a transmits a control signal to the motor-operated valve 31a to adjust the opening. Further, the indoor control unit 34a drives the indoor fan 32a when performing room temperature monitoring described later in a state where the thermostat is off.
室外機 2は、 圧縮機 2 0、 四路切換弁 2 1、 室外熱交換器 2 2、 アキュムレー タ 2 3、 吐出管サーミスタ 2 4、 室外制御部 2 5 (図 3参照) などを備えている 圧縮機 2 0、 四路切換弁 2 1、 室外熱交換器 2 2およびアキュムレータ 2 3は 、 室内機との間で冷媒回路を構成しており、 四路切換弁 2 1は、 冷房時と暖房時 とで冷媒の流れを切換える。 吐出管サーミスタは、 圧縮機 2 0の吐出側に取り付けられており、 圧縮機 2 0 の吐出側の吐出管温度を検知する。 The outdoor unit 2 includes a compressor 20, a four-way switching valve 21, an outdoor heat exchanger 22, an accumulator 23, a discharge pipe thermistor 24, an outdoor control unit 25 (see FIG. 3), and the like. The compressor 20, the four-way switching valve 21, the outdoor heat exchanger 22, and the accumulator 23 constitute a refrigerant circuit between the indoor unit and the four-way switching valve 21. The flow of the refrigerant is switched at different times. The discharge pipe thermistor is mounted on the discharge side of the compressor 20 and detects the temperature of the discharge pipe on the discharge side of the compressor 20.
室外制御部 2 5は、 マイクロプロセッサ、 R OM、 R AM, 各種インターフエ イスなどにより構成されている。 室外制御部 2 5は、 図 3に示すように、 吐出管 サーミスタ 2 4が接続されており、 吐出管サーミスタ 2 4の検知信号が入力され る。 また、 室外制御部 2 5は、 運転中の各種条件に応じて圧縮機 2 0の運転周波 数を制御することによって、 空調運転の制御を行う。 また、 室外制御部 2 5は、 運転中の室内機の電動弁については、 吐出管温度に基づいて開度を決定し、 運転 を停止している室内機の電動弁については、 運転中の室内機の電動弁の開度に比 例した値にその開度を決定する。  The outdoor control unit 25 includes a microprocessor, a ROM, a RAM, various interfaces, and the like. As shown in FIG. 3, the outdoor control unit 25 is connected to a discharge pipe thermistor 24, and receives a detection signal of the discharge pipe thermistor 24. Further, the outdoor control unit 25 controls the air conditioning operation by controlling the operation frequency of the compressor 20 according to various conditions during operation. In addition, the outdoor control unit 25 determines the opening degree based on the discharge pipe temperature for the electrically operated valve of the indoor unit that is operating, and determines the opening of the electrically operated valve of the indoor unit that is not operating. The opening is determined to a value proportional to the opening of the motor-operated valve of the machine.
室外制御部 2 5と室内制御部.3 4 aとの間には、 伝送線 4 0 aが設けられてお り、 この伝送線 4 0 aを介して電動弁 3 1 aの制御信号や後述する室温モニタリ ングの許可に関する信号などの各種信号の送受信が可能となっている。  A transmission line 40a is provided between the outdoor control unit 25 and the indoor control unit 34a, and a control signal for the motor-operated valve 31a is transmitted through the transmission line 40a. It is possible to transmit and receive various signals such as signals related to permission to monitor room temperature.
他の室内機 3 b, 3 c , 3 dも室内機 3 aと同様に構成され、 また、 室外機 2 と接続されている。 図 2及び図 3においては、 同じ構成要素について符号を入れ 換えて表示している。 例えば、 室内機 3 aの電動弁 3 1 aに対して、 室内機 3 b の電動弁 3 1 bと表される。  The other indoor units 3b, 3c, 3d have the same configuration as the indoor unit 3a, and are connected to the outdoor unit 2. In FIGS. 2 and 3, the same components are shown with the symbols replaced. For example, the motorized valve 31a of the indoor unit 3b is expressed as the motorized valve 31b of the indoor unit 3b.
〈室温モニタリングの動作〉  <Operation of room temperature monitoring>
この空気調和機 1では、 各室内機 3 a, 3 b , 3 c , 3 dにおいて定期的に室 温サーミスタ 3 3 a, 3 3 b , 3 3 c , 3 3 dにより室温を検出する室温モニタ リングが行われる。 例えば、 この空気調和機 1は、 サーモオフ状態の室内機にお いて室温モニタリングを行い、 その室内機が配置された部屋の室温を検出する。 室内制御部 2 5は、 室温が一定値まで低下したと判断すると、 サーモオンとする ように制御を行う。  In this air conditioner 1, the room temperature monitor detects the room temperature periodically by the room temperature thermistors 33a, 33b, 33c, 33d in the indoor units 3a, 3b, 3c, 3d. A ring is performed. For example, the air conditioner 1 monitors the room temperature of the indoor unit in a thermo-off state, and detects the room temperature of the room where the indoor unit is arranged. When determining that the room temperature has dropped to a certain value, the indoor control unit 25 performs control to turn on the thermostat.
この空気調和機 1では、 暖房運転が行われている場合であって、 サーモオフ状 態の室内機において室温モニタリングを行う場合は、 その室内機の室内制御部は 、 室内ファンを駆動して、 室温の検出を行う。 このように、 室温モニタリングの 際に室内ファンが駆動されると、 室内から取り入れられた空気に対して室温モニ タリングが行われる。 このため、 室温サーミスタが室内熱交換器の熱の影響を受 けることを低減させることができる。 これにより正確な室温の検出が可能となつ ている。 In the air conditioner 1, when the heating operation is being performed, and when monitoring the room temperature in the indoor unit in the thermo-off state, the indoor control unit of the indoor unit drives the indoor fan to control the room temperature. Is detected. In this way, when the indoor fan is driven during room temperature monitoring, room temperature monitoring is performed on the air taken in from the room. Therefore, the room temperature thermistor is affected by the heat of the indoor heat exchanger. Can be reduced. This enables accurate room temperature detection.
し力 し、 サーモオフ状態の室内機による室内ファンの駆動が、 同時に複数の室 内機において開始された場合、 冷媒の凝縮による圧力低下が急激におこり、 運転 部屋の室内機の吹出し温度が急激に低下する現象が生じる。  When the indoor fan is driven by the indoor unit in the thermo-off state at the same time in multiple indoor units, the pressure drop due to refrigerant condensation occurs rapidly, and the blowout temperature of the indoor unit in the operating room sharply increases. A phenomenon of decline occurs.
この空気調和機 1では、 このような現象の発生を抑制するため、 サーモオフ状 態の室内機による室温モニタリングが同時に複数の室内機において開始しないよ うに、 室温モニタリングの制御を行っている。 以下、 この制御について説明する 〈室温モニタリング制御〉  In the air conditioner 1, in order to suppress the occurrence of such a phenomenon, the room temperature monitoring is controlled so that the room temperature monitoring by the indoor unit in the thermo-off state does not start simultaneously in a plurality of indoor units. The following describes this control. <Room temperature monitoring control>
まず、 室温モニタリング制御の概略を説明する。  First, the outline of the room temperature monitoring control will be described.
室外制御部 2 5は、 室温モニタリング'を行う室内機を選択し、 選択した室内機 の室内制御部へと室温モニタリング許可信号を送信する。 このとき、 室外制御部 25は、 室温モニタリング許可信号を、 室内制御部 34 a, 34 b, 34 c, 3 4 dごとに時間をずらして送信する。  The outdoor control unit 25 selects an indoor unit for performing room temperature monitoring, and transmits a room temperature monitoring permission signal to the indoor control unit of the selected indoor unit. At this time, the outdoor control unit 25 transmits the room temperature monitoring permission signal with a time lag between the indoor control units 34a, 34b, 34c, and 34d.
各室内制御部 34 a, 34 b, 34 c, 34 dは、 室温モニタリングの開始条 件が満たされるか否かを判断する。 この室温モニタリングの開始条件は、 各室内 機 3 a, 3 b, 3 c, 3 dにおいて独自に判断されるものである。 室内制御部 3 4 a, 34 b, 34 c, 34 dは、 室外制御部 2 5から室温モニタリング許可信 号を受信し、 かつ、 室温モニタリングの開始条件が満たされた場合に、 室温モ- タリングを行う。  Each of the indoor control units 34a, 34b, 34c, 34d determines whether or not the conditions for starting room temperature monitoring are satisfied. The conditions for starting this room temperature monitoring are determined independently by each indoor unit 3a, 3b, 3c, 3d. The indoor control units 34a, 34b, 34c, and 34d receive the room temperature monitoring permission signal from the outdoor control unit 25 and perform room temperature monitoring when the start condition of the room temperature monitoring is satisfied. I do.
次に、 室外制御部 25側の室温モニタリング制御について詳述する。  Next, the room temperature monitoring control of the outdoor control unit 25 will be described in detail.
[制御の開始条件]  [Control start conditions]
まず、 室外制御部 25は、 室外機 2側の室温モニタリング制御を開始するか否 かを判断する。  First, the outdoor control unit 25 determines whether to start room temperature monitoring control on the outdoor unit 2 side.
室外制御部 2 5は、 以下の 2つの条件を共に満たす場合は、 室温モニタリング 制御を開始する。  The outdoor control unit 25 starts the room temperature monitoring control when both of the following two conditions are satisfied.
(1) 空気調和機 1が、 暖房運転中である。  (1) Air conditioner 1 is in heating operation.
(2) 空気調和機 1が、 除霜中ではない。 [各室内機の室温モニタリングタイマーのセットスタート] (2) Air conditioner 1 is not defrosting. [Start setting of room temperature monitoring timer for each indoor unit]
次に、 図 4に示すように、 各室内機 3 a, 3 b, 3 c, 3 dについて各種の室 温モニタリングタイマーがセットスタートされる。 ここで、 Tm2 (A) は、 室 内機 3 aが室温モニタリングを許可される時間をカウントする室温モニタリング 許可タイマーを表している。 また、 他の室内機 3 b, 3 c, 3 dについては、 括 弧内の記号を入れ換えて表している。 例えば、 室内機 3 bのモニタリング許可タ イマ一は Tm2 (B) と表す。 以下、 他のタイマーについても同様の表記を用い る。  Next, as shown in Fig. 4, various room temperature monitoring timers are set and started for each indoor unit 3a, 3b, 3c, 3d. Here, Tm2 (A) represents a room temperature monitoring permission timer that counts the time during which the indoor unit 3a is permitted to monitor the room temperature. The other indoor units 3b, 3c, and 3d are shown by replacing the symbols in parentheses. For example, the monitoring permission timer for indoor unit 3b is expressed as Tm2 (B). Hereinafter, the same notation is used for other timers.
TmO 1 (B) は、 室内機 3 bの初回禁止タイマーを表している。 初回禁止タ イマ一とは、 室外制御部 25が室温モニタリング制御を開始してから各室内機が 始めに室温モニタリングを禁止される時間をカウントするタイマーである。 なお 、 室内機 3 aの初回禁止タイマー TmO 1 (A) は、 後述するようにゼロに設定 されるので、 図 4において表されていない。  TmO 1 (B) represents the first prohibition timer of the indoor unit 3b. The first prohibition timer is a timer that counts a time during which each indoor unit is initially prohibited from monitoring the room temperature after the outdoor control unit 25 starts the room temperature monitoring control. Note that the first-time prohibition timer TmO 1 (A) of the indoor unit 3a is set to zero as described later, and is not shown in FIG.
室外制御部 25は、 以下のように各タイマーのタイマー値を設定する。  The outdoor control unit 25 sets the timer value of each timer as follows.
まず、 室内機 3 a, 3 b, 3 c, 3 dがそれぞれ室温モニタリングを禁止され る時間を室温モニタリング禁止時間 T 1、 室内機 3 a, 3 b, 3 c, 3 dがそれ ぞれ室温モニタリングを許可される時間を室温モニタリング許可時間 T 2とする 。 室温モニタリング禁止時間 T 1と室温モニタリング許可時間 T 2とは、 各室内 機 3 a, 3 b, 3 c, 3 dについて等しい。 従って、 各室内機 3 a, 3 b, 3 c , 3 dのモニタリング許可タイマー Tm2 (A) 、 Tm2 (B) 、 Tm2 (C) 、 Tm2 (D) のタイマー値は、 すべて T2となる。 また、 各室内機 3 a, 3 b , 3 c , 3 dのモニタリング禁止タイマー Tm 1 (A) 、 Tml (B) 、 Tm 1 (C) 、 Tml (D) は、 すべて Tlとなる。 ここで、 モニタリング禁止タイマ 一とは、 各室内機 3 a, 3 b, 3 c, 3 dが室温モニタリングを禁止される時間 をカウントするタイマーであり、 室温モニタリング制御を開始してから 2回目以 降のモニタリング禁止時間をカウントする。  First, the time during which the indoor units 3a, 3b, 3c, and 3d are prohibited from monitoring the room temperature is the room temperature monitoring inhibition time T1, and the indoor units 3a, 3b, 3c, and 3d are the room temperature monitoring times, respectively. The time permitted for monitoring is referred to as the room temperature monitoring permitted time T2. The room temperature monitoring prohibited time T1 and the room temperature monitoring permitted time T2 are the same for each indoor unit 3a, 3b, 3c, 3d. Accordingly, the timer values of the monitoring permission timers Tm2 (A), Tm2 (B), Tm2 (C), and Tm2 (D) of the indoor units 3a, 3b, 3c, and 3d are all T2. Further, the monitoring prohibition timers Tm 1 (A), Tml (B), Tm 1 (C), and Tml (D) of the indoor units 3 a, 3 b, 3 c, and 3 d are all Tl. Here, the monitoring prohibition timer is a timer that counts the time during which each of the indoor units 3a, 3b, 3c, and 3d is prohibited from monitoring the room temperature. Count down monitoring prohibition time.
各室内機 3 a, 3 b, 3 c, 3 dの初回禁止タイマーのタイマー値は、 以下の ように設定される。  The timer value of the first prohibition timer of each indoor unit 3a, 3b, 3c, 3d is set as follows.
まず、 室温モニタリングを行う室内機の台数を Nとすると、 各室内機 3 a, 3 b, 3 c, 3 dのモニタリング間隔 ΔΤは、 次式で求められる。 First, assuming that the number of indoor units performing room temperature monitoring is N, each indoor unit 3a, 3 The monitoring interval ΔΤ for b, 3c, 3d can be obtained by the following equation.
ΔΤ= (T1+T2) ÷Ν-Τ 2  ΔΤ = (T1 + T2) ÷ Ν-Τ 2
なお、 各室内機のモニタリング間隔とは、 ある室内機の室温モユタリング許可 が終了してから、 つぎの室内機の室温モニタリング許可が開始されるまでの時間 を意味する。  The monitoring interval of each indoor unit means the time from the end of the permission of monitoring of the room temperature of a certain indoor unit to the start of the permission of monitoring of the room temperature of the next indoor unit.
室内機 3 a、 室内機 3 b、 室内機 3 c、 室内機 3 dの順番に室温モニタリング が行われるとすると、 各室内機の初回禁止タイマーのタイマー値は、 それぞれ次 式で与えられる。  Assuming that room temperature monitoring is performed in the order of indoor unit 3a, indoor unit 3b, indoor unit 3c, and indoor unit 3d, the timer value of the first prohibition timer of each indoor unit is given by the following equation, respectively.
TmO 1 (A) = (ΔΤ + Τ 2) X 0  TmO 1 (A) = (ΔΤ + Τ 2) X 0
TmO 1 (B) = (厶 T + T2) X I  TmO 1 (B) = (m T + T2) X I
TmO 1 (C) = (ΔΤ + Τ 2) X 2  TmO 1 (C) = (ΔΤ + Τ 2) X 2
TmO 1 (D) = (ΔΤ + Τ2) X 3  TmO 1 (D) = (ΔΤ + Τ2) X 3
室外制御部 25は、 室温モニタリング制御を開始すると、 各室内機 3 a, 3 b , 3 c 3 dの初回禁止タイマーをセットスタ一トする。  When starting the room temperature monitoring control, the outdoor control unit 25 sets and starts the initial prohibition timer of each of the indoor units 3a, 3b, 3c3d.
その後、 各室内機 3 a, 3 b , 3 c, 3 dの初回禁止タイマーがカウントォー バーとなると、 室外制御部 25は、 各室内機 3 a, 3 b, 3 c, 3 dのモニタリ ング許可タイマーをセットスタートする。 以降、 室温モニタリングの開始条件が 成立している間は、 各室内機 3 a, 3 b, 3 c, 3 dについて、 モニタリング禁 止タイマーとモニタリング許可タイマ一とのセットスタートをサイクリックに行 う。  Thereafter, when the initial prohibition timer of each of the indoor units 3a, 3b, 3c, and 3d reaches the count-over, the outdoor control unit 25 permits monitoring of each of the indoor units 3a, 3b, 3c, and 3d. Set and start the timer. Thereafter, as long as the conditions for starting room temperature monitoring are satisfied, the set start of the monitoring disable timer and the monitoring enable timer for each indoor unit 3a, 3b, 3c, 3d is cyclically performed. .
次に、 各タイマーのカウントの具体例を示す。  Next, a specific example of the count of each timer will be described.
室温モニタリング禁止時間 T 1 == 270 s、 室温モニタリング許可時間 T 2 = 90 s、 N=4とする。  Room temperature monitoring prohibited time T 1 == 270 s, room temperature monitoring permitted time T 2 = 90 s, N = 4.
この条件では、 モニタリング間隔 ΔΤ=0となる。 これは、 ある室内機のモニ タリング許可タイマーがカウントオーバーとなると、 時間をあけずにすぐに別の 室内機のモニタリング許可タイマーがセットスタートされることを意味する。 各室内機 3 a, 3 b, 3 c, 3 dの初回禁止タイマーは、 それぞれ以下のよう になる。 ·  Under this condition, the monitoring interval ΔΤ = 0. This means that if the monitoring permission timer of a certain indoor unit counts over, the monitoring permission timer of another indoor unit is set and started immediately without any time delay. The initial prohibition timer for each indoor unit 3a, 3b, 3c, 3d is as follows. ·
TmO 1 (A) =0 s TmO 1 (B) =90 s TmO 1 (A) = 0 s TmO 1 (B) = 90 s
TmO 1 (C) = 180 s  TmO 1 (C) = 180 s
TmO 1 (D) = 270 s  TmO 1 (D) = 270 s
各室内機 3 a, 3 b, 3 c, 3 dのモニタリング許可タイマー Tm2 (A) , Tm2 (B) , Tm2 (C) , Tm2 (D) =90 s、 モニタリング禁止タイマ 一 Tml (A) , Tml (B) , Tml (C) , Tml (C) = 270 sとなる 各タイマー間の関係を図 5に示す。 The monitoring enable timers Tm2 (A), Tm2 (B), Tm2 (C), Tm2 (D) = 90 s for each indoor unit 3a, 3b, 3c, 3d, the monitoring disable timer one Tml (A), FIG. 5 shows the relationship among the timers where Tml (B), Tml (C), and Tml (C) = 270 s.
室外制御部 25は、 室温モニタリング制御を開始すると、 各室内機 3 a, 3 b , 3 c, 3 dの初回禁止タイマー TmO 1 (A) =O s、 TmO 1 (B) =90 s、 TmO 1 (C) =180 s、 TmO 1 (D) = 270 sをセットスタートす る。  When the outdoor control unit 25 starts the room temperature monitoring control, the initial inhibition timer TmO 1 (A) = O s, TmO 1 (B) = 90 s, TmO of each of the indoor units 3 a, 3 b, 3 c, and 3 d. Set start with 1 (C) = 180 s and TmO 1 (D) = 270 s.
室内機 3 aの初回禁止タイマー TmO 1 (A) =0 sなので、 すぐに室内機 3 aのモニタリング許可タイマ一 Tm 2 (A) = 90がセットスタートする。  Since the first timer TmO 1 (A) = 0 s for the indoor unit 3a, the monitoring enable timer one Tm 2 (A) = 90 for the indoor unit 3a is set and started immediately.
室内機 3 bの初回禁止タイマーは、 TmO l (B) = 90 sなので、 室内機 3 aのモニタリング許可タイマー Tm2 (A) がカウントオーバーとなるのと同時 に室内機 3 bの初回禁止タイマー TmO 1 (B) がカウントオーバーとなる。 そ して、 室内機 3 bのモニタリング許可タイマー Tm2 (B) がセットスタートす る。 また、 Tm2 (A) のカウントオーバーと同時に室内機 3 aのモニタリング 禁止タイマー Tml (A) =270 (図示せず) がセットスタートする。  Since the initial prohibition timer of indoor unit 3b is TmO l (B) = 90 s, the timer Tm2 (A) for indoor unit 3a counts over and the timer for initial prohibition of indoor unit 3b TmO at the same time. 1 (B) counts over. Then, the monitoring permission timer Tm2 (B) of the indoor unit 3b is set and started. At the same time as Tm2 (A) counts over, the monitoring prohibition timer Tml (A) = 270 (not shown) of the indoor unit 3a is set and started.
室内機 3 bのモニタリング許可タイマー Tm 2 (B) がカウントオーバーとな るのと同時に、 室内機 3 cの初回禁止タイマー TmO 1 (C) がカウントオーバ 一となる。 そして、 同時に室内機 3 cのモニタリング許可タイマー Tm2 (C) がセットスタートされる。 以下、 室内機 3 dについても同様である。  At the same time as the monitoring permission timer Tm 2 (B) of the indoor unit 3 b is over, the timer TmO 1 (C) for the first time of the indoor unit 3 c is over counting. At the same time, the monitoring permission timer Tm2 (C) of the indoor unit 3c is set and started. Hereinafter, the same applies to the indoor unit 3d.
室内機 3 dのモニタリング許可タイマー Tm 2 (D) がカウントオーバーとな ると、 室内機 3 aのモニタリング禁止タイマー Tml (A) (図示せず) がカウ ントオーバーとなり、 室内機 3 aのモニタリング許可タイマー Tm2 (A) が再 ぴセットスタートされる。 以降、 この制御が繰り返される。  When the monitoring permission timer Tm 2 (D) of the indoor unit 3 d is over, the monitoring prohibition timer Tml (A) (not shown) of the indoor unit 3 a is over, and the monitoring of the indoor unit 3 a is performed. The permission timer Tm2 (A) is reset and started. Thereafter, this control is repeated.
室内機 3 a, 3 b, 3 c, 3 dがサーモオフ状態であるか否かを問わず、 すべ ての室内機 3 a , 3 b, 3 c, 3 dに対して、 室外制御部がモニタリング許可信 号を送信する場合は、 室外制御部 25は、 上記のモニタリング許可タイマーが力 ゥントされている間、 対象室内機に対してモニタリング許可信号を送信する。 こ れにより、 簡易な制御で各室内機 3 a, 3 b, 3 c, 3 dに対して時間をずらし てモニタリング許可信号を送信することができる。 Regardless of whether the indoor units 3a, 3b, 3c, 3d are in the thermo-off state, all When the outdoor control unit transmits a monitoring permission signal to all of the indoor units 3 a, 3 b, 3 c, and 3 d, the outdoor control unit 25 has the monitoring permission timer described above. During this time, a monitoring permission signal is sent to the target indoor unit. This makes it possible to transmit the monitoring permission signal to each of the indoor units 3a, 3b, 3c, and 3d with a simple control at a time interval.
[サーモオフ状態にある室内機に対してのみ、 モユタリング許可信号を送信す る場合の制御]  [Control when transmitting a monitoring permission signal only to indoor units in the thermo-off state]
暖房運転のサーモオフ状態にある室内機に対してのみ、 モニタリング許可信号 を送信する場合は、 上記の制御に加えて、 さらに以下のような制御が行われる。 サーモオン状態であったある室内機がサーモオフされると、 その室内機のサー モオフ初回禁止タイマーがセットスタートされる。 サーモオフ初回禁止タイマー のタイマー値は、 室温モニタリング禁止時間 T 1である。 以下、 図 6に示すよう に、 室内機 3 dが、 室内機 3 aのモニタリング許可タイマー Tm2 (A) のカウ ント中に、 サーモオフされたとして説明する。  When the monitoring permission signal is transmitted only to the indoor unit that is in the thermo-off state of the heating operation, the following control is performed in addition to the above control. When a certain indoor unit that has been in the thermo-on state is thermo-offed, the first thermo-off prohibition timer of the indoor unit is set and started. The timer value of the thermo-off initial prohibition timer is the room temperature monitoring prohibition time T1. Hereinafter, as illustrated in FIG. 6, a description will be given assuming that the indoor unit 3d is thermo-off during the count of the monitoring permission timer Tm2 (A) of the indoor unit 3a.
この制御では、 モニタリング許可フラグ f (D) が以下のように判断される。 In this control, the monitoring permission flag f (D) is determined as follows.
(3) サーモオフ初回禁止タイマー Tm 3 (D) がカウントオーバーした。(3) The thermo-off initial prohibition timer Tm 3 (D) has counted over.
(4) モニタリング許可タイマ一 Tm 2 (D) がカウント中ではない。 (4) The monitoring enable timer Tm 2 (D) is not counting.
以上の (3) と (4) の条件が共に満たされる場合に、 モニタリング許可フラグ f (D) =1とする。 また、 When both of the above conditions (3) and (4) are satisfied, the monitoring permission flag f (D) is set to f (D) = 1. Also,
(5) サーモオフ初回禁止タイマー Tm 3 (D) がカウント中である。  (5) The thermo-off initial prohibition timer Tm 3 (D) is counting.
(6) モニタリング許可タイマー Tm 2 (D) がカウント中ではない。  (6) The monitoring permission timer Tm 2 (D) is not counting.
以上の (5) と (6) の条件が共に満たされる場合は、 モニタリング許可フラグ f (D) =0とする。 If the above conditions (5) and (6) are both satisfied, the monitoring permission flag f (D) is set to 0.
なお、 各室内機のモニタリング許可フラグは、 モニタリング制御開始時にゼロ とされている。  The monitoring permission flag of each indoor unit is set to zero when monitoring control starts.
次に、 以下の (7) から (10) の条件をすベて満たす場合には室内機 3 dに 対してモニタリング許可信号が送信される。  Next, when all of the following conditions (7) to (10) are satisfied, a monitoring permission signal is transmitted to the indoor unit 3d.
(7) 室内機 3 dのサーモオフ初回禁止タイマー Tm 3 (D) がカウント中で はない。 (8) 室内機 3 dが暖房サーモオフ状態である。 (7) The thermostat first off timer Tm 3 (D) of indoor unit 3 d is not counting. (8) Indoor unit 3d is in the heating thermo-off state.
(9) 室内機 3 dのモニタリング許可タイマー Tm2 (D) がカウント中であ る。  (9) The monitoring permission timer Tm2 (D) of indoor unit 3d is counting.
(10) 室内機 3 dのモニタリング許可フラグ f (D) =1である。  (10) The monitoring permission flag f (D) of indoor unit 3 d is = 1.
なお、 各室内機 3 a, 3 b, 3 c, 3 dごとのサーモオフ初回禁止タイマ一 T m3 (a) , Tm3 (b) , Tm3 (c) , Tm3 (d) は、 室温モニタリング 制御を開始するときにクリアされる。  In addition, each of the indoor units 3a, 3b, 3c, and 3d, the first thermo-off prohibition timer Tm3 (a), Tm3 (b), Tm3 (c), and Tm3 (d) start room temperature monitoring control. When you clear.
以上の制御により、 サーモオフ状態の室内機について対してのみ、 同時に室温 モニタリングを行う室内機の台数を制限することができる。 このため、 すべての 室内機 3 a, 3 b, 3 c, 3 dについて室温モニタリング許可信号が送信される 場合と比べて、 制限を受ける室内機の数が少ない。 すなわち、 1台あたりの室内 機に対して、 モニタリング許可信号が送信される時間を長くすることができる。 このため、 この空気調和機 1では、 室内機がモニタリングの機会を失う確率が少 ない。  With the above control, it is possible to limit the number of indoor units that perform room temperature monitoring at the same time only for the indoor units in the thermo-off state. For this reason, the number of restricted indoor units is smaller than when room temperature monitoring permission signals are transmitted for all indoor units 3a, 3b, 3c, and 3d. That is, it is possible to lengthen the time during which the monitoring permission signal is transmitted to each indoor unit. Therefore, in the air conditioner 1, the indoor unit has a low probability of losing the monitoring opportunity.
〈本空気調和機の特徴〉  <Features of this air conditioner>
この空気調和機 1では、 室内制御部 34 a, 34 b, 34 c, 34 dは、 室温 モニタリング許可信号を受信し、 かつ、 室温モニタリングの開始条件が満たされ た場合に、 室温モニタリングを行う。 このため、 ある室内制御部が、 その室内機 内部の条件から室温モニタリングの開始条件を満たすと判断した場合でも、 室外 制御部 25が室温モニタリングを許可するまでは、 室温モニタリングは行われな レ、。 そして、 室外制御部 25は、 同時に 2以上の室内機に対して、 モニタリング 許可信号を送信せず、 各室内制御部部 34 a, 34 b, 34 c, 34 dに対して 時間をずらしてモニタリング許可信号を送信する。 したがって、 2以上の室内機 が同時に室温モニタリングを行うことがない。 このため、 同時に 2以上の室内機 の室内ファンが駆動されることがなく、 冷媒に急激な影響を与えることがない。 これにより、 この空気調和機 1では、 運転部屋における吹出し温度の急激な低下 を抑えることができる。 そして、 室温モニタリングの際には、 室内ファン 32 a , 32 b, 32 c, 32 dが駆動して室内の空気を室内機 3 a, 3 b, 3 c, 3 dの内部へ取り込むので、 この空気調和機では、 サーモオフ状態の室内機におい ても室内温度の検出を正確に行うことができる。 In this air conditioner 1, the indoor control units 34a, 34b, 34c, and 34d perform room temperature monitoring when the room temperature monitoring permission signal is received and the room temperature monitoring start condition is satisfied. For this reason, even if a certain indoor control unit determines that the conditions for starting room temperature monitoring are satisfied from the conditions inside the indoor unit, the room temperature monitoring is not performed until the outdoor control unit 25 permits the room temperature monitoring. . Then, the outdoor control unit 25 does not transmit a monitoring permission signal to two or more indoor units at the same time, and monitors the indoor control units 34a, 34b, 34c, and 34d at staggered times. Send the permission signal. Therefore, two or more indoor units do not perform room temperature monitoring at the same time. For this reason, the indoor fans of two or more indoor units are not driven at the same time, and there is no sudden influence on the refrigerant. As a result, in the air conditioner 1, a sharp decrease in the outlet temperature in the operating room can be suppressed. During room temperature monitoring, the indoor fans 32a, 32b, 32c, and 32d are driven to take indoor air into the indoor units 3a, 3b, 3c, and 3d. In the air conditioner, the indoor unit in the thermo-off state However, the room temperature can be accurately detected.
さらに、 各室内機 3 a , 3 b, 3 c, 3 dのモニタリング許可タイマーとモニ タリング禁止タイマーとのタイマー値は同じである。 すなわち、 室外制御部 2 5 は、 モニタリング許可信号を室内制御部 3 4 a, 3 4 b , 3 4 c , 3 4 dのそれ ぞれに対して均等なタイミングで送信する。 このため、 各室内機 3 a, 3 b , 3 c, 3 dへは、 時間をずらして同じサイクルで室温モニタリング許可信号が送信 される。 このため、 各室内機 3 a, 3 b , 3 c, 3 dに対して、 室温モニタリン グを行う機会が均等に与えられる。 これにより、 各室内機 3 a, 3 b, 3 c , 3 dの室温モニタリングの回数に偏りが生じることを抑制することができる。  Further, the timer values of the monitoring permission timer and the monitoring prohibition timer of each indoor unit 3a, 3b, 3c, 3d are the same. That is, the outdoor control unit 25 transmits a monitoring permission signal to each of the indoor control units 34a, 34b, 34c, and 34d at an equal timing. For this reason, the room temperature monitoring permission signal is transmitted to the indoor units 3a, 3b, 3c, and 3d in the same cycle with a delay. For this reason, each indoor unit 3a, 3b, 3c, 3d is given an even opportunity to perform room temperature monitoring. Thereby, it is possible to suppress the occurrence of bias in the number of room temperature monitoring of the indoor units 3a, 3b, 3c, 3d.
〈他の実施形態〉  <Other embodiments>
室外機 2に接続される室内機の台数は、 上記の実施形態に記載した台数に限ら れず、 2台または 3台、 あるいは 5台以上としてもよい。  The number of indoor units connected to the outdoor unit 2 is not limited to the number described in the above embodiment, but may be two or three, or five or more.
また、 上記の実施形態では、 同時に 2以上の室内機についてモニタリング許可 タイマーがカウントされることはないが、 冷媒に与える影響が小さい場合は、 同 時に 2台ずつ又はそれ以上の室内機についてモニタリング許可タイマーをカウン 上記の実施形態では、 室外制御部 2 5からモニタリング許可信号を送信し、 室 内機 3 a, 3 b , 3 c, 3 dのモニタリング開始条件が満たされることと、 モ- タリング許可信号を受信していることとがともに成り立つ場合に、 室温モニタリ ングが行われる。 しかし、 室外制御部 2 5が送信する信号は、 モニタリング許可 信号に限られず、 モニタリング禁止信号を送信してもよい。 この場合は、 室内機 3 a , 3 b , 3 c , 3 dのモニタリング開始条件が満たされることとモニタリン グ禁止信号を受信していないことがともに成り立つ場合に、 室温モニタリングが 行われる。  In the above embodiment, the monitoring permission timer is not counted for two or more indoor units at the same time.However, if the effect on the refrigerant is small, monitoring permission for two or more indoor units at the same time is permitted. In the above embodiment, the monitoring permission signal is transmitted from the outdoor control unit 25, and the monitoring start conditions of the indoor units 3a, 3b, 3c, and 3d are satisfied, and the monitoring permission signal is transmitted. Room temperature monitoring is performed when both receiving a signal are satisfied. However, the signal transmitted by the outdoor control unit 25 is not limited to the monitoring permission signal, and a monitoring prohibition signal may be transmitted. In this case, room temperature monitoring is performed when both the monitoring start conditions of the indoor units 3a, 3b, 3c, and 3d are satisfied and the monitoring prohibition signal is not received.
(産業上の利用可能性) (Industrial applicability)
本発明に係る空気調和機を利用すれば、 運転部屋における吹出し温度の急激な 低下を抑えつつサーモオフ状態の室内機においても室内温度の検出を正確に行う ことができる。  By using the air conditioner according to the present invention, it is possible to accurately detect the indoor temperature even in an indoor unit in a thermo-off state while suppressing a sharp drop in the outlet temperature in the operating room.

Claims

請 求 の 範 囲  The scope of the claims
室温センサ (3 3 a, 3 3 b, 3 3 c, 3 3 d) と、 室内熱交換器 (3 0 a, 30 b, 30 c, 3 0 d) と、 室内ファン (32 a, 32 d, 3 2 c, 3 2 d) と、 前記室温センサ (3 3 a, 3 3 b, 3 3 c, 3 3 d) による室温モニタリン グの開始条件が満たされるか否かを判断するとともに暖房運転のサーモオフ時に 室温モニタリングを行う場合は前記室内ファン (3 2 a, 3 2 d, 3 2 c, 3 2 d) を駆動させる室内制御部 (34 a, 34 b, 34 c, 34 d) とをそれぞれ 有する複数の室内機 (3 a, 3 b, 3 c, 3 d) と、 Room temperature sensor (33a, 33b, 33c, 33d), indoor heat exchanger (30a, 30b, 30c, 30d) and indoor fan (32a, 32d , 32c, 32d) and the room temperature sensor (33a, 33b, 33c, 33d) to determine whether the conditions for starting room temperature monitoring are satisfied, and to perform heating operation. When monitoring the room temperature when the thermostat is turned off, the indoor control units (34a, 34b, 34c, 34d) that drive the indoor fans (32a, 32d, 32c, 32d) A plurality of indoor units (3a, 3b, 3c, 3d) each having
室外熱交換器 (22) を有し、 前記複数の室内機 (3 a, 3 b, 3 c, 3 d) との間で冷媒回路を構成する室外機 (2) と、  An outdoor unit (2) having an outdoor heat exchanger (22) and forming a refrigerant circuit with the plurality of indoor units (3a, 3b, 3c, 3d);
前記複数の室内機 (3 a, 3 b, 3 c, 3 d) から所定の室内機を選択し、 選 択した前記室内機の室内制御部へと室温モニタリング許可に関する信号を送信す る室温モニタリング制御部 (2 5) と、  Room temperature monitoring for selecting a predetermined indoor unit from the plurality of indoor units (3a, 3b, 3c, 3d) and transmitting a signal regarding permission for room temperature monitoring to the indoor control unit of the selected indoor unit. Control unit (25),
を備え、 With
前記室内制御部 (34 a, 34 b, 34 c, 34 d) は、 前記信号と、 前記室 温モニタリングの開始条件との両方から、 室温モニタリングを行うか否かを決定 する、  The indoor control unit (34a, 34b, 34c, 34d) determines whether to perform room temperature monitoring based on both the signal and the start condition of the room temperature monitoring.
空気調和機。 Air conditioner.
2. 2.
前記信号は、 室温モニタリングを行うことを許可する室温モニタリング許可信 号であり、  The signal is a room temperature monitoring permission signal that permits performing room temperature monitoring,
前記室内制御部 (34 a, 34 b, 34 c, 34 d) は、 前記室温モニタリン グ許可信号を受信し、 かつ、 前記室温モニタリングの開始条件が満たされた場合 に、 室温モニタリングを行う、  The room controller (34a, 34b, 34c, 34d) receives the room temperature monitoring permission signal, and performs room temperature monitoring when the room temperature monitoring start condition is satisfied.
請求項 1に記載の空気調和機。 The air conditioner according to claim 1.
3. 3.
前記室温モニタリング制御部 (2 5) は、 前記室温モニタリング許可信号を、 前記室内制御部 (34 a, 34 b, 34 c, 34 d) ごとに時間をずらして送信 する、 The room temperature monitoring control unit (25) transmits the room temperature monitoring permission signal The transmission is performed with a time lag for each of the indoor control units (34a, 34b, 34c, 34d).
請求項 2に記載の空気調和機。 3. The air conditioner according to claim 2.
4. Four.
前記室温モニタリング制御部 (2 5) は、 前記信号を前記室内制御部 (34 a , 34 b, 34 c, 34 d) のそれぞれに対して均等なタイミングで送信する、 請求項 1から 3のいずれかに記載の空気調和機。  The room temperature monitoring control unit (25) transmits the signal to each of the indoor control units (34a, 34b, 34c, 34d) at an even timing. The air conditioner described in Crab.
5. Five.
前記室温モニタリング制御部は、 前記複数の室内機 (34 a, 34 b, 34 c , 34 d) のうち暖房運転のサーモオフ状態にある室内機の室内制御部に対して のみ、 前記信号を送信する、  The room temperature monitoring control unit transmits the signal only to the indoor control unit of the indoor unit in the thermo-off state of the heating operation among the plurality of indoor units (34a, 34b, 34c, 34d). ,
請求項 1から 4のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 4.
6. 6.
前記室温モニタリング制御部は、 全ての前記室内機 (34 a, 34 b, -34 c , 34 d) に対して、 前記信号を送信する、  The room temperature monitoring control unit transmits the signal to all the indoor units (34a, 34b, -34c, 34d),
請求項 1から 4のいずれかに記載の空気調和機。 The air conditioner according to any one of claims 1 to 4.
PCT/JP2003/002609 2002-03-28 2003-03-05 Air conditioner WO2003083377A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003211720A AU2003211720B2 (en) 2002-03-28 2003-03-05 Air conditioner
EP03745406.3A EP1491826B1 (en) 2002-03-28 2003-03-05 Air conditioner
ES03745406.3T ES2598355T3 (en) 2002-03-28 2003-03-05 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-092313 2002-03-28
JP2002092313A JP3778117B2 (en) 2002-03-28 2002-03-28 Air conditioner

Publications (1)

Publication Number Publication Date
WO2003083377A1 true WO2003083377A1 (en) 2003-10-09

Family

ID=28671703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002609 WO2003083377A1 (en) 2002-03-28 2003-03-05 Air conditioner

Country Status (6)

Country Link
EP (1) EP1491826B1 (en)
JP (1) JP3778117B2 (en)
CN (1) CN1284951C (en)
AU (1) AU2003211720B2 (en)
ES (1) ES2598355T3 (en)
WO (1) WO2003083377A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4135766B2 (en) * 2006-09-19 2008-08-20 ダイキン工業株式会社 Mediation device for air conditioning control, air conditioning control system, air conditioning control method, and air conditioning control program
KR101294305B1 (en) * 2011-01-21 2013-08-08 엘지전자 주식회사 Central control system and method for setting up control points of the same
JP5916488B2 (en) 2012-04-06 2016-05-11 三菱重工業株式会社 Control apparatus and method, program, and multi-type air conditioning system including the same
JP5916489B2 (en) * 2012-04-06 2016-05-11 三菱重工業株式会社 Control apparatus and method, program, and multi-type air conditioning system including the same
CN102829531A (en) * 2012-09-25 2012-12-19 广东志高暖通设备股份有限公司 Method for detecting ambient temperature of indoor unit of VRV
WO2017104051A1 (en) * 2015-12-17 2017-06-22 三菱電機株式会社 Air-conditioning system
EP3855089A4 (en) 2018-09-20 2022-04-13 Toshiba Carrier Corporation Air conditioner and control method
JP7512639B2 (en) 2020-03-27 2024-07-09 株式会社富士通ゼネラル Air Conditioning Equipment
JP2024013014A (en) * 2022-07-19 2024-01-31 三菱重工サーマルシステムズ株式会社 Air conditioner and control method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173628A (en) * 1997-12-15 1999-07-02 Mitsubishi Heavy Ind Ltd Air conditioner
JP2002013784A (en) * 2000-06-29 2002-01-18 Sanyo Electric Co Ltd Air-conditioning system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114655A (en) * 1987-10-28 1989-05-08 Matsushita Seiko Co Ltd Electric power demand controller
JPH03144246A (en) * 1989-10-30 1991-06-19 Daikin Ind Ltd Operation control device for air conditioner
JPH07174396A (en) * 1993-05-25 1995-07-14 Mitsubishi Electric Corp Multi-type air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173628A (en) * 1997-12-15 1999-07-02 Mitsubishi Heavy Ind Ltd Air conditioner
JP2002013784A (en) * 2000-06-29 2002-01-18 Sanyo Electric Co Ltd Air-conditioning system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1491826A4 *

Also Published As

Publication number Publication date
AU2003211720B2 (en) 2006-02-23
AU2003211720A1 (en) 2003-10-13
EP1491826B1 (en) 2016-08-03
CN1643305A (en) 2005-07-20
JP3778117B2 (en) 2006-05-24
EP1491826A4 (en) 2010-05-05
EP1491826A1 (en) 2004-12-29
JP2003287258A (en) 2003-10-10
CN1284951C (en) 2006-11-15
ES2598355T3 (en) 2017-01-27

Similar Documents

Publication Publication Date Title
JP4379537B2 (en) Compressor operation control device and air conditioner equipped with the same
CN105783203B (en) The method for detecting abnormality of air conditioner and its indoor unit
KR100715999B1 (en) Multi Airconditioner and its operating Method
EP2354693B1 (en) Air conditioner
EP1987295B1 (en) Air conditioning system and control method thereof
WO2008015930A1 (en) Air conditioner
WO2003083377A1 (en) Air conditioner
WO2003081140A1 (en) Air conditioner, and method of controlling air conditioner
JP2013200085A (en) Air conditioner
JP2001065949A (en) Controller for multi-chamber type air conditioner
JP5125606B2 (en) Air conditioning control system
JP2004251583A (en) Air conditioner
JP2011202884A (en) Refrigeration cycle device
KR102155558B1 (en) Air-conditioner and method
JP2009236350A (en) Water heater
JPH1183211A (en) High pressure protective controller for refrigerator
JP7512639B2 (en) Air Conditioning Equipment
JP2005133970A (en) Air-conditioner
KR20070069264A (en) Air conditioner and controlling method of the same
JPH0486445A (en) Air conditioner
KR20170075371A (en) Air-conditioner and the method for the same
WO2018207304A1 (en) Air conditioner
KR101812015B1 (en) Air conditioner and method for controlling the same
JP3738123B2 (en) Air conditioning system
JP2022114714A (en) air conditioner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 20038069555

Country of ref document: CN

Ref document number: 2003211720

Country of ref document: AU

REEP Request for entry into the european phase

Ref document number: 2003745406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003745406

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003745406

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2003211720

Country of ref document: AU