WO2018207304A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2018207304A1
WO2018207304A1 PCT/JP2017/017829 JP2017017829W WO2018207304A1 WO 2018207304 A1 WO2018207304 A1 WO 2018207304A1 JP 2017017829 W JP2017017829 W JP 2017017829W WO 2018207304 A1 WO2018207304 A1 WO 2018207304A1
Authority
WO
WIPO (PCT)
Prior art keywords
heater
temperature
change rate
compressor
control unit
Prior art date
Application number
PCT/JP2017/017829
Other languages
French (fr)
Japanese (ja)
Inventor
保幸 ▲高▼井
千賀 田邊
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2017/017829 priority Critical patent/WO2018207304A1/en
Publication of WO2018207304A1 publication Critical patent/WO2018207304A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2221/00Details or features not otherwise provided for
    • F24F2221/34Heater, e.g. gas burner, electric air heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/07Remote controls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • This invention relates to an air conditioner.
  • Some air conditioners used in buildings such as buildings include a refrigeration cycle apparatus that exchanges heat in an air-conditioned space by operating a compressor, and a heater that assists the heating capacity of the refrigeration cycle apparatus. It was.
  • the heater is controlled to be turned on / off based on the temperature difference between the set temperature and the detected indoor temperature. In such heater control, the heater is turned on / off regardless of the operating state of the compressor. Therefore, the heater is operated even when the room to be air-conditioned can be sufficiently heated only by the heating capacity of the refrigeration cycle apparatus by the compressor operation, and the heater is operated when heating by the heater is unnecessary. was there.
  • the heater can be operated only when the capacity of the compressor is equal to or greater than a predetermined capacity, and when the capacity of the compressor is equal to or less than the predetermined capacity.
  • the heater is turned on and off based on the difference between the set temperature and the detected room temperature. If there is a temperature change in the air-conditioned space, for example indoors, due to a temporary disturbance such as a change in the situation, the temperature difference between the set temperature and the detected room temperature reaches the temperature difference at which the heater operates temporarily. Will work. If the change in the indoor environment is temporary due to a disturbance and returns to a stable room temperature promptly, even if the capacity of the compressor exceeds a predetermined capacity, the compressor and the refrigeration cycle apparatus are heated as they are. It is a state in which the room can be stably heated only by its capacity, and it is unnecessary operation to react sensitively to temporary temperature changes as described above, and wasteful energy There was a problem of consumption.
  • the present invention has been made to solve the above-described problems, and is an air that can suppress unnecessary energy consumption by operating a heater unnecessarily in response to a temporary temperature change due to a disturbance or the like.
  • the object is to obtain a harmony device.
  • the present invention starts operation of the heater when the temperature change rate with the passage of time of the air-conditioned space while the compressor is operating is smaller than the set temperature change rate.
  • the heater is started based on the temperature change rate with the passage of time of the air-conditioned space, so the heater is turned on according to the heating load situation of the air-conditioned space reflected in the temperature change rate. It can be operated, and if the room is heated only by the heating capacity of the refrigeration cycle device by the operation of the compressor, it is unnecessary to cope with a temporary temperature change even though it can be heated sufficiently It is possible to suppress the wasteful consumption of energy by operating the heater.
  • FIG. FIG. 2 is a block diagram showing a schematic configuration of a control device in the first embodiment.
  • the figure which shows the graph of the indoor temperature in Embodiment 1, and the time change of an air conditioning apparatus The block diagram which shows schematic structure of the air conditioning apparatus in Embodiment 2.
  • FIG. 1 is a configuration diagram showing a schematic configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention.
  • an air conditioner 100 that air-conditions a room as an air-conditioned space will be described.
  • the air conditioner 100 includes an outdoor unit 10 and an indoor unit 20.
  • the air-conditioning apparatus 100 according to Embodiment 1 of the present invention is provided with the refrigeration cycle apparatus 1 that performs heat exchange of the air-conditioned space by operating the compressor 11 inside the outdoor unit 10 and the indoor unit 20.
  • the indoor unit 20 of the air conditioning apparatus 100 is provided with a terminal 4 to which a heater 2 for assisting the heating capacity of the refrigeration cycle apparatus 1 is connected. This heater 2 is based on the temperature change of the conditioned space. Is to drive.
  • the outdoor unit 10 and the indoor unit 20 are connected via a refrigerant pipe that forms the refrigeration cycle apparatus 1.
  • the heater 2 heats the air-conditioned space, is connected to the terminal 4 connected to the control device 30 of the indoor unit 20, and is operated, that is, drive-controlled by the control device 30.
  • the heater 2 is disposed inside a duct that is connected to the indoor unit 20 and that sends air heated by the indoor unit 20 to the air-conditioned space. In this case, the air further warmed by the heater 2 is sent indoors by the air blower 22.
  • This duct is formed inside the wall or ceiling.
  • the air conditioner 100 may be provided apart from the indoor unit 20 or may be attached inside the indoor unit 20.
  • the heater 2 may be a panel heater installed on a wall or floor in an air-conditioned space and connected by a signal line that transmits a control signal from the air conditioner 100. Moreover, when attaching to the inside of the indoor unit 20, the indoor unit 20 is provided with a space for attaching the heater 2 therein, and the heater 2 is attached to the air blow destination of the blower 22. In addition, as the heater 2, you may connect a hot water type floor heating apparatus and a gas heater other than an electric heater.
  • the outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, an expansion valve 13, and a four-way valve 14.
  • the compressor 11 compresses the sucked low-pressure refrigerant and discharges it as a high-pressure refrigerant.
  • the outdoor heat exchanger 12 is a heat exchanger that functions as a condenser during cooling operation and functions as an evaporator during heating operation.
  • the expansion valve 13 depressurizes the high-pressure refrigerant into a low-pressure refrigerant.
  • the four-way valve 14 switches the flow direction of the refrigerant flowing in the refrigerant flow path between the cooling operation and the heating operation.
  • the cooling operation is an operation for supplying a low-temperature and low-pressure refrigerant to the indoor heat exchanger 21
  • the heating operation is an operation for supplying a high-temperature and high-pressure refrigerant to the indoor heat exchanger 21.
  • the indoor unit 20 is installed indoors, and includes an indoor heat exchanger 21, a blower 22, and a temperature detection unit 23.
  • the indoor heat exchanger 21 is a heat exchanger that functions as an evaporator during cooling operation and functions as a condenser during heating operation.
  • the blower 22 is disposed to face the indoor heat exchanger 21 and blows air to the indoor heat exchanger 21. In the indoor heat exchanger 21, heat exchange is performed between the refrigerant circulating in the refrigerant circuit and the indoor air blown by the blower 22.
  • the temperature detection part 23 detects the temperature of the room as an air-conditioned space, and detects the temperature of the room using a thermistor or the like.
  • the indoor heat exchanger 21 of the indoor unit 20 and the expansion valve 13 and the four-way valve 14 of the outdoor unit 10 are connected by a refrigerant pipe through which the refrigerant flows.
  • the compressor 11, the outdoor heat exchanger 12, the expansion valve 13, and the indoor heat exchanger 21 are connected by the refrigerant pipe, so that the heat absorption due to the evaporation of the refrigerant and the heat dissipation due to the condensation are used.
  • a refrigeration cycle apparatus 1 is configured.
  • a control device 30 for controlling the operation of the air conditioner 100 is provided inside the indoor unit 20, and a remote controller 3 is connected to the indoor unit 20.
  • the remote controller 3 receives an operation by the user and transmits an operation signal based on the operation to the control device 30.
  • the remote controller 3 includes a display unit that displays an operating state of the air conditioning apparatus 100 and an operation unit that receives an operation by a user.
  • the remote controller 3 and the indoor unit 20 need only be able to transmit a signal indicating the operating state of the air conditioner 100 or an operation signal based on the operation, and may be electrically connected by a communication line or connected by wireless communication. is there.
  • FIG. 2 is a block diagram illustrating a schematic configuration of the control device 30.
  • the control device 30 is configured by, for example, a hardware circuit such as a substrate and an integrated circuit, and is provided inside the indoor unit 20.
  • the control device 30 operates the air conditioner 100 based on an operation signal transmitted from the remote controller 3.
  • the control device 30 includes a processing unit 31, a compressor driving unit 32, a blower driving unit 33, a heater driving unit 34, a timer 35, and a storage unit 36.
  • the processing unit 31 includes a compressor control unit 37 that determines the operations of the compressor 11, the blower 22, and the heater 2, a blower control unit 38, and a heater control unit 39, and is a CPU (Central Processing Unit) or DSP (Digital). (Signal Processor) and software executed by the CPU or DSP.
  • the processing unit 31 is connected to the remote controller 3 and the temperature detection unit 23, and determines the operation of the air conditioner 100 based on the operation signal from the remote control 3 and the information on the indoor temperature detected by the temperature detection unit 23. An instruction is given to each drive unit based on the performed operation.
  • a timer 35 In addition, a timer 35, a storage unit 36, a compressor drive unit 32, a blower drive unit 33, and a heater drive unit 34 are connected to the processing unit 31.
  • the timer 35 counts elapsed time.
  • the storage unit 36 accumulates and stores the temperatures detected by the temperature detection unit 23 at regular time intervals. The fixed time for the temperature detection unit 23 to detect the temperature is, for example, 1 minute, which is a preset time.
  • the storage unit 36 also includes a time interval for the processing unit 31 to calculate the indoor temperature change rate ⁇ Ta, which is a rate of change of the temperature detected by the temperature detection unit 23, and a reference value that is a reference value for the indoor temperature change rate ⁇ Ta.
  • the temperature change rate ⁇ Tastd is stored.
  • a reference compressor operation time Tistdc that is a time for continuously operating the compressor 11 is stored.
  • the indoor temperature change rate calculated based on the temperature difference of the temperature detected by the temperature detection unit 23 in the reference compressor operation time Tistdc is the compressor indoor temperature change rate ⁇ Tac, and is the time during which the compressor 11 is operating.
  • the indoor temperature change rate ⁇ Ta That is, the temperature difference between the room temperature detected while the compressor 11 starts operation and the room temperature detected at a time before the reference compressor operation time Tistdc from the time when the room temperature was detected. Is the rate of change in temperature, calculated by dividing by the reference compressor operating time Tistdc.
  • a reference temperature change rate ⁇ Tastdc which is a reference value of the indoor temperature change rate ⁇ Ta
  • a reference compressor indoor temperature change rate ⁇ Tastdc as a reference value for the compressor indoor temperature change rate ⁇ Tac is stored.
  • the compressor reference indoor temperature change rate ⁇ Tastdc is a positive value.
  • the storage unit 36 includes a compressor operation start temperature Tcon, which is a temperature at which the compressor 11 starts operating, and a temperature at which the compressor 11 stops operating, as reference temperatures for controlling the operation of the compressor 11.
  • a certain compressor operation stop temperature Tcoff is stored, and as a reference temperature for controlling the operation of the heater 2, a heater operation start temperature Thon that is a temperature at which the heater 2 starts operation, and the heater 2 stops operation.
  • a heater operation stop temperature Toff which is a temperature is stored.
  • Each reference temperature is set from a low temperature to a high temperature in the order of the heater operation start temperature Thon, the compressor operation start temperature Tcon, the heater operation stop temperature Toff, and the compressor operation stop temperature Toff.
  • each temperature can be appropriately stored in the storage unit 36 by appropriately setting the temperature according to the installation location and usage situation of the air conditioner.
  • the processing unit 31 determines the operations of the compressor 11, the blower 22, and the heater 2 based on the time counted by the timer 35 and the temperature detected by the temperature detection unit 23. More specifically, when the compressor control unit 37 determines the operation of the compressor 11 and sends a control signal for performing the determined operation of the compressor 11 to the compressor drive unit 32, the compression is performed based on the control signal.
  • the machine drive unit 32 operates the compressor 11.
  • the blower control unit 38 determines the operation of the blower 22 and sends a control signal for performing the determined operation of the blower 22 to the blower drive unit 33
  • the blower drive unit 33 operates the blower 22 based on the control signal. To do.
  • the heater control unit 39 determines the operation of the heater 2 and sends a control signal for performing the determined operation of the heater 2 to the heater drive unit 34
  • the heater drive unit 34 operates the heater 2 based on the control signal. To do.
  • the heater control unit 39 Start driving. That is, the heater control unit 39 starts the operation of the heater 2 when the indoor temperature change rate ⁇ Ta during the operation of the compressor 11 is smaller than the reference temperature change rate ⁇ Tastd.
  • an operation signal that causes the user to start the operation of the air conditioner 100 by operating the remote controller 3 is transmitted to the processing unit 31.
  • the processing unit 31 operates the air conditioner 100 based on the time counted by the timer 35 and the temperature detected by the temperature detection unit 23.
  • control of the heater 2 in the heating operation will be described.
  • the timer 35 starts counting.
  • the temperature detection unit 23 detects the indoor temperature at regular intervals stored in the storage unit 36 based on the count of the timer 35.
  • the four-way valve 14 is set in the direction shown in FIG.
  • the refrigerant circulates inside the refrigeration cycle apparatus 1, thereby the outdoor heat exchanger. 12, heat exchange between the outdoor air and the refrigerant is performed, and heat exchange between the indoor air and the refrigerant is performed in the indoor heat exchanger 21. Since the high-temperature air heat-exchanged by the indoor heat exchanger 21 is blown toward the room by the blower 22, the room is heated.
  • the heater control unit 39 calculates the compressor indoor temperature change rate ⁇ Tac calculated based on the temperature difference detected by the temperature detection unit 23 during the reference compressor operation time Tistdc.
  • the indoor temperature change rate ⁇ Tastdc for the reference compressor is smaller than the value, the operation of the heater 2 is started.
  • the heater 2 Since the heater 2 is mounted at a position where the blower 22 is blown, when the heater 2 is started, air blown into the room by the blower 22 is warmed by the heater 2 and blown into the room. .
  • FIG. 3 is a flowchart showing the operation of the processing unit 31.
  • FIG. 4 is a view showing a graph of the indoor temperature and the time change of the air conditioner 100.
  • 4A is a time change of the indoor temperature
  • FIG. 4B is a time change of the operation of the compressor 11
  • FIG. 4C is a time change of the operation of the heater 2
  • FIG. 4 (e) shows the time change of the compressor indoor temperature change rate ⁇ Tac.
  • the compressor 11 and the heater 2 indicate a state where the compressor 11 and the heater 2 are operating when they are ON and a state where they are stopped when they are OFF.
  • step S101 the compressor control unit 37 turns off the compressor 11 and the operation is stopped. Since the compressor 11 and the heater 2 are stopped before the heating operation is started, the heating operation is started with both the compressor 11 and the heater 2 stopped.
  • step S102 the compressor control unit 37 resets the compressor operation time Tic.
  • the compressor control unit 37 determines the operation of the compressor 11 by counting the compressor operation time Tic with reference to the time counted by the timer 35.
  • step S102 When the compressor operation time Tic is reset in step S102, the process proceeds to step S103, and the compressor control unit 37 determines whether the room temperature Ta is lower than the compressor operation start temperature Tcon of the compressor 11, that is, whether Ta ⁇ Tcon. Judging.
  • Step S104 the compressor control unit 37 turns on the compressor 11 and operates. Start.
  • Step S104 since the room is heated only by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 after the heating operation is started, the operation of the heater 2 is not started.
  • step S104 When the operation of the compressor 11 is started in step S104, the process proceeds to step S105, and the compressor control unit 37 starts counting the compressor operation time Tic from zero.
  • the count of the compressor operation time Tic may be the count immediately before the time when the operation of the compressor 11 is started among the elapsed time counted by the timer 35, or the time when the operation of the compressor 11 is started. It is good also as a count immediately after. Further, at the same time when the operation of the compressor 11 is started, the count of the timer 35 and the count of the compressor operation time Tic may be aligned and started.
  • step S105 When the count of the compressor operation time Tic is started from 0 in step S105, the process proceeds to step S106, and the compressor control unit 37 determines that the indoor temperature Ta is lower than the compressor operation stop temperature Tcoff at which the compressor 11 stops operating. It is determined whether there is, that is, Ta ⁇ Tcoff.
  • step S106 When the room temperature Ta is not lower than the compressor operation stop temperature Tcoff at which the compressor 11 stops operating in step S106, it is the case indicated by t1 in FIG. 3, and since the room is sufficiently heated, the process returns to step S101 to perform compression. The machine 11 is turned off and the operation is stopped.
  • step S106 When the room temperature Ta is lower than the compressor operation stop temperature Tcoff at which the compressor 11 stops operating in step S106, the process proceeds to step S107 and the compressor control unit 37 is the time when the compressor operation time Tic is stored in the storage unit 36. It is determined whether the interval is equal to or longer than the reference compressor operation time Tistdc, that is, whether Tic ⁇ Tistd.
  • Step S106 If the compressor operation time Tic is not equal to or longer than the reference compressor operation time Tistdc in step S107, the process returns to step S106.
  • the room temperature Ta is lower than the compressor operation stop temperature Tcoff at which the compressor 11 stops operating (Step S106: Yes) by the operation of repeating Step S107 and Step S106, the operation time of the compressor 11 is the reference compressor.
  • the compressor control unit 37 continues the operation of the compressor 11 until the operation time Tistdc is reached.
  • step S107 If the compressor operation time Tic is equal to or longer than the reference compressor operation time Tistdc in step S107, the process proceeds to step S108, and the heater control unit 39 determines whether the room temperature Ta is less than the heater operation start temperature Thon at which the heater 2 starts operation. That is, it is determined whether Ta ⁇ Thon.
  • step S108 If the room temperature Ta is not lower than the heater operation start temperature Thon in step S108, the process returns to step S106 and the operations after step S106 are repeated.
  • the compressor 11 continues operation even after the compressor operation time Tic has elapsed.
  • step S109 the heater control unit 39 determines the temperature based on the temperature difference detected by the temperature detection unit 23 corresponding to the time interval stored in the storage unit 36 while the compressor 11 is operating.
  • the change rate is calculated, and it is determined whether the calculated change rate is smaller than the reference value of the change rate stored in the storage unit 36. That is, the compressor indoor temperature change rate ⁇ Tac calculated based on the temperature difference detected by the temperature detection unit 23 during the reference compressor operation time Tistdc is the reference compressor indoor temperature change stored in the storage unit 36. It is determined whether ⁇ Tac ⁇ Tastdc indicating that the rate is less than ⁇ Tastdc.
  • step S109 When the compressor indoor temperature change rate ⁇ Tac is not less than the reference compressor indoor temperature change rate ⁇ Tastdc in step S109, the room can be stably heated only by the heating capacity of the compressor 11 and the refrigeration cycle apparatus 1. Therefore, the operation returns to step S106 without operating the heater 2 and the heating operation of only the compressor 11 is continued.
  • step S109 When the compressor indoor temperature change rate ⁇ Tac is less than the reference compressor indoor temperature change rate ⁇ Tastdc in step S109, this is the case shown in FIG. Since it is insufficient and the room cannot be stably heated, the process proceeds to step S110, and the heater control unit 39 turns on the heater 2 and starts operation.
  • the heater operation start temperature Thon is 23 ° C.
  • the reference compressor operation time Tistdc is 10 minutes
  • the reference compressor indoor temperature change rate ⁇ Tastdc is 0.1 ° C./min
  • the compressor The indoor temperature Ta at the start of operation No. 11 is 20 ° C.
  • the indoor temperature Ta 10 minutes after the start of operation of the compressor 11 is 22 ° C.
  • the room temperature Ta satisfies 20 ° C. Ta ⁇ Thon, but the compressor indoor temperature change rate ⁇ Tac is 0.2 ° C./min, and ⁇ Tac ⁇ Tastdc is not satisfied. Therefore, the heater control unit 29 operates only the compressor 11 without operating the heater 2.
  • the indoor temperature change rate ⁇ Tac for the compressor is Since ⁇ 0.1 ° C./min and ⁇ Tac ⁇ Tastdc, the operation of the heater 2 is started.
  • step S110 When the heater 2 starts operation in step S110, the process proceeds to step S111.
  • step S111 it is determined whether the room temperature Ta is equal to or higher than the heater operation stop temperature Toff, that is, Ta ⁇ Toff.
  • the heater control unit 39 operates the heater 2 until the room temperature Ta becomes equal to or higher than the heater operation stop temperature Toff.
  • step S111 If the room temperature Ta is equal to or higher than the heater operation stop temperature Toff in step S111, it is the case indicated by t4 in FIG. 4, and the process proceeds to step S112 where the heater control unit 39 turns off the heater 2 and stops the operation.
  • step S112 When the operation of the heater 2 is stopped in step S112, the process returns to step S105 and the operations after step S105 are repeated.
  • the heater control unit 39 is more than the temperature change rate at which the temperature change rate with the passage of time of the air-conditioned space during operation of the compressor 11 is set.
  • the operation of the heater 2 is started. Since the relationship between the heating capacity by the operation of the compressor and the heating load status of the air-conditioned space is reflected in the temperature change rate, the heater control unit 39 operates the heater 2 based on the temperature change rate with the passage of time in the air-conditioned space. By starting the operation, the heater 2 can be operated according to the heating load condition of the air-conditioned space reflected in the rate of temperature change.
  • the heater is operated unnecessarily in response to a temporary temperature change even though the room can be sufficiently heated. And wasteful consumption of energy can be suppressed.
  • the room is heated with the heating capacity of the refrigeration cycle apparatus 1 and the heating capacity of the heater 2 than when the room is heated only with the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11. Since energy is required, it is possible to suppress wasteful consumption of energy without the heater 2 operating unnecessarily.
  • the heater control unit 39 calculates the change rate based on the temperature difference between the temperatures detected by the temperature detection unit 23 and the calculated change rate is smaller than the reference value of the change rate stored in the storage unit 36.
  • the indoor unit 20 includes a terminal 4 for connecting the heater 2, and the heater control unit 39 controls the heater 2 connected to the terminal 4, so that the heater 2 suitable for the use and installation location of the air conditioner 100 is installed. The user can select and connect.
  • FIG. 5 is a configuration diagram illustrating a schematic configuration of the air-conditioning apparatus 200 according to Embodiment 2.
  • the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the indoor unit 20 of the air-conditioning apparatus 200 includes a plurality of terminals that respectively connect a plurality of heaters for assisting the heating capacity of the refrigeration cycle apparatus 1.
  • a configuration in which the terminals to which a plurality of heaters are connected is composed of two terminals: a terminal 4a that is a first heater terminal and a terminal 4b that is a second heater terminal.
  • a first stage heater 2a is connected to the terminal 4a, and a second stage heater 2b is connected to the terminal 4b.
  • the heater control unit 39 controls the first stage heater 2a connected to the terminal 4a and the second stage heater 2b connected to the terminal 4b.
  • the heater control unit 39 starts the operation of the first stage heater 2a and operates the first stage heater 2a when the indoor temperature change rate is smaller than the reference value while the compressor 11 is operating. If the indoor temperature change is smaller than the reference value during the operation, the operation of the first stage heater 2a is continued and the operation of the second stage heater 2b is started.
  • the storage unit 36 includes a time interval at which the processing unit 31 calculates the indoor temperature change rate ⁇ Ta, which is a rate of change of the temperature detected by the temperature detection unit 23, and a reference temperature that is a reference value for the indoor temperature change rate ⁇ Ta.
  • a plurality of change rates ⁇ Tastd are stored. Specifically, as the first time interval for calculating the rate of change, the reference compressor operating time Tistdc, which is stored, and as the second time interval for calculating the rate of change.
  • a reference heater operation time Tistdh which is a time for continuously operating the first stage heater 2a, is stored.
  • the indoor temperature change rate calculated based on the temperature difference detected by the temperature detector 23 during the reference heater operation time Tistdh is the heater indoor temperature change rate ⁇ Tah, and is the time during which the first stage heater 2a is operating. It is the indoor temperature change rate. That is, the temperature difference between the room temperature detected while the first stage heater 2a is operating and the room temperature detected at the time before the reference heater operation time Tistdh from the time when the room temperature was detected. Is the rate of change of temperature calculated by dividing by the reference heater operating time Tistdh.
  • the compressor reference indoor temperature change rate ⁇ Tastdc is stored as the first reference value of the indoor temperature change rate ⁇ Ta, and the reference for the heater indoor temperature change rate ⁇ Tah as the second reference value of the indoor temperature change rate ⁇ Ta.
  • a heater reference indoor temperature change rate ⁇ Tastdh is stored as a value.
  • the compressor reference indoor temperature change rate ⁇ Tastdc and the heater reference indoor temperature change rate ⁇ Tastdh are positive values.
  • FIG. 6 is a flowchart showing the operation of the processing unit 31 according to the second embodiment.
  • FIG. 7 is a diagram showing a graph of the indoor temperature and the time change of the air conditioner 200.
  • FIG. 7A shows the time change of the room temperature
  • FIG. 7B shows the time change of the operation of the compressor 11
  • FIG. 7C shows the time change of the operation of the first stage heater 2a
  • FIG. 7E shows the time change of the operation of the stage heater 2b
  • FIG. 7E shows the time change of the compressor operation time Tic, which is the time during which the compressor 11 is operating
  • FIG. 7F shows the operation of the first stage heater 2a.
  • 7 (g) shows the time change of the compressor room temperature change rate ⁇ Tac
  • FIG. 7 (h) shows the time change of the heater room temperature change rate ⁇ Tah. .
  • the operation based on FIG. 3 is performed except the operation of resetting the heater operation time Tih in step S206 until the operation is started by turning on the first stage heater 2a in step S211.
  • the operation is the same as in the first mode.
  • step S211 When the operation of the first stage heater 2a is started in step S211, the process proceeds to step S212, and the heater control unit 39 starts counting the heater operation time Tih.
  • the value for starting the counting of the heater operation time Tih may be the count value immediately before the time when the operation of the first stage heater 2a is started among the elapsed time counted by the timer 35, or the operation of the first stage heater 2a. It is also possible to use a count value immediately after the time when is started. Alternatively, the timer 35 and the heater operation time Tih may be started at the same time when the operation of the first stage heater 2a is started.
  • step S212 When the count of the heater operation time Tih is started in step S212, the process proceeds to step S213, and the heater control unit 39 determines whether the room temperature Ta is lower than the heater operation stop temperature Toff at which the heaters 2a and 2b stop operating, that is, It is determined whether Ta ⁇ Thoff.
  • the heater control unit 39 stops the operation of the first stage heater 2a and returns to step S205 in which it is determined whether or not the operation of the compressor 11 is necessary.
  • step S214 the heater control unit 39 determines whether the heater operation time Tih is equal to or greater than the reference heater operation time Tistdh, which is the time interval stored in the storage unit 36, that is, whether Tih ⁇ Tistdh.
  • Step S214 If the heater operation time Tih is not equal to or longer than the reference heater operation time Tistdh in step S214, the process returns to step S213.
  • the room temperature Ta is lower than the heater operation stop temperature Tcofh at which the heaters 2a and 2b stop operating (Step S214: Yes) by the operation of repeating Step S214 and Step S213, the operation time of the first stage heater 2a is a reference.
  • the heater control unit 39 continues to operate the first stage heater 2a until the heater operation time Tistdh is reached.
  • step S214 When the heater operation time Tih is equal to or longer than the reference heater operation time Tistdh in step S214, the process proceeds to step S215, and the heater control unit 39 determines whether the room temperature Ta is less than the heater operation start temperature Thon at which the heaters 2a and 2b start operation. That is, it is determined whether Ta ⁇ Thon.
  • step S215 If the room temperature Ta is not lower than the heater operation start temperature Thon at which the heaters 2a and 2b start operation in step S215, the heating capacity is not insufficient in the operation of the first heater 2a, so the process returns to step S213. It returns to the operation
  • step S215 if the room temperature Ta is lower than the heater operation start temperature Thon at which the heaters 2a and 2b start to operate, it means that the heater needs to be operated. At this time, in the state where the first stage heater 2a is operating, whether the first stage heater 2a is operated as it is or whether the second stage heater 2b needs to be operated further is determined. In order to perform a process of judging by looking at the rate of increase, the process proceeds to step S216. In step S216, the heater control unit 39 is based on the temperature difference detected by the temperature detection unit 23 corresponding to the time interval stored in the storage unit 36 while the first stage heater 2a is operating.
  • the change rate of the temperature is calculated, and it is determined whether or not the calculated change rate is smaller than the reference value of the change rate stored in the storage unit 36. That is, the heater indoor temperature change rate ⁇ Tah calculated based on the temperature difference detected by the temperature detection unit 23 during the reference heater operation time Tistdh is less than the reference heater indoor temperature change rate ⁇ Tastdh stored in the storage unit 36. It is determined whether ⁇ Tah ⁇ Tastdh, which indicates that
  • step 216 If the heater indoor temperature change rate ⁇ Tah is not less than the reference heater indoor temperature change rate ⁇ Tastdh in step 216, the room is stabilized by the heating capacity of the compressor 11 and the refrigeration cycle apparatus 1 and the heating capacity of the first stage heater 2a. Therefore, the process returns to the operation flow after step S213 for determining whether or not the first stage heater 2a is required to operate without operating the second stage heater 2b. Therefore, if the operation of the first stage heater 2a is necessary, the heating operation by the compressor 11 and the first stage heater 2a is continued.
  • the heater indoor temperature change rate ⁇ Tah is less than the reference heater indoor temperature change rate ⁇ Tastdh in step 216, for example, the timing is shown at t ⁇ b> 4 in FIG. 7, and the compressor 11 and the refrigeration cycle apparatus 1
  • the heating capacity and the heating capacity of the first stage heater 2a are not sufficient for the room temperature to rise, and the room cannot be stably heated.
  • the operation of a different heater, that is, the second stage heater 2b is started. That is, proceeding to step S217, the heater control unit 39 turns on the second stage heater 2b different from the operated first stage heater and starts operation.
  • step S217 the operation of the first stage heater 2a is continued and the operation of the second stage heater 2b is started. That is, the first stage heater 2a and the second stage heater 2b are operated simultaneously.
  • step S217 When the heater 2 starts operation in step S217, the process proceeds to step S218.
  • step S2108 If the room temperature Ta is not equal to or higher than the heater operation stop temperature Toff in step S218, the heater control unit 39 repeats step S218 until the room temperature Ta becomes equal to or higher than the heater operation stop temperature Toff. Drive 2b.
  • step S219 the heater control unit 39 turns off the first stage heater 2a and second stage heater 2b, The operation of these heaters is stopped.
  • step S219 When the operation of the first stage heater 2a and the second stage heater 2b is stopped in step S219, the process returns to step S205 and repeats the operations in and after step S205.
  • the air conditioner 200 includes the two terminals of the terminal 4a that is the first heater terminal and the terminal 4b that is the second heater terminal, and the heater control unit 39 is the first stage.
  • the heater indoor temperature change rate ⁇ Tah is calculated based on the temperature difference of the temperature detected by the temperature detection unit 23 corresponding to the reference heater operation time Tistdh stored in the storage unit 36 while the heater 2a is operating.
  • the second-stage heater 2b different from the operated first-stage heater 2a is turned on to start the operation. .
  • the heating capability can be changed by starting the operation of the second stage heater 2b. Further, in order to continue the operation of the first stage heater 2a and start the operation of the second stage heater 2b, in addition to the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the first stage heater 2a. In addition, since the room is heated by the heating capacity of the second stage heater 2b, the insufficient heating capacity can be compensated.
  • the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the first stage heater 2a are not sufficiently heated, the compressor 11 and the first stage heater 2a Although the operation is continued, the heating capacity of the second stage heater 2b is added so that the room can be sufficiently heated and switched to the operation of the compressor 11 again. Can be wasted.
  • the first-stage heater 2a and the second-stage heater 2b may use the same output heater or different output heaters.
  • the heating capacity adapted to the conditioned space in which the air conditioner 200 is installed can be controlled.
  • the heater control part 39 showed the operation
  • the operation of the first stage heater 2a may be continued, and the operation of a plurality of other heaters may be started, the operation of the first stage heater 2a may be continued, The operation of the heaters may be started in order.
  • Starting the operation of the other heaters sequentially means that the operation of the first stage heater 2a is continued, the operation of the second stage heater 2b is started, and if the heating capacity is required, the first stage heater 2a and In this operation, the operation of the second heater 2b is continued and the operation of other heaters is started.
  • Embodiment 3 FIG.
  • the heater control unit 39 has described the air conditioner 200 that continues the operation of the first stage heater 2a and starts the operation of the second stage heater 2b.
  • the heater control unit 39 The unit 39 will explain the air conditioner 300 that stops the operation of the first stage heater 2a and starts the operation of the second stage heater 2c.
  • the difference from the second embodiment will be mainly described, and the same parts as those of the second embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the terminals to which the plurality of heaters are connected are the first heater terminal 4a and the heater having a higher output than the heater connected to the first heater terminal. It consists of two terminals of the third heater terminal 4c.
  • the first stage heater 2a is connected to the terminal 4a, and the second stage heater 2c is connected to the terminal 4c.
  • the second stage heater 2c is a heater having a higher output than the first stage heater 2a.
  • the air conditioner 300 operates in the same manner as the operation of the air conditioner 200 of the second embodiment shown in FIG. 6, but when the second stage heater 2b is turned on in step S217, the first stage heater 2a is turned on. The difference is that it is turned off.
  • the heater control unit 39 detects the temperature detected by the temperature detection unit 23 corresponding to the reference heater operation time Tistdh stored in the storage unit 36 while the first stage heater 2a is operating in step S217 of FIG. Based on the temperature difference, the heater indoor temperature change rate ⁇ Tah is calculated. When the calculated change rate is smaller than the heater reference indoor temperature change rate ⁇ Tastdh stored in the storage unit 36, the first stage heater 2a is operated. Stop and start operation of the second stage heater 2c. That is, the room is heated by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the second stage heater 2c.
  • step S218 If it is determined in step S218 that the room temperature Ta is not equal to or higher than the heater operation stop temperature Toff, step S218 is repeated, and the heater control unit 39 operates the second stage heater 2c until the room temperature Ta becomes equal to or higher than the heater operation stop temperature Toff.
  • step S2128 If the room temperature Ta is equal to or higher than the heater operation stop temperature Toff in step S218, the process proceeds to step S219, and the heater control unit 39 turns off the second stage heater 2c and stops the operation.
  • step S219 When the operation of the second stage heater 2c is stopped in step S219, the process returns to step S203 and repeats the operations after step S203.
  • the terminal 4a that is the first heater terminal and the third heater that is connected to the heater that has a higher output than the heater connected to the first heater terminal.
  • the heater control unit 39 corresponds to the reference heater operation time Tistdh stored in the storage unit 36 while operating the first stage heater 2a.
  • the heater indoor temperature change rate ⁇ Tah is calculated based on the temperature difference detected by the temperature detector 23 and the calculated change rate is smaller than the heater reference indoor temperature change rate ⁇ Tastdh stored in the storage unit 36. Then, the operation of the first stage heater 2a is stopped, and the operation of the second stage heater 2c is started.
  • the second stage heater 2c having a higher output than the first stage heater 2a is switched to heat the room with a heating capacity larger than that of the first stage heater 2a, so that the insufficient heating capacity can be compensated. it can.
  • the heater is a panel heater installed on a wall or floor in an air-conditioned space
  • the first-stage heater 2a and the second-stage heater 2c assist heating in different air-conditioned spaces, so that depending on the condition of the air-conditioning load. By changing the positions where the first stage heater 2a and the second stage heater 2c are arranged, heating suitable for the air-conditioned space can be performed.
  • Embodiment 4 FIG.
  • the heater control unit 39 has described the air conditioning apparatus 300 that stops the operation of the first stage heater 2a and starts the operation of the second stage heater 2c.
  • the heater control unit 39 After starting the operation of the second stage heater 2b, the unit 39 continues the operation of the second stage heater 2c and starts the operation of the first stage heater 2a when the heating capacity is insufficient.
  • the apparatus will be described.
  • the structure of the air conditioning apparatus of Embodiment 4 is the same as that of the air conditioning apparatus of Embodiment 3.
  • the difference from the third embodiment will be mainly described, and the same parts as those of the third embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
  • the storage unit 36 of the air-conditioning apparatus has a reference heater that is a time for continuously operating the second stage heater 2c using the indoor temperature change rate ⁇ Ta as the third time interval calculated by the processing unit 31.
  • the operation time Tistdh2 is stored.
  • the storage unit 36 uses the heater reference indoor temperature as a third reference value for the heater indoor temperature change rate ⁇ Tah2 calculated based on the temperature difference detected by the temperature detection unit 23 during the reference heater operation time Tistdh2.
  • the change rate ⁇ Tastdh2 is stored.
  • the heater reference indoor temperature change rate ⁇ Tastdh2 is a positive value.
  • the air conditioner of Embodiment 4 operates in the same manner as the operation of the air conditioner 200 shown in FIG.
  • the heater control unit 39 stops the operation of the first stage heater 2a and starts the operation of the second stage heater 2c in step S217 in FIG. 6, the heater operation time Tih starts to be counted.
  • the operation after starting the counting of the heater operation time Tih is the same as the operation after step S213 in FIG. 6 except that the reference heater operation time and the heater reference indoor temperature change rate are different.
  • the heater control unit 39 While operating the second stage heater 2c, the heater control unit 39 is based on the temperature difference of the temperature detected by the temperature detection unit corresponding to the reference heater operation time Tistdh2 stored in the storage unit 36.
  • the indoor temperature change rate ⁇ Tah2 is calculated, and when the calculated heater indoor temperature change rate ⁇ Tah2 is smaller than the heater reference indoor temperature change rate ⁇ Tastdh2 stored in the storage unit 36, the operation of the second stage heater 2c is continued.
  • the operation of the first stage heater 2a is started. That is, the room is heated by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11, the heating capacity of the first stage heater 2 a, and the heating capacity of the second stage heater 2 c.
  • the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the second stage heater 2c are increased.
  • heating of the first stage heater 2a is added to operate the compressor 11, the first stage heater 2a, and the second stage heater 2c. Therefore, since the room is heated by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11, the heating capacity of the first stage heater 2 c and the heating capacity of the second stage heater 2 c, the refrigeration cycle apparatus 1 by the operation of the compressor 11.
  • the heating capability that is insufficient with the heating capability of the second stage heater 2c can be compensated.
  • Embodiment 5 FIG. In the above embodiment, only the operation of the heater control unit 39 has been described.
  • an air conditioner including a blower control unit 38 that controls the blower 22 while the heater 2 is operating will be described.
  • the fifth embodiment will be described with a focus on differences from the above embodiment, and the same parts as those of the above embodiment will be denoted by the same reference numerals. Shall be omitted.
  • the blower control unit 38 of the air-conditioning apparatus increases the rotational speed of the blower 22 while the heater control unit 39 is operating the heater 2. That is, the blower control unit 38 increases the rotation speed of the blower 22 when the temperature change rate with the passage of time in the air-conditioned space during the operation of the compressor 11 is smaller than the set temperature change rate.
  • the air warmed by the heater 2 is blown into the room per unit time by increasing the rotation speed of the blower 22. Since the air volume to be increased can be increased, the room can be heated in a shorter time than the case where the room is heated by the heating capacity of the refrigeration cycle apparatus 1 and the heating capacity of the heater 2 by the operation of the compressor 11. Therefore, it is possible to suppress the wasteful consumption of energy without the heater 2 operating unnecessarily.
  • the heater control unit 39 continues the operation of the first stage heater 2a as the operation of starting the operation of the heater 2 based on the temperature change rate with the passage of time in the air-conditioned space, and the second stage.
  • the operation of starting the operation of the first heater 2b, the operation of stopping the operation of the first stage heater 2a and the operation of starting the operation of the second stage heater 2b, and the operation of the first stage heater 2a while stopping the operation of the second stage heater 2b Although the operation of continuing the operation of the second stage heater 2c after starting the operation and starting the operation of the first stage heater 2a has been described, they may be operated in combination.
  • the reference temperature stored in the storage unit 36, the time interval at which the processing unit 31 calculates the indoor temperature change rate ⁇ Ta, and the reference temperature change rate ⁇ Tastd, which is the reference value of the indoor temperature change rate ⁇ Ta, are installed in the air conditioner. It can be changed according to the place and use situation, and may be changed by the user from the remote control.
  • the heater control unit 39 is provided in the indoor unit 20, but may be provided in the remote controller 3.
  • the heater 2 is connected to the terminal 4 connected to the control device 30 of the indoor unit 20.
  • the heater 2 and the terminal 4 may be configured to be operated, that is, driven and controlled by the control device 30.
  • the compressed air conditioner according to the present invention can be widely used as an air conditioner for home use or business use.
  • Refrigeration cycle equipment 2 heaters, 3 remote controls, 4, 4a, 4b terminals, 10 outdoor units, 11 compressors, 12 outdoor heat exchangers, 13 expansion valves, 14 four-way valves, 20 indoor units, 21 indoor heat exchangers, 22 blower, 23 temperature detection unit, 30 control device, 31 processing unit, 32 compressor drive unit, 33 blower drive unit, 34 heater drive unit, 35 timer, 36 storage unit, 37 compressor control unit, 38 blower control unit, 39 Heater control unit, 100, 200, 300 Air conditioner

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

In a conventional air conditioner, ON/OFF of a heater is controlled on the basis of a difference between a set temperature and a detected indoor temperature if the capacity of a compressor is at least a prescribed capacity, and thus there was a problem where energy was wasted by unnecessarily operating the heater in accordance with a temporary temperature change caused by a disturbance or the like. The present invention starts the operation of the heater if a temperature change rate associated with the passage of time in an air-conditioning space during operation of a compressor is less than a set temperature change rate. This air conditioner uses the temperature change rate in heater control, thereby making it possible to operate the heater in accordance with the heating load state of the air-conditioning space, and to prevent waste of energy due to unnecessary heater operations in response to temporary temperature changes.

Description

空気調和装置Air conditioner
 この発明は、空気調和装置に関する。 This invention relates to an air conditioner.
 ビル等の建物に用いられる空気調和装置では、圧縮機が運転することで空調空間の熱交換を行う冷凍サイクル装置と、この冷凍サイクル装置による暖房能力を補助するためのヒータを備えたものがあった。この場合、ヒータは設定温度と室内検出温度との温度差に基づいてヒータのオンオフが制御されるものであるが、このようなヒータ制御では、圧縮機の運転状態に関わらずヒータのオンオフが制御されるため、圧縮機運転による冷凍サイクル装置の暖房能力のみで空調する室内を充分に暖房できる場合でもヒータを動作させることになり、ヒータによる暖房が不要な場合にヒータが動作されてしまうという問題があった。 Some air conditioners used in buildings such as buildings include a refrigeration cycle apparatus that exchanges heat in an air-conditioned space by operating a compressor, and a heater that assists the heating capacity of the refrigeration cycle apparatus. It was. In this case, the heater is controlled to be turned on / off based on the temperature difference between the set temperature and the detected indoor temperature. In such heater control, the heater is turned on / off regardless of the operating state of the compressor. Therefore, the heater is operated even when the room to be air-conditioned can be sufficiently heated only by the heating capacity of the refrigeration cycle apparatus by the compressor operation, and the heater is operated when heating by the heater is unnecessary. was there.
 そこで、例えば特許文献1に記載された空気調和装置のように、圧縮機の容量が所定の容量以上の場合にだけヒータを動作できる状態とし、圧縮機の容量が所定の容量以下の場合にはヒータを動作させないようにすることにより、圧縮機の運転による冷凍サイクル装置の暖房能力のみで室内を充分に暖房できる場合にはヒータを動作させず、不要なヒータの作動を抑制する空気調和装置がある。 Therefore, for example, as in the air conditioner described in Patent Document 1, the heater can be operated only when the capacity of the compressor is equal to or greater than a predetermined capacity, and when the capacity of the compressor is equal to or less than the predetermined capacity. By preventing the heater from operating, an air conditioner that suppresses unnecessary heater operation without operating the heater when the room can be sufficiently heated only by the heating capacity of the refrigeration cycle apparatus by operating the compressor. is there.
特開平5-256496号公報JP-A-5-256696
 しかしながら、従来の空気調和装置では、圧縮機の容量が所定の容量以上であれば設定温度と室内検出温度との差に基づいてヒータのオンオフが制御されるため、窓の開閉や暖房装置の使用状況の変化等の一時的な外乱により空調空間、例えば室内における温度変化があると、設定温度と室内検出温度との温度差が、一時的にヒータが動作する温度差に達することになり、ヒータが動作してしまう。室内における環境の変化が外乱による一時的なもので、すみやかに安定的な室温に戻るのであれば、圧縮機の容量が所定の容量以上になっているとしてもそのまま圧縮機と冷凍サイクル装置の暖房能力のみで室内を安定して暖房することができる状態であり、上記のように一時的な温度変化に敏感に対応してヒータを動作させてしまうことは不必要な動作であり、無駄なエネルギー消費となるという問題があった。 However, in the conventional air conditioner, if the capacity of the compressor is equal to or greater than a predetermined capacity, the heater is turned on and off based on the difference between the set temperature and the detected room temperature. If there is a temperature change in the air-conditioned space, for example indoors, due to a temporary disturbance such as a change in the situation, the temperature difference between the set temperature and the detected room temperature reaches the temperature difference at which the heater operates temporarily. Will work. If the change in the indoor environment is temporary due to a disturbance and returns to a stable room temperature promptly, even if the capacity of the compressor exceeds a predetermined capacity, the compressor and the refrigeration cycle apparatus are heated as they are. It is a state in which the room can be stably heated only by its capacity, and it is unnecessary operation to react sensitively to temporary temperature changes as described above, and wasteful energy There was a problem of consumption.
 本発明は、上記のような課題を解決するためになされたもので、外乱等による一時的な温度変化に対応して不必要にヒータを動作させてエネルギーを無駄に消費することを抑制できる空気調和装置を得ることを目的とする。 The present invention has been made to solve the above-described problems, and is an air that can suppress unnecessary energy consumption by operating a heater unnecessarily in response to a temporary temperature change due to a disturbance or the like. The object is to obtain a harmony device.
 本発明は、圧縮機が運転している間における空調空間の時間経過に伴う温度変化率が、設定された温度変化率よりも小さい場合に、ヒータの運転を開始させるものである。 The present invention starts operation of the heater when the temperature change rate with the passage of time of the air-conditioned space while the compressor is operating is smaller than the set temperature change rate.
 本発明に係る空気調和装置によれば、空調空間の時間経過に伴う温度変化率に基づいてヒータの運転を開始させるため、温度変化率に反映される空調空間の暖房負荷状況に応じてヒータを動作させることができ、圧縮機の運転による冷凍サイクル装置の暖房能力のみで室内を暖房していれば充分に暖房ができる状態であるにもかかわらず一時的な温度変化に対応して不必要にヒータを動作させ、エネルギーを無駄に消費することを抑制できる。 According to the air conditioner of the present invention, the heater is started based on the temperature change rate with the passage of time of the air-conditioned space, so the heater is turned on according to the heating load situation of the air-conditioned space reflected in the temperature change rate. It can be operated, and if the room is heated only by the heating capacity of the refrigeration cycle device by the operation of the compressor, it is unnecessary to cope with a temporary temperature change even though it can be heated sufficiently It is possible to suppress the wasteful consumption of energy by operating the heater.
実施の形態1における空気調和装置の概略構成を示す構成図The block diagram which shows schematic structure of the air conditioning apparatus in Embodiment 1. FIG. 実施の形態1における制御装置の概略構成を示すブロック図FIG. 2 is a block diagram showing a schematic configuration of a control device in the first embodiment. 実施の形態1における処理部の動作を示すフローチャートThe flowchart which shows operation | movement of the process part in Embodiment 1. 実施の形態1における室内温度と空気調和装置の時間変化のグラフを示す図The figure which shows the graph of the indoor temperature in Embodiment 1, and the time change of an air conditioning apparatus 実施の形態2における空気調和装置の概略構成を示す構成図The block diagram which shows schematic structure of the air conditioning apparatus in Embodiment 2. FIG. 実施の形態2における処理部の動作を示すフローチャートThe flowchart which shows operation | movement of the process part in Embodiment 2. 実施の形態2における室内温度と空気調和装置の時間変化のグラフを示す図The figure which shows the graph of the indoor temperature in Embodiment 2, and the time change of an air conditioning apparatus
実施の形態1.
 以下、本発明の空気調和装置について説明する。図1は本発明の実施の形態1における空気調和装置の概略構成を示す構成図である。本実施の形態では、空調空間として室内を空調する空気調和装置100について説明する。
Embodiment 1 FIG.
Hereinafter, the air conditioning apparatus of the present invention will be described. FIG. 1 is a configuration diagram showing a schematic configuration of an air-conditioning apparatus according to Embodiment 1 of the present invention. In the present embodiment, an air conditioner 100 that air-conditions a room as an air-conditioned space will be described.
 空気調和装置100は、室外機10と、室内機20を備える。本発明の実施の形態1に係る空気調和装置100は、室外機10及び室内機20の内部に圧縮機11が運転することで空調空間の熱交換を行う冷凍サイクル装置1が設けられている。さらに、空気調和装置100の室内機20は、この冷凍サイクル装置1による暖房能力を補助するためのヒータ2が接続される端子4が設けられており、空調空間の温度変化に基づいてこのヒータ2を駆動するものである。 The air conditioner 100 includes an outdoor unit 10 and an indoor unit 20. The air-conditioning apparatus 100 according to Embodiment 1 of the present invention is provided with the refrigeration cycle apparatus 1 that performs heat exchange of the air-conditioned space by operating the compressor 11 inside the outdoor unit 10 and the indoor unit 20. Furthermore, the indoor unit 20 of the air conditioning apparatus 100 is provided with a terminal 4 to which a heater 2 for assisting the heating capacity of the refrigeration cycle apparatus 1 is connected. This heater 2 is based on the temperature change of the conditioned space. Is to drive.
 室外機10と室内機20は冷凍サイクル装置1を形成する冷媒配管を介して接続されている。ヒータ2は、空調空間を暖房するものであり、室内機20の制御装置30につながる端子4に接続され、制御装置30により運転、すなわち駆動制御される。ヒータ2は、室内機20に接続されて室内機20で加熱された空気を空調空間に送るダクトの内部に配置されている。この場合、ヒータ2によってさらに暖められた空気が送風機22の送風によって室内に送られる。このダクトは壁や天井の内部に形成されている。このように室内機20の外部に設ける場合の他、空気調和装置100と離して設けたり、室内機20の内部に取り付けるようにしてもよい。空気調和装置100と離して設ける場合として例えばヒータ2を空調空間における壁や床に設置するパネルヒータとし、空気調和装置100からの制御信号を伝送する信号線で接続することが考えられる。また、室内機20の内部に取り付ける場合、室内機20は内部にヒータ2を取り付けるスペースが設けられており、ヒータ2は送風機22の送風先に位置して取り付けられている。なお、ヒータ2としては、電熱式のヒータの他、温水式の床暖房装置やガスヒータを接続してもよい。 The outdoor unit 10 and the indoor unit 20 are connected via a refrigerant pipe that forms the refrigeration cycle apparatus 1. The heater 2 heats the air-conditioned space, is connected to the terminal 4 connected to the control device 30 of the indoor unit 20, and is operated, that is, drive-controlled by the control device 30. The heater 2 is disposed inside a duct that is connected to the indoor unit 20 and that sends air heated by the indoor unit 20 to the air-conditioned space. In this case, the air further warmed by the heater 2 is sent indoors by the air blower 22. This duct is formed inside the wall or ceiling. As described above, in addition to the case of being provided outside the indoor unit 20, the air conditioner 100 may be provided apart from the indoor unit 20 or may be attached inside the indoor unit 20. For example, the heater 2 may be a panel heater installed on a wall or floor in an air-conditioned space and connected by a signal line that transmits a control signal from the air conditioner 100. Moreover, when attaching to the inside of the indoor unit 20, the indoor unit 20 is provided with a space for attaching the heater 2 therein, and the heater 2 is attached to the air blow destination of the blower 22. In addition, as the heater 2, you may connect a hot water type floor heating apparatus and a gas heater other than an electric heater.
 室外機10は、圧縮機11と、室外熱交換器12と、膨張弁13、四方弁14とを備える。圧縮機11は、吸入した低圧冷媒を圧縮し、高圧冷媒として吐出するものである。室外熱交換器12は、冷房運転時には凝縮器として機能し、暖房運転時には蒸発器として機能する熱交換器である。膨張弁13は、高圧冷媒を減圧して低圧冷媒とするものである。膨張弁13としては、例えば開度を調節可能な電磁膨張弁などが用いられる。四方弁14は、冷房運転時と暖房運転時とで冷媒流路内部を流れる冷媒の流れ方向を切替えるものである。ここで、冷房運転とは、室内熱交換器21に低温低圧の冷媒を供給する運転のことであり、暖房運転とは、室内熱交換器21に高温高圧の冷媒を供給する運転のことである。 The outdoor unit 10 includes a compressor 11, an outdoor heat exchanger 12, an expansion valve 13, and a four-way valve 14. The compressor 11 compresses the sucked low-pressure refrigerant and discharges it as a high-pressure refrigerant. The outdoor heat exchanger 12 is a heat exchanger that functions as a condenser during cooling operation and functions as an evaporator during heating operation. The expansion valve 13 depressurizes the high-pressure refrigerant into a low-pressure refrigerant. As the expansion valve 13, for example, an electromagnetic expansion valve whose opening degree can be adjusted is used. The four-way valve 14 switches the flow direction of the refrigerant flowing in the refrigerant flow path between the cooling operation and the heating operation. Here, the cooling operation is an operation for supplying a low-temperature and low-pressure refrigerant to the indoor heat exchanger 21, and the heating operation is an operation for supplying a high-temperature and high-pressure refrigerant to the indoor heat exchanger 21. .
 室内機20は、室内に設置されるものであり、室内熱交換器21と、送風機22と、温度検出部23とを備える。
 室内熱交換器21は、冷房運転時には蒸発器として機能し、暖房運転時には凝縮器として機能する熱交換器である。送風機22は、室内熱交換器21に対向して配置され、室内熱交換器21に空気を送風するものである。室内熱交換器21では、冷媒回路内部を流通する冷媒と送風機22により送風された室内空気との熱交換が行われる。温度検出部23は、空調空間としての室内の温度を検出するものであり、サーミスタなどを用いて室内の温度を検出する。
The indoor unit 20 is installed indoors, and includes an indoor heat exchanger 21, a blower 22, and a temperature detection unit 23.
The indoor heat exchanger 21 is a heat exchanger that functions as an evaporator during cooling operation and functions as a condenser during heating operation. The blower 22 is disposed to face the indoor heat exchanger 21 and blows air to the indoor heat exchanger 21. In the indoor heat exchanger 21, heat exchange is performed between the refrigerant circulating in the refrigerant circuit and the indoor air blown by the blower 22. The temperature detection part 23 detects the temperature of the room as an air-conditioned space, and detects the temperature of the room using a thermistor or the like.
 そして、図1に示すように室内機20の室内熱交換器21と、室外機10の膨張弁13および四方弁14とが、冷媒が流れる冷媒配管で接続されている。以上のように、圧縮機11と、室外熱交換器12と、膨張弁13と、室内熱交換器21とが冷媒配管により接続されることで、冷媒の蒸発による吸熱、凝縮による放熱を利用する冷凍サイクル装置1が構成されている。 As shown in FIG. 1, the indoor heat exchanger 21 of the indoor unit 20 and the expansion valve 13 and the four-way valve 14 of the outdoor unit 10 are connected by a refrigerant pipe through which the refrigerant flows. As described above, the compressor 11, the outdoor heat exchanger 12, the expansion valve 13, and the indoor heat exchanger 21 are connected by the refrigerant pipe, so that the heat absorption due to the evaporation of the refrigerant and the heat dissipation due to the condensation are used. A refrigeration cycle apparatus 1 is configured.
 室内機20の内部には空気調和装置100の運転を制御する制御装置30が設けられており、リモコン3が接続されている。
 リモコン3は、使用者による操作を受け、操作に基づく操作信号を制御装置30に送信するものである。リモコン3は、空気調和装置100の運転状態等を表示する表示部と、使用者による操作を受ける操作部を備える。リモコン3と室内機20とは空気調和装置100の運転状態を示す信号または操作に基づく操作信号を伝達できればよく、通信線により電気的に接続されている場合と、無線通信で接続される場合がある。
A control device 30 for controlling the operation of the air conditioner 100 is provided inside the indoor unit 20, and a remote controller 3 is connected to the indoor unit 20.
The remote controller 3 receives an operation by the user and transmits an operation signal based on the operation to the control device 30. The remote controller 3 includes a display unit that displays an operating state of the air conditioning apparatus 100 and an operation unit that receives an operation by a user. The remote controller 3 and the indoor unit 20 need only be able to transmit a signal indicating the operating state of the air conditioner 100 or an operation signal based on the operation, and may be electrically connected by a communication line or connected by wireless communication. is there.
 次に、図2に基づいて制御装置30の構成を説明する。図2は制御装置30の概略構成を示すブロック図である。
 制御装置30は、例えば基板等のハードウェア回路、集積回路で構成されて室内機20の内部に設けられており、リモコン3から送信された操作信号に基づいて空気調和装置100を動作させる。
 制御装置30は、処理部31と、圧縮機駆動部32と、送風機駆動部33と、ヒータ駆動部34と、タイマー35と、記憶部36を備える。
Next, the configuration of the control device 30 will be described based on FIG. FIG. 2 is a block diagram illustrating a schematic configuration of the control device 30.
The control device 30 is configured by, for example, a hardware circuit such as a substrate and an integrated circuit, and is provided inside the indoor unit 20. The control device 30 operates the air conditioner 100 based on an operation signal transmitted from the remote controller 3.
The control device 30 includes a processing unit 31, a compressor driving unit 32, a blower driving unit 33, a heater driving unit 34, a timer 35, and a storage unit 36.
 処理部31は、圧縮機11、送風機22、ヒータ2それぞれの動作を決定する圧縮機制御部37、送風機制御部38、ヒータ制御部39を備えており、CPU(Central Processing Unit)またはDSP(Digital Signal Processor)と、CPUまたはDSPで実行されるソフトウェア等で構成される。処理部31は、リモコン3と温度検出部23と接続されており、リモコン3からの操作信号と温度検出部23が検出した室内温度の情報に基づいて空気調和装置100の動作を決定し、決定した動作に基づいて各駆動部に指示を与える。 The processing unit 31 includes a compressor control unit 37 that determines the operations of the compressor 11, the blower 22, and the heater 2, a blower control unit 38, and a heater control unit 39, and is a CPU (Central Processing Unit) or DSP (Digital). (Signal Processor) and software executed by the CPU or DSP. The processing unit 31 is connected to the remote controller 3 and the temperature detection unit 23, and determines the operation of the air conditioner 100 based on the operation signal from the remote control 3 and the information on the indoor temperature detected by the temperature detection unit 23. An instruction is given to each drive unit based on the performed operation.
 また、処理部31には、タイマー35と、記憶部36と、圧縮機駆動部32と、送風機駆動部33と、ヒータ駆動部34とが接続されている。
 タイマー35は、経過時間をカウントするものである。
 記憶部36は、一定時間毎に温度検出部23により検出される温度を蓄積して記憶する。温度検出部23が温度を検出する一定時間は例えば1分であり、予め設定される時間である。また記憶部36は、温度検出部23が検出する温度の時間経過に伴う変化率である室内温度変化率ΔTaを処理部31が算出する時間間隔と、室内温度変化率ΔTaの基準値である基準温度変化率ΔTastdを記憶している。室内温度変化率ΔTaを算出する時間間隔としては、圧縮機11を連続して運転させる時間である基準圧縮機運転時間Tistdcが記憶されている。
 基準圧縮機運転時間Tistdcで温度検出部23が検出した温度の温度差に基づいて算出された室内温度変化率は圧縮機用室内温度変化率ΔTacであり、圧縮機11が運転している時間における室内温度変化率ΔTaである。つまり、圧縮機11が運転を開始している間に検出された室内温度と当該室内温度が検出された時刻よりも基準圧縮機運転時間Tistdcだけ前の時刻に検出された室内温度との温度差を基準圧縮機運転時間Tistdcで除算して算出した、温度の変化率である。
 室内温度変化率ΔTaの基準値である基準温度変化率ΔTastdcとしては、圧縮機用室内温度変化率ΔTacに対する基準値としての基準圧縮機用室内温度変化率ΔTastdcが記憶されている。圧縮機用基準室内温度変化率ΔTastdcは正の値である。
In addition, a timer 35, a storage unit 36, a compressor drive unit 32, a blower drive unit 33, and a heater drive unit 34 are connected to the processing unit 31.
The timer 35 counts elapsed time.
The storage unit 36 accumulates and stores the temperatures detected by the temperature detection unit 23 at regular time intervals. The fixed time for the temperature detection unit 23 to detect the temperature is, for example, 1 minute, which is a preset time. The storage unit 36 also includes a time interval for the processing unit 31 to calculate the indoor temperature change rate ΔTa, which is a rate of change of the temperature detected by the temperature detection unit 23, and a reference value that is a reference value for the indoor temperature change rate ΔTa. The temperature change rate ΔTastd is stored. As a time interval for calculating the indoor temperature change rate ΔTa, a reference compressor operation time Tistdc that is a time for continuously operating the compressor 11 is stored.
The indoor temperature change rate calculated based on the temperature difference of the temperature detected by the temperature detection unit 23 in the reference compressor operation time Tistdc is the compressor indoor temperature change rate ΔTac, and is the time during which the compressor 11 is operating. The indoor temperature change rate ΔTa. That is, the temperature difference between the room temperature detected while the compressor 11 starts operation and the room temperature detected at a time before the reference compressor operation time Tistdc from the time when the room temperature was detected. Is the rate of change in temperature, calculated by dividing by the reference compressor operating time Tistdc.
As a reference temperature change rate ΔTastdc, which is a reference value of the indoor temperature change rate ΔTa, a reference compressor indoor temperature change rate ΔTastdc as a reference value for the compressor indoor temperature change rate ΔTac is stored. The compressor reference indoor temperature change rate ΔTastdc is a positive value.
 また、記憶部36には圧縮機11の運転を制御するための基準温度として、圧縮機11が運転を開始する温度である圧縮機運転開始温度Tconと、圧縮機11が運転を停止する温度である圧縮機運転停止温度Tcoffが記憶されており、ヒータ2の運転を制御するための基準温度として、ヒータ2が運転を開始する温度であるヒータ運転開始温度Thonと、ヒータ2が運転を停止する温度であるヒータ運転停止温度Thoffが記憶されている。各基準温度は、ヒータ運転開始温度Thon、圧縮機運転開始温度Tcon、ヒータ運転停止温度Thoff、圧縮機運転停止温度Tcoffの順に低い温度から高い温度に設定されている。なお、各温度は空気調和装置の設置場所や利用状況に応じて適宜、適切な温度を設定して記憶部36に記憶させるようにすることができる。 The storage unit 36 includes a compressor operation start temperature Tcon, which is a temperature at which the compressor 11 starts operating, and a temperature at which the compressor 11 stops operating, as reference temperatures for controlling the operation of the compressor 11. A certain compressor operation stop temperature Tcoff is stored, and as a reference temperature for controlling the operation of the heater 2, a heater operation start temperature Thon that is a temperature at which the heater 2 starts operation, and the heater 2 stops operation. A heater operation stop temperature Toff which is a temperature is stored. Each reference temperature is set from a low temperature to a high temperature in the order of the heater operation start temperature Thon, the compressor operation start temperature Tcon, the heater operation stop temperature Toff, and the compressor operation stop temperature Toff. In addition, each temperature can be appropriately stored in the storage unit 36 by appropriately setting the temperature according to the installation location and usage situation of the air conditioner.
 処理部31は、タイマー35がカウントする時間と、温度検出部23が検出した温度に基づいて、圧縮機11と、送風機22と、ヒータ2のそれぞれの動作を決定する。より具体的には、圧縮機11の動作を圧縮機制御部37が決定し、決定された圧縮機11の動作を行わせる制御信号を圧縮機駆動部32に送ると、制御信号に基づいて圧縮機駆動部32が圧縮機11を運転する。
 また、送風機22の動作を送風機制御部38が決定し、決定された送風機22の動作を行わせる制御信号を送風機駆動部33に送ると、制御信号に基づいて送風機駆動部33が送風機22を運転する。
 さらに、ヒータ2の動作をヒータ制御部39が決定し、決定されたヒータ2の動作を行わせる制御信号をヒータ駆動部34に送ると、制御信号に基づいてヒータ駆動部34がヒータ2を運転する。
The processing unit 31 determines the operations of the compressor 11, the blower 22, and the heater 2 based on the time counted by the timer 35 and the temperature detected by the temperature detection unit 23. More specifically, when the compressor control unit 37 determines the operation of the compressor 11 and sends a control signal for performing the determined operation of the compressor 11 to the compressor drive unit 32, the compression is performed based on the control signal. The machine drive unit 32 operates the compressor 11.
When the blower control unit 38 determines the operation of the blower 22 and sends a control signal for performing the determined operation of the blower 22 to the blower drive unit 33, the blower drive unit 33 operates the blower 22 based on the control signal. To do.
Furthermore, when the heater control unit 39 determines the operation of the heater 2 and sends a control signal for performing the determined operation of the heater 2 to the heater drive unit 34, the heater drive unit 34 operates the heater 2 based on the control signal. To do.
 ヒータ制御部39は、圧縮機11が運転している間における、温度検出部23が検出する温度の時間経過に伴う変化率が、設定された温度の変化率よりも小さい場合に、ヒータ2の運転を開始させる。つまりヒータ制御部39は、圧縮機11が運転している間における室内温度変化率ΔTaが基準温度変化率ΔTastdよりも小さい場合にヒータ2の運転を開始させる。 When the change rate of the temperature detected by the temperature detection unit 23 with the passage of time during the operation of the compressor 11 is smaller than the set change rate of the temperature, the heater control unit 39 Start driving. That is, the heater control unit 39 starts the operation of the heater 2 when the indoor temperature change rate ΔTa during the operation of the compressor 11 is smaller than the reference temperature change rate ΔTastd.
 次に、空気調和装置100の動作を説明する。
 まず、使用者がリモコン3の操作により空気調和装置100の運転を開始させる操作信号が処理部31に送信される。処理部31は、タイマー35がカウントする時間と、温度検出部23が検出した温度に基づいて空気調和装置100を動作させる。本実施の形態では、暖房運転におけるヒータ2の制御について説明する。
 空気調和装置100が暖房運転を開始すると、タイマー35はカウントを開始する。温度検出部23は上述のように、タイマー35のカウントに基づいて、記憶部36に記憶された一定時間毎に室内の温度を検出する。
 暖房運転の場合は、四方弁14は図1に示す向きに設定され、暖房運転が開始されて圧縮機11が駆動すると、冷凍サイクル装置1の内部を冷媒が循環することにより、室外熱交換器12では室外空気と冷媒との熱交換が行われ、室内熱交換器21では室内空気と冷媒との熱交換が行われる。室内熱交換器21により熱交換された高温の空気は、送風機22により室内に向けて送風されるため、室内が暖房される。
Next, operation | movement of the air conditioning apparatus 100 is demonstrated.
First, an operation signal that causes the user to start the operation of the air conditioner 100 by operating the remote controller 3 is transmitted to the processing unit 31. The processing unit 31 operates the air conditioner 100 based on the time counted by the timer 35 and the temperature detected by the temperature detection unit 23. In the present embodiment, control of the heater 2 in the heating operation will be described.
When the air conditioner 100 starts the heating operation, the timer 35 starts counting. As described above, the temperature detection unit 23 detects the indoor temperature at regular intervals stored in the storage unit 36 based on the count of the timer 35.
In the case of heating operation, the four-way valve 14 is set in the direction shown in FIG. 1, and when the heating operation is started and the compressor 11 is driven, the refrigerant circulates inside the refrigeration cycle apparatus 1, thereby the outdoor heat exchanger. 12, heat exchange between the outdoor air and the refrigerant is performed, and heat exchange between the indoor air and the refrigerant is performed in the indoor heat exchanger 21. Since the high-temperature air heat-exchanged by the indoor heat exchanger 21 is blown toward the room by the blower 22, the room is heated.
 ヒータ制御部39は、圧縮機11が運転している間に、基準圧縮機運転時間Tistdcで温度検出部23が検出した温度の温度差に基づいて算出された圧縮機用室内温度変化率ΔTacが、基準圧縮機用室内温度変化率ΔTastdcより小さい場合に、ヒータ2の運転を開始する。 While the compressor 11 is in operation, the heater control unit 39 calculates the compressor indoor temperature change rate ΔTac calculated based on the temperature difference detected by the temperature detection unit 23 during the reference compressor operation time Tistdc. When the indoor temperature change rate ΔTastdc for the reference compressor is smaller than the value, the operation of the heater 2 is started.
 ヒータ2は送風機22の送風先に位置して取り付けられているため、ヒータ2が開始されると、送風機22により室内に向けて送風される空気がヒータ2によって暖められて、室内へ送風される。 Since the heater 2 is mounted at a position where the blower 22 is blown, when the heater 2 is started, air blown into the room by the blower 22 is warmed by the heater 2 and blown into the room. .
 次に、図3及び図4に基づいて空気調和装置100の暖房運転時における処理部31の制御を説明する。図3は、処理部31の動作を示すフローチャートである。図4は室内温度と空気調和装置100の時間変化のグラフを示す図である。図4(a)は室内温度の時間変化、図4(b)は圧縮機11の動作の時間変化、図4(c)はヒータ2の動作の時間変化、図4(d)は圧縮機11が運転している時間である圧縮機運転時間Ticの時間変化、図4(e)は圧縮機用室内温度変化率ΔTacの時間変化を示している。圧縮機11およびヒータ2は、ONで運転している状態、OFFで停止している状態を示す。 Next, control of the processing unit 31 during the heating operation of the air-conditioning apparatus 100 will be described with reference to FIGS. FIG. 3 is a flowchart showing the operation of the processing unit 31. FIG. 4 is a view showing a graph of the indoor temperature and the time change of the air conditioner 100. 4A is a time change of the indoor temperature, FIG. 4B is a time change of the operation of the compressor 11, FIG. 4C is a time change of the operation of the heater 2, and FIG. FIG. 4 (e) shows the time change of the compressor indoor temperature change rate ΔTac. The compressor 11 and the heater 2 indicate a state where the compressor 11 and the heater 2 are operating when they are ON and a state where they are stopped when they are OFF.
 暖房運転を開始される操作が行われると、まずステップS101で圧縮機制御部37は圧縮機11をOFFにして運転が停止される。暖房運転が開始される前は圧縮機11とヒータ2は運転が停止されているため、圧縮機11とヒータ2はどちらも運転が停止された状態で暖房運転が開始される。
 ステップS101で圧縮機11の運転がOFFされるとステップS102に進み圧縮機制御部37は圧縮機運転時間Ticをリセットする。圧縮機制御部37はタイマー35がカウントする時間を参照して圧縮機運転時間Ticをカウントすることで、圧縮機11の動作を決定する。
When an operation to start the heating operation is performed, first, in step S101, the compressor control unit 37 turns off the compressor 11 and the operation is stopped. Since the compressor 11 and the heater 2 are stopped before the heating operation is started, the heating operation is started with both the compressor 11 and the heater 2 stopped.
When the operation of the compressor 11 is turned off in step S101, the process proceeds to step S102 and the compressor control unit 37 resets the compressor operation time Tic. The compressor control unit 37 determines the operation of the compressor 11 by counting the compressor operation time Tic with reference to the time counted by the timer 35.
 ステップS102で圧縮機運転時間Ticがリセットされると、ステップS103に進み圧縮機制御部37は室内温度Taが圧縮機11の圧縮機運転開始温度Tcon未満であるか、つまりTa<Tconであるかを判断する。 When the compressor operation time Tic is reset in step S102, the process proceeds to step S103, and the compressor control unit 37 determines whether the room temperature Ta is lower than the compressor operation start temperature Tcon of the compressor 11, that is, whether Ta <Tcon. Judging.
 ステップ103で室内温度Taが圧縮機11の圧縮機運転開始温度Tcon未満でない場合、ステップS101に戻り圧縮機11およびヒータ2は停止された状態が継続さる。
 ステップ103で室内温度Taが圧縮機11の圧縮機運転開始温度Tcon未満である場合、室内を暖房する必要があるので、ステップS104に進み圧縮機制御部37は圧縮機11をONにして運転を開始する。ステップS104では、暖房運転が開始されたあと圧縮機11の運転による冷凍サイクル装置1の暖房能力のみで室内を暖房させるため、ヒータ2の運転は開始しない。
When the room temperature Ta is not lower than the compressor operation start temperature Tcon of the compressor 11 in step 103, the process returns to step S101 and the compressor 11 and the heater 2 are kept stopped.
If the room temperature Ta is lower than the compressor operation start temperature Tcon of the compressor 11 in step 103, it is necessary to heat the room, so that the process proceeds to step S104, where the compressor control unit 37 turns on the compressor 11 and operates. Start. In Step S104, since the room is heated only by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 after the heating operation is started, the operation of the heater 2 is not started.
 ステップS104で圧縮機11の運転が開始されると、ステップS105に進み圧縮機制御部37は圧縮機運転時間Ticのカウントを0から開始する。圧縮機運転時間Ticのカウントの開始は、タイマー35がカウントする経過時間のうち、圧縮機11の運転が開始された時間の直前のカウントでも良いし、圧縮機11の運転が開始された時間の直後のカウントとしても良い。また、圧縮機11の運転が開始されると同時にタイマー35のカウントと圧縮機運転時間Ticのカウントを揃えて開始させても良い。 When the operation of the compressor 11 is started in step S104, the process proceeds to step S105, and the compressor control unit 37 starts counting the compressor operation time Tic from zero. The count of the compressor operation time Tic may be the count immediately before the time when the operation of the compressor 11 is started among the elapsed time counted by the timer 35, or the time when the operation of the compressor 11 is started. It is good also as a count immediately after. Further, at the same time when the operation of the compressor 11 is started, the count of the timer 35 and the count of the compressor operation time Tic may be aligned and started.
 ステップS105で圧縮機運転時間Ticのカウントが0からスタートされると、ステップS106に進み、圧縮機制御部37は、室内温度Taが圧縮機11が運転を停止する圧縮機運転停止温度Tcoff未満であるか、つまりTa<Tcoffであるかを判断する。 When the count of the compressor operation time Tic is started from 0 in step S105, the process proceeds to step S106, and the compressor control unit 37 determines that the indoor temperature Ta is lower than the compressor operation stop temperature Tcoff at which the compressor 11 stops operating. It is determined whether there is, that is, Ta <Tcoff.
 ステップS106で室内温度Taが圧縮機11が運転を停止する圧縮機運転停止温度Tcoff未満でない場合は図3のt1に示す場合であり、室内を充分に暖房できているためステップS101に戻って圧縮機11をOFFにして運転を停止する。 When the room temperature Ta is not lower than the compressor operation stop temperature Tcoff at which the compressor 11 stops operating in step S106, it is the case indicated by t1 in FIG. 3, and since the room is sufficiently heated, the process returns to step S101 to perform compression. The machine 11 is turned off and the operation is stopped.
 ステップS106で室内温度Taが圧縮機11が運転を停止する圧縮機運転停止温度Tcoff未満である場合、ステップS107に進み圧縮機制御部37は圧縮機運転時間Ticが記憶部36に記憶された時間間隔である基準圧縮機運転時間Tistdc以上であるか、つまりTic≧Tistdであるかを判断する。 When the room temperature Ta is lower than the compressor operation stop temperature Tcoff at which the compressor 11 stops operating in step S106, the process proceeds to step S107 and the compressor control unit 37 is the time when the compressor operation time Tic is stored in the storage unit 36. It is determined whether the interval is equal to or longer than the reference compressor operation time Tistdc, that is, whether Tic ≧ Tistd.
 ステップS107で圧縮機運転時間Ticが基準圧縮機運転時間Tistdc以上でない場合、ステップS106に戻る。ステップS107とステップS106を繰り返す動作により、室内温度Taが圧縮機11が運転を停止する圧縮機運転停止温度Tcoff未満である場合(ステップS106:Yes)に、圧縮機11の運転時間が基準圧縮機運転時間Tistdcに達するまで圧縮機制御部37は圧縮機11の運転を継続する。 If the compressor operation time Tic is not equal to or longer than the reference compressor operation time Tistdc in step S107, the process returns to step S106. When the room temperature Ta is lower than the compressor operation stop temperature Tcoff at which the compressor 11 stops operating (Step S106: Yes) by the operation of repeating Step S107 and Step S106, the operation time of the compressor 11 is the reference compressor. The compressor control unit 37 continues the operation of the compressor 11 until the operation time Tistdc is reached.
 ステップS107で圧縮機運転時間Ticが基準圧縮機運転時間Tistdc以上である場合、ステップS108に進みヒータ制御部39は室内温度Taがヒータ2が運転を開始するヒータ運転開始温度Thon未満であるか、つまりTa<Thonであるかを判断する。 If the compressor operation time Tic is equal to or longer than the reference compressor operation time Tistdc in step S107, the process proceeds to step S108, and the heater control unit 39 determines whether the room temperature Ta is less than the heater operation start temperature Thon at which the heater 2 starts operation. That is, it is determined whether Ta <Thon.
 ステップS108で室内温度Taがヒータ運転開始温度Thon未満でない場合、ステップS106に戻りステップS106以降の動作を繰り返す。ステップS108からステップS106に戻る場合は、圧縮機11は圧縮機運転時間Ticを経過した後でも運転を継続する。 If the room temperature Ta is not lower than the heater operation start temperature Thon in step S108, the process returns to step S106 and the operations after step S106 are repeated. When returning from step S108 to step S106, the compressor 11 continues operation even after the compressor operation time Tic has elapsed.
 ステップS108で室内温度Taがヒータ運転開始温度Thon未満である場合、ステップS109に進む。そして、ステップS109で、ヒータ制御部39は圧縮機11が運転している間に、記憶部36に記憶された時間間隔に対応して温度検出部23が検出した温度の温度差に基づいて温度の変化率を算出し、算出した変化率が記憶部36に記憶された変化率の基準値よりも小さいかどうかを判断する。つまり、基準圧縮機運転時間Tistdcで温度検出部23が検出した温度の温度差に基づいて算出された圧縮機用室内温度変化率ΔTacが、記憶部36に記憶された基準圧縮機用室内温度変化率ΔTastdc未満であることを示すΔTac<ΔTastdcであるかを判断する。 If the room temperature Ta is lower than the heater operation start temperature Thon in step S108, the process proceeds to step S109. In step S109, the heater control unit 39 determines the temperature based on the temperature difference detected by the temperature detection unit 23 corresponding to the time interval stored in the storage unit 36 while the compressor 11 is operating. The change rate is calculated, and it is determined whether the calculated change rate is smaller than the reference value of the change rate stored in the storage unit 36. That is, the compressor indoor temperature change rate ΔTac calculated based on the temperature difference detected by the temperature detection unit 23 during the reference compressor operation time Tistdc is the reference compressor indoor temperature change stored in the storage unit 36. It is determined whether ΔTac <ΔTastdc indicating that the rate is less than ΔTastdc.
 ステップS109で圧縮機用室内温度変化率ΔTacが、基準圧縮機用室内温度変化率ΔTastdc未満でない場合、圧縮機11と冷凍サイクル装置1の暖房能力のみで室内を安定して暖房することができる状態であるため、ヒータ2を作動させることなくステップS106に戻り圧縮機11のみの暖房運転を継続する。 When the compressor indoor temperature change rate ΔTac is not less than the reference compressor indoor temperature change rate ΔTastdc in step S109, the room can be stably heated only by the heating capacity of the compressor 11 and the refrigeration cycle apparatus 1. Therefore, the operation returns to step S106 without operating the heater 2 and the heating operation of only the compressor 11 is continued.
 ステップS109で圧縮機用室内温度変化率ΔTacが、基準圧縮機用室内温度変化率ΔTastdc未満である場合は図4t3に示す場合であり、圧縮機11と冷凍サイクル装置1の暖房能力のみによる暖房では不十分であり、室内を安定して暖房することができない状態、であるため、ステップS110に進みヒータ制御部39はヒータ2をONにして運転を開始する。 When the compressor indoor temperature change rate ΔTac is less than the reference compressor indoor temperature change rate ΔTastdc in step S109, this is the case shown in FIG. Since it is insufficient and the room cannot be stably heated, the process proceeds to step S110, and the heater control unit 39 turns on the heater 2 and starts operation.
 例えば、圧縮機が運転している間に、ヒータ運転開始温度Thonが23℃、基準圧縮機運転時間Tistdcが10分、基準圧縮機用室内温度変化率ΔTastdcが0.1℃/分、圧縮機11の運転開始時の室内温度Taが20℃、圧縮機11の運転開始から10分後の室内温度Taが22℃とする。室内温度Taが20℃Ta<Thonを満たすが、圧縮機用室内温度変化率ΔTacは0.2℃/分となり、ΔTac<ΔTastdcでない。よって、ヒータ制御部29はヒータ2を作動させることなく、圧縮機11のみ運転する。一方で、圧縮機11の運転開始時の室内温度Taが20℃、圧縮機11の暖房運転開始から10分後の室内温度Taが19℃であった場合、圧縮機用室内温度変化率ΔTacは-0.1℃/分となり、ΔTac<ΔTastdcであるため、ヒータ2の運転を開始する。 For example, while the compressor is operating, the heater operation start temperature Thon is 23 ° C., the reference compressor operation time Tistdc is 10 minutes, the reference compressor indoor temperature change rate ΔTastdc is 0.1 ° C./min, the compressor The indoor temperature Ta at the start of operation No. 11 is 20 ° C., and the indoor temperature Ta 10 minutes after the start of operation of the compressor 11 is 22 ° C. The room temperature Ta satisfies 20 ° C. Ta <Thon, but the compressor indoor temperature change rate ΔTac is 0.2 ° C./min, and ΔTac <ΔTastdc is not satisfied. Therefore, the heater control unit 29 operates only the compressor 11 without operating the heater 2. On the other hand, when the indoor temperature Ta at the start of the operation of the compressor 11 is 20 ° C. and the indoor temperature Ta after 10 minutes from the start of the heating operation of the compressor 11 is 19 ° C., the indoor temperature change rate ΔTac for the compressor is Since −0.1 ° C./min and ΔTac <ΔTastdc, the operation of the heater 2 is started.
 ステップS110でヒータ2が運転を開始すると、ステップS111に進む。ステップS111では、室内温度Taがヒータ運転停止温度Thoff以上であるか、つまりTa≧Thoffであるかを判断する。 When the heater 2 starts operation in step S110, the process proceeds to step S111. In step S111, it is determined whether the room temperature Ta is equal to or higher than the heater operation stop temperature Toff, that is, Ta ≧ Toff.
 ステップS111で室内温度Taがヒータ運転停止温度Thoff以上でない場合、ステップS111を繰り返して、室内温度Taがヒータ運転停止温度Thoff以上になるまでヒータ制御部39はヒータ2を運転する。 When the room temperature Ta is not equal to or higher than the heater operation stop temperature Toff in step S111, the heater control unit 39 operates the heater 2 until the room temperature Ta becomes equal to or higher than the heater operation stop temperature Toff.
 ステップS111で室内温度Taがヒータ運転停止温度Thoff以上である場合は図4のt4に示す場合であり、ステップS112に進みヒータ制御部39はヒータ2をOFFにして運転を停止する。 If the room temperature Ta is equal to or higher than the heater operation stop temperature Toff in step S111, it is the case indicated by t4 in FIG. 4, and the process proceeds to step S112 where the heater control unit 39 turns off the heater 2 and stops the operation.
 ステップS112でヒータ2の運転が停止されると、ステップS105に戻りステップS105以降の動作を繰り返す。 When the operation of the heater 2 is stopped in step S112, the process returns to step S105 and the operations after step S105 are repeated.
 以上のように実施の形態1の空気調和装置100では、ヒータ制御部39は、圧縮機11が運転している間における空調空間の時間経過に伴う温度変化率が設定された温度変化率よりも小さい場合に、ヒータ2の運転を開始させる。圧縮機の運転による暖房能力と空調空間の暖房負荷状況との関係は、温度変化率に反映されるので、ヒータ制御部39が空調空間の時間経過に伴う温度変化率に基づいてヒータ2の運転を開始させることにより、温度変化率に反映される空調空間の暖房負荷状況に応じてヒータ2を動作させることができることになる。そのため、圧縮機11の運転による冷凍サイクル装置1の暖房能力のみで室内を暖房していれば充分に暖房ができる状態であるにもかかわらず一時的な温度変化に対応して不要にヒータを動作させ、エネルギーを無駄に消費することを抑制できる。
 特に、圧縮機11の運転による冷凍サイクル装置1の暖房能力のみで室内を暖房する場合よりも、冷凍サイクル装置1の暖房能力とヒータ2の暖房能力とで室内を暖房する場合の方が多くのエネルギーを必要とするので、ヒータ2が不必要に動作することなくエネルギーを無駄に消費することを抑制できる。
 また、ヒータ制御部39が、温度検出部23が検出した温度の温度差に基づいて変化率を算出し、算出した変化率が記憶部36に記憶された変化率の基準値よりも小さい場合に、ヒータ2の運転を開始させるため、空調空間の暖房負荷状況に応じて使用者がリモコン3を操作して空気調和装置100またはヒータ2の動作を変更する必要がなく、ヒータ2が不必要に動作することを抑制して室内を暖房することができる。
 また、室内機20はヒータ2を接続する端子4を備え、ヒータ制御部39は端子4に接続されたヒータ2を制御するため、空気調和装置100の用途や設置場所等に適応したヒータ2を使用者が選択して接続することができる。
As described above, in the air conditioning apparatus 100 of the first embodiment, the heater control unit 39 is more than the temperature change rate at which the temperature change rate with the passage of time of the air-conditioned space during operation of the compressor 11 is set. When it is smaller, the operation of the heater 2 is started. Since the relationship between the heating capacity by the operation of the compressor and the heating load status of the air-conditioned space is reflected in the temperature change rate, the heater control unit 39 operates the heater 2 based on the temperature change rate with the passage of time in the air-conditioned space. By starting the operation, the heater 2 can be operated according to the heating load condition of the air-conditioned space reflected in the rate of temperature change. Therefore, if the room is heated only by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11, the heater is operated unnecessarily in response to a temporary temperature change even though the room can be sufficiently heated. And wasteful consumption of energy can be suppressed.
In particular, there are more cases where the room is heated with the heating capacity of the refrigeration cycle apparatus 1 and the heating capacity of the heater 2 than when the room is heated only with the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11. Since energy is required, it is possible to suppress wasteful consumption of energy without the heater 2 operating unnecessarily.
Further, when the heater control unit 39 calculates the change rate based on the temperature difference between the temperatures detected by the temperature detection unit 23 and the calculated change rate is smaller than the reference value of the change rate stored in the storage unit 36. In order to start the operation of the heater 2, the user does not need to change the operation of the air conditioner 100 or the heater 2 by operating the remote controller 3 according to the heating load condition of the air-conditioned space, and the heater 2 is unnecessary. It is possible to heat the room while suppressing the operation.
In addition, the indoor unit 20 includes a terminal 4 for connecting the heater 2, and the heater control unit 39 controls the heater 2 connected to the terminal 4, so that the heater 2 suitable for the use and installation location of the air conditioner 100 is installed. The user can select and connect.
実施の形態2.
 実施の形態1では、ヒータ制御部39は端子4に接続された1つのヒータ2を制御する空気調和装置100について説明したが、実施の形態2では、ヒータ制御部39は複数のヒータを制御する空気調和装置200について説明する。
 図5は実施の形態2に係る空気調和装置200の概略構成を示す構成図である。実施の形態2では、実施の形態1との相違点を中心に説明し、実施の形態1との同一部分には同一符号を付して説明を省略するものとする。
Embodiment 2. FIG.
In the first embodiment, the heater control unit 39 has been described for the air conditioner 100 that controls one heater 2 connected to the terminal 4, but in the second embodiment, the heater control unit 39 controls a plurality of heaters. The air conditioner 200 will be described.
FIG. 5 is a configuration diagram illustrating a schematic configuration of the air-conditioning apparatus 200 according to Embodiment 2. In FIG. In the second embodiment, the difference from the first embodiment will be mainly described, and the same parts as those in the first embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 実施の形態2に係る空気調和装置200の室内機20は、この冷凍サイクル装置1による暖房能力を補助するための複数のヒータをそれぞれ接続する複数の端子を備えている。実施の形態2では、複数のヒータを接続する端子は、第1のヒータ端子である端子4aと、第2のヒータ端子である4bの2つの端子からなる構成を説明する。端子4aには1段目ヒータ2aが接続され、端子4bには2段目ヒータ2bが接続される。
 ヒータ制御部39は、端子4aに接続された1段目ヒータ2aと端子4bに接続された2段目ヒータ2bを制御する。また、ヒータ制御部39は、圧縮機11を運転している間に室内の温度変化率が基準値よりも小さい場合に1段目ヒータ2aの運転を開始し、1段目ヒータ2aを運転している間に室内の温度変化が基準値よりも小さい場合には、1段目ヒータ2aの運転を継続するとともに、2段目ヒータ2bの運転を開始させる。
The indoor unit 20 of the air-conditioning apparatus 200 according to Embodiment 2 includes a plurality of terminals that respectively connect a plurality of heaters for assisting the heating capacity of the refrigeration cycle apparatus 1. In the second embodiment, a configuration in which the terminals to which a plurality of heaters are connected is composed of two terminals: a terminal 4a that is a first heater terminal and a terminal 4b that is a second heater terminal. A first stage heater 2a is connected to the terminal 4a, and a second stage heater 2b is connected to the terminal 4b.
The heater control unit 39 controls the first stage heater 2a connected to the terminal 4a and the second stage heater 2b connected to the terminal 4b. The heater control unit 39 starts the operation of the first stage heater 2a and operates the first stage heater 2a when the indoor temperature change rate is smaller than the reference value while the compressor 11 is operating. If the indoor temperature change is smaller than the reference value during the operation, the operation of the first stage heater 2a is continued and the operation of the second stage heater 2b is started.
 記憶部36は、温度検出部23が検出する温度の時間経過に伴う変化率である室内温度変化率ΔTaを処理部31が算出する時間間隔と、室内温度変化率ΔTaの基準値である基準温度変化率ΔTastdをそれぞれ複数記憶している。
 具体的には、変化率を算出する第1の時間間隔として、圧縮機11を連続して運転させる時間である基準圧縮機運転時間Tistdcが記憶され、変化率を算出する第2の時間間隔として、1段目ヒータ2aを連続して運転させる時間である基準ヒータ運転時間Tistdhが記憶されている。
 基準ヒータ運転時間Tistdhで温度検出部23が検出した温度の温度差に基づいて算出された室内温度変化率はヒータ用室内温度変化率ΔTahであり、1段目ヒータ2aが運転している時間における室内温度変化率である。つまり、1段目ヒータ2aが運転をしている間に検出された室内温度と当該室内温度が検出された時刻よりも基準ヒータ運転時間Tistdhだけ前の時刻に検出された室内温度との温度差を、基準ヒータ運転時間Tistdhで除算して算出された、温度の変化率である。
 また、室内温度変化率ΔTaの第1の基準値として、圧縮機用基準室内温度変化率ΔTastdcが記憶され、室内温度変化率ΔTaの第2の基準値として、ヒータ用室内温度変化率ΔTahに対する基準値としてのヒータ用基準室内温度変化率ΔTastdhが記憶されている。圧縮機用基準室内温度変化率ΔTastdcおよびヒータ用基準室内温度変化率ΔTastdhは正の値である。
The storage unit 36 includes a time interval at which the processing unit 31 calculates the indoor temperature change rate ΔTa, which is a rate of change of the temperature detected by the temperature detection unit 23, and a reference temperature that is a reference value for the indoor temperature change rate ΔTa. A plurality of change rates ΔTastd are stored.
Specifically, as the first time interval for calculating the rate of change, the reference compressor operating time Tistdc, which is the time for continuously operating the compressor 11, is stored, and as the second time interval for calculating the rate of change. A reference heater operation time Tistdh, which is a time for continuously operating the first stage heater 2a, is stored.
The indoor temperature change rate calculated based on the temperature difference detected by the temperature detector 23 during the reference heater operation time Tistdh is the heater indoor temperature change rate ΔTah, and is the time during which the first stage heater 2a is operating. It is the indoor temperature change rate. That is, the temperature difference between the room temperature detected while the first stage heater 2a is operating and the room temperature detected at the time before the reference heater operation time Tistdh from the time when the room temperature was detected. Is the rate of change of temperature calculated by dividing by the reference heater operating time Tistdh.
Further, the compressor reference indoor temperature change rate ΔTastdc is stored as the first reference value of the indoor temperature change rate ΔTa, and the reference for the heater indoor temperature change rate ΔTah as the second reference value of the indoor temperature change rate ΔTa. A heater reference indoor temperature change rate ΔTastdh is stored as a value. The compressor reference indoor temperature change rate ΔTastdc and the heater reference indoor temperature change rate ΔTastdh are positive values.
 次に、空気調和装置200の動作を説明する。
 暖房運転が開始され、圧縮機が運転している間に、上記実施の形態1で説明したように1段目ヒータ2aが運転を開始するまでは実施の形態1と同じ動作である。ヒータ制御部39は、圧縮機11と1段目ヒータ2aを運転させている間にヒータ用室内温度変化率ΔTahが基準ヒータ用室内温度変化率ΔTastdh未満である場合、冷凍サイクル装置1と1段目ヒータ2aの暖房能力のみで室内を安定して暖房することができない状態であるため、ヒータ制御部39は2段目ヒータ2bの運転を開始する。
Next, operation | movement of the air conditioning apparatus 200 is demonstrated.
While the heating operation is started and the compressor is operating, the operation is the same as that of the first embodiment until the first stage heater 2a starts the operation as described in the first embodiment. When the heater indoor temperature change rate ΔTah is less than the reference heater indoor temperature change rate ΔTastdh while the compressor 11 and the first stage heater 2a are in operation, the heater control unit 39 is connected to the refrigeration cycle apparatus 1 and the first stage. Since the room cannot be stably heated only by the heating capacity of the eye heater 2a, the heater control unit 39 starts the operation of the second stage heater 2b.
 次に、図6及び図7に基づいて空気調和装置200の暖房運転時における処理部31の制御を説明する。図6は、実施の形態2に係る処理部31の動作を示すフローチャートである。図7は室内温度と空気調和装置200の時間変化のグラフを示す図である。図7(a)は室内温度の時間変化、図7(b)は圧縮機11の動作の時間変化、図7(c)は1段目ヒータ2aの動作の時間変化、図7(d)2段目ヒータ2bの動作の時間変化、図7(e)は圧縮機11が運転している時間である圧縮機運転時間Ticの時間変化、図7(f)1段目ヒータ2aが運転している時間であるヒータ運転時間Tihの時間変化、図7(g)は圧縮機用室内温度変化率ΔTacの時間変化、図7(h)はヒータ用室内温度変化率ΔTahの時間変化を示している。 Next, the control of the processing unit 31 during the heating operation of the air-conditioning apparatus 200 will be described based on FIGS. FIG. 6 is a flowchart showing the operation of the processing unit 31 according to the second embodiment. FIG. 7 is a diagram showing a graph of the indoor temperature and the time change of the air conditioner 200. FIG. 7A shows the time change of the room temperature, FIG. 7B shows the time change of the operation of the compressor 11, FIG. 7C shows the time change of the operation of the first stage heater 2a, and FIG. FIG. 7E shows the time change of the operation of the stage heater 2b, FIG. 7E shows the time change of the compressor operation time Tic, which is the time during which the compressor 11 is operating, and FIG. 7F shows the operation of the first stage heater 2a. 7 (g) shows the time change of the compressor room temperature change rate ΔTac, and FIG. 7 (h) shows the time change of the heater room temperature change rate ΔTah. .
 暖房運転を開始される操作が行われてからステップS211で1段目ヒータ2aをONにして運転を開始するまでは、ステップS206でヒータ運転時間Tihをリセットする動作以外、図3に基づく実施の形態1の動作と同様である。 After the operation to start the heating operation is performed, the operation based on FIG. 3 is performed except the operation of resetting the heater operation time Tih in step S206 until the operation is started by turning on the first stage heater 2a in step S211. The operation is the same as in the first mode.
 ステップS211で1段目ヒータ2aの運転が開始されると、ステップS212に進みヒータ制御部39はヒータ運転時間Tihのカウントを開始する。ヒータ運転時間Tihのカウントを開始する値は、タイマー35がカウントする経過時間のうち、1段目ヒータ2aの運転が開始された時間の直前のカウント値でも良いし、1段目ヒータ2aの運転が開始された時間の直後のカウント値としても良い。また、1段目ヒータ2aの運転が開始されると同時にタイマー35のカウントとヒータ運転時間Tihのカウントを揃えて開始させても良い。 When the operation of the first stage heater 2a is started in step S211, the process proceeds to step S212, and the heater control unit 39 starts counting the heater operation time Tih. The value for starting the counting of the heater operation time Tih may be the count value immediately before the time when the operation of the first stage heater 2a is started among the elapsed time counted by the timer 35, or the operation of the first stage heater 2a. It is also possible to use a count value immediately after the time when is started. Alternatively, the timer 35 and the heater operation time Tih may be started at the same time when the operation of the first stage heater 2a is started.
 ステップS212でヒータ運転時間Tihのカウントがスタートされると、ステップS213に進み、ヒータ制御部39は、室内温度Taがヒータ2a、2bが運転を停止するヒータ運転停止温度Thoff未満であるか、つまりTa<Thoffであるかを判断する。 When the count of the heater operation time Tih is started in step S212, the process proceeds to step S213, and the heater control unit 39 determines whether the room temperature Ta is lower than the heater operation stop temperature Toff at which the heaters 2a and 2b stop operating, that is, It is determined whether Ta <Thoff.
 ステップS213で室内温度Taがヒータ2a、2bが運転を停止するヒータ運転停止温度Thoff未満でない場合、つまり室内温度Taがヒータ運転停止温度Thoff以上である場合は、例えば、図7のt5に示すタイミングの状況であり、室内が過剰に暖房されているため、ヒータ制御部39は1段目ヒータ2aの運転を停止して、再び圧縮機11の運転要否を判断するステップS205に戻る。 If the room temperature Ta is not lower than the heater operation stop temperature Toff at which the heaters 2a and 2b stop operating in step S213, that is, if the room temperature Ta is equal to or higher than the heater operation stop temperature Toff, for example, the timing shown at t5 in FIG. In this situation, since the room is excessively heated, the heater control unit 39 stops the operation of the first stage heater 2a and returns to step S205 in which it is determined whether or not the operation of the compressor 11 is necessary.
 ステップS213で室内温度Taが、ヒータ2a、2bが運転を停止するヒータ運転停止温度Thoff未満である場合、ヒータによる加熱が必要な状況であり、このまま1段目ヒータ2aを基準ヒータ運転時間Tistdhまで運転させるか否かを判断する処理を行うため、ステップS214に進む。ステップS214ではヒータ制御部39はヒータ運転時間Tihが記憶部36に記憶された時間間隔である基準ヒータ運転時間Tistdh以上であるか、つまりTih≧Tistdhであるかを判断する。 If the room temperature Ta is lower than the heater operation stop temperature Toff at which the heaters 2a and 2b stop operating in step S213, it is necessary to heat the heater, and the first stage heater 2a is kept until the reference heater operation time Tistdh. In order to perform a process of determining whether or not to drive, the process proceeds to step S214. In step S214, the heater control unit 39 determines whether the heater operation time Tih is equal to or greater than the reference heater operation time Tistdh, which is the time interval stored in the storage unit 36, that is, whether Tih ≧ Tistdh.
 ステップS214でヒータ運転時間Tihが基準ヒータ運転時間Tistdh以上でない場合、ステップS213に戻る。ステップS214とステップS213を繰り返す動作により、室内温度Taがヒータ2a、2bが運転を停止するヒータ運転停止温度Tcofh未満である場合(ステップS214:Yes)に、1段目ヒータ2aの運転時間が基準ヒータ運転時間Tistdhに達するまでヒータ制御部39は1段目ヒータ2aの運転を継続する。 If the heater operation time Tih is not equal to or longer than the reference heater operation time Tistdh in step S214, the process returns to step S213. When the room temperature Ta is lower than the heater operation stop temperature Tcofh at which the heaters 2a and 2b stop operating (Step S214: Yes) by the operation of repeating Step S214 and Step S213, the operation time of the first stage heater 2a is a reference. The heater control unit 39 continues to operate the first stage heater 2a until the heater operation time Tistdh is reached.
 ステップS214でヒータ運転時間Tihが基準ヒータ運転時間Tistdh以上である場合、ステップS215に進みヒータ制御部39は室内温度Taがヒータ2a、2bが運転を開始するヒータ運転開始温度Thon未満であるか、つまりTa<Thonであるかを判断する。 When the heater operation time Tih is equal to or longer than the reference heater operation time Tistdh in step S214, the process proceeds to step S215, and the heater control unit 39 determines whether the room temperature Ta is less than the heater operation start temperature Thon at which the heaters 2a and 2b start operation. That is, it is determined whether Ta <Thon.
 ステップS215で室内温度Taがヒータ2a、2bが運転を開始するヒータ運転開始温度Thon未満でない場合は、1段目ヒータ2aの運転で暖房能力に不足はない状態なので、ステップS213に戻り、1段目ヒータ2aの運転要否を判断するステップS213以降の動作フローに戻る。 If the room temperature Ta is not lower than the heater operation start temperature Thon at which the heaters 2a and 2b start operation in step S215, the heating capacity is not insufficient in the operation of the first heater 2a, so the process returns to step S213. It returns to the operation | movement flow after step S213 which judges the driving | operation necessity of the eye heater 2a.
 ステップS215で室内温度Taがヒータ2a、2bが運転を開始するヒータ運転開始温度Thon未満である場合、ヒータの運転が必要な状況であるということである。このとき、次に、1段目ヒータ2aが運転している状態で、このまま1段目ヒータ2aを運転させるか、あるいは、さらに2段目ヒータ2bも運転させる必要があるか否かを、温度上昇率を見て判断する処理を行うため、ステップS216に進む。そして、ステップS216では、ヒータ制御部39は1段目ヒータ2aが運転している間に、記憶部36に記憶された時間間隔に対応して温度検出部23が検出した温度の温度差に基づいて温度の変化率を算出し、算出した変化率が記憶部36に記憶された変化率の基準値よりも小さいかどうかを判断する。つまり、基準ヒータ運転時間Tistdhで温度検出部23が検出した温度の温度差に基づいて算出されたヒータ用室内温度変化率ΔTahが、記憶部36に記憶された基準ヒータ用室内温度変化率ΔTastdh未満であることを示すΔTah<ΔTastdhであるかを判断する。 In step S215, if the room temperature Ta is lower than the heater operation start temperature Thon at which the heaters 2a and 2b start to operate, it means that the heater needs to be operated. At this time, in the state where the first stage heater 2a is operating, whether the first stage heater 2a is operated as it is or whether the second stage heater 2b needs to be operated further is determined. In order to perform a process of judging by looking at the rate of increase, the process proceeds to step S216. In step S216, the heater control unit 39 is based on the temperature difference detected by the temperature detection unit 23 corresponding to the time interval stored in the storage unit 36 while the first stage heater 2a is operating. Then, the change rate of the temperature is calculated, and it is determined whether or not the calculated change rate is smaller than the reference value of the change rate stored in the storage unit 36. That is, the heater indoor temperature change rate ΔTah calculated based on the temperature difference detected by the temperature detection unit 23 during the reference heater operation time Tistdh is less than the reference heater indoor temperature change rate ΔTastdh stored in the storage unit 36. It is determined whether ΔTah <ΔTastdh, which indicates that
 ステップ216でヒータ用室内温度変化率ΔTahが、基準ヒータ用室内温度変化率ΔTastdh未満でない場合、圧縮機11と冷凍サイクル装置1の暖房能力及び、1段目ヒータ2aの暖房能力で室内を安定して暖房することができる状態であるため、2段目ヒータ2bを作動させることなく、1段目ヒータ2aの運転要否を判断するステップS213以降の動作フローに戻る。そこで1段目ヒータ2aの運転が必要であれば圧縮機11及び1段目ヒータ2aによる暖房運転が継続される。 If the heater indoor temperature change rate ΔTah is not less than the reference heater indoor temperature change rate ΔTastdh in step 216, the room is stabilized by the heating capacity of the compressor 11 and the refrigeration cycle apparatus 1 and the heating capacity of the first stage heater 2a. Therefore, the process returns to the operation flow after step S213 for determining whether or not the first stage heater 2a is required to operate without operating the second stage heater 2b. Therefore, if the operation of the first stage heater 2a is necessary, the heating operation by the compressor 11 and the first stage heater 2a is continued.
 また、ステップ216でヒータ用室内温度変化率ΔTahが、基準ヒータ用室内温度変化率ΔTastdh未満である場合は、例えば図7のt4に示すタイミングの状態であり、圧縮機11と冷凍サイクル装置1の暖房能力と1段目ヒータ2aの暖房能力では室内の温度上昇が不十分であり、室内を安定して暖房することができていない状態であるため、既に運転している1段目ヒータ2aと異なるヒータ、すなわち2段目ヒータ2bの運転を開始させる。つまり、ステップS217に進みヒータ制御部39は運転している1段目ヒータと異なる2段目ヒータ2bをONにして運転を開始する。ステップS217では1段目ヒータ2aの運転を継続するとともに、2段目ヒータ2bの運転を開始させる。つまり、1段目ヒータ2aと2段目ヒータ2bは同時に運転している。 Further, when the heater indoor temperature change rate ΔTah is less than the reference heater indoor temperature change rate ΔTastdh in step 216, for example, the timing is shown at t <b> 4 in FIG. 7, and the compressor 11 and the refrigeration cycle apparatus 1 The heating capacity and the heating capacity of the first stage heater 2a are not sufficient for the room temperature to rise, and the room cannot be stably heated. The operation of a different heater, that is, the second stage heater 2b is started. That is, proceeding to step S217, the heater control unit 39 turns on the second stage heater 2b different from the operated first stage heater and starts operation. In step S217, the operation of the first stage heater 2a is continued and the operation of the second stage heater 2b is started. That is, the first stage heater 2a and the second stage heater 2b are operated simultaneously.
ステップS217でヒータ2が運転を開始すると、ステップS218に進む。ステップS218では、室内温度Taがヒータ運転停止温度Thoff以上であるか、つまりTa≧Thoffであるかを判断する。 When the heater 2 starts operation in step S217, the process proceeds to step S218. In step S218, it is determined whether the room temperature Ta is equal to or higher than the heater operation stop temperature Toff, that is, Ta ≧ Toff.
 ステップS218で室内温度Taがヒータ運転停止温度Thoff以上でない場合、ステップS218を繰り返して、室内温度Taがヒータ運転停止温度Thoff以上になるまでヒータ制御部39は1段目ヒータ2aおよび2段目ヒータ2bを運転する。 If the room temperature Ta is not equal to or higher than the heater operation stop temperature Toff in step S218, the heater control unit 39 repeats step S218 until the room temperature Ta becomes equal to or higher than the heater operation stop temperature Toff. Drive 2b.
 ステップS218で室内温度Taがヒータ運転停止温度Thoff以上である場合は図7のt5示す場合であり、ステップS219に進みヒータ制御部39は1段目ヒータ2aおよび2段目ヒータ2bをOFF、すなわちこれらヒータの運転を停止する。 If the room temperature Ta is equal to or higher than the heater operation stop temperature Toff in step S218, this is the case indicated by t5 in FIG. 7. In step S219, the heater control unit 39 turns off the first stage heater 2a and second stage heater 2b, The operation of these heaters is stopped.
 ステップS219で1段目ヒータ2aおよび2段目ヒータ2bの運転が停止されると、ステップS205に戻りステップS205以降の動作を繰り返す。 When the operation of the first stage heater 2a and the second stage heater 2b is stopped in step S219, the process returns to step S205 and repeats the operations in and after step S205.
 以上のように実施の形態2の空気調和装置200では、第1のヒータ端子である端子4aと、第2のヒータ端子である4bの2つの端子を備え、ヒータ制御部39は、1段目ヒータ2aを運転している間に記憶部36に記憶された基準ヒータ運転時間Tistdhに対応して温度検出部23が検出した温度の温度差に基づいてヒータ用室内温度変化率ΔTahを算出し、算出した変化率が記憶部36に記憶されたヒータ用基準室内温度変化率ΔTastdhよりも小さい場合に、運転している1段目ヒータ2aと異なる2段目ヒータ2bをONにして運転を開始する。
 そのため、1段目ヒータ2aが動作を開始した後に、圧縮機11の運転による冷凍サイクル装置1の暖房能力と1段目ヒータ2aの暖房能力で室内を暖房しても充分に暖房ができない状態である場合に、2段目ヒータ2bの動作を開始して暖房能力を変更することができる。
 また、1段目ヒータ2aの運転を継続するとともに、2段目ヒータ2bの運転を開始させるため、圧縮機11の運転による冷凍サイクル装置1の暖房能力と1段目ヒータ2aの暖房能力に加えて、2段目ヒータ2bの暖房能力で室内を暖房するので、不足した暖房能力を補うことができる。
 また、圧縮機11の運転による冷凍サイクル装置1の暖房能力と1段目ヒータ2aの暖房能力では充分に室内を暖房できない状態が継続している場合には圧縮機11と1段目ヒータ2aが運転し続けることになるが、2段目ヒータ2bの暖房能力が加わることにより室内を充分に暖房して再び圧縮機11のみの運転に切り替えることができるので、不必要にヒータを動作させ、エネルギーを無駄に消費することを抑制できる。
As described above, the air conditioner 200 according to Embodiment 2 includes the two terminals of the terminal 4a that is the first heater terminal and the terminal 4b that is the second heater terminal, and the heater control unit 39 is the first stage. The heater indoor temperature change rate ΔTah is calculated based on the temperature difference of the temperature detected by the temperature detection unit 23 corresponding to the reference heater operation time Tistdh stored in the storage unit 36 while the heater 2a is operating. When the calculated change rate is smaller than the heater reference indoor temperature change rate ΔTastdh stored in the storage unit 36, the second-stage heater 2b different from the operated first-stage heater 2a is turned on to start the operation. .
Therefore, after the first stage heater 2a starts operating, even if the room is heated with the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the first stage heater 2a, sufficient heating cannot be performed. In some cases, the heating capability can be changed by starting the operation of the second stage heater 2b.
Further, in order to continue the operation of the first stage heater 2a and start the operation of the second stage heater 2b, in addition to the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the first stage heater 2a. In addition, since the room is heated by the heating capacity of the second stage heater 2b, the insufficient heating capacity can be compensated.
In addition, when the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the first stage heater 2a are not sufficiently heated, the compressor 11 and the first stage heater 2a Although the operation is continued, the heating capacity of the second stage heater 2b is added so that the room can be sufficiently heated and switched to the operation of the compressor 11 again. Can be wasted.
 なお、1段目ヒータ2aと2段目ヒータ2bは同じ出力のヒータを用いても良いし、異なる出力のヒータを用いてもよい。使用するヒータの出力を、空気調和装置200を使用する空調空間に応じて変更することにより、空気調和装置200を設置する空調空間に適応した暖房能力の制御を行うことができる。
 また、複数のヒータを制御する空気調和装置200として、ヒータ制御部39は2つのヒータ2a、2bを制御する動作を示したが、これに限らず、3つ以上のヒータを制御する構成でもよい。3つ以上のヒータを制御する場合、1段目ヒータ2aの運転を継続するとともに、他の複数のヒータの運転を開始させても良いし、1段目ヒータ2aの運転を継続するとともに、他のヒータの運転を順に開始させてもよい。他のヒータの運転を順に開始させるとは、1段目ヒータ2aの運転を継続するとともに、2段目ヒータ2bの運転を開始させ、さらに暖房能力が必要な場合には1段目ヒータ2a及び2段目ヒータ2bの運転を継続するとともに、他のヒータの運転を開始させる動作である。
The first-stage heater 2a and the second-stage heater 2b may use the same output heater or different output heaters. By changing the output of the heater to be used according to the conditioned space in which the air conditioner 200 is used, the heating capacity adapted to the conditioned space in which the air conditioner 200 is installed can be controlled.
Moreover, although the heater control part 39 showed the operation | movement which controls two heaters 2a and 2b as the air conditioning apparatus 200 which controls a some heater, it may be the structure which controls not only this but three or more heaters. . When controlling three or more heaters, the operation of the first stage heater 2a may be continued, and the operation of a plurality of other heaters may be started, the operation of the first stage heater 2a may be continued, The operation of the heaters may be started in order. Starting the operation of the other heaters sequentially means that the operation of the first stage heater 2a is continued, the operation of the second stage heater 2b is started, and if the heating capacity is required, the first stage heater 2a and In this operation, the operation of the second heater 2b is continued and the operation of other heaters is started.
実施の形態3.
 実施の形態2では、ヒータ制御部39は1段目ヒータ2aの運転を継続するとともに、2段目ヒータ2bの運転を開始させる空気調和装置200について説明したが、実施の形態3では、ヒータ制御部39は1段目ヒータ2aの運転を停止するとともに、2段目ヒータ2cの運転を開始させる空気調和装置300について説明する。実施の形態3では、実施の形態2との相違点を中心に説明し、実施の形態2との同一部分には同一符号を付して説明を省略するものとする。
Embodiment 3 FIG.
In the second embodiment, the heater control unit 39 has described the air conditioner 200 that continues the operation of the first stage heater 2a and starts the operation of the second stage heater 2b. However, in the third embodiment, the heater control unit 39 The unit 39 will explain the air conditioner 300 that stops the operation of the first stage heater 2a and starts the operation of the second stage heater 2c. In the third embodiment, the difference from the second embodiment will be mainly described, and the same parts as those of the second embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 実施の形態3に係る空気調和装置300における複数のヒータを接続する端子は、第1のヒータ端子である端子4aと、第1のヒータ端子に接続されるヒータよりも高出力のヒータが接続される第3のヒータ端子4cの2つの端子からなる。端子4aには1段目ヒータ2aが接続され、端子4cには2段目ヒータ2cが接続される。2段目ヒータ2cは、1段目ヒータ2aよりも高出力のヒータである。 In the air conditioner 300 according to Embodiment 3, the terminals to which the plurality of heaters are connected are the first heater terminal 4a and the heater having a higher output than the heater connected to the first heater terminal. It consists of two terminals of the third heater terminal 4c. The first stage heater 2a is connected to the terminal 4a, and the second stage heater 2c is connected to the terminal 4c. The second stage heater 2c is a heater having a higher output than the first stage heater 2a.
 次に、空気調和装置300の動作を説明する。空気調和装置300は、図6に示した実施の形態2の空気調和装置200の動作と同様に動作するが、ステップS217で2段目のヒータ2bをONにする際、1段目ヒータ2aをOFFとする点が異なる。
 ヒータ制御部39は、図6のステップS217で、1段目ヒータ2aを運転している間に記憶部36に記憶された基準ヒータ運転時間Tistdhに対応して温度検出部23が検出した温度の温度差に基づいてヒータ用室内温度変化率ΔTahを算出し、算出した変化率が記憶部36に記憶されたヒータ用基準室内温度変化率ΔTastdhよりも小さい場合に、1段目ヒータ2aの運転を停止させ、2段目ヒータ2cの運転を開始させる。つまり、圧縮機11の運転による冷凍サイクル装置1の暖房能力と2段目ヒータ2cの暖房能力で室内を暖房する。
Next, the operation of the air conditioning apparatus 300 will be described. The air conditioner 300 operates in the same manner as the operation of the air conditioner 200 of the second embodiment shown in FIG. 6, but when the second stage heater 2b is turned on in step S217, the first stage heater 2a is turned on. The difference is that it is turned off.
The heater control unit 39 detects the temperature detected by the temperature detection unit 23 corresponding to the reference heater operation time Tistdh stored in the storage unit 36 while the first stage heater 2a is operating in step S217 of FIG. Based on the temperature difference, the heater indoor temperature change rate ΔTah is calculated. When the calculated change rate is smaller than the heater reference indoor temperature change rate ΔTastdh stored in the storage unit 36, the first stage heater 2a is operated. Stop and start operation of the second stage heater 2c. That is, the room is heated by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the second stage heater 2c.
 ステップS218で室内温度Taがヒータ運転停止温度Thoff以上でない場合、ステップS218を繰り返して、室内温度Taがヒータ運転停止温度Thoff以上になるまでヒータ制御部39は2段目ヒータ2cを運転する。 If it is determined in step S218 that the room temperature Ta is not equal to or higher than the heater operation stop temperature Toff, step S218 is repeated, and the heater control unit 39 operates the second stage heater 2c until the room temperature Ta becomes equal to or higher than the heater operation stop temperature Toff.
 ステップS218で室内温度Taがヒータ運転停止温度Thoff以上である場合は、ステップS219に進みヒータ制御部39は2段目ヒータ2cをOFFにして運転を停止する。 If the room temperature Ta is equal to or higher than the heater operation stop temperature Toff in step S218, the process proceeds to step S219, and the heater control unit 39 turns off the second stage heater 2c and stops the operation.
 ステップS219で2段目ヒータ2cの運転が停止されると、ステップS203に戻りステップS203以降の動作を繰り返す。 When the operation of the second stage heater 2c is stopped in step S219, the process returns to step S203 and repeats the operations after step S203.
 以上のように実施の形態3の空気調和装置300では、第1のヒータ端子である端子4aと、と、第1のヒータ端子に接続されるヒータよりも高出力のヒータが接続される第3のヒータ端子である4cの2つの端子の2つの端子を備え、ヒータ制御部39は、1段目ヒータ2aを運転している間に記憶部36に記憶された基準ヒータ運転時間Tistdhに対応して温度検出部23が検出した温度の温度差に基づいてヒータ用室内温度変化率ΔTahを算出し、算出した変化率が記憶部36に記憶されたヒータ用基準室内温度変化率ΔTastdhよりも小さい場合に、1段目ヒータ2aの運転を停止させ、2段目ヒータ2cの運転を開始させる。そのため、1段目ヒータ2aが動作を開始した後に、圧縮機11の運転による冷凍サイクル装置1の暖房能力と1段目ヒータ2aの暖房能力で室内を暖房しても充分に暖房ができない状態である場合に、1段目ヒータ2aよりも高出力の2段目ヒータ2cに切り替えて1段目ヒータ2aの暖房能力よりも大きな暖房能力で室内を暖房するので、不足した暖房能力を補うことができる。
 また、ヒータを空調空間における壁や床に設置するパネルヒータとする場合には、1段目ヒータ2aと2段目ヒータ2cがそれぞれ異なる空調空間における暖房を補助するため、空調負荷の状況に応じて1段目ヒータ2aと2段目ヒータ2cを配置する位置を変更することで空調空間に適応した暖房を行うことができる。
As described above, in the air conditioner 300 of the third embodiment, the terminal 4a that is the first heater terminal and the third heater that is connected to the heater that has a higher output than the heater connected to the first heater terminal. The heater control unit 39 corresponds to the reference heater operation time Tistdh stored in the storage unit 36 while operating the first stage heater 2a. When the heater indoor temperature change rate ΔTah is calculated based on the temperature difference detected by the temperature detector 23 and the calculated change rate is smaller than the heater reference indoor temperature change rate ΔTastdh stored in the storage unit 36. Then, the operation of the first stage heater 2a is stopped, and the operation of the second stage heater 2c is started. Therefore, after the first stage heater 2a starts operating, even if the room is heated with the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the first stage heater 2a, sufficient heating cannot be performed. In some cases, the second stage heater 2c having a higher output than the first stage heater 2a is switched to heat the room with a heating capacity larger than that of the first stage heater 2a, so that the insufficient heating capacity can be compensated. it can.
Further, when the heater is a panel heater installed on a wall or floor in an air-conditioned space, the first-stage heater 2a and the second-stage heater 2c assist heating in different air-conditioned spaces, so that depending on the condition of the air-conditioning load. By changing the positions where the first stage heater 2a and the second stage heater 2c are arranged, heating suitable for the air-conditioned space can be performed.
実施の形態4.
 実施の形態3では、ヒータ制御部39は1段目ヒータ2aの運転を停止するとともに、2段目ヒータ2cの運転を開始させる空気調和装置300について説明したが、実施の形態4では、ヒータ制御部39は2段目ヒータ2bの運転を開始させた後、暖房能力が不足している場合に、2段目ヒータ2cの運転を継続するとともに、1段目ヒータ2aの運転を開始させる空気調和装置について説明する。実施の形態4の空気調和装置の構成は、実施の形態3の空気調和装置と同様である。以下、実施の形態3との相違点を中心に説明し、実施の形態3との同一部分には同一符号を付して説明を省略するものとする。
Embodiment 4 FIG.
In the third embodiment, the heater control unit 39 has described the air conditioning apparatus 300 that stops the operation of the first stage heater 2a and starts the operation of the second stage heater 2c. However, in the fourth embodiment, the heater control unit 39 After starting the operation of the second stage heater 2b, the unit 39 continues the operation of the second stage heater 2c and starts the operation of the first stage heater 2a when the heating capacity is insufficient. The apparatus will be described. The structure of the air conditioning apparatus of Embodiment 4 is the same as that of the air conditioning apparatus of Embodiment 3. Hereinafter, the difference from the third embodiment will be mainly described, and the same parts as those of the third embodiment will be denoted by the same reference numerals and the description thereof will be omitted.
 実施の形態4に係る空気調和装置の記憶部36は、室内温度変化率ΔTaを処理部31が算出する第3の時間間隔として、2段目ヒータ2cを連続して運転させる時間である基準ヒータ運転時間Tistdh2を記憶している。また、記憶部36は、基準ヒータ運転時間Tistdh2で温度検出部23が検出した温度の温度差に基づいて算出されたヒータ用室内温度変化率ΔTah2に対する第3の基準値として、ヒータ用基準室内温度変化率ΔTastdh2が記憶されている。ヒータ用基準室内温度変化率ΔTastdh2は正の値である。 The storage unit 36 of the air-conditioning apparatus according to Embodiment 4 has a reference heater that is a time for continuously operating the second stage heater 2c using the indoor temperature change rate ΔTa as the third time interval calculated by the processing unit 31. The operation time Tistdh2 is stored. In addition, the storage unit 36 uses the heater reference indoor temperature as a third reference value for the heater indoor temperature change rate ΔTah2 calculated based on the temperature difference detected by the temperature detection unit 23 during the reference heater operation time Tistdh2. The change rate ΔTastdh2 is stored. The heater reference indoor temperature change rate ΔTastdh2 is a positive value.
 次に、実施の形態4の空気調和装置の動作を説明する。実施の形態4の空気調和装置は、図6に示した空気調和装置200の動作と同様に動作する。
 ヒータ制御部39は、図6のステップS217で1段目ヒータ2aの運転を停止させ、2段目ヒータ2cの運転を開始させると、ヒータ運転時間Tihのカウントをスタートする。ヒータ運転時間Tihのカウントをスタート後の動作は、基準ヒータ運転時間とヒータ用基準室内温度変化率が異なる以外は図6のステップS213以降の動作と同様である。
Next, the operation of the air conditioner of Embodiment 4 will be described. The air conditioner of Embodiment 4 operates in the same manner as the operation of the air conditioner 200 shown in FIG.
When the heater control unit 39 stops the operation of the first stage heater 2a and starts the operation of the second stage heater 2c in step S217 in FIG. 6, the heater operation time Tih starts to be counted. The operation after starting the counting of the heater operation time Tih is the same as the operation after step S213 in FIG. 6 except that the reference heater operation time and the heater reference indoor temperature change rate are different.
 ヒータ制御部39は、2段目ヒータ2cを運転している間に、記憶部36に記憶された基準ヒータ運転時間Tistdh2に対応して温度検出部が検出した温度の温度差に基づいてヒータ用室内温度変化率ΔTah2を算出し、算出したヒータ用室内温度変化率ΔTah2が記憶部36に記憶されたヒータ用基準室内温度変化率ΔTastdh2よりも小さい場合に、2段目ヒータ2cの運転を継続するとともに、1段目ヒータ2aの運転を開始させる。つまり、圧縮機11の運転による冷凍サイクル装置1の暖房能力、1段目ヒータ2aの暖房能力及び2段目ヒータ2cの暖房能力で室内を暖房する。 While operating the second stage heater 2c, the heater control unit 39 is based on the temperature difference of the temperature detected by the temperature detection unit corresponding to the reference heater operation time Tistdh2 stored in the storage unit 36. The indoor temperature change rate ΔTah2 is calculated, and when the calculated heater indoor temperature change rate ΔTah2 is smaller than the heater reference indoor temperature change rate ΔTastdh2 stored in the storage unit 36, the operation of the second stage heater 2c is continued. At the same time, the operation of the first stage heater 2a is started. That is, the room is heated by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11, the heating capacity of the first stage heater 2 a, and the heating capacity of the second stage heater 2 c.
 以上のように実施の形態4の空気調和装置では、2段目ヒータ2cが動作を開始した後に、圧縮機11の運転による冷凍サイクル装置1の暖房能力と2段目ヒータ2cの暖房能力で室内を暖房しても充分に暖房ができない状態である場合に、1段目ヒータ2aの運転を追加し、圧縮機11と1段目ヒータ2aと、2段目ヒータ2cとを動作させる。そのため、圧縮機11の運転による冷凍サイクル装置1の暖房能力、1段目ヒータ2cの暖房能力および2段目ヒータ2cの暖房能力で室内を暖房するので、圧縮機11の運転による冷凍サイクル装置1の暖房能力と2段目ヒータ2cの暖房能力では不足した暖房能力を補うことができる。 As described above, in the air conditioner according to the fourth embodiment, after the second stage heater 2c starts operating, the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11 and the heating capacity of the second stage heater 2c are increased. When heating is not possible, heating of the first stage heater 2a is added to operate the compressor 11, the first stage heater 2a, and the second stage heater 2c. Therefore, since the room is heated by the heating capacity of the refrigeration cycle apparatus 1 by the operation of the compressor 11, the heating capacity of the first stage heater 2 c and the heating capacity of the second stage heater 2 c, the refrigeration cycle apparatus 1 by the operation of the compressor 11. The heating capability that is insufficient with the heating capability of the second stage heater 2c can be compensated.
 なお、複数のヒータを制御す空気調和装置として2つのヒータ2a、2cを制御する動作を示したが、これに限らず、3つ以上のヒータをそれぞれ接続する複数の端子を設け、3つ以上のヒータを制御する構成でもよい。 In addition, although the operation | movement which controls two heaters 2a and 2c was shown as an air conditioning apparatus which controls a some heater, not only this but provided the some terminal which each connects three or more heaters, and three or more The structure which controls this heater may be sufficient.
実施の形態5.
 上記の実施の形態では、ヒータ制御部39の動作のみ説明したが、実施の形態5では、ヒータ2を運転している間に送風機22を制御する送風機制御部38を備える空気調和装置について説明する。実施の形態5の空気調和装置の構成図は、実施の形態5では、上記実施の形態との相違点を中心に説明し、上記実施の形態との同一部分には同一符号を付して説明を省略するものとする。
Embodiment 5 FIG.
In the above embodiment, only the operation of the heater control unit 39 has been described. In the fifth embodiment, an air conditioner including a blower control unit 38 that controls the blower 22 while the heater 2 is operating will be described. . In the configuration diagram of the air conditioner of the fifth embodiment, the fifth embodiment will be described with a focus on differences from the above embodiment, and the same parts as those of the above embodiment will be denoted by the same reference numerals. Shall be omitted.
 実施の形態5に係る空気調和装置の送風機制御部38は、ヒータ制御部39がヒータ2を運転している間に、送風機22の回転数を増やす。つまり、圧縮機11が運転している間における空調空間の時間経過に伴う温度変化率が設定された温度変化率よりも小さい場合に、送風機制御部38は送風機22の回転数を増やす。 The blower control unit 38 of the air-conditioning apparatus according to Embodiment 5 increases the rotational speed of the blower 22 while the heater control unit 39 is operating the heater 2. That is, the blower control unit 38 increases the rotation speed of the blower 22 when the temperature change rate with the passage of time in the air-conditioned space during the operation of the compressor 11 is smaller than the set temperature change rate.
 実施の形態5の空気調和装置では、ヒータ制御部39がヒータ2を運転している間に、送風機22の回転数を増やすことにより、ヒータ2で暖められた空気が単位時間あたりに室内へ送風される風量を増加させることができるので、圧縮機11の運転による冷凍サイクル装置1の暖房能力とヒータ2の暖房能力で室内を暖房する場合よりも短い時間で室内を暖房ことができる。そのため、ヒータ2が不必要に動作することなくエネルギーを無駄に消費することを抑制できる。 In the air conditioner of the fifth embodiment, while the heater control unit 39 is operating the heater 2, the air warmed by the heater 2 is blown into the room per unit time by increasing the rotation speed of the blower 22. Since the air volume to be increased can be increased, the room can be heated in a shorter time than the case where the room is heated by the heating capacity of the refrigeration cycle apparatus 1 and the heating capacity of the heater 2 by the operation of the compressor 11. Therefore, it is possible to suppress the wasteful consumption of energy without the heater 2 operating unnecessarily.
 なお、上記の実施の形態では、ヒータ制御部39が空調空間の時間経過に伴う温度変化率に基づいてヒータ2の運転を開始させる動作として、1段目ヒータ2aの運転を継続するとともに2段目ヒータ2bの運転を開始させる動作、1段目ヒータ2aの運転を停止するとともに2段目ヒータ2bの運転を開始させる動作、1段目ヒータ2aの運転を停止するとともに2段目ヒータ2bの運転を開始させた後2段目ヒータ2cの運転を継続するとともに1段目ヒータ2aの運転を開始させる動作をそれぞれ記載したが、これらを組み合わせて動作させてもよい。
 また、記憶部36に記憶された基準温度、室内温度変化率ΔTaを処理部31が算出する時間間隔、室内温度変化率ΔTaの基準値である基準温度変化率ΔTastdは、空気調和装置を設置する場所や使用状況に応じて変更可能であり、使用者がリモコンから変更できるものでもよい。
 また、ヒータ制御部39は室内機20に設けられる構成としたが、リモコン3に設ける構成としてもよい。
 また、ヒータ2は室内機20の制御装置30につながる端子4に接続されるものであるが、制御装置30により運転、すなわち駆動制御される構成であればよく、ヒータ2と端子4とを、制御装置30からヒータ2へ制御信号を伝送する伝送線で接続する構成としてもいいし、端子4に無線通信させる通信装置を取付けて制御装置30からヒータ2へ制御信号を無線で伝送する構成として接続してもよい。
In the above embodiment, the heater control unit 39 continues the operation of the first stage heater 2a as the operation of starting the operation of the heater 2 based on the temperature change rate with the passage of time in the air-conditioned space, and the second stage. The operation of starting the operation of the first heater 2b, the operation of stopping the operation of the first stage heater 2a and the operation of starting the operation of the second stage heater 2b, and the operation of the first stage heater 2a while stopping the operation of the second stage heater 2b Although the operation of continuing the operation of the second stage heater 2c after starting the operation and starting the operation of the first stage heater 2a has been described, they may be operated in combination.
The reference temperature stored in the storage unit 36, the time interval at which the processing unit 31 calculates the indoor temperature change rate ΔTa, and the reference temperature change rate ΔTastd, which is the reference value of the indoor temperature change rate ΔTa, are installed in the air conditioner. It can be changed according to the place and use situation, and may be changed by the user from the remote control.
The heater control unit 39 is provided in the indoor unit 20, but may be provided in the remote controller 3.
In addition, the heater 2 is connected to the terminal 4 connected to the control device 30 of the indoor unit 20. However, the heater 2 and the terminal 4 may be configured to be operated, that is, driven and controlled by the control device 30. It is good also as a structure connected by the transmission line which transmits a control signal from the control apparatus 30 to the heater 2, or the structure which attaches the communication apparatus which carries out wireless communication to the terminal 4, and transmits a control signal from the control apparatus 30 to the heater 2 wirelessly. You may connect.
 本発明に係る圧空気調和装置は、家庭用、業務用等の空気調和装置として広く利用することができる。 The compressed air conditioner according to the present invention can be widely used as an air conditioner for home use or business use.
1 冷凍サイクル装置、2 ヒータ、3 リモコン、4、4a、4b 端子、10 室外機、11 圧縮機、12 室外熱交換器、13 膨張弁、14 四方弁、20 室内機、21 室内熱交換器、22 送風機、23 温度検出部、30 制御装置、31 処理部、32 圧縮機駆動部、33 送風機駆動部、34 ヒータ駆動部、35 タイマー、36 記憶部、37 圧縮機制御部、38 送風機制御部、39 ヒータ制御部、100、200、300 空気調和装置 1 Refrigeration cycle equipment, 2 heaters, 3 remote controls, 4, 4a, 4b terminals, 10 outdoor units, 11 compressors, 12 outdoor heat exchangers, 13 expansion valves, 14 four-way valves, 20 indoor units, 21 indoor heat exchangers, 22 blower, 23 temperature detection unit, 30 control device, 31 processing unit, 32 compressor drive unit, 33 blower drive unit, 34 heater drive unit, 35 timer, 36 storage unit, 37 compressor control unit, 38 blower control unit, 39 Heater control unit, 100, 200, 300 Air conditioner

Claims (9)

  1.  圧縮機が運転することで空調空間の熱交換を行う冷凍サイクル装置と、
    前記空調空間における温度を検出する温度検出部と、
    前記圧縮機が運転している間における、前記温度検出部が検出する温度の時間経過に伴う変化率が、設定された温度の変化率よりも小さい場合に、前記空調空間を暖房するヒータの運転を開始させるヒータ制御部と
    を備える空気調和装置。
    A refrigeration cycle apparatus that performs heat exchange of the air-conditioned space by operating the compressor;
    A temperature detector for detecting the temperature in the air-conditioned space;
    Operation of the heater that heats the air-conditioned space when the change rate of the temperature detected by the temperature detection unit with the passage of time is smaller than the set change rate of the temperature during the operation of the compressor An air conditioner comprising: a heater control unit that starts the operation.
  2.  前記変化率を算出する第1の時間間隔と、前記変化率に対する第1の基準値を記憶する記憶部を備え、
    前記ヒータ制御部は、前記圧縮機が運転している間に、前記記憶部に記憶された前記第1の時間間隔に対応して前記温度検出部が検出した温度の温度差に基づいて前記温度の変化率を算出し、算出した変化率が前記記憶部に記憶された変化率の第1の基準値よりも小さい場合に、前記ヒータの運転を開始させることを特徴とする請求項1に記載の空気調和装置。
    A storage unit that stores a first time interval for calculating the rate of change and a first reference value for the rate of change;
    The heater control unit is configured to change the temperature based on a temperature difference detected by the temperature detection unit corresponding to the first time interval stored in the storage unit while the compressor is operating. 2. The operation of the heater is started when the change rate is calculated and the calculated change rate is smaller than a first reference value of the change rate stored in the storage unit. Air conditioner.
  3.  複数のヒータをそれぞれ接続する複数の端子を備え、
    前記ヒータ制御部は、前記複数の端子に接続された前記複数のヒータを制御することを特徴とする請求項2に記載の空気調和装置。
    A plurality of terminals for connecting a plurality of heaters, respectively,
    The air conditioning apparatus according to claim 2, wherein the heater control unit controls the plurality of heaters connected to the plurality of terminals.
  4.  前記ヒータ制御部は、前記複数の端子に接続された前記複数のヒータのうち一部のヒータを運転している間における、前記温度検出部が検出する温度の時間経過に伴う変化率が、前記記憶部に記憶された温度の変化率よりも小さい場合に、前記ヒータと異なるヒータの運転を開始させることを特徴とする請求項3に記載の空気調和装置。 The heater control unit has a rate of change with time of temperature detected by the temperature detection unit while operating some of the plurality of heaters connected to the plurality of terminals. The air conditioner according to claim 3, wherein when the rate of change in temperature stored in the storage unit is smaller than the heater, the operation of the heater different from the heater is started.
  5.  前記記憶部は、前記変化率を算出する第2の時間間隔と、前記変化率に対する第2の基準値を記憶し、
     前記ヒータ制御部は、前記複数の端子に接続された前記複数のヒータのうち一部のヒータを運転している間に、前記記憶部に記憶された第2の時間間隔に対応して前記温度検出部が検出した温度の温度差に基づいて前記温度の変化率を算出し、算出した変化率が前記記憶部に記憶された変化率の前記第2の基準値よりも小さい場合に、運転している前記ヒータと異なるヒータの運転を開始させることを特徴とする請求項4に記載の空気調和装置。
    The storage unit stores a second time interval for calculating the rate of change, and a second reference value for the rate of change,
    While the heater control unit is operating some of the plurality of heaters connected to the plurality of terminals, the heater control unit corresponds to the second time interval stored in the storage unit. The change rate of the temperature is calculated based on the temperature difference between the temperatures detected by the detection unit, and the driving is performed when the calculated change rate is smaller than the second reference value of the change rate stored in the storage unit. The air conditioner according to claim 4, wherein operation of a heater different from the heater is started.
  6.  前記複数のヒータを接続する端子は、第1のヒータ端子と、第2のヒータ端子からなり、
    前記ヒータ制御部は、前記第1のヒータ端子に接続されたヒータを運転している間に、前記記憶部に記憶された前記第2の時間間隔に対応して前記温度検出部が検出した温度の温度差に基づいて前記温度の変化率を算出し、算出した変化率が前記記憶部に記憶された変化率の前記第2の基準値よりも小さい場合に、前記第1のヒータ端子に接続されたヒータの運転を継続するとともに、前記2のヒータ端子に接続されたヒータの運転を開始させることを特徴とする請求項5に記載の空気調和装置。
    The terminals for connecting the plurality of heaters include a first heater terminal and a second heater terminal,
    The heater control unit detects the temperature detected by the temperature detection unit corresponding to the second time interval stored in the storage unit while operating the heater connected to the first heater terminal. The change rate of the temperature is calculated based on the temperature difference between the first heater terminal and the change rate calculated when the calculated change rate is smaller than the second reference value of the change rate stored in the storage unit. The air conditioner according to claim 5, wherein the operation of the heater is continued and the operation of the heater connected to the second heater terminal is started.
  7.  前記複数のヒータを接続する端子は、第1のヒータ端子と、第1のヒータ端子に接続されるヒータよりも高出力のヒータが接続される第3のヒータ端子からなり、
    前記ヒータ制御部は、前記第1のヒータ端子に接続されたヒータを運転している間に、前記記憶部に記憶された第2の時間間隔に対応して前記温度検出部が検出した温度の温度差に基づいて前記温度の変化率を算出し、算出した変化率が前記記憶部に記憶された変化率の前記第2の基準値よりも小さい場合に、前記第1の端子に接続されたヒータの運転を停止させ、前記3の端子に接続されたヒータの運転を開始させることを特徴とする請求項5に記載の空気調和装置。
    The terminals for connecting the plurality of heaters include a first heater terminal and a third heater terminal to which a heater having a higher output than the heater connected to the first heater terminal is connected.
    While the heater control unit is operating the heater connected to the first heater terminal, the heater control unit detects the temperature detected by the temperature detection unit corresponding to the second time interval stored in the storage unit. The change rate of the temperature is calculated based on the temperature difference, and the calculated change rate is connected to the first terminal when the calculated change rate is smaller than the second reference value of the change rate stored in the storage unit. 6. The air conditioner according to claim 5, wherein the operation of the heater is stopped and the operation of the heater connected to the third terminal is started.
  8.  前記記憶部は、前記変化率を算出する第3の時間間隔と、前記変化率に対する第3の基準値を記憶し、
    前記ヒータ制御部は、前記第3のヒータ端子に接続されたヒータを運転している間に、前記記憶部に記憶された第3の時間間隔に対応して前記温度検出部が検出した温度の温度差に基づいて前記温度の変化率を算出し、算出した変化率が前記記憶部に記憶された変化率の第3の基準値よりも小さい場合に、前記第3のヒータ端子に接続されたヒータの運転を継続するとともに、前記1のヒータ端子に接続されたヒータの運転を開始させることを特徴とする請求項7に記載の空気調和装置。
    The storage unit stores a third time interval for calculating the rate of change, and a third reference value for the rate of change,
    While the heater control unit is operating the heater connected to the third heater terminal, the heater control unit detects the temperature detected by the temperature detection unit corresponding to the third time interval stored in the storage unit. The temperature change rate is calculated based on the temperature difference. When the calculated change rate is smaller than a third reference value of the change rate stored in the storage unit, the temperature change rate is connected to the third heater terminal. The air conditioner according to claim 7, wherein the operation of the heater is continued and the operation of the heater connected to the one heater terminal is started.
  9.  前記冷凍サイクル装置において熱交換された空気を、前記空調空間に送風する送風機と、
    前記ヒータ制御部が前記ヒータを運転している間に、前記送風機の回転数を増やす送風機制御部と
    を備える請求項1から請求項8のいずれか1項に記載の空気調和装置。
    A blower that blows air that has undergone heat exchange in the refrigeration cycle apparatus to the conditioned space;
    The air conditioner according to any one of claims 1 to 8, further comprising: a blower control unit that increases a rotational speed of the blower while the heater control unit is operating the heater.
PCT/JP2017/017829 2017-05-11 2017-05-11 Air conditioner WO2018207304A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017829 WO2018207304A1 (en) 2017-05-11 2017-05-11 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/017829 WO2018207304A1 (en) 2017-05-11 2017-05-11 Air conditioner

Publications (1)

Publication Number Publication Date
WO2018207304A1 true WO2018207304A1 (en) 2018-11-15

Family

ID=64104690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/017829 WO2018207304A1 (en) 2017-05-11 2017-05-11 Air conditioner

Country Status (1)

Country Link
WO (1) WO2018207304A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248940A (en) * 1984-05-24 1985-12-09 Toshiba Corp Air conditioner
JPS6193330A (en) * 1984-10-09 1986-05-12 ハネウエル・インコーポレーテツド Air-conditioning controller
JPS643450A (en) * 1987-03-30 1989-01-09 Honeywell Inc Temperature controller controlling multiple facility environmental device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60248940A (en) * 1984-05-24 1985-12-09 Toshiba Corp Air conditioner
JPS6193330A (en) * 1984-10-09 1986-05-12 ハネウエル・インコーポレーテツド Air-conditioning controller
JPS643450A (en) * 1987-03-30 1989-01-09 Honeywell Inc Temperature controller controlling multiple facility environmental device

Similar Documents

Publication Publication Date Title
EP3067635B1 (en) Air conditioning device
JP4379537B2 (en) Compressor operation control device and air conditioner equipped with the same
JP4975187B2 (en) User side unit and air conditioner
KR101070186B1 (en) Direct expansion air handling unit having apparatus for automatic controlling air volum of blower by change of refrigerant flow
US9410715B2 (en) Air conditioning apparatus
JP5984964B2 (en) Air conditioning system
WO2015173868A1 (en) Air-conditioning device
US20150276255A1 (en) Air conditioning apparatus
JP2012141113A (en) Air conditioning/water heating device system
WO2012050087A1 (en) Heat source apparatus
JPH06201176A (en) Air-conditioner
EP1677058A2 (en) Method of controlling over-load cooling operation of air conditioner
WO2018037496A1 (en) Air conditioning device
WO2017119138A1 (en) Air-conditioning device
WO2018207304A1 (en) Air conditioner
KR101029988B1 (en) Method for automatic controlling air volum of blower by change of refrigerant flow of direct expansion air handling unit
JP3377632B2 (en) Air conditioner
WO2016125258A1 (en) Indoor unit and air-conditioning device using same
WO2019215813A1 (en) Air-conditioning apparatus
WO2020189588A1 (en) Air-conditioning system
JP7465827B2 (en) Refrigeration Cycle Equipment
JP2014005969A (en) Air conditioner
WO2023007666A1 (en) Air-conditioning and ventilation system
WO2024009434A1 (en) Air conditioning device and air conditioning system
WO2016002052A1 (en) Refrigerating and air-conditioning apparatus

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 17908924

Country of ref document: EP

Kind code of ref document: A1