WO2017104051A1 - Air-conditioning system - Google Patents

Air-conditioning system Download PDF

Info

Publication number
WO2017104051A1
WO2017104051A1 PCT/JP2015/085365 JP2015085365W WO2017104051A1 WO 2017104051 A1 WO2017104051 A1 WO 2017104051A1 JP 2015085365 W JP2015085365 W JP 2015085365W WO 2017104051 A1 WO2017104051 A1 WO 2017104051A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
intermittent operation
operation control
sensing
conditioning system
Prior art date
Application number
PCT/JP2015/085365
Other languages
French (fr)
Japanese (ja)
Inventor
悟 下條
文夫 齋藤
正史 芦野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2015/085365 priority Critical patent/WO2017104051A1/en
Priority to JP2017556278A priority patent/JP6494797B2/en
Publication of WO2017104051A1 publication Critical patent/WO2017104051A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an air conditioning system including a plurality of air conditioners.
  • Patent Document 1 discloses a technique in which when an air conditioner in such an air conditioning system has a ventilation function, the outside air temperature is detected, and intermittent operation control is performed by each air conditioner based on the detected outside air temperature detection value. It is disclosed.
  • the plurality of air conditioners can control the outside air temperature. Perform sensing operation to detect. Therefore, there is a problem that power consumption is wasted due to unnecessary sensing operation.
  • the present invention has been made in view of the above, and an object of the present invention is to obtain an air conditioning system that operates efficiently without unnecessary sensing operation.
  • the present invention provides an air conditioning system including a controller that manages a plurality of air conditioners, wherein the controller controls the intermittent operation control state of the plurality of air conditioners. And when the plurality of air conditioners perform intermittent operation control, one of the plurality of air conditioners is set as a representative sensing device that representatively performs sensing operation in the intermittent operation control, and the plurality of air conditioners Among the air conditioners, air conditioners other than the set representative sensing device are controlled so as not to perform the sensing operation in the intermittent operation control.
  • the air conditioning system according to the present invention has an effect that an air conditioning system that operates efficiently without unnecessary sensing operation can be obtained.
  • the schematic diagram which shows an example of the building provided with the air-conditioning system concerning Embodiment 1.
  • the figure which shows an example of the internal structure of the air conditioner contained in the air conditioning system concerning Embodiment 1.
  • 1 is a block diagram showing an example of an internal configuration of a drive control device that controls an air conditioner included in an air conditioning system according to a first embodiment;
  • a flowchart showing an example of a control operation of the drive control device
  • the flowchart which shows an example of the intermittent operation control at the time of the outside air low temperature of a drive control apparatus.
  • the flowchart which shows an example of intermittent operation control at the time of the external high humidity of a drive control apparatus Flow chart showing an example of control operation of centralized controller
  • FIG. The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1.
  • the figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1.
  • a flowchart showing an example of a control operation of the drive control device The flowchart which shows an example of the intermittent operation control at the time of the outside air low temperature of a drive control apparatus. Flow chart illustrating an example of the intermittent operation control at the time of the indoor CO 2 concentration decreases the drive control device Flow chart showing an example of control operation of centralized controller Flow chart showing an example of control operation of centralized controller The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 2. The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 2. The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 2. The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 2.
  • a flowchart showing an example of a control operation of the drive control device The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 3. The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 3. The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 3.
  • FIG. 1 is a schematic diagram illustrating an example of a building including the air conditioning system according to the first embodiment of the present invention.
  • a building 100 shown in FIG. 1 has four stories, and each floor is divided into north and south.
  • two air conditioners to which individual remote controllers are connected via a remote controller communication transmission path are installed. All the air conditioners are connected to a centralized controller 9 that centrally manages all the air conditioners via a centralized controller communication transmission path 90.
  • Each air conditioner is intermittently controlled as necessary.
  • intermittent operation control is control performed in order to protect an air conditioner at the time of the outside air low temperature or the outside air high humidity.
  • the north side of the first floor of the tenant 1 north is an air conditioner 11a to which an individual remote controller 8a is connected via a remote controller communication transmission line 80a and an individual via a remote controller communication transmission line 80b.
  • An air conditioner 11b connected to a remote controller 8b is installed.
  • the south side of the first floor, tenant 1 south is connected to the air conditioner 11c connected to the remote controller communication transmission line 80c via the remote controller communication transmission line 80c and the individual remote controller 8d via the remote controller communication transmission line 80d.
  • the air conditioner 11d is installed.
  • the north side of the second floor, tenant 2 north has an air conditioner 11e connected with an individual remote controller 8e via a remote controller communication transmission line 80e, and an individual remote controller 8f via a remote controller communication transmission line 80f. And an air conditioner 11f connected to each other.
  • the south side of the second floor, the tenant 2 south connects the air conditioner 11g connected to the individual remote controller 8g via the remote controller communication transmission line 80g and the individual remote controller 8h via the remote controller communication transmission line 80h.
  • the air conditioner 11h is installed.
  • the north side of the third floor, the tenant 3 north, has an air conditioner 11i connected to an individual remote controller 8i via a remote controller communication transmission line 80i, and an individual remote controller 8j via a remote controller communication transmission line 80j. And an air conditioner 11j connected to each other.
  • the air conditioner 11k connected to the individual remote controller 8k via the remote controller communication transmission line 80k and the individual remote controller 8m via the remote controller communication transmission line 80m are connected. The air conditioner 11m is installed.
  • an air conditioner 11n connected with an individual remote controller 8n via a remote controller communication transmission line 80n, and an individual remote controller 8p via a remote controller communication transmission line 80p. And an air conditioner 11p connected to each other.
  • the south side of the fourth floor, the tenant 4 south connects the air conditioner 11r connected to the remote controller communication transmission line 80r via the remote controller communication transmission line 80r and the individual remote controller 8s via the remote controller communication transmission line 80s.
  • the air conditioner 11s is installed.
  • remote controller communication transmission lines 80a, 80b, 80c, 80d, 80e, 80f, 80g, 80h, 80i, 80j, 80k, 80m, 80n, 80p, 80r, 80s These are collectively referred to as a remote controller communication transmission path 80.
  • remote controllers 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, 8i, 8j, 8k, 8m, 8n, 8p, 8r, 8s they are collectively named. Will be referred to as an individual remote controller 8.
  • air conditioners 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i, 11j, 11k, 11m, 11n, 11p, 11r, and 11s they are collectively named. It is described as an air conditioner 11.
  • the remote controller communication transmission line 80 and the centralized controller communication transmission line 90 may be wired, wireless, or a mixture of wired and wireless.
  • the centralized controller 9 receives all the operation state information of the air conditioner 11 and transmits the operation information to all of the air conditioners 11.
  • the operating state information is information indicating the operating state of the air conditioner 11, and includes air volume information and detected temperature and humidity information.
  • the driving operation information is information indicating the operation content in the centralized controller 9, and includes on / off operation information of driving indicating an on / off operation and set air volume information indicating a set air volume level.
  • the driving operation information may include set temperature information indicating the set temperature.
  • FIG. 1 four air conditioners 11 are installed on each floor.
  • the present invention is not limited to this, and the number of installed air conditioners 11 and the installation position are appropriately determined.
  • FIG. 2 is a diagram illustrating an example of the internal configuration of the air-conditioning apparatus included in the air-conditioning system according to the first embodiment of the present invention.
  • the air conditioner 11 shown in FIG. 2 includes a housing 12, an outdoor discharge port 13, an outdoor intake port 15, an indoor intake port 17, an indoor discharge port 19, a drive control device 20, a heat exchanger 21, and an air supply.
  • a blower 24, an exhaust blower 25, an outdoor temperature / humidity sensor 26, and a CO 2 concentration sensor 27 are provided.
  • a supply air passage 51 and an exhaust air passage 53 are formed inside the housing 12, and the supply air passage 51 and the exhaust air passage 53 intersect at the heat exchanger 21.
  • the individual remote controller 8 is connected to the drive control device 20 via a remote controller communication transmission path 80.
  • the air supply blower 24 is disposed on the indoor air outlet 19 side of the air supply air passage 51 and includes a fan main body that is a sirocco fan and a fan motor that drives the fan main body.
  • the fan motor has a rotation speed switching mechanism that adjusts the rotation speed of the fan body so that the rotation speed can be switched in stages.
  • An example of the number of switching stages of the rotation speed switching mechanism is three stages of “strong”, “medium”, and “weak”, 400 m 3 / h for “strong” operation, 200 m 3 / h for “medium” operation, and “weak” In operation, the speed is set to 100 m 3 / h.
  • the air supply blower 24 drives the fan body to generate a negative pressure that discharges air taken from the outside into the room. As a result, an air flow is generated along the supply air passage 51.
  • the exhaust blower 25 is disposed on the outdoor discharge port 13 side of the exhaust air passage 53, and includes a fan body that is a sirocco fan and a fan motor that drives the fan body. This fan motor is the same as the fan motor of the air supply blower 24.
  • the exhaust blower 25 drives the fan body to generate a negative pressure that discharges air taken in from the room to the outside. As a result, an air flow is generated along the exhaust air passage 53.
  • the heat exchanger 21 heats the outdoor air of the supply air passage 51 that is taken in from the outside by driving the supply fan 24 and the indoor air of the exhaust air passage 53 that is taken in from the room by driving the exhaust fan 25. Exchange. At this time, in the heat exchanger 21, heat and moisture move from one to the other between the outdoor air and the indoor air. That is, in the heat exchanger 21, enthalpy exchange between humid air is performed.
  • the outdoor temperature / humidity sensor 26 is provided on the outdoor air inlet 15 side of the supply air passage 51 and detects the temperature of the outdoor air taken in from the outdoor air inlet 15.
  • the CO 2 concentration sensor 27 is provided on the indoor air inlet 17 side of the exhaust air passage 53 and detects the CO 2 concentration of the indoor air taken in from the indoor air inlet 17.
  • the drive control device 20 controls the operation of the air conditioner 11, transmits / receives various signals to / from the individual remote controller 8 and the centralized controller 9, and supplies power to the individual remote controller 8.
  • the housing 12 is an outline of the air conditioner 11.
  • the outdoor discharge port 13 is attached to the housing 12 and forms a duct connection flange that discharges air to the outside of the room.
  • the outdoor side inlet 15 is attached to the housing
  • the indoor suction port 17 is attached to the housing 12 and forms a duct connection flange that sucks air from the room.
  • the room-side discharge port 19 is attached to the housing 12 and forms a duct connection flange that discharges air into the room.
  • the individual remote controller 8 transmits to the drive control device 20 an operation signal for starting or stopping the operation of the air conditioner 11 and a rotation speed signal for setting the rotation speed of the fan body.
  • the operation signal is generated based on the on / off operation information, and the rotation speed signal is generated based on the set air volume information.
  • the air conditioner 11 can reduce the air conditioning load in the room that is the ventilation target space by exchanging heat between the indoor air and the outdoor air, and can reduce power consumption.
  • FIG. 3 is a block diagram illustrating an example of an internal configuration of a drive control device that controls the air conditioner included in the air conditioning system according to the first embodiment of the present invention.
  • the drive control device 20 shown in FIG. 3 includes a power supply circuit 32 connected to an AC power supply 31 that is a commercial power supply, a microcomputer 33 that is a control unit, and an air supply fan drive circuit connected to an air supply fan 24.
  • the power supply circuit 32 includes a microcomputer 33, an air supply fan drive circuit 34, an exhaust fan drive circuit 35, an outdoor temperature / humidity sensor detection circuit 36, a CO 2 concentration sensor detection circuit 37, a remote controller communication circuit 38, and a centralized controller communication circuit.
  • a power source for driving 39 is generated and supplied.
  • a line for supplying power is not shown.
  • the microcomputer 33 is connected to an air supply fan drive circuit 34, an exhaust fan drive circuit 35, an outdoor temperature / humidity sensor detection circuit 36, a CO 2 concentration sensor detection circuit 37, a remote controller communication circuit 38, and a centralized controller communication circuit 39. ing.
  • the microcomputer 33 receives the operation signal and the rotation speed signal based on the contents operated by the individual remote controller 8 via the remote controller communication transmission path 80 and the remote controller communication circuit 38, and the operation contents in the individual remote controller 8. Determine. Further, the microcomputer 33 receives the operation information based on the content operated by the centralized controller 9 through the centralized controller communication transmission path 90 and the centralized controller communication circuit 39, so that the operation content in the centralized controller 9 is obtained. judge.
  • the microcomputer 33 receives the signal from the outdoor temperature / humidity sensor 26 via the outdoor temperature / humidity sensor detection circuit 36 to detect the outdoor temperature / humidity. Further, the microcomputer 33 receives the signal from the CO 2 concentration sensor 27 via the CO 2 concentration sensor detection circuit 37 to detect the indoor CO 2 concentration.
  • the microcomputer 33 receives the operation signal and rotation speed signal received from the individual remote controller 8, the operation operation information received from the centralized controller 9, the outdoor temperature / humidity detection value received from the outdoor temperature / humidity sensor 26, and the CO 2 concentration sensor 27. Based on the detected CO 2 concentration value, the drive command signal to the supply fan drive circuit 34 and the drive command signal to the exhaust fan drive circuit 35 are generated and transmitted.
  • the remote controller communication circuit 38 also serves as the centralized controller communication circuit 39. May be. That is, the remote controller communication circuit 38 and the centralized controller communication circuit 39 may be integrally formed. With such a configuration, the drive control device 20 can be downsized.
  • the outdoor temperature / humidity sensor 26 is an integrated sensor capable of detecting both temperature and humidity, but the present invention is not limited to this, and the temperature sensor and the humidity sensor may be provided separately. In the case where the temperature sensor and the humidity sensor are provided separately, the configuration of the outdoor temperature / humidity sensor detection circuit 36 is appropriately changed so as to be consistent therewith.
  • FIG. 4 is a flowchart showing an example of the control operation of the drive control device 20.
  • intermittent operation control is performed on the air supply fan 24, and the description of the operation of the exhaust fan 25 is omitted.
  • the operation setting of the exhaust fan 25 may be always operated, or it is always stopped in conjunction with the air supply fan 24. Or it is good also as intermittent operation.
  • the operation setting of the exhaust fan 25 may be operable from the individual remote controller 8 or the centralized controller 9.
  • the drive control device 20 when the drive control device 20 receives an operation signal from the individual remote controller 8 or driving operation information from the centralized controller 9, the control flow starts.
  • the drive control device 20 operates the air supply fan 24 for a predetermined time (S41).
  • S41 is an operation performed to stabilize the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, and this predetermined time is adjusted depending on the installation environment. Therefore, if the outdoor temperature / humidity detection value is stable without waiting time, the predetermined time may be set to zero.
  • the drive control device 20 determines whether or not the detected temperature Toa, which is the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, is lower than the first specified temperature T1 ° C.
  • the drive control device 20 determines whether or not the detected humidity Hoa, which is the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, is equal to or higher than the first specified humidity H1% (S43).
  • the detected humidity Hoa is equal to or higher than the first specified humidity H1% (S43: Yes)
  • the process proceeds from the terminal B in FIG. 4 to S421 in FIG. 6, and the detected humidity Hoa is not equal to or higher than the first specified humidity H1%.
  • it is less than the first specified humidity H1% (S43: No) the process proceeds to S44.
  • the drive control device 20 ends the intermittent operation control state (S44), transmits intermittent operation control state information to the centralized controller 9 (S45), and sets the air supply fan 24 to always operate ( S46), the process returns to step S42.
  • FIG. 5 is a flowchart showing an example of intermittent operation control of the drive control device 20 at a low outside air temperature. Note that S401 to S409 shown in FIG. 5 are performed in order to prevent condensation in the air conditioner 11, particularly in the air supply air passage 51, by sucking in low-temperature outside air.
  • the drive control device 20 sets the intermittent operation control state to “in progress” (S401), transmits intermittent operation control state information to the centralized controller 9 (S402), and from the centralized controller 9 It is determined whether or not the transmitted sensing stop command is on (S403).
  • sensing stop command when the sensing stop command is on (S403: Yes), it means that the other air conditioner 11 is representatively performing the sensing operation in the air conditioning system, and the sensing stop command is not on. That is, when it is off (S403: No), it means that the sensing operation in the air conditioning system is representatively performed by the air conditioning device 11 including the drive control device 20.
  • the air supply fan 24 is always stopped (S404), and the process returns to S403. That is, sensing is entrusted to other air conditioners 11 in the air conditioning system, and the air conditioner 11 including the drive control device 20 does not perform intermittent operation control when the outside temperature is low, and the sensing stop command from the centralized controller 9 is turned off. Wait for. If the sensing stop command is off (S403: No), the drive control device 20 determines whether there is an on / off change in the sensing stop command transmitted from the centralized controller 9 (S405).
  • the sensing stop command When the sensing stop command is turned on / off (S405: Yes), it means that the intermittent operation control is terminated in the other air conditioners 11 in the air conditioning system, and the intermittent operation control state is released in the entire air conditioning system. .
  • the air conditioner 11 including this drive control device 20 is the first in the air conditioning system. It means starting intermittent operation control.
  • the air conditioner 11 stops the air supply fan 24 for Ta minutes and performs intermittent operation control for operation for Tb (S406), and intermittent operation control. It is determined whether or not (S407).
  • the operation for Tb is a sensing operation for detecting the outdoor temperature.
  • T1 ⁇ 10 ° C.
  • Ta 60 minutes
  • Tb 3 minutes
  • the present invention is not limited to this.
  • the intermittent operation control state is terminated (S408), and the air supply fan 24 is operated for Tb (S409).
  • the purpose of S409 is to stabilize the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, and this fixed time is adjusted depending on the installation environment. Therefore, if the outdoor temperature / humidity detection value is stable without waiting time, the predetermined time may be set to zero.
  • FIG. 6 is a flowchart showing an example of intermittent operation control of the drive control device 20 when the outside air is at high humidity. Note that steps S421 to S429 shown in FIG. 6 are performed in order to prevent dew condensation in the air conditioner 11, particularly in the supply air passage 51, due to the intake of high humidity outside air.
  • the drive control device 20 sets the intermittent operation control state to “in progress” (S421), transmits intermittent operation control state information to the centralized controller 9 (S422), and the centralized controller 9 It is determined whether the sensing stop command transmitted from is on (S423).
  • sensing stop command when the sensing stop command is on (S423: Yes), it means that the other air conditioner 11 is representatively performing the sensing operation in the air conditioning system, and the sensing stop command is not on. That is, when it is off (S423: No), it means that the air conditioning apparatus 11 provided with this drive control apparatus 20 is representatively performing the sensing operation in the air conditioning system.
  • the air supply fan 24 is always stopped (S424), and the process returns to S423. That is, sensing is entrusted to other air conditioners 11 in the air conditioning system, and the air conditioner 11 including the drive control device 20 does not perform intermittent operation control when the outside air is at high humidity, and the sensing stop command from the centralized controller 9 is turned off. Wait for When the sensing stop command is off (S423: No), the drive control device 20 determines whether there is an on / off change in the sensing stop command transmitted from the centralized controller 9 (S425).
  • the sensing stop command When the sensing stop command is turned on / off (S425: Yes), it means that the intermittent operation control is terminated in the other air conditioners 11 in the air conditioning system, and the intermittent operation control state is released in the entire air conditioning system. In the case where there is no on / off change of the sensing stop command (S425: No), if the sensing stop command continues in the off state, the air conditioner 11 including the drive control device 20 is intermittently first in the air conditioning system. This means starting operation control.
  • the sensing stop command is not turned on or off (S425: No)
  • intermittent operation control is performed in which the air supply fan 24 is stopped for Tc minutes and operated for Td minutes (S426). It is determined whether or not (S427).
  • the operation for Td minutes is a sensing operation for detecting outdoor humidity.
  • S425 If the sensing stop command is on / off (S425: Yes), the intermittent operation control state is ended (S428), and the air supply fan 24 is operated for Td (S429).
  • S429 is for the purpose of stabilizing the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, and this fixed time is adjusted according to the installation environment. May be 0.
  • FIG. 7 is a flowchart showing an example of the control operation of the centralized controller 9.
  • the centralized controller 9 initializes the representative sensing device as “none” (S501).
  • the centralized controller 9 determines whether or not there is a notification from the air conditioner 11 that is not the representative sensing device that the intermittent operation control state is “in progress” (S502).
  • the notification that the intermittent operation control state is “in progress” is transmitted in S402 or S422.
  • the centralized controller 9 determines whether there is a representative sensing device (S503).
  • the centralized controller 9 transmits to turn on a sensing stop command, that is, transmits a command to stop sensing to the representative sensing device (S504).
  • the device is updated to be the device notified in S502 (S505).
  • the increase in the number of air conditioners 11 whose intermittent operation control state is “in progress” indicates that the number of air conditioners 11 that transmit that the sensing stop command is ON increases, and the representative sensing device ends the intermittent operation control state. This means that the number of air conditioners 11 notifying that the sensing stop command is off from the centralized controller 9 increases.
  • the centralized controller 9 updates the representative sensing device to be the device notified in S502 without sending a sensing stop command (S505).
  • the centralized controller 9 sets the representative sensing device to be the air conditioner 11 that finally started the intermittent operation control. Thereby, it is possible to suppress power consumption by avoiding unnecessary sensing operation without starting the sensing operation with respect to the air conditioner 11 that has previously performed the intermittent operation control.
  • the centralized controller 9 determines whether there is a representative sensing device (S506). If there is a representative sensing device (S506: Yes), the centralized controller 9 determines whether or not a notification that the intermittent operation control state has been completed has been made from the air conditioner 11 that is the representative sensing device (S507). When there is a notification from the air conditioner 11 that is the representative sensing device that the intermittent operation control state has ended (S507: Yes), the sensing stop command is turned off for all the air conditioners 11 that have transmitted the sensing stop command ON. (S508), and the process returns to S501. When there is no representative sensing device (S506: No), or when there is no notification that the intermittent operation control state has been completed from the air conditioner 11 that is the representative sensing device (S507: No), the process returns to S502.
  • 8, 9, and 10 are diagrams illustrating an example of a control sequence of the air conditioning system according to the first exemplary embodiment of the present invention.
  • 8, 9, and 10 show control sequences between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside temperature is low.
  • A1, B1, C1, D1, and E1 of FIG. 8 follow A1, B1, C1, D1, and E1 of FIG. 9, respectively, and A2, B2, C2, D2, and E2 of FIG.
  • the step number in the air conditioner 11 a is assigned a step number as in S ⁇ b> 401 a
  • the step in the air conditioner 11 b is as S ⁇ b> 401 b.
  • the step number is assigned b
  • the step in the air conditioner 11r is given the step number as in S401r
  • the step in the air conditioner 11s is given the step number as S401s.
  • reference numerals are similarly assigned to the control sequences.
  • the air conditioner 11 that finally started the intermittent operation control at a low temperature of the outside air is used.
  • the other air conditioner 11 whose intermittent operation control state is “in progress” maintains the state where the air supply fan 24 is always stopped. This indicates that sensing operation is not performed.
  • the air conditioner 11 that finally started the intermittent operation control at the time of low outside air temperature is the air conditioner 11s.
  • 11, 12, and 13 are diagrams illustrating an example of a control sequence of the air conditioning system according to the first exemplary embodiment of the present invention.
  • 11, 12, and 13 show control sequences between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside air is high in humidity. Show. 11, 12, and 13, A11, B11, C11, D11, and E11 in FIG. 11 follow A11, B11, C11, D11, and E11 in FIG. 12, respectively, and A12, B12, C12, D12, and E12 in FIG. Each follows A12, B12, C12, D12, and E12 of FIG.
  • 11 is a representative sensing device, and until this representative sensing device finishes the intermittent operation control, the other air conditioner 11 whose intermittent operation control state is “in implementation” is in a state in which the air supply fan 24 is always stopped. This indicates that the sensing operation is not performed.
  • the air conditioner 11 that finally started the intermittent operation control when the outside air is high in humidity is the air conditioner 11s.
  • FIGS. 14, 15, and 16 are diagrams illustrating an example of a control sequence of the air conditioning system according to the first embodiment of the present invention.
  • FIGS. 14, 15, and 16 show control sequences between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside temperature is low.
  • A21, B21, C21, D21, and E21 of FIG. 14 follow A21, B21, C21, D21, and E21 of FIG. 15, respectively, and A22, B22, C22, D22, and E22 of FIG. Each follows A22, B22, C22, D22, and E22 of FIG.
  • FIGS. 14 show control sequences between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside temperature is low.
  • the centralized controller 9 manages the representative sensing device for each floor, not for the entire building.
  • the outdoor temperature and humidity may vary depending on the height of the floor or the environment around the building. Therefore, by managing for each floor, it is possible to avoid a situation where unnecessary intermittent operation control cannot be canceled on a floor where intermittent operation control can be terminated.
  • the control sequence in FIG.14,15,16 started the intermittent operation control at the time of the external low temperature last for every floor
  • the air conditioner 11 becomes a representative sensing device, and the other air conditioner 11 whose intermittent operation control state is “in progress” always stops the air supply fan 24 until the representative sensing device finishes the intermittent operation control. The state is maintained and the sensing operation is not performed.
  • the air conditioner 11 that finally started the intermittent operation control at a low temperature of the outside air is the air conditioner 11b and the air conditioner 11s, and the other air conditioners 11 are the air conditioners 11a and 11r.
  • 17, 18, and 19 are diagrams illustrating an example of a control sequence of the air conditioning system according to the first exemplary embodiment of the present invention.
  • 17, 18, and 19 show a control sequence between the centralized controller 9 and the air conditioners 11a, 11b, 11c, and 11d when the air conditioners 11a, 11b, 11c, and 11d perform intermittent operation control when the outside air is cold.
  • A31, B31, C31, D31, and E31 in FIG. 17 follow A31, B31, C31, D31, and E31 in FIG. 18, respectively, and A32, B32, C32, D32, and E32 in FIG.
  • Each follows A32, B32, C32, D32, and E32 in FIG.
  • the centralized controller 9 manages the representative sensing device for each tenant, not for the entire building.
  • the outdoor temperature / humidity detection value may differ depending on the duct length from the outdoor to the air conditioner, and the outdoor temperature / humidity detection value may differ for each tenant. Therefore, by managing the representative sensing device in units of tenants, it is possible to avoid a situation in which intermittent operation control cannot be canceled in a tenant that can end intermittent operation control.
  • the indoor environmental information includes indoor temperature, indoor humidity, and indoor gas concentration.
  • the representative sensing device is managed for the entire building, for each floor, or for each tenant, but the present invention is not limited to this. It may be managed separately for the north side and the south side of the building, or may be managed separately for the interior zone and the perimeter zone.
  • the centralized controller 9 divides the plurality of air conditioners 11 being managed into a plurality of groups and manages each group, and when the plurality of air conditioners 11 perform intermittent operation within the divided groups. May set the representative sensing device in the group, and the air conditioners 11 other than the representative sensing device in the group may be controlled not to perform the sensing operation in the intermittent operation control.
  • FIG. 20 is a schematic diagram illustrating another example of a building including the air conditioning system according to the first embodiment of the present invention.
  • the building 100a shown in FIG. 20 is different from the building 100 shown in FIG. 1 in that the individual remote controllers 8b, 8d, 8f, 8h, 8j, 8m, 8p, 8s and the remote controller communication transmission lines 80b, 80d, 80f, 80h,
  • the configuration is such that 80j, 80m, 80p, and 80s, the centralized controller 9, and the centralized controller communication transmission line 90 are excluded.
  • air conditioners 11a and 11b connected to an individual remote controller 8a through a remote controller communication transmission path 80a are installed in the north of the tenant 1 on the north side of the first floor.
  • Air conditioners 11c and 11d, to which an individual remote controller 8c is connected via a remote controller communication transmission line 80c, are installed on the south side of the tenth, which is the south side of the first floor.
  • air conditioners 11e and 11f connected to the individual remote controller 8e via the remote controller communication transmission path 80e are installed on the north side of the tenth floor, which is the north side of the second floor.
  • FIGS. 21, 22, and 23 are diagrams illustrating an example of a control sequence of the air-conditioning system according to the first embodiment of the present invention. 21, 22, and 23, control between the individual remote controllers 8 a and 8 c and the air conditioners 11 a, 11 b, 11 c, and 11 d when the air conditioners 11 a, 11 b, 11 c, and 11 d perform intermittent operation control when the outside temperature is low.
  • a sequence is shown. 21, 22, and 23, A41, B41, C41, D41, and E41 in FIG. 21 follow A41, B41, C41, D41, and E41 in FIG. 22 respectively, and A42, B42, C42, D42, and E42 in FIG.
  • FIGS. 21, 22 and 23 and FIGS. 17, 18 and 19 the difference between FIGS. 21, 22 and 23 and FIGS. 17, 18 and 19 is that the controller for determining the representative sensing device in tenant units is not the centralized controller 9 but the individual remote controller 8.
  • the air conditioner 11 becomes a representative sensing device, and until this representative sensing device finishes the intermittent operation control, the other air conditioner 11 whose intermittent operation control state is “in progress” always stops the air supply fan. This indicates that the sensing operation is not performed.
  • the air conditioners 11 that finally started the intermittent operation control at the time of low temperature of the outside air are the air conditioners 11b and 11d, and the other air conditioners 11 are the air conditioners 11a and 11c.
  • the controller that determines the representative sensing device may be a controller that can manage a plurality of air conditioners, and is not limited to the centralized controller 9 that manages the entire building.
  • the controller that manages the plurality of air conditioners manages the intermittent operation control state of the air conditioner, and the plurality of air conditioners perform the intermittent operation control.
  • the representative sensing device that representatively performs the sensing operation in the intermittent operation control is determined, and the air conditioner other than the representative sensing device is controlled not to perform the sensing operation in the intermittent operation control.
  • Embodiment 2 instead of the intermittent operation control at the time of high outdoor air in the first embodiment, the intermittent operation control is performed when the indoor CO 2 concentration is lowered, and the centralized controller 9 controls the representative sensing device according to the type of the intermittent operation control. to manage.
  • FIG. 24 is a flowchart showing an example of the control operation of the drive control device 20.
  • intermittent operation control is performed, and the description of the operation of the exhaust fan 25 is omitted.
  • the same reference numerals are used for the same functions and the same configurations as those in the first embodiment, and descriptions thereof are omitted, and those that operate in the same manner as in the first embodiment are omitted and used.
  • the drive control device 20 when the drive control device 20 receives an operation signal from the individual remote controller 8 or driving operation information from the centralized controller 9, the control flow starts.
  • the drive control device 20 operates the air supply fan 24 for a predetermined time (S41).
  • the fixed time is 3 minutes.
  • the drive control device 20 determines whether or not the detected temperature Toa, which is the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, is lower than the first specified temperature T1 ° C. (S42).
  • the process proceeds from the terminal C in FIG. 24 to S1201 in FIG. 25, and the detected temperature Toa is not lower than the first specified temperature T1 ° C. In (S42: No), it progresses to S123.
  • the drive control device 20 ends the intermittent operation control state when the outside air is cold (S123), transmits the intermittent operation control state information when the outside temperature is low (S124), and the CO 2 concentration sensor. It is determined whether or not the detected density Coa which is the density detected value of 27 is less than the first specified density C1 ppm (S125). When the detected concentration Coa is less than the first specified concentration C1 ppm (S125: Yes), the process proceeds from the terminal D in FIG. 24 to S1221 in FIG. 26, and when the detected concentration Coa is not less than the first specified concentration C1ppm (S125: In No), it progresses to S126.
  • the drive control device 20 ends the intermittent operation control state when the CO 2 concentration decreases (S126), transmits intermittent operation control state information to the centralized controller 9 (S127), and the air supply fan 24 Is always operated (S46), and the process returns to S42.
  • FIG. 25 is a flowchart illustrating an example of intermittent operation control when the drive control device 20 is at a low outside air temperature.
  • the drive control device 20 sets the intermittent operation control state at the low temperature of the outside air to “in execution” (S1201), and transmits the intermittent operation control state information at the low temperature of the outside air to the centralized controller 9 (S1202). ),
  • the intermittent operation control state information when the indoor CO 2 concentration decreases is terminated (S1203), the intermittent operation control state information when the indoor CO 2 concentration decreases is transmitted to the centralized controller 9 (S1204), and the outside air transmitted from the centralized controller 9 It is determined whether or not the sensing stop command at low temperature is on (S1205).
  • sensing stop command when the sensing stop command is ON (S1205: Yes), it means that the other air conditioner 11 is representatively performing the sensing operation in the air conditioning system.
  • sensing stop command when the sensing stop command is OFF (S1205: No), it means that the air conditioning apparatus 11 including the drive control apparatus 20 performs the sensing operation in the air conditioning system as a representative.
  • the air supply fan 24 is always stopped (S404), and the process returns to S1205.
  • the other air conditioners 11 in the air conditioning system are left to perform sensing when the outside temperature is low, and the air conditioner 11 including this drive control device 20 does not perform intermittent operation control when the outside temperature is low, but from the centralized controller 9 when the outside temperature is low. Wait for the sensing stop command to turn off.
  • the drive control device 20 determines whether or not the sensing stop command at the time when the outside temperature is low is transmitted from the centralized controller 9 (S1206). ).
  • the sensing stop command when the outside temperature is low S1206: Yes
  • the other air conditioners 11 in the air conditioning system the intermittent operation control when the outside temperature is low ends, and the entire air conditioning system is intermittent when the outside temperature is low. This means that the operation control state has been released.
  • the air conditioner 11 including the drive control device 20 is This means that intermittent operation control is started first.
  • FIG. 26 is a flowchart illustrating an example of intermittent operation control when the indoor CO 2 concentration of the drive control device 20 is reduced. Note that the S1221 of FIG. 26 to S1229, it is determined that the required ventilation by indoor CO 2 concentration decreases, an operation performed in order to improve energy efficiency.
  • the drive control device 20 sets the intermittent operation control state when the indoor CO 2 concentration is reduced to “being executed” (S1221), and transmits the intermittent operation control state information when the indoor CO 2 concentration is reduced to the centralized controller 9 (S1222). 9 determines whether or not the sensing stop command is transmitted when the indoor CO 2 concentration decreases transmitted from 9 (S1223).
  • the sensing stop command is ON: The (S1223 Yes)
  • the drive control device 20 always stops the air supply fan 24 (S1224), and returns to S1223. That is, sensing when the indoor CO 2 concentration is reduced is entrusted to other air conditioners 11 in the air conditioning system, and the air conditioner 11 including the drive control device 20 does not perform intermittent operation control when the indoor CO 2 concentration is reduced, and the centralized controller 9 Wait until the sensing stop command is turned off when the indoor CO 2 concentration decreases.
  • the drive control device 20 changes the on / off change of the sensing stop command when the indoor CO 2 concentration decreases transmitted from the centralized controller 9. The presence or absence is determined (S1225).
  • the intermittent operation control when the indoor CO 2 concentration decreases is terminated in the other air conditioners 11 in the air conditioning system, and the air conditioning system It means that the intermittent operation control state when the indoor CO 2 concentration is reduced as a whole is released.
  • the air conditioner 11 including this drive control device 20 This means that the intermittent operation control when the indoor CO 2 concentration is reduced first is started in the air conditioning system.
  • the indoor CO 2 concentration can be detected by operating the exhaust fan 25. Therefore, the exhaust fan 25 may be linked to the operation of the air supply fan 24 or may be intermittently operated.
  • the air supply fan 24 is not stopped during intermittent operation, but instead of stopping for Te minutes, weak operation is performed, and Tf minutes Instead of driving, strong driving may be performed, and control may be performed so as to periodically change the strength of the air volume.
  • 27 and 28 are flowcharts showing an example of the control operation of the centralized controller 9.
  • the centralized controller 9 sets “None” as the representative sensing device when the outside air temperature is low, and sets “None” as the representative sensing device when the indoor CO 2 concentration decreases.
  • Initialization is performed (S1301).
  • the centralized controller 9 determines whether or not there is a notification from the air conditioner 11 that is not a representative sensing device when the outside temperature is low that the intermittent operation control state when the outside temperature is low is “in progress” (S1302).
  • the notification that the intermittent operation control state at the time when the outside air is low is “in progress” is transmitted in S1202.
  • the centralized controller 9 determines whether there is a representative sensing device when the outside temperature is low (S1303). When there is a representative sensing device when the outside air is cold (S1303: Yes), the centralized controller 9 transmits to turn on a sensing stop command when the outside temperature is low, that is, the representative sensing device when the outside temperature is low. A command to stop sensing is transmitted (S1304), and the representative sensing device at the time of low outside temperature is updated to be the device notified in S1302 (S1305).
  • the centralized controller 9 updates the representative sensing device when the outside temperature is low to be the device notified in S1302 without transmitting a sensing stop command ( S1305). That is, the centralized controller 9 sets the representative sensing device at the time of low outside air temperature to be the air conditioner that finally started the intermittent operation control at the low temperature of outside air. Thereby, it is possible to suppress power consumption by avoiding unnecessary sensing operation without starting the sensing operation at the low temperature of the outside air with respect to the air-conditioning apparatus that has previously performed the intermittent operation control at the low temperature of the outside air.
  • the increase in the number of air conditioners 11 in which the intermittent operation control state at the time when the outside air is low is “being executed” means that the number of air conditioners 11 that transmit that the sensing stop command is ON when the outside temperature is low, and the time when the outside temperature is low. This means that when the representative sensing device ends the intermittent operation control when the outside temperature is low, the number of air conditioners 11 that notifies the centralized controller 9 that the sensing stop command when the outside temperature is low is off increases.
  • the centralized controller 9 determines whether there is a representative sensing device when the outside temperature is low (S1306). When there is a representative sensing device when the outside temperature is low (S1306: Yes), the centralized controller 9 notifies that the intermittent operation control state information when the outside temperature is low is finished from the air conditioner 11 which is a representative sensing device when the outside temperature is low. It is determined whether or not has been made (S1307).
  • the process proceeds to S1312 of FIG. 28 from the terminal E in FIG. 27, the centralized controller 9, the air conditioner 11 is not a typical sensing device when the indoor CO 2 concentration decreases the intermittent operation control state in the indoor CO 2 concentration decreases " It is determined whether or not a notification “in progress” has been made (S1312).
  • the notification that the intermittent operation control state when the indoor CO 2 concentration is reduced is “in progress” is transmitted in S1222.
  • the centralized controller 9 determines whether there is a representative sensing device when the indoor CO 2 concentration decreases. Determination is made (S1313).
  • the centralized controller 9 performs the transmission of turning on the sensing stop command at room CO 2 concentration decreases, when the indoor CO 2 concentration decreases
  • a command to stop sensing when the indoor CO 2 concentration is reduced is transmitted to the representative sensing device (S1314), and the representative sensing device when the indoor CO 2 concentration is reduced is updated to be the device notified in S1312 (S1315).
  • the centralized controller 9 is the device notified by the representative sensing device when the indoor CO 2 concentration is reduced in S1312 without transmitting a sensing stop command. (S1315).
  • centralized controller 9 a representative sensing device when the indoor CO 2 concentration decreases, set to be the last air-conditioning system has started intermittent operation control at the time of the indoor CO 2 concentration decreases.
  • An increase in the number of air conditioners 11 in which the intermittent operation control state when the indoor CO 2 concentration is reduced is “in progress” means that the number of air conditioners 11 that transmit that the sensing stop command is ON when the indoor CO 2 concentration is reduced increases. it, and the indoor CO 2 concentration representatives sensing device when lowering notifies the sensing stop command of the indoor CO 2 concentration at reduced from the central controller 9 to terminate the intermittent operation control at the time of the indoor CO 2 concentration decreases is off It means that the air conditioner 11 increases.
  • the centralized controller 9 determines whether there is a representative sensing device when the indoor CO 2 concentration decreases. (S1316). If there is a representative sensing device when the indoor CO 2 concentration decreases: in (S1316 Yes), the centralized controller 9, the intermittent operation when the indoor CO 2 concentration decreases from the air conditioner 11 is a representative sensing device when the indoor CO 2 concentration decreases It is determined whether or not a notification that the control state has ended has been made (S1317).
  • step S1317 If there is a notification from the air conditioning device 11 is a representative sensing device when the indoor CO 2 concentration decreases the intermittent operation control state in the indoor CO 2 concentration decreased ended (S1317: Yes), the at indoor CO 2 concentration decreases A transmission to turn off the sensing stop command when the indoor CO 2 concentration decreases is sent to all the air conditioners 11 that have transmitted that the sensing stop command is on, and a command to stop sensing when the indoor CO 2 concentration decreases ( In step S1318, the representative sensing device when the indoor CO 2 concentration decreases is initialized as “none” (S1319).
  • 29, 30, and 31 are diagrams illustrating an example of a control sequence of the air conditioning system according to the second exemplary embodiment of the present invention.
  • the air conditioners 11a and 11b perform intermittent operation control when the outside air temperature is low
  • the centralized controller 9 and the air conditioner 11a when the air conditioners 11c and 11d perform intermittent operation control when the indoor CO 2 concentration decreases.
  • 11b, 11c, and 11d are diagrams illustrating an example of a control sequence of the air conditioning system according to the second exemplary embodiment of the present invention.
  • the air conditioners 11a and 11b perform intermittent operation control when the outside air temperature is low
  • the centralized controller 9 and the air conditioner 11a when the air conditioners 11c and 11d perform intermittent operation control when the indoor CO 2 concentration decreases.
  • 11b, 11c, and 11d are diagrams illustrating an example of a control sequence of the air conditioning system according to the second exemplary embodiment of the present invention.
  • control sequence in the air conditioning system is such that when the plurality of air conditioners 11 perform intermittent operation control when the outside air temperature is low and intermittent operation control when the indoor CO 2 concentration decreases, the central controller 9
  • the representative sensing device at low temperature and the representative sensing device at low indoor CO 2 concentration are individually managed, and finally the air conditioner 11b that started the intermittent operation control at low outside air temperature becomes the representative sensing device at low outside air temperature.
  • the other air conditioner 11a in which the intermittent operation control state when the outside temperature is low is “practicing” maintains the state where the air supply fan 24 is always stopped, and sensing
  • the air conditioner 11d that has started the intermittent operation control when the indoor CO 2 concentration is lowered lastly without performing the operation is a representative when the indoor CO 2 concentration is lowered.
  • the representative until sensing device terminates the intermittent operation control at the time of the indoor CO 2 concentration decreases, indoor CO 2 concentration other air conditioner 11c is a supply air intermittent operation control state is "during execution" during reduction The state where the blower 24 is always stopped is maintained, and the sensing operation is not performed.
  • the controller that manages a plurality of air conditioners manages the intermittent operation control state of the air conditioners according to the type of intermittent operation control, and intermittent operation control with different periods. Even if both occur simultaneously, avoid unnecessary sensing operation. Thus, since a plurality of air conditioners do not perform unnecessary sensing operation, power consumption can be suppressed.
  • the intermittent operation control state at the time when the indoor CO 2 concentration is reduced when the intermittent operation control at the low temperature of the outside air is started is “finished”.
  • the two intermittent operation controls that is, the intermittent operation control when the outside air is cold and the intermittent operation control when the indoor CO 2 concentration is reduced, both perform intermittent operation control on the air supply fan. This is a measure to prevent both controls from interfering with each other. Therefore, when the control targets of the plurality of types of intermittent operation control are different between the air supply fan 24 and the exhaust fan 25, the plurality of types of intermittent operation control do not interfere with each other, so that S1203 and S1204 are not performed. You may control.
  • the air conditioner having a ventilation function has been described, but the present invention is not limited to this.
  • the air conditioner of the present invention may be a humidifier or an air conditioner.
  • the controller that performs intermittent operation control at high humidity in the room and manages the plurality of humidifiers is a group that determines the representative sensing device for the humidifiers in the same room.
  • the humidifier of the stand does not perform unnecessary sensing operation and can reduce power consumption. That is, as long as the air conditioner senses environmental information such as indoor and outdoor temperatures, humidity, and gas concentration by intermittent operation control, the air conditioner is not limited to an air conditioner having a ventilation function.
  • Embodiment 3 FIG.
  • the air conditioning apparatus that finally started the intermittent operation control is used as the representative sensing device.
  • the air conditioning apparatus that first started the intermittent operation control is used as the representative sensing device. .
  • FIG. 32 is a flowchart showing an example of the control operation of the drive control device 20.
  • intermittent operation control is performed, and the description of the operation of the exhaust fan 25 is omitted.
  • the same reference numerals are used for the same functions and the same configurations as those in the first embodiment, and descriptions thereof are omitted, and those that operate in the same manner as in the first embodiment are omitted and used.
  • S504 in FIG. 7 is changed to S1504, and the transmission destination of the sensing stop command in S504 in FIG. 7 is changed to the apparatus notified in S502.
  • 33, 34, and 35 are diagrams illustrating an example of a control sequence of the air conditioning system according to the third embodiment of the present invention.
  • 33, 34, and 35 show a control sequence between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside temperature is low.
  • 33, 34, and 35 A61, B61, C61, D61, and E61 in FIG. 33 follow A61, B61, C61, D61, and E61 in FIG. 34, respectively, and A62, B62, C62, D62, and E62 in FIG. Each follows A62, B62, C62, D62, and E62 in FIG.
  • the air conditioner 11a that first started the intermittent operation control when the outside temperature is low is representative. Until the representative sensing device finishes the intermittent operation control, in the other air conditioner 11 in which the intermittent operation control state is “in progress”, the air supply fan 24 maintains a constantly stopped state, This indicates that sensing operation is not performed.
  • the air conditioning system determines the representative sensing device that performs the sensing operation in the intermittent operation control as the representative air conditioning device that first started the intermittent operation control, and later started the intermittent operation control. While controlling so as not to perform the sensing operation of the device, it is possible to return from the intermittent operation control more quickly. Thus, since a plurality of air conditioners do not perform unnecessary sensing operation, power consumption can be suppressed.
  • the air conditioner 11b starts intermittent operation control 30 minutes after the air conditioner 11a first starts intermittent operation control. In this case, it takes 90 minutes to end the intermittent operation control in the first embodiment, but in 60 minutes in the third embodiment. That is, the air conditioner 11a can return from the intermittent operation control earlier.
  • the intermittent operation control at the low temperature of the outside air is exemplified and described.
  • the present invention is not limited to this, and the intermittent operation control at the high temperature of the outside air and the intermittent operation at the low temperature of the outside air in units of floors.
  • the present invention is also applicable to control, intermittent operation control in units of tenants, and intermittent operation control when the indoor CO 2 concentration decreases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

The purpose of the present invention is to obtain an air-conditioning system which operates efficiently without an unnecessary sensing operation. The air-conditioning system is equipped with a controller managing a plurality of air-conditioning devices, wherein the controller manages the intermittent operation control states of the plurality of air-conditioning devices, and sets one of the plurality of air-conditioning devices as a representative sensing device performing a sensing operation in the intermittent operation control when the plurality of air-conditioning devices perform the intermittent operation control. The air-conditioning devices other than the representative sensing device are controlled so as not to perform a sensing operation in the intermittent operation control.

Description

空調システムAir conditioning system
 本発明は、複数の空調装置を備える空調システムに関する。 The present invention relates to an air conditioning system including a plurality of air conditioners.
 近年、オフィスビル又はテナントビルでは、オフィス毎又はテナント毎に空調装置が設置され、管理室に設置されたコントローラーによってビル全体の空調装置が管理される。特許文献1には、このような空調システム内の空調装置が換気機能を有する場合に、外気温度を検知し、この検知した外気温度検知値に基づいて各空調装置で間欠運転制御を行う技術が開示されている。 In recent years, in an office building or a tenant building, an air conditioner is installed for each office or tenant, and the air conditioner for the entire building is managed by a controller installed in a management room. Patent Document 1 discloses a technique in which when an air conditioner in such an air conditioning system has a ventilation function, the outside air temperature is detected, and intermittent operation control is performed by each air conditioner based on the detected outside air temperature detection value. It is disclosed.
特開2003-74937号公報JP 2003-74937 A
 しかしながら、上記従来の技術によれば、同一のビル又は同一のフロアーに設置された複数台の空調装置が検知する外気温度には差がないにも関わらず、これら複数の空調装置が外気温度を検知するセンシング運転を行う。そのため、不要なセンシング運転により消費電力に無駄が生じる、という問題があった。 However, according to the above-described conventional technology, although there is no difference in the outside air temperature detected by a plurality of air conditioners installed in the same building or the same floor, the plurality of air conditioners can control the outside air temperature. Perform sensing operation to detect. Therefore, there is a problem that power consumption is wasted due to unnecessary sensing operation.
 本発明は、上記に鑑みてなされたものであって、不要なセンシング運転をすることなく効率的に動作する空調システムを得ることを目的とする。 The present invention has been made in view of the above, and an object of the present invention is to obtain an air conditioning system that operates efficiently without unnecessary sensing operation.
 上述した課題を解決し、目的を達成するために、本発明は、複数台の空調装置を管理するコントローラーを備えた空調システムにおいて、前記コントローラーは、前記複数台の空調装置の間欠運転制御状態を管理し、前記複数台の空調装置が間欠運転制御を行う際に、前記複数台の空調装置の1つを前記間欠運転制御におけるセンシング運転を代表で行う代表センシング装置と設定し、前記複数台の空調装置のうち前記設定された代表センシング装置以外の空調装置は、前記間欠運転制御におけるセンシング運転を行わないように制御されることを特徴とする。 In order to solve the above-described problems and achieve the object, the present invention provides an air conditioning system including a controller that manages a plurality of air conditioners, wherein the controller controls the intermittent operation control state of the plurality of air conditioners. And when the plurality of air conditioners perform intermittent operation control, one of the plurality of air conditioners is set as a representative sensing device that representatively performs sensing operation in the intermittent operation control, and the plurality of air conditioners Among the air conditioners, air conditioners other than the set representative sensing device are controlled so as not to perform the sensing operation in the intermittent operation control.
 本発明にかかる空調システムは、不要なセンシング運転をすることなく効率的に動作する空調システムを得ることができるという効果を奏する。 The air conditioning system according to the present invention has an effect that an air conditioning system that operates efficiently without unnecessary sensing operation can be obtained.
実施の形態1にかかる空調システムを備えるビルの一例を示す模式図The schematic diagram which shows an example of the building provided with the air-conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムに含まれる空調装置の内部構成の一例を示す図The figure which shows an example of the internal structure of the air conditioner contained in the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムに含まれる空調装置を制御する駆動制御装置の内部構成の一例を示すブロック図1 is a block diagram showing an example of an internal configuration of a drive control device that controls an air conditioner included in an air conditioning system according to a first embodiment; 駆動制御装置の制御動作の一例を示すフローチャートA flowchart showing an example of a control operation of the drive control device 駆動制御装置の外気低温時の間欠運転制御の一例を示すフローチャートThe flowchart which shows an example of the intermittent operation control at the time of the outside air low temperature of a drive control apparatus. 駆動制御装置の外気高湿度時の間欠運転制御の一例を示すフローチャートThe flowchart which shows an example of intermittent operation control at the time of the external high humidity of a drive control apparatus 集中コントローラーの制御動作の一例を示すフローチャートFlow chart showing an example of control operation of centralized controller 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムを備えるビルの他の一例を示す模式図The schematic diagram which shows another example of the building provided with the air conditioning system concerning Embodiment 1. FIG. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 実施の形態1にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 1. 駆動制御装置の制御動作の一例を示すフローチャートA flowchart showing an example of a control operation of the drive control device 駆動制御装置の外気低温時の間欠運転制御の一例を示すフローチャートThe flowchart which shows an example of the intermittent operation control at the time of the outside air low temperature of a drive control apparatus. 駆動制御装置の室内CO濃度低下時の間欠運転制御の一例を示すフローチャートFlow chart illustrating an example of the intermittent operation control at the time of the indoor CO 2 concentration decreases the drive control device 集中コントローラーの制御動作の一例を示すフローチャートFlow chart showing an example of control operation of centralized controller 集中コントローラーの制御動作の一例を示すフローチャートFlow chart showing an example of control operation of centralized controller 実施の形態2にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 2. 実施の形態2にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 2. 実施の形態2にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 2. 駆動制御装置の制御動作の一例を示すフローチャートA flowchart showing an example of a control operation of the drive control device 実施の形態3にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 3. 実施の形態3にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 3. 実施の形態3にかかる空調システムの制御シーケンスの一例を示す図The figure which shows an example of the control sequence of the air conditioning system concerning Embodiment 3.
 以下に、本発明の実施の形態にかかる空調システムを図面に基づいて詳細に説明する。なお、この実施の形態によりこの発明が限定されるものではない。 Hereinafter, an air conditioning system according to an embodiment of the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments.
実施の形態1.
 図1は、本発明の実施の形態1にかかる空調システムを備えるビルの一例を示す模式図である。図1に示すビル100は4階建であり、各階は南北に区分けされている。そして、区分けされた各領域には、リモートコントローラー通信用伝送路を介して個別リモートコントローラーが接続された空調装置が2台ずつ設置されている。また、すべての空調装置は、集中コントローラー通信用伝送路90を介してすべての空調装置を集中管理する集中コントローラー9に接続されている。各空調装置は、必要に応じて間欠運転制御される。なお、間欠運転制御は、外気低温時又は外気高湿度時に空調装置を保護するために行われる制御である。
Embodiment 1 FIG.
FIG. 1 is a schematic diagram illustrating an example of a building including the air conditioning system according to the first embodiment of the present invention. A building 100 shown in FIG. 1 has four stories, and each floor is divided into north and south. In each divided area, two air conditioners to which individual remote controllers are connected via a remote controller communication transmission path are installed. All the air conditioners are connected to a centralized controller 9 that centrally manages all the air conditioners via a centralized controller communication transmission path 90. Each air conditioner is intermittently controlled as necessary. In addition, intermittent operation control is control performed in order to protect an air conditioner at the time of the outside air low temperature or the outside air high humidity.
 具体的には、1階の北側であるテナント1北には、リモートコントローラー通信用伝送路80aを介して個別リモートコントローラー8aを接続した空調装置11aと、リモートコントローラー通信用伝送路80bを介して個別リモートコントローラー8bを接続した空調装置11bと、が設置されている。1階の南側であるテナント1南には、リモートコントローラー通信用伝送路80cを介して個別リモートコントローラー8cを接続した空調装置11cと、リモートコントローラー通信用伝送路80dを介して個別リモートコントローラー8dを接続した空調装置11dと、が設置されている。 Specifically, the north side of the first floor of the tenant 1 north is an air conditioner 11a to which an individual remote controller 8a is connected via a remote controller communication transmission line 80a and an individual via a remote controller communication transmission line 80b. An air conditioner 11b connected to a remote controller 8b is installed. The south side of the first floor, tenant 1 south, is connected to the air conditioner 11c connected to the remote controller communication transmission line 80c via the remote controller communication transmission line 80c and the individual remote controller 8d via the remote controller communication transmission line 80d. The air conditioner 11d is installed.
 また、2階の北側であるテナント2北には、リモートコントローラー通信用伝送路80eを介して個別リモートコントローラー8eを接続した空調装置11eと、リモートコントローラー通信用伝送路80fを介して個別リモートコントローラー8fを接続した空調装置11fと、が設置されている。2階の南側であるテナント2南には、リモートコントローラー通信用伝送路80gを介して個別リモートコントローラー8gを接続した空調装置11gと、リモートコントローラー通信用伝送路80hを介して個別リモートコントローラー8hを接続した空調装置11hと、が設置されている。 In addition, the north side of the second floor, tenant 2 north, has an air conditioner 11e connected with an individual remote controller 8e via a remote controller communication transmission line 80e, and an individual remote controller 8f via a remote controller communication transmission line 80f. And an air conditioner 11f connected to each other. The south side of the second floor, the tenant 2 south, connects the air conditioner 11g connected to the individual remote controller 8g via the remote controller communication transmission line 80g and the individual remote controller 8h via the remote controller communication transmission line 80h. The air conditioner 11h is installed.
 また、3階の北側であるテナント3北には、リモートコントローラー通信用伝送路80iを介して個別リモートコントローラー8iを接続した空調装置11iと、リモートコントローラー通信用伝送路80jを介して個別リモートコントローラー8jを接続した空調装置11jと、が設置されている。3階の南側であるテナント3南には、リモートコントローラー通信用伝送路80kを介して個別リモートコントローラー8kを接続した空調装置11kと、リモートコントローラー通信用伝送路80mを介して個別リモートコントローラー8mを接続した空調装置11mと、が設置されている。 In addition, the north side of the third floor, the tenant 3 north, has an air conditioner 11i connected to an individual remote controller 8i via a remote controller communication transmission line 80i, and an individual remote controller 8j via a remote controller communication transmission line 80j. And an air conditioner 11j connected to each other. To the south of the third floor on the south side of the third floor, the air conditioner 11k connected to the individual remote controller 8k via the remote controller communication transmission line 80k and the individual remote controller 8m via the remote controller communication transmission line 80m are connected. The air conditioner 11m is installed.
 また、4階の北側であるテナント4北には、リモートコントローラー通信用伝送路80nを介して個別リモートコントローラー8nを接続した空調装置11nと、リモートコントローラー通信用伝送路80pを介して個別リモートコントローラー8pを接続した空調装置11pと、が設置されている。4階の南側であるテナント4南には、リモートコントローラー通信用伝送路80rを介して個別リモートコントローラー8rを接続した空調装置11rと、リモートコントローラー通信用伝送路80sを介して個別リモートコントローラー8sを接続した空調装置11sと、が設置されている。 In addition, on the north side of the fourth floor, tenant 4 north, an air conditioner 11n connected with an individual remote controller 8n via a remote controller communication transmission line 80n, and an individual remote controller 8p via a remote controller communication transmission line 80p. And an air conditioner 11p connected to each other. The south side of the fourth floor, the tenant 4 south, connects the air conditioner 11r connected to the remote controller communication transmission line 80r via the remote controller communication transmission line 80r and the individual remote controller 8s via the remote controller communication transmission line 80s. The air conditioner 11s is installed.
 なお、これらのリモートコントローラー通信用伝送路80a,80b,80c,80d,80e,80f,80g,80h,80i,80j,80k,80m,80n,80p,80r,80sを区別する必要がない場合には、これらを総称してリモートコントローラー通信用伝送路80と記載する。また、個別リモートコントローラー8a,8b,8c,8d,8e,8f,8g,8h,8i,8j,8k,8m,8n,8p,8r,8sを区別する必要がない場合には、これらを総称して個別リモートコントローラー8と記載する。また、空調装置11a,11b,11c,11d,11e,11f,11g,11h,11i,11j,11k,11m,11n,11p,11r,11sを区別する必要がない場合には、これらを総称して空調装置11と記載する。 If it is not necessary to distinguish between these remote controller communication transmission lines 80a, 80b, 80c, 80d, 80e, 80f, 80g, 80h, 80i, 80j, 80k, 80m, 80n, 80p, 80r, 80s These are collectively referred to as a remote controller communication transmission path 80. In addition, when it is not necessary to distinguish the individual remote controllers 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, 8i, 8j, 8k, 8m, 8n, 8p, 8r, 8s, they are collectively named. Will be referred to as an individual remote controller 8. In addition, when it is not necessary to distinguish the air conditioners 11a, 11b, 11c, 11d, 11e, 11f, 11g, 11h, 11i, 11j, 11k, 11m, 11n, 11p, 11r, and 11s, they are collectively named. It is described as an air conditioner 11.
 なお、リモートコントローラー通信用伝送路80及び集中コントローラー通信用伝送路90は、有線であってもよく、無線であってもよく、又は有線と無線とが混在していてもよい。 The remote controller communication transmission line 80 and the centralized controller communication transmission line 90 may be wired, wireless, or a mixture of wired and wireless.
 集中コントローラー9は、空調装置11のすべての運転状態情報を受信し、空調装置11のすべてに運転操作情報を送信する。運転状態情報は、空調装置11の運転状態を示す情報であり、風量情報及び検知温湿度情報を含む。運転操作情報は、集中コントローラー9における操作内容を示す情報であり、オンオフ操作を示す運転のオンオフ操作情報及び設定した風量レベルを示す設定風量情報を含む。又は、運転操作情報は、設定した温度を示す設定温度情報を含んでいてもよい。 The centralized controller 9 receives all the operation state information of the air conditioner 11 and transmits the operation information to all of the air conditioners 11. The operating state information is information indicating the operating state of the air conditioner 11, and includes air volume information and detected temperature and humidity information. The driving operation information is information indicating the operation content in the centralized controller 9, and includes on / off operation information of driving indicating an on / off operation and set air volume information indicating a set air volume level. Alternatively, the driving operation information may include set temperature information indicating the set temperature.
 なお、図1においては、空調装置11を各階に4台ずつ設置しているが、本発明はこれに限定されず、空調装置11の設置台数及び設置位置は適宜決定されるものである。 In FIG. 1, four air conditioners 11 are installed on each floor. However, the present invention is not limited to this, and the number of installed air conditioners 11 and the installation position are appropriately determined.
 図2は、本発明の実施の形態1にかかる空調システムに含まれる空調装置の内部構成の一例を示す図である。図2に示す空調装置11は、筐体12、室外側吐出口13、室外側吸込口15、室内側吸込口17、室内側吐出口19、駆動制御装置20、熱交換器21、給気用送風機24、排気用送風機25、室外温湿度センサー26及びCO濃度センサー27を備える。筐体12の内部には、給気風路51及び排気風路53が形成され、給気風路51及び排気風路53は、熱交換器21にて交差する。また、駆動制御装置20には、リモートコントローラー通信用伝送路80を介して、個別リモートコントローラー8が接続されている。 FIG. 2 is a diagram illustrating an example of the internal configuration of the air-conditioning apparatus included in the air-conditioning system according to the first embodiment of the present invention. The air conditioner 11 shown in FIG. 2 includes a housing 12, an outdoor discharge port 13, an outdoor intake port 15, an indoor intake port 17, an indoor discharge port 19, a drive control device 20, a heat exchanger 21, and an air supply. A blower 24, an exhaust blower 25, an outdoor temperature / humidity sensor 26, and a CO 2 concentration sensor 27 are provided. A supply air passage 51 and an exhaust air passage 53 are formed inside the housing 12, and the supply air passage 51 and the exhaust air passage 53 intersect at the heat exchanger 21. The individual remote controller 8 is connected to the drive control device 20 via a remote controller communication transmission path 80.
 給気用送風機24は、給気風路51の室内側吐出口19側に配置され、シロッコファンであるファン本体と、このファン本体を駆動するファンモーターとを備える。このファンモーターは、その回転数を段階的に切り換え可能とするために、ファン本体の回転速度を調整する回転数切換機構を有する。回転数切換機構の切換段数の一例は、「強」「中」「弱」の3段階であり、「強」運転では400m/hとし、「中」運転では200m/hとし、「弱」運転では100m/hとする。給気用送風機24は、ファン本体を駆動させることで、室外から取り込んだ空気を室内へ吐出させる負圧を生じる。この結果、給気風路51に沿って空気の流れが生じる。 The air supply blower 24 is disposed on the indoor air outlet 19 side of the air supply air passage 51 and includes a fan main body that is a sirocco fan and a fan motor that drives the fan main body. The fan motor has a rotation speed switching mechanism that adjusts the rotation speed of the fan body so that the rotation speed can be switched in stages. An example of the number of switching stages of the rotation speed switching mechanism is three stages of “strong”, “medium”, and “weak”, 400 m 3 / h for “strong” operation, 200 m 3 / h for “medium” operation, and “weak” In operation, the speed is set to 100 m 3 / h. The air supply blower 24 drives the fan body to generate a negative pressure that discharges air taken from the outside into the room. As a result, an air flow is generated along the supply air passage 51.
 排気用送風機25は、排気風路53の室外側吐出口13側に配置され、シロッコファンであるファン本体と、このファン本体を駆動するファンモーターとを備える。このファンモーターは、給気用送風機24のファンモーターと同様である。排気用送風機25は、ファン本体を駆動させることで、室内から取り込んだ空気を室外へ吐出させる負圧を生じる。この結果、排気風路53に沿って空気の流れが生じる。 The exhaust blower 25 is disposed on the outdoor discharge port 13 side of the exhaust air passage 53, and includes a fan body that is a sirocco fan and a fan motor that drives the fan body. This fan motor is the same as the fan motor of the air supply blower 24. The exhaust blower 25 drives the fan body to generate a negative pressure that discharges air taken in from the room to the outside. As a result, an air flow is generated along the exhaust air passage 53.
 熱交換器21は、給気用送風機24の駆動により外部から取り込まれた給気風路51の室外空気と、排気用送風機25の駆動により室内から取り込まれた排気風路53の室内空気とを熱交換する。このとき、熱交換器21では、室外空気と、室内空気との間で、一方から他方へ互いに熱と水分とが移動する。すなわち、熱交換器21では、湿り空気間のエンタルピ交換がなされる。 The heat exchanger 21 heats the outdoor air of the supply air passage 51 that is taken in from the outside by driving the supply fan 24 and the indoor air of the exhaust air passage 53 that is taken in from the room by driving the exhaust fan 25. Exchange. At this time, in the heat exchanger 21, heat and moisture move from one to the other between the outdoor air and the indoor air. That is, in the heat exchanger 21, enthalpy exchange between humid air is performed.
 室外温湿度センサー26は、給気風路51の室外側吸込口15側に設けられ、室外側吸込口15から取り込まれた室外空気の温度を検知する。CO濃度センサー27は、排気風路53の室内側吸込口17側に設けられ、室内側吸込口17から取り込まれた室内空気のCO濃度を検知する。 The outdoor temperature / humidity sensor 26 is provided on the outdoor air inlet 15 side of the supply air passage 51 and detects the temperature of the outdoor air taken in from the outdoor air inlet 15. The CO 2 concentration sensor 27 is provided on the indoor air inlet 17 side of the exhaust air passage 53 and detects the CO 2 concentration of the indoor air taken in from the indoor air inlet 17.
 駆動制御装置20は、空調装置11の動作を制御し、個別リモートコントローラー8及び集中コントローラー9と各種信号を送受信し、個別リモートコントローラー8に電力供給を行う。 The drive control device 20 controls the operation of the air conditioner 11, transmits / receives various signals to / from the individual remote controller 8 and the centralized controller 9, and supplies power to the individual remote controller 8.
 筐体12は、空調装置11の外郭である。室外側吐出口13は、筐体12に取り付けられ、空気を室外に吐き出すダクト接続フランジを形成している。室外側吸込口15は、筐体12に取り付けられ、空気を室外から吸い込むダクト接続フランジを形成している。室内側吸込口17は、筐体12に取り付けられ、空気を室内から吸い込むダクト接続フランジを形成している。室内側吐出口19は、筐体12に取り付けられ、空気を室内へ吐き出すダクト接続フランジを形成している。 The housing 12 is an outline of the air conditioner 11. The outdoor discharge port 13 is attached to the housing 12 and forms a duct connection flange that discharges air to the outside of the room. The outdoor side inlet 15 is attached to the housing | casing 12, and forms the duct connection flange which sucks air from the outdoor side. The indoor suction port 17 is attached to the housing 12 and forms a duct connection flange that sucks air from the room. The room-side discharge port 19 is attached to the housing 12 and forms a duct connection flange that discharges air into the room.
 個別リモートコントローラー8は、空調装置11の運転を開始又は停止する運転信号と、ファン本体の回転速度を設定する回転速度信号とを駆動制御装置20に送信する。運転信号はオンオフ操作情報に基づいて生成され、回転速度信号は設定風量情報に基づいて生成される。 The individual remote controller 8 transmits to the drive control device 20 an operation signal for starting or stopping the operation of the air conditioner 11 and a rotation speed signal for setting the rotation speed of the fan body. The operation signal is generated based on the on / off operation information, and the rotation speed signal is generated based on the set air volume information.
 上記説明したように、空調装置11は、室内空気と室外空気とを熱交換することで換気対象空間である室内の空調負荷を軽減することができ、消費電力を抑えることができる。 As described above, the air conditioner 11 can reduce the air conditioning load in the room that is the ventilation target space by exchanging heat between the indoor air and the outdoor air, and can reduce power consumption.
 図3は、本発明の実施の形態1にかかる空調システムに含まれる空調装置を制御する駆動制御装置の内部構成の一例を示すブロック図である。図3に示す駆動制御装置20は、商用電源である交流電源31に接続された電源回路32と、制御部であるマイクロコンピューター33と、給気用送風機24に接続された給気用送風機駆動回路34と、排気用送風機25に接続された排気用送風機駆動回路35と、室外温湿度センサー26に接続された室外温湿度センサー検知回路36と、CO濃度センサー27に接続されたCO濃度センサー検知回路37と、個別リモートコントローラー8に接続されたリモートコントローラー通信回路38と、集中コントローラー9に接続された集中コントローラー通信回路39とを備える。電源回路32は、マイクロコンピューター33、給気用送風機駆動回路34、排気用送風機駆動回路35、室外温湿度センサー検知回路36、CO濃度センサー検知回路37、リモートコントローラー通信回路38及び集中コントローラー通信回路39を駆動する電源を生成して供給する。なお、電源を供給する線は図示しない。マイクロコンピューター33は、給気用送風機駆動回路34、排気用送風機駆動回路35、室外温湿度センサー検知回路36、CO濃度センサー検知回路37、リモートコントローラー通信回路38及び集中コントローラー通信回路39に接続されている。マイクロコンピューター33は、個別リモートコントローラー8で操作された内容に基づく運転信号及び回転速度信号を、リモートコントローラー通信用伝送路80及びリモートコントローラー通信回路38を介して受信し、個別リモートコントローラー8における操作内容を判定する。また、マイクロコンピューター33は、集中コントローラー9で操作された内容に基づく運転操作情報を、集中コントローラー通信用伝送路90及び集中コントローラー通信回路39を介して受信することで、集中コントローラー9における操作内容を判定する。また、マイクロコンピューター33は、室外温湿度センサー26からの信号を、室外温湿度センサー検知回路36を介して受信することで、室外温湿度を検知する。また、マイクロコンピューター33は、CO濃度センサー27からの信号を、CO濃度センサー検知回路37を介して受信することで、室内CO濃度を検知する。そして、マイクロコンピューター33は、個別リモートコントローラー8から受信した運転信号及び回転速度信号、集中コントローラー9から受信した運転操作情報、室外温湿度センサー26から受信した室外温湿度検知値及びCO濃度センサー27から受信したCO濃度検知値に基づいて、給気用送風機駆動回路34への駆動指令信号と、排気用送風機駆動回路35への駆動指令信号とを生成して送信する。 FIG. 3 is a block diagram illustrating an example of an internal configuration of a drive control device that controls the air conditioner included in the air conditioning system according to the first embodiment of the present invention. The drive control device 20 shown in FIG. 3 includes a power supply circuit 32 connected to an AC power supply 31 that is a commercial power supply, a microcomputer 33 that is a control unit, and an air supply fan drive circuit connected to an air supply fan 24. and 34, an exhaust blower drive circuit 35 which is connected to the exhaust blower 25, the outdoor temperature and the outdoor temperature-humidity sensor detecting circuit 36 connected to the humidity sensor 26, the CO 2 concentration connected CO 2 concentration sensor to the sensor 27 A detection circuit 37, a remote controller communication circuit 38 connected to the individual remote controller 8, and a centralized controller communication circuit 39 connected to the centralized controller 9 are provided. The power supply circuit 32 includes a microcomputer 33, an air supply fan drive circuit 34, an exhaust fan drive circuit 35, an outdoor temperature / humidity sensor detection circuit 36, a CO 2 concentration sensor detection circuit 37, a remote controller communication circuit 38, and a centralized controller communication circuit. A power source for driving 39 is generated and supplied. A line for supplying power is not shown. The microcomputer 33 is connected to an air supply fan drive circuit 34, an exhaust fan drive circuit 35, an outdoor temperature / humidity sensor detection circuit 36, a CO 2 concentration sensor detection circuit 37, a remote controller communication circuit 38, and a centralized controller communication circuit 39. ing. The microcomputer 33 receives the operation signal and the rotation speed signal based on the contents operated by the individual remote controller 8 via the remote controller communication transmission path 80 and the remote controller communication circuit 38, and the operation contents in the individual remote controller 8. Determine. Further, the microcomputer 33 receives the operation information based on the content operated by the centralized controller 9 through the centralized controller communication transmission path 90 and the centralized controller communication circuit 39, so that the operation content in the centralized controller 9 is obtained. judge. In addition, the microcomputer 33 receives the signal from the outdoor temperature / humidity sensor 26 via the outdoor temperature / humidity sensor detection circuit 36 to detect the outdoor temperature / humidity. Further, the microcomputer 33 receives the signal from the CO 2 concentration sensor 27 via the CO 2 concentration sensor detection circuit 37 to detect the indoor CO 2 concentration. The microcomputer 33 receives the operation signal and rotation speed signal received from the individual remote controller 8, the operation operation information received from the centralized controller 9, the outdoor temperature / humidity detection value received from the outdoor temperature / humidity sensor 26, and the CO 2 concentration sensor 27. Based on the detected CO 2 concentration value, the drive command signal to the supply fan drive circuit 34 and the drive command signal to the exhaust fan drive circuit 35 are generated and transmitted.
 なお、個別リモートコントローラー8と駆動制御装置20との通信方式と、集中コントローラー9と駆動制御装置20との通信方式とが同じであれば、リモートコントローラー通信回路38が集中コントローラー通信回路39を兼ねていてもよい。すなわち、リモートコントローラー通信回路38と集中コントローラー通信回路39とが一体形成されていてもよい。このような構成とすると、駆動制御装置20を小型化可能となる。 If the communication method between the individual remote controller 8 and the drive control device 20 is the same as the communication method between the centralized controller 9 and the drive control device 20, the remote controller communication circuit 38 also serves as the centralized controller communication circuit 39. May be. That is, the remote controller communication circuit 38 and the centralized controller communication circuit 39 may be integrally formed. With such a configuration, the drive control device 20 can be downsized.
 なお、室外温湿度センサー26は、温度と湿度の双方を検知可能な一体型センサーとしているが、本発明はこれに限定されず、温度センサーと湿度センサーとが別々に設けられていてもよい。温度センサーと湿度センサーとが別々に設けられる場合には、室外温湿度センサー検知回路36の構成もこれと整合するように適宜変更する。 The outdoor temperature / humidity sensor 26 is an integrated sensor capable of detecting both temperature and humidity, but the present invention is not limited to this, and the temperature sensor and the humidity sensor may be provided separately. In the case where the temperature sensor and the humidity sensor are provided separately, the configuration of the outdoor temperature / humidity sensor detection circuit 36 is appropriately changed so as to be consistent therewith.
 図4は、駆動制御装置20の制御動作の一例を示すフローチャートである。図4に示す制御動作では、給気用送風機24に対して間欠運転制御を行っており、排気用送風機25の動作については説明を省略する。排気用送風機25の動作について、給気用送風機24を常時停止又は間欠運転する際には、排気用送風機25の動作設定を常時運転としてもよいし、給気用送風機24に連動させて常時停止又は間欠運転としてもよい。 FIG. 4 is a flowchart showing an example of the control operation of the drive control device 20. In the control operation shown in FIG. 4, intermittent operation control is performed on the air supply fan 24, and the description of the operation of the exhaust fan 25 is omitted. Regarding the operation of the exhaust fan 25, when the air supply fan 24 is always stopped or intermittently operated, the operation setting of the exhaust fan 25 may be always operated, or it is always stopped in conjunction with the air supply fan 24. Or it is good also as intermittent operation.
 排気用送風機25を常時運転とする場合には、給気口から自然に空気を導入して排気ファンで排気することができ、第三種換気による継続的な換気が可能である。又は、給気用送風機24の停止に連動して排気用送風機25を停止とする場合には、排気量と給気量のバランスが確保される。そのため、換気対象空間である室内における、換気に起因したドアの開閉の不具合を防止することが可能である。なお、排気用送風機25の動作設定は、個別リモートコントローラー8又は集中コントローラー9から操作可能としてもよい。 When the exhaust fan 25 is always operated, air can be naturally introduced from the air supply port and exhausted by the exhaust fan, and continuous ventilation by the third type ventilation is possible. Alternatively, when the exhaust fan 25 is stopped in conjunction with the stop of the air supply fan 24, a balance between the exhaust amount and the air supply amount is secured. Therefore, it is possible to prevent a door opening / closing failure caused by ventilation in a room that is a ventilation target space. The operation setting of the exhaust fan 25 may be operable from the individual remote controller 8 or the centralized controller 9.
 図4において、駆動制御装置20が個別リモートコントローラー8からの運転信号又は集中コントローラー9からの運転操作情報を受信すると、制御フローが開始する。制御フローが開始すると、駆動制御装置20は、給気用送風機24を一定時間運転する(S41)。ここでは、一定時間として3分を例示している。なお、S41は、室外温湿度センサー26の室外温湿度検知値の安定のために行う動作であり、設置環境によってこの一定時間は調整される。従って、室外温湿度検知値が待ち時間なく安定するのであれば、一定時間を0としてもよい。次に、駆動制御装置20は、室外温湿度センサー26の室外温湿度検知値である検知温度Toaが第1の規定温度T1℃未満であるか否か判定する(S42)。検知温度Toaが第1の規定温度T1℃未満である場合(S42:Yes)には、図4の端子Aから図5のS401へ進み、検知温度Toaが第1の規定温度T1℃未満でない場合(S42:No)には、S43へ進む。 4, when the drive control device 20 receives an operation signal from the individual remote controller 8 or driving operation information from the centralized controller 9, the control flow starts. When the control flow is started, the drive control device 20 operates the air supply fan 24 for a predetermined time (S41). Here, 3 minutes is illustrated as the fixed time. Note that S41 is an operation performed to stabilize the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, and this predetermined time is adjusted depending on the installation environment. Therefore, if the outdoor temperature / humidity detection value is stable without waiting time, the predetermined time may be set to zero. Next, the drive control device 20 determines whether or not the detected temperature Toa, which is the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, is lower than the first specified temperature T1 ° C. (S42). When the detected temperature Toa is lower than the first specified temperature T1 ° C. (S42: Yes), the process proceeds from the terminal A in FIG. 4 to S401 in FIG. 5, and the detected temperature Toa is not lower than the first specified temperature T1 ° C. In (S42: No), it progresses to S43.
 S42でNoに分岐すると、駆動制御装置20は、室外温湿度センサー26の室外温湿度検知値である検知湿度Hoaが第1の規定湿度H1%以上であるか否かを判定する(S43)。検知湿度Hoaが第1の規定湿度H1%以上である場合(S43:Yes)には図4の端子Bから図6のS421へ進み、検知湿度Hoaが第1の規定湿度H1%以上でない、すなわち第1の規定湿度H1%未満である場合(S43:No)にはS44へ進む。 When branching to No in S42, the drive control device 20 determines whether or not the detected humidity Hoa, which is the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, is equal to or higher than the first specified humidity H1% (S43). When the detected humidity Hoa is equal to or higher than the first specified humidity H1% (S43: Yes), the process proceeds from the terminal B in FIG. 4 to S421 in FIG. 6, and the detected humidity Hoa is not equal to or higher than the first specified humidity H1%. When it is less than the first specified humidity H1% (S43: No), the process proceeds to S44.
 S43でNoに分岐すると、駆動制御装置20は、間欠運転制御状態を終了とし(S44)、集中コントローラー9に間欠運転制御状態情報を送信し(S45)、給気用送風機24を常時運転とし(S46)、ステップS42へ戻る。 When branching to No in S43, the drive control device 20 ends the intermittent operation control state (S44), transmits intermittent operation control state information to the centralized controller 9 (S45), and sets the air supply fan 24 to always operate ( S46), the process returns to step S42.
 図5は、駆動制御装置20の外気低温時の間欠運転制御の一例を示すフローチャートである。なお、図5に示すS401からS409までは、低温外気の吸込みにより空調装置11内部、特に給気風路51における結露を防止するために行う。外気低温時の間欠運転制御を開始すると、駆動制御装置20は、間欠運転制御状態を「実施中」とし(S401)、集中コントローラー9へ間欠運転制御状態情報を送信し(S402)、集中コントローラー9から送信されるセンシング停止指令がオンであるか否かを判定する(S403)。ここで、センシング停止指令がオンである場合(S403:Yes)には、空調システム内のセンシング運転を他の空調装置11が代表して行っていることを意味し、センシング停止指令がオンでない、すなわちオフである場合(S403:No)には、空調システム内のセンシング運転を、この駆動制御装置20を備える空調装置11が代表して行っていることを意味する。 FIG. 5 is a flowchart showing an example of intermittent operation control of the drive control device 20 at a low outside air temperature. Note that S401 to S409 shown in FIG. 5 are performed in order to prevent condensation in the air conditioner 11, particularly in the air supply air passage 51, by sucking in low-temperature outside air. When the intermittent operation control at the low temperature of the outside air is started, the drive control device 20 sets the intermittent operation control state to “in progress” (S401), transmits intermittent operation control state information to the centralized controller 9 (S402), and from the centralized controller 9 It is determined whether or not the transmitted sensing stop command is on (S403). Here, when the sensing stop command is on (S403: Yes), it means that the other air conditioner 11 is representatively performing the sensing operation in the air conditioning system, and the sensing stop command is not on. That is, when it is off (S403: No), it means that the sensing operation in the air conditioning system is representatively performed by the air conditioning device 11 including the drive control device 20.
 センシング停止指令がオンである場合(S403:Yes)には、給気用送風機24は常時停止とされ(S404)、S403に戻る。すなわち、空調システム内の他の空調装置11にセンシングを委ね、この駆動制御装置20を備える空調装置11は外気低温時の間欠運転制御を行わず、集中コントローラー9からのセンシング停止指令がオフになるのを待つ。センシング停止指令がオフである場合(S403:No)には、駆動制御装置20は、集中コントローラー9から送信されるセンシング停止指令のオンオフ変化の有無を判定する(S405)。センシング停止指令のオンオフ変化ありの場合(S405:Yes)には、空調システム内の他の空調装置11において間欠運転制御が終了し、空調システム全体で間欠運転制御状態が解除されたことを意味する。一方、センシング停止指令のオンオフ変化なしの場合(S405:No)には、センシング停止指令がオフ状態を継続していれば、この駆動制御装置20を備える空調装置11が、空調システム内で最初に間欠運転制御を開始することを意味する。 If the sensing stop command is on (S403: Yes), the air supply fan 24 is always stopped (S404), and the process returns to S403. That is, sensing is entrusted to other air conditioners 11 in the air conditioning system, and the air conditioner 11 including the drive control device 20 does not perform intermittent operation control when the outside temperature is low, and the sensing stop command from the centralized controller 9 is turned off. Wait for. If the sensing stop command is off (S403: No), the drive control device 20 determines whether there is an on / off change in the sensing stop command transmitted from the centralized controller 9 (S405). When the sensing stop command is turned on / off (S405: Yes), it means that the intermittent operation control is terminated in the other air conditioners 11 in the air conditioning system, and the intermittent operation control state is released in the entire air conditioning system. . On the other hand, in the case where there is no change in the sensing stop command (S405: No), if the sensing stop command continues in the off state, the air conditioner 11 including this drive control device 20 is the first in the air conditioning system. It means starting intermittent operation control.
 センシング停止指令のオンオフ変化なしの場合(S405:No)には、空調装置11は給気用送風機24をTa分間だけ停止させ、Tb分間だけ運転する間欠運転制御を行い(S406)、間欠運転制御が終了したか否か判定する(S407)。ここで、Tb分間の運転は、室外温度を検知するセンシング運転である。 When there is no change in the sensing stop command (S405: No), the air conditioner 11 stops the air supply fan 24 for Ta minutes and performs intermittent operation control for operation for Tb (S406), and intermittent operation control. It is determined whether or not (S407). Here, the operation for Tb is a sensing operation for detecting the outdoor temperature.
 なお、ここでは、T1=-10℃、Ta=60分、Tb=3分とするが、本発明はこれに限定されるものではない。間欠運転制御が終了していない場合(S407:No)には、S403へ戻る。間欠運転制御が終了している場合(S407:Yes)には、S42へ戻る。 Here, T1 = −10 ° C., Ta = 60 minutes, and Tb = 3 minutes, but the present invention is not limited to this. If the intermittent operation control has not ended (S407: No), the process returns to S403. If the intermittent operation control has been completed (S407: Yes), the process returns to S42.
 センシング停止指令のオンオフ変化ありの場合(S405:Yes)には、間欠運転制御状態は終了とし(S408)、給気用送風機24をTb分間運転する(S409)。なお、S409は、室外温湿度センサー26の室外温湿度検知値の安定が目的であり、設置環境によってこの一定時間は調整される。従って、室外温湿度検知値が待ち時間なく安定するのであれば、一定時間を0としてもよい。 If the sensing stop command is on / off (S405: Yes), the intermittent operation control state is terminated (S408), and the air supply fan 24 is operated for Tb (S409). The purpose of S409 is to stabilize the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, and this fixed time is adjusted depending on the installation environment. Therefore, if the outdoor temperature / humidity detection value is stable without waiting time, the predetermined time may be set to zero.
 図6は、駆動制御装置20の外気高湿度時の間欠運転制御の一例を示すフローチャートである。なお、図6に示すS421からS429までは、高湿度外気の吸込みにより空調装置11内部、特に給気風路51における結露を防止するために行う。外気高湿度時の間欠運転制御を開始すると、駆動制御装置20は、間欠運転制御状態を「実施中」とし(S421)、集中コントローラー9へ間欠運転制御状態情報を送信し(S422)、集中コントローラー9から送信されるセンシング停止指令がオンであるか否かを判定する(S423)。ここで、センシング停止指令がオンである場合(S423:Yes)には、空調システム内のセンシング運転を他の空調装置11が代表して行っていることを意味し、センシング停止指令がオンでない、すなわちオフである場合(S423:No)には、空調システム内のセンシング運転を、この駆動制御装置20を備える空調装置11が代表して行っていることを意味する。 FIG. 6 is a flowchart showing an example of intermittent operation control of the drive control device 20 when the outside air is at high humidity. Note that steps S421 to S429 shown in FIG. 6 are performed in order to prevent dew condensation in the air conditioner 11, particularly in the supply air passage 51, due to the intake of high humidity outside air. When the intermittent operation control at the time of outdoor high humidity is started, the drive control device 20 sets the intermittent operation control state to “in progress” (S421), transmits intermittent operation control state information to the centralized controller 9 (S422), and the centralized controller 9 It is determined whether the sensing stop command transmitted from is on (S423). Here, when the sensing stop command is on (S423: Yes), it means that the other air conditioner 11 is representatively performing the sensing operation in the air conditioning system, and the sensing stop command is not on. That is, when it is off (S423: No), it means that the air conditioning apparatus 11 provided with this drive control apparatus 20 is representatively performing the sensing operation in the air conditioning system.
 センシング停止指令がオンである場合(S423:Yes)には、給気用送風機24を常時停止とし(S424)、S423に戻る。すなわち、空調システム内の他の空調装置11にセンシングを委ね、この駆動制御装置20を備える空調装置11は外気高湿度時の間欠運転制御を行わず、集中コントローラー9からのセンシング停止指令がオフになるのを待つ。センシング停止指令がオフである場合(S423:No)には、駆動制御装置20は、集中コントローラー9から送信されるセンシング停止指令のオンオフ変化の有無を判定する(S425)。センシング停止指令のオンオフ変化ありの場合(S425:Yes)には、空調システム内の他の空調装置11において間欠運転制御が終了し、空調システム全体で間欠運転制御状態が解除されたことを意味し、センシング停止指令のオンオフ変化なしの場合(S425:No)には、センシング停止指令がオフ状態を継続していれば、この駆動制御装置20を備える空調装置11が、空調システム内で最初に間欠運転制御を開始することを意味する。 If the sensing stop command is ON (S423: Yes), the air supply fan 24 is always stopped (S424), and the process returns to S423. That is, sensing is entrusted to other air conditioners 11 in the air conditioning system, and the air conditioner 11 including the drive control device 20 does not perform intermittent operation control when the outside air is at high humidity, and the sensing stop command from the centralized controller 9 is turned off. Wait for When the sensing stop command is off (S423: No), the drive control device 20 determines whether there is an on / off change in the sensing stop command transmitted from the centralized controller 9 (S425). When the sensing stop command is turned on / off (S425: Yes), it means that the intermittent operation control is terminated in the other air conditioners 11 in the air conditioning system, and the intermittent operation control state is released in the entire air conditioning system. In the case where there is no on / off change of the sensing stop command (S425: No), if the sensing stop command continues in the off state, the air conditioner 11 including the drive control device 20 is intermittently first in the air conditioning system. This means starting operation control.
 センシング停止指令のオンオフ変化なしの場合(S425:No)には、給気用送風機24をTc分間だけ停止させ、Td分間だけ運転させる間欠運転制御を行い(S426)、間欠運転制御が終了したか否か判定する(S427)。ここで、Td分間の運転は、室外湿度を検知するセンシング運転である。 If the sensing stop command is not turned on or off (S425: No), intermittent operation control is performed in which the air supply fan 24 is stopped for Tc minutes and operated for Td minutes (S426). It is determined whether or not (S427). Here, the operation for Td minutes is a sensing operation for detecting outdoor humidity.
 なお、ここでは、H1=90%、Tc=80分、Td=3分とするが、本発明はこれに限定されるものではない。間欠運転制御が終了していない場合(S427:No)には、S423へ戻る。間欠運転制御が終了している場合(S427:Yes)には、S42へ戻る。 Note that, here, H1 = 90%, Tc = 80 minutes, and Td = 3 minutes, but the present invention is not limited to this. If the intermittent operation control has not ended (S427: No), the process returns to S423. When the intermittent operation control is finished (S427: Yes), the process returns to S42.
 センシング停止指令のオンオフ変化ありの場合(S425:Yes)には、間欠運転制御状態は終了とし(S428)、給気用送風機24をTd分間運転する(S429)。なお、S429は、室外温湿度センサー26の室外温湿度検知値の安定が目的であり、設置環境によってこの一定時間は調整され、室外温湿度検知値が待ち時間なく安定するのであれば、一定時間を0としてもよい。 If the sensing stop command is on / off (S425: Yes), the intermittent operation control state is ended (S428), and the air supply fan 24 is operated for Td (S429). Note that S429 is for the purpose of stabilizing the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, and this fixed time is adjusted according to the installation environment. May be 0.
 図7は、集中コントローラー9の制御動作の一例を示すフローチャートである。図7において、集中コントローラー9の電源がオンされると、集中コントローラー9は、代表センシング装置を「なし」として初期化する(S501)。次に、集中コントローラー9は、代表センシング装置ではない空調装置11から間欠運転制御状態が「実施中」との通知があるか否か判定する(S502)。この間欠運転制御状態が「実施中」との通知は、S402又はS422にて送信されたものである。間欠運転制御状態が「実施中」との通知がある場合(S502:Yes)には、集中コントローラー9は、代表センシング装置があるか否か判定する(S503)。代表センシング装置がある場合(S503:Yes)には、集中コントローラー9は、センシング停止指令をオンする送信を行い、すなわちセンシングを停止する指令を代表センシング装置に送信し(S504)、代表センシング装置がS502で通知した装置となるよう更新する(S505)。 FIG. 7 is a flowchart showing an example of the control operation of the centralized controller 9. In FIG. 7, when the power of the centralized controller 9 is turned on, the centralized controller 9 initializes the representative sensing device as “none” (S501). Next, the centralized controller 9 determines whether or not there is a notification from the air conditioner 11 that is not the representative sensing device that the intermittent operation control state is “in progress” (S502). The notification that the intermittent operation control state is “in progress” is transmitted in S402 or S422. When there is a notification that the intermittent operation control state is “in progress” (S502: Yes), the centralized controller 9 determines whether there is a representative sensing device (S503). When there is a representative sensing device (S503: Yes), the centralized controller 9 transmits to turn on a sensing stop command, that is, transmits a command to stop sensing to the representative sensing device (S504). The device is updated to be the device notified in S502 (S505).
 なお、間欠運転制御状態が「実施中」である空調装置11が増えることは、センシング停止指令がオンであることを送信する空調装置11が増えること、及び代表センシング装置が間欠運転制御状態を終了とする場合に集中コントローラー9からセンシング停止指令がオフであることを通知する空調装置11が増えることを意味する。 Note that the increase in the number of air conditioners 11 whose intermittent operation control state is “in progress” indicates that the number of air conditioners 11 that transmit that the sensing stop command is ON increases, and the representative sensing device ends the intermittent operation control state. This means that the number of air conditioners 11 notifying that the sensing stop command is off from the centralized controller 9 increases.
 また、代表センシング装置がない場合(S503:No)には、集中コントローラー9は、センシング停止指令を送信することなく代表センシング装置がS502で通知した装置となるよう更新する(S505)。 If there is no representative sensing device (S503: No), the centralized controller 9 updates the representative sensing device to be the device notified in S502 without sending a sensing stop command (S505).
 すなわち、集中コントローラー9は、代表センシング装置が、最後に間欠運転制御を開始した空調装置11となるよう設定する。これにより、先に間欠運転制御を行っていた空調装置11に対してセンシング運転を開始させず、不要なセンシング運転の回避により消費電力を抑えることができる。 That is, the centralized controller 9 sets the representative sensing device to be the air conditioner 11 that finally started the intermittent operation control. Thereby, it is possible to suppress power consumption by avoiding unnecessary sensing operation without starting the sensing operation with respect to the air conditioner 11 that has previously performed the intermittent operation control.
 間欠運転制御状態が「実施中」との通知がない場合(S502:No)にも、集中コントローラー9は、代表センシング装置があるか否か判定する(S506)。代表センシング装置がある場合(S506:Yes)には、集中コントローラー9は、代表センシング装置である空調装置11から間欠運転制御状態が終了したとの通知がなされたか否か判定する(S507)。代表センシング装置である空調装置11から間欠運転制御状態が終了したとの通知がある場合(S507:Yes)には、センシング停止指令オンを送信したすべての空調装置11に対してセンシング停止指令をオフするよう送信し(S508)、S501へ戻る。また、代表センシング装置がない場合(S506:No)又は代表センシング装置である空調装置11から間欠運転制御状態が終了したとの通知がない場合(S507:No)には、S502へ戻る。 Even when there is no notification that the intermittent operation control state is “in progress” (S502: No), the centralized controller 9 determines whether there is a representative sensing device (S506). If there is a representative sensing device (S506: Yes), the centralized controller 9 determines whether or not a notification that the intermittent operation control state has been completed has been made from the air conditioner 11 that is the representative sensing device (S507). When there is a notification from the air conditioner 11 that is the representative sensing device that the intermittent operation control state has ended (S507: Yes), the sensing stop command is turned off for all the air conditioners 11 that have transmitted the sensing stop command ON. (S508), and the process returns to S501. When there is no representative sensing device (S506: No), or when there is no notification that the intermittent operation control state has been completed from the air conditioner 11 that is the representative sensing device (S507: No), the process returns to S502.
 図8,9,10は、本発明の実施の形態1にかかる空調システムの制御シーケンスの一例を示す図である。図8,9,10には、空調装置11a,11b,11r,11sが外気低温時の間欠運転制御を行う際の集中コントローラー9と空調装置11a,11b,11r,11sとの間の制御シーケンスを示している。図8,9,10において、図8のA1,B1,C1,D1,E1は各々図9のA1,B1,C1,D1,E1に続き、図9のA2,B2,C2,D2,E2は各々図10のA2,B2,C2,D2,E2に続く。 8, 9, and 10 are diagrams illustrating an example of a control sequence of the air conditioning system according to the first exemplary embodiment of the present invention. 8, 9, and 10 show control sequences between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside temperature is low. ing. 8, 9, and 10, A1, B1, C1, D1, and E1 of FIG. 8 follow A1, B1, C1, D1, and E1 of FIG. 9, respectively, and A2, B2, C2, D2, and E2 of FIG. Each follows A2, B2, C2, D2, E2 in FIG.
 なお、図8,9,10においては、図4から7に示す各ステップについて、空調装置11aにおけるステップではS401aのようにステップ番号に符号aを付し、空調装置11bにおけるステップではS401bのようにステップ番号に符号bを付し、空調装置11rにおけるステップではS401rのようにステップ番号に符号rを付し、空調装置11sにおけるステップではS401sのようにステップ番号に符号sを付する。なお、以下の説明において、制御シーケンスについては同様に符号を付するものとする。 8, 9, and 10, for each step shown in FIGS. 4 to 7, the step number in the air conditioner 11 a is assigned a step number as in S <b> 401 a, and the step in the air conditioner 11 b is as S <b> 401 b. The step number is assigned b, the step in the air conditioner 11r is given the step number as in S401r, and the step in the air conditioner 11s is given the step number as S401s. In the following description, reference numerals are similarly assigned to the control sequences.
 なお、図8,9,10における制御シーケンスは、空調システム内で複数台の空調装置11が外気低温時の間欠運転制御を行う場合に、最後に外気低温時の間欠運転制御を開始した空調装置11が代表センシング装置となり、この代表センシング装置が間欠運転制御を終了するまでは、間欠運転制御状態が「実施中」である他の空調装置11が給気用送風機24を常時停止とする状態を維持し、センシング運転を行わないことを示している。なお、ここでは、最後に外気低温時の間欠運転制御を開始した空調装置11は、空調装置11sである。 8, 9, and 10, when a plurality of air conditioners 11 perform intermittent operation control at a low temperature of the outside air in the air conditioning system, the air conditioner 11 that finally started the intermittent operation control at a low temperature of the outside air is used. Until this representative sensing device ends the intermittent operation control, the other air conditioner 11 whose intermittent operation control state is “in progress” maintains the state where the air supply fan 24 is always stopped. This indicates that sensing operation is not performed. Here, the air conditioner 11 that finally started the intermittent operation control at the time of low outside air temperature is the air conditioner 11s.
 図11,12,13は、本発明の実施の形態1にかかる空調システムの制御シーケンスの一例を示す図である。図11,12,13には、空調装置11a,11b,11r,11sが外気高湿度時の間欠運転制御を行う際の集中コントローラー9と空調装置11a,11b,11r,11sとの間の制御シーケンスを示している。図11,12,13において、図11のA11,B11,C11,D11,E11は各々図12のA11,B11,C11,D11,E11に続き、図12のA12,B12,C12,D12,E12は各々図13のA12,B12,C12,D12,E12に続く。 11, 12, and 13 are diagrams illustrating an example of a control sequence of the air conditioning system according to the first exemplary embodiment of the present invention. 11, 12, and 13 show control sequences between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside air is high in humidity. Show. 11, 12, and 13, A11, B11, C11, D11, and E11 in FIG. 11 follow A11, B11, C11, D11, and E11 in FIG. 12, respectively, and A12, B12, C12, D12, and E12 in FIG. Each follows A12, B12, C12, D12, and E12 of FIG.
 なお、図11,12,13における制御シーケンスは、空調システム内で複数台の空調装置11が外気高湿度時の間欠運転制御を行う場合に、最後に外気高湿度時の間欠運転制御を開始した空調装置11が代表センシング装置となり、この代表センシング装置が間欠運転制御を終了するまでは、間欠運転制御状態が「実施中」である他の空調装置11が給気用送風機24を常時停止とする状態を維持し、センシング運転を行わないことを示している。なお、ここでは、最後に外気高湿度時の間欠運転制御を開始した空調装置11は、空調装置11sである。 11, 12, and 13, the air conditioner that finally started the intermittent operation control at the time of outside air high humidity when a plurality of air conditioners 11 perform the intermittent operation control at the time of outside air high humidity in the air conditioning system. 11 is a representative sensing device, and until this representative sensing device finishes the intermittent operation control, the other air conditioner 11 whose intermittent operation control state is “in implementation” is in a state in which the air supply fan 24 is always stopped. This indicates that the sensing operation is not performed. Here, the air conditioner 11 that finally started the intermittent operation control when the outside air is high in humidity is the air conditioner 11s.
 図14,15,16は、本発明の実施の形態1にかかる空調システムの制御シーケンスの一例を示す図である。図14,15,16には、空調装置11a,11b,11r,11sが外気低温時の間欠運転制御を行う際の集中コントローラー9と空調装置11a,11b,11r,11sとの間の制御シーケンスを示している。図14,15,16において、図14のA21,B21,C21,D21,E21は各々図15のA21,B21,C21,D21,E21に続き、図15のA22,B22,C22,D22,E22は各々図16のA22,B22,C22,D22,E22に続く。図14,15,16と図8,9,10との違いは、集中コントローラー9が代表センシング装置をビル全体ではなく、階毎に管理している点である。室外温湿度はフロアーの高低又はビルの周りの環境によって異なる場合もある。そのため、階毎に管理することで、間欠運転制御を終了可能な階において、不要な間欠運転制御を解除できない状況を回避することができる。 FIGS. 14, 15, and 16 are diagrams illustrating an example of a control sequence of the air conditioning system according to the first embodiment of the present invention. FIGS. 14, 15, and 16 show control sequences between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside temperature is low. ing. 14, 15, and 16, A21, B21, C21, D21, and E21 of FIG. 14 follow A21, B21, C21, D21, and E21 of FIG. 15, respectively, and A22, B22, C22, D22, and E22 of FIG. Each follows A22, B22, C22, D22, and E22 of FIG. The difference between FIGS. 14, 15, 16 and FIGS. 8, 9, 10 is that the centralized controller 9 manages the representative sensing device for each floor, not for the entire building. The outdoor temperature and humidity may vary depending on the height of the floor or the environment around the building. Therefore, by managing for each floor, it is possible to avoid a situation where unnecessary intermittent operation control cannot be canceled on a floor where intermittent operation control can be terminated.
 なお、図14,15,16における制御シーケンスは、空調システム内で複数台の空調装置11が外気低温時の間欠運転制御を行う場合に、階毎に、最後に外気低温時の間欠運転制御を開始した空調装置11が代表センシング装置となり、この代表センシング装置が間欠運転制御を終了するまでは、間欠運転制御状態が「実施中」である他の空調装置11が給気用送風機24を常時停止とする状態を維持し、センシング運転を行わないことを示している。なお、ここでは、最後に外気低温時の間欠運転制御を開始した空調装置11は、空調装置11b,空調装置11sであり、他の空調装置11は、空調装置11a,11rである。 In addition, the control sequence in FIG.14,15,16 started the intermittent operation control at the time of the external low temperature last for every floor | bed, when the several air conditioner 11 performs the intermittent operation control at the time of low external temperature in the air conditioning system. The air conditioner 11 becomes a representative sensing device, and the other air conditioner 11 whose intermittent operation control state is “in progress” always stops the air supply fan 24 until the representative sensing device finishes the intermittent operation control. The state is maintained and the sensing operation is not performed. Here, the air conditioner 11 that finally started the intermittent operation control at a low temperature of the outside air is the air conditioner 11b and the air conditioner 11s, and the other air conditioners 11 are the air conditioners 11a and 11r.
 図17,18,19は、本発明の実施の形態1にかかる空調システムの制御シーケンスの一例を示す図である。図17,18,19には、空調装置11a,11b,11c,11dが外気低温時の間欠運転制御を行う際の集中コントローラー9と空調装置11a,11b,11c,11dとの間の制御シーケンスを示している。図17,18,19において、図17のA31,B31,C31,D31,E31は各々図18のA31,B31,C31,D31,E31に続き、図18のA32,B32,C32,D32,E32は各々図19のA32,B32,C32,D32,E32に続く。図17,18,19と図8,9,10との違いは、集中コントローラー9が代表センシング装置をビル全体ではなく、テナント毎に管理している点である。室外温湿度検知値は室外から空調装置までのダクト長で異なることがあり、室外温湿度検知値はテナントごとに異なることもある。そのため、代表センシング装置をテナント単位で管理することで、間欠運転制御を終了可能なテナントにおいて間欠運転制御を解除できない状況を回避することができる。 17, 18, and 19 are diagrams illustrating an example of a control sequence of the air conditioning system according to the first exemplary embodiment of the present invention. 17, 18, and 19 show a control sequence between the centralized controller 9 and the air conditioners 11a, 11b, 11c, and 11d when the air conditioners 11a, 11b, 11c, and 11d perform intermittent operation control when the outside air is cold. ing. 17, 18, and 19, A31, B31, C31, D31, and E31 in FIG. 17 follow A31, B31, C31, D31, and E31 in FIG. 18, respectively, and A32, B32, C32, D32, and E32 in FIG. Each follows A32, B32, C32, D32, and E32 in FIG. The difference between FIGS. 17, 18, and 19 and FIGS. 8, 9, and 10 is that the centralized controller 9 manages the representative sensing device for each tenant, not for the entire building. The outdoor temperature / humidity detection value may differ depending on the duct length from the outdoor to the air conditioner, and the outdoor temperature / humidity detection value may differ for each tenant. Therefore, by managing the representative sensing device in units of tenants, it is possible to avoid a situation in which intermittent operation control cannot be canceled in a tenant that can end intermittent operation control.
 なお、室内CO濃度低下時の間欠運転制御を行う場合のように、室内の環境情報をセンシングする場合には、室内空間毎、すなわちテナント単位での管理が好ましい。なお、ここで、室内の環境情報は、室内温度、室内湿度及び室内ガス濃度を含む。 In addition, when sensing indoor environment information as in the case of performing intermittent operation control when the indoor CO 2 concentration is reduced, management in each indoor space, that is, in tenant units is preferable. Here, the indoor environmental information includes indoor temperature, indoor humidity, and indoor gas concentration.
 なお、図17,18,19における制御シーケンスは、空調システム内で複数台の空調装置11が外気低温時の間欠運転制御を行う場合に、テナント毎に、最後に外気低温時の間欠運転制御を開始した空調装置11が代表センシング装置となり、この代表センシング装置が間欠運転制御を終了するまでは、間欠運転制御状態が「実施中」である他の空調装置11が給気用送風機を常時停止とする状態を維持し、センシング運転を行わないことを示している。なお、ここでは、最後に外気低温時の間欠運転制御を開始した空調装置11は、空調装置11b,空調装置11dであり、他の空調装置11は、空調装置11a,11cである。 17, 18, and 19, when a plurality of air conditioners 11 perform intermittent operation control when the outside temperature is low in the air conditioning system, finally, intermittent operation control when the outside temperature is low is started for each tenant. The air conditioner 11 becomes a representative sensing device, and until this representative sensing device finishes the intermittent operation control, the other air conditioner 11 whose intermittent operation control state is “in progress” always stops the air supply fan. This indicates that the sensing operation is not performed. Here, the air conditioner 11 that finally started the intermittent operation control at the time of low outside temperature is the air conditioner 11b and the air conditioner 11d, and the other air conditioners 11 are the air conditioners 11a and 11c.
 以上説明した本実施の形態1においては、ビル建物全体、階毎又はテナント毎に代表センシング装置を管理しているが、本発明はこれに限定されるものではない。ビル建物の北側と南側とに分けて管理してもよいし、インテリアゾーンとペリメータゾーンとに分けて管理してもよい。すなわち、集中コントローラー9は、管理している複数台の空調装置11を複数のグループに分割してグループ毎に管理し、分割されたグループ内で複数台の空調装置11が間欠運転を行う際には、グループ内において代表センシング装置を設定し、グループ内の代表センシング装置以外の空調装置11は、間欠運転制御におけるセンシング運転を行わないように制御されてもよい。 In the first embodiment described above, the representative sensing device is managed for the entire building, for each floor, or for each tenant, but the present invention is not limited to this. It may be managed separately for the north side and the south side of the building, or may be managed separately for the interior zone and the perimeter zone. In other words, the centralized controller 9 divides the plurality of air conditioners 11 being managed into a plurality of groups and manages each group, and when the plurality of air conditioners 11 perform intermittent operation within the divided groups. May set the representative sensing device in the group, and the air conditioners 11 other than the representative sensing device in the group may be controlled not to perform the sensing operation in the intermittent operation control.
 図20は、本発明の実施の形態1にかかる空調システムを備えるビルの他の一例を示す模式図である。図20に示すビル100aは、図1に示すビル100から、個別リモートコントローラー8b,8d,8f,8h,8j,8m,8p,8sと、リモートコントローラー通信用伝送路80b,80d,80f,80h,80j,80m,80p,80sと、集中コントローラー9と、集中コントローラー通信用伝送路90と、を除いた構成である。 FIG. 20 is a schematic diagram illustrating another example of a building including the air conditioning system according to the first embodiment of the present invention. The building 100a shown in FIG. 20 is different from the building 100 shown in FIG. 1 in that the individual remote controllers 8b, 8d, 8f, 8h, 8j, 8m, 8p, 8s and the remote controller communication transmission lines 80b, 80d, 80f, 80h, The configuration is such that 80j, 80m, 80p, and 80s, the centralized controller 9, and the centralized controller communication transmission line 90 are excluded.
 具体的には、1階の北側であるテナント1北には、リモートコントローラー通信用伝送路80aを介して個別リモートコントローラー8aを接続した空調装置11a,11bが設置されている。1階の南側であるテナント1南には、リモートコントローラー通信用伝送路80cを介して個別リモートコントローラー8cを接続した空調装置11c,11dが設置されている。また、2階の北側であるテナント2北には、リモートコントローラー通信用伝送路80eを介して個別リモートコントローラー8eを接続した空調装置11e,11fが設置されている。2階の南側であるテナント2南には、リモートコントローラー通信用伝送路80gを介して個別リモートコントローラー8gを接続した空調装置11g,11hが設置されている。また、3階の北側であるテナント3北には、リモートコントローラー通信用伝送路80iを介して個別リモートコントローラー8iを接続した空調装置11i,11jが設置されている。3階の南側であるテナント3南には、リモートコントローラー通信用伝送路80kを介して個別リモートコントローラー8kを接続した空調装置11k,11mが設置されている。また、4階の北側であるテナント4北には、リモートコントローラー通信用伝送路80nを介して個別リモートコントローラー8nを接続した空調装置11n,11pが設置されている。4階の南側であるテナント4南には、リモートコントローラー通信用伝送路80rを介して個別リモートコントローラー8rを接続した空調装置11r,11sが設置されている。 Specifically, air conditioners 11a and 11b connected to an individual remote controller 8a through a remote controller communication transmission path 80a are installed in the north of the tenant 1 on the north side of the first floor. Air conditioners 11c and 11d, to which an individual remote controller 8c is connected via a remote controller communication transmission line 80c, are installed on the south side of the tenth, which is the south side of the first floor. Further, air conditioners 11e and 11f connected to the individual remote controller 8e via the remote controller communication transmission path 80e are installed on the north side of the tenth floor, which is the north side of the second floor. Air conditioners 11g and 11h, to which an individual remote controller 8g is connected via a remote controller communication transmission line 80g, are installed on the south side of the tenth 2 which is the south side of the second floor. Further, air conditioners 11i and 11j connected to the individual remote controller 8i via the remote controller communication transmission path 80i are installed in the tenant 3 north, which is the north side of the third floor. Air conditioners 11k and 11m connected to an individual remote controller 8k via a remote controller communication transmission path 80k are installed in the south of the tenant 3 on the south side of the third floor. Further, air conditioners 11n and 11p, each having an individual remote controller 8n connected thereto via a remote controller communication transmission line 80n, are installed on the north side of the fourth floor, which is the tenant 4 north. Air conditioners 11r and 11s connected to the individual remote controller 8r via the remote controller communication transmission path 80r are installed in the south of the tenth 4 which is the south side of the fourth floor.
 図21,22,23は、本発明の実施の形態1にかかる空調システムの制御シーケンスの一例を示す図である。図21,22,23には、空調装置11a,11b,11c,11dが外気低温時の間欠運転制御を行う際の個別リモートコントローラー8a,8cと空調装置11a,11b,11c,11dとの間の制御シーケンスを示している。図21,22,23において、図21のA41,B41,C41,D41,E41は各々図22のA41,B41,C41,D41,E41に続き、図22のA42,B42,C42,D42,E42は各々図23のA42,B42,C42,D42,E42に続く。ここで、図21,22,23と図17,18,19との違いは、テナント単位で代表センシング装置を判定するコントローラーが、集中コントローラー9ではなく個別リモートコントローラー8である点である。 FIGS. 21, 22, and 23 are diagrams illustrating an example of a control sequence of the air-conditioning system according to the first embodiment of the present invention. 21, 22, and 23, control between the individual remote controllers 8 a and 8 c and the air conditioners 11 a, 11 b, 11 c, and 11 d when the air conditioners 11 a, 11 b, 11 c, and 11 d perform intermittent operation control when the outside temperature is low. A sequence is shown. 21, 22, and 23, A41, B41, C41, D41, and E41 in FIG. 21 follow A41, B41, C41, D41, and E41 in FIG. 22 respectively, and A42, B42, C42, D42, and E42 in FIG. Each follows A42, B42, C42, D42, and E42 of FIG. Here, the difference between FIGS. 21, 22 and 23 and FIGS. 17, 18 and 19 is that the controller for determining the representative sensing device in tenant units is not the centralized controller 9 but the individual remote controller 8.
 なお、図21,22,23における制御シーケンスは、空調システム内で複数台の空調装置11が外気低温時の間欠運転制御を行う場合に、テナント単位で、最後に外気低温時の間欠運転制御を開始した空調装置11が代表センシング装置となり、この代表センシング装置が間欠運転制御を終了するまでは、間欠運転制御状態が「実施中」である他の空調装置11が給気用送風機を常時停止とする状態を維持し、センシング運転を行わないことを示している。なお、ここでは、最後に外気低温時の間欠運転制御を開始した空調装置11は、空調装置11b,空調装置11dであり、他の空調装置11は、空調装置11a,空調装置11cである。これは、代表センシング装置を判定するコントローラーは、複数台の空調装置を管理可能なコントローラーであればよく、ビル全体を管理する集中コントローラー9に限定されないことを意味する。 21, 22, and 23, when a plurality of air conditioners 11 perform intermittent operation control when the outside temperature is low in the air conditioning system, finally, intermittent operation control when the outside temperature is low is started for each tenant. The air conditioner 11 becomes a representative sensing device, and until this representative sensing device finishes the intermittent operation control, the other air conditioner 11 whose intermittent operation control state is “in progress” always stops the air supply fan. This indicates that the sensing operation is not performed. Here, the air conditioners 11 that finally started the intermittent operation control at the time of low temperature of the outside air are the air conditioners 11b and 11d, and the other air conditioners 11 are the air conditioners 11a and 11c. This means that the controller that determines the representative sensing device may be a controller that can manage a plurality of air conditioners, and is not limited to the centralized controller 9 that manages the entire building.
 以上説明した本実施の形態1にかかる空調システムは、複数台の空調装置を管理するコントローラーが、空調装置の間欠運転制御状態を管理し、複数台の空調装置が間欠運転制御を行っている場合には、間欠運転制御におけるセンシング運転を代表で行う代表センシング装置を決定し、代表センシング装置以外の空調装置は間欠運転制御におけるセンシング運転を行わないように制御される。このようにして、不要なセンシング運転を行わないため、消費電力を抑えることができる。 In the air conditioning system according to the first embodiment described above, the controller that manages the plurality of air conditioners manages the intermittent operation control state of the air conditioner, and the plurality of air conditioners perform the intermittent operation control. The representative sensing device that representatively performs the sensing operation in the intermittent operation control is determined, and the air conditioner other than the representative sensing device is controlled not to perform the sensing operation in the intermittent operation control. Thus, since unnecessary sensing operation is not performed, power consumption can be suppressed.
実施の形態2.
 本実施の形態2では、実施の形態1における外気高湿度時の間欠運転制御に代えて室内CO濃度低下時の間欠運転制御を行い、集中コントローラー9が代表センシング装置を間欠運転制御の種類に応じて管理する。
Embodiment 2. FIG.
In the second embodiment, instead of the intermittent operation control at the time of high outdoor air in the first embodiment, the intermittent operation control is performed when the indoor CO 2 concentration is lowered, and the centralized controller 9 controls the representative sensing device according to the type of the intermittent operation control. to manage.
 図24は、駆動制御装置20の制御動作の一例を示すフローチャートである。図24に示す制御動作では、間欠運転制御を行っており、排気用送風機25の動作については説明を省略する。なお、実施の形態1と同一機能及び同一構成については同一の符号を用いて説明を省略し、実施の形態1と同様に動作するものについては説明を省略し、援用するものとする。 FIG. 24 is a flowchart showing an example of the control operation of the drive control device 20. In the control operation shown in FIG. 24, intermittent operation control is performed, and the description of the operation of the exhaust fan 25 is omitted. Note that the same reference numerals are used for the same functions and the same configurations as those in the first embodiment, and descriptions thereof are omitted, and those that operate in the same manner as in the first embodiment are omitted and used.
 図24において、駆動制御装置20が個別リモートコントローラー8からの運転信号又は集中コントローラー9からの運転操作情報を受信すると、制御フローが開始する。制御フローが開始すると、駆動制御装置20は、給気用送風機24を一定時間運転する(S41)。ここでは一定時間は3分としている。次に、駆動制御装置20は、室外温湿度センサー26の室外温湿度検知値である検知温度Toaが第1の規定温度T1℃未満であるか否か判定する(S42)。検知温度Toaが第1の規定温度T1℃未満である場合(S42:Yes)には、図24の端子Cから図25のS1201へ進み、検知温度Toaが第1の規定温度T1℃未満でない場合(S42:No)には、S123へ進む。 24, when the drive control device 20 receives an operation signal from the individual remote controller 8 or driving operation information from the centralized controller 9, the control flow starts. When the control flow is started, the drive control device 20 operates the air supply fan 24 for a predetermined time (S41). Here, the fixed time is 3 minutes. Next, the drive control device 20 determines whether or not the detected temperature Toa, which is the outdoor temperature / humidity detection value of the outdoor temperature / humidity sensor 26, is lower than the first specified temperature T1 ° C. (S42). When the detected temperature Toa is lower than the first specified temperature T1 ° C. (S42: Yes), the process proceeds from the terminal C in FIG. 24 to S1201 in FIG. 25, and the detected temperature Toa is not lower than the first specified temperature T1 ° C. In (S42: No), it progresses to S123.
 S42でNoに分岐すると、駆動制御装置20は、外気低温時の間欠運転制御状態を終了とし(S123)、集中コントローラー9に外気低温時の間欠運転制御状態情報を送信し(S124)、CO濃度センサー27の濃度検知値である検知濃度Coaが第1の規定濃度C1ppm未満であるか否か判定する(S125)。検知濃度Coaが第1の規定濃度C1ppm未満である場合(S125:Yes)には図24の端子Dから図26のS1221へ進み、検知濃度Coaが第1の規定濃度C1ppm未満でない場合(S125:No)にはS126へ進む。 When branching to No in S42, the drive control device 20 ends the intermittent operation control state when the outside air is cold (S123), transmits the intermittent operation control state information when the outside temperature is low (S124), and the CO 2 concentration sensor. It is determined whether or not the detected density Coa which is the density detected value of 27 is less than the first specified density C1 ppm (S125). When the detected concentration Coa is less than the first specified concentration C1 ppm (S125: Yes), the process proceeds from the terminal D in FIG. 24 to S1221 in FIG. 26, and when the detected concentration Coa is not less than the first specified concentration C1ppm (S125: In No), it progresses to S126.
 S125でNoに分岐すると、駆動制御装置20は、CO濃度低下時の間欠運転制御状態を終了とし(S126)、集中コントローラー9に間欠運転制御状態情報を送信し(S127)、給気用送風機24を常時運転とし(S46)、S42へ戻る。 When branching to No in S125, the drive control device 20 ends the intermittent operation control state when the CO 2 concentration decreases (S126), transmits intermittent operation control state information to the centralized controller 9 (S127), and the air supply fan 24 Is always operated (S46), and the process returns to S42.
 図25は、駆動制御装置20の外気低温時の間欠運転制御の一例を示すフローチャートである。外気低温時の間欠運転制御を開始すると、駆動制御装置20は、外気低温時の間欠運転制御状態を「実施中」とし(S1201)、集中コントローラー9へ外気低温時の間欠運転制御状態情報を送信し(S1202)、室内CO濃度低下時の間欠運転制御状態情報を終了とし(S1203)、集中コントローラー9へ室内CO濃度低下時の間欠運転制御状態情報を送信し(S1204)、集中コントローラー9から送信される外気低温時のセンシング停止指令がオンであるか否かを判定する(S1205)。ここで、センシング停止指令がオンである場合(S1205:Yes)には、空調システム内のセンシング運転を他の空調装置11が代表して行っていることを意味する。一方、センシング停止指令がオフである場合(S1205:No)には、空調システム内のセンシング運転を、この駆動制御装置20を備える空調装置11が代表して行っていることを意味する。 FIG. 25 is a flowchart illustrating an example of intermittent operation control when the drive control device 20 is at a low outside air temperature. When the intermittent operation control at the low temperature of the outside air is started, the drive control device 20 sets the intermittent operation control state at the low temperature of the outside air to “in execution” (S1201), and transmits the intermittent operation control state information at the low temperature of the outside air to the centralized controller 9 (S1202). ), The intermittent operation control state information when the indoor CO 2 concentration decreases is terminated (S1203), the intermittent operation control state information when the indoor CO 2 concentration decreases is transmitted to the centralized controller 9 (S1204), and the outside air transmitted from the centralized controller 9 It is determined whether or not the sensing stop command at low temperature is on (S1205). Here, when the sensing stop command is ON (S1205: Yes), it means that the other air conditioner 11 is representatively performing the sensing operation in the air conditioning system. On the other hand, when the sensing stop command is OFF (S1205: No), it means that the air conditioning apparatus 11 including the drive control apparatus 20 performs the sensing operation in the air conditioning system as a representative.
 外気低温時のセンシング停止指令がオンである場合(S1205:Yes)には、給気用送風機24は常時停止とされ(S404)、S1205に戻る。すなわち、空調システム内の他の空調装置11に外気低温時のセンシングを委ね、この駆動制御装置20を備える空調装置11は外気低温時の間欠運転制御を行わず、集中コントローラー9からの外気低温時のセンシング停止指令がオフになるのを待つ。 If the sensing stop command at the time of low outdoor temperature is on (S1205: Yes), the air supply fan 24 is always stopped (S404), and the process returns to S1205. In other words, the other air conditioners 11 in the air conditioning system are left to perform sensing when the outside temperature is low, and the air conditioner 11 including this drive control device 20 does not perform intermittent operation control when the outside temperature is low, but from the centralized controller 9 when the outside temperature is low. Wait for the sensing stop command to turn off.
 外気低温時のセンシング停止指令がオフである場合(S1205:No)には、駆動制御装置20は、集中コントローラー9から送信される外気低温時のセンシング停止指令のオンオフ変化の有無を判定する(S1206)。外気低温時のセンシング停止指令のオンオフ変化ありの場合(S1206:Yes)には、空調システム内の他の空調装置11において、外気低温時の間欠運転制御が終了し、空調システム全体で外気低温時の間欠運転制御状態が解除されたことを意味する。一方、外気低温時のセンシング停止指令のオンオフ変化なしの場合(S1206:No)には、センシング停止指令がオフ状態を継続していれば、この駆動制御装置20を備える空調装置11が、空調システム内で最初に間欠運転制御を開始することを意味する。 When the sensing stop command at the time when the outside temperature is low is OFF (S1205: No), the drive control device 20 determines whether or not the sensing stop command at the time when the outside temperature is low is transmitted from the centralized controller 9 (S1206). ). When there is a change in the sensing stop command when the outside temperature is low (S1206: Yes), in the other air conditioners 11 in the air conditioning system, the intermittent operation control when the outside temperature is low ends, and the entire air conditioning system is intermittent when the outside temperature is low. This means that the operation control state has been released. On the other hand, in the case where there is no change in on / off of the sensing stop command when the outside temperature is low (S1206: No), if the sensing stop command continues in the off state, the air conditioner 11 including the drive control device 20 is This means that intermittent operation control is started first.
 外気低温時のセンシング停止指令のオンオフ変化なしの場合(S1206:No)には、給気用送風機24をTa分間だけ停止させ、Tb分間だけ運転させる間欠運転制御を行い(S406)、外気低温時の間欠運転制御が終了したか否か判定する(S1207)。外気低温時の間欠運転制御が終了していない場合(S1207:No)には、S1205へ戻る。外気低温時の間欠運転制御が終了している場合(S1207:Yes)には、S42へ戻る。 When there is no change in the on / off state of the sensing stop command when the outside temperature is low (S1206: No), intermittent operation control is performed in which the supply fan 24 is stopped for Ta minutes and operated for Tb (S406). It is determined whether or not the missing operation control is finished (S1207). When the intermittent operation control at the time of low outdoor temperature is not completed (S1207: No), the process returns to S1205. When the intermittent operation control at the time of low outdoor temperature has been completed (S1207: Yes), the process returns to S42.
 外気低温時のセンシング停止指令のオンオフ変化ありの場合(S1206:Yes)には、外気低温時の間欠運転制御状態は終了とし(S1208)、給気用送風機24をTb分間運転し(S409)、S42へ戻る。 When the sensing stop command is turned on and off when the outside temperature is low (S1206: Yes), the intermittent operation control state when the outside temperature is low is terminated (S1208), the supply fan 24 is operated for Tb (S409), and S42. Return to.
 図26は、駆動制御装置20の室内CO濃度低下時の間欠運転制御の一例を示すフローチャートである。なお、図26に示すS1221からS1229までは、室内CO濃度が低下したことにより換気不要と判断し、省エネ性を向上させるために行う動作である。駆動制御装置20は、室内CO濃度低下時の間欠運転制御状態を「実施中」とし(S1221)、集中コントローラー9へ室内CO濃度低下時の間欠運転制御状態情報を送信し(S1222)、集中コントローラー9から送信される室内CO濃度低下時のセンシング停止指令のオンオフを判定する(S1223)。ここで、センシング停止指令がオンである場合(S1223:Yes)には、空調システム内の室内CO濃度低下時のセンシング運転を他の空調装置11が代表して行っていることを意味する。一方、センシング停止指令がオフである場合(S1223:No)には、空調システム内の室内CO濃度低下時のセンシング運転を、この駆動制御装置20を備える空調装置11が代表して行っていることを意味する。 FIG. 26 is a flowchart illustrating an example of intermittent operation control when the indoor CO 2 concentration of the drive control device 20 is reduced. Note that the S1221 of FIG. 26 to S1229, it is determined that the required ventilation by indoor CO 2 concentration decreases, an operation performed in order to improve energy efficiency. The drive control device 20 sets the intermittent operation control state when the indoor CO 2 concentration is reduced to “being executed” (S1221), and transmits the intermittent operation control state information when the indoor CO 2 concentration is reduced to the centralized controller 9 (S1222). 9 determines whether or not the sensing stop command is transmitted when the indoor CO 2 concentration decreases transmitted from 9 (S1223). Here, if the sensing stop command is ON: The (S1223 Yes), it means that the sensing operation of the indoor CO 2 concentration at a decline in the air conditioning system other air conditioner 11 is performed by a representative. On the other hand, the sensing stop command if is off: in (S1223 No), the sensing operation of the indoor CO 2 concentration at a decline in the air conditioning system, air conditioning system 11 provided with the drive control device 20 is performed by a representative Means that.
 室内CO濃度低下時のセンシング停止指令がオンである場合(S1223:Yes)には、駆動制御装置20は、給気用送風機24を常時停止とし(S1224)、S1223に戻る。すなわち、空調システム内の他の空調装置11に室内CO濃度低下時のセンシングを委ね、この駆動制御装置20を備える空調装置11は室内CO濃度低下時の間欠運転制御を行わず、集中コントローラー9からの室内CO濃度低下時のセンシング停止指令がオフになるのを待つ。 If the sensing stop command when the indoor CO 2 concentration is reduced is on (S1223: Yes), the drive control device 20 always stops the air supply fan 24 (S1224), and returns to S1223. That is, sensing when the indoor CO 2 concentration is reduced is entrusted to other air conditioners 11 in the air conditioning system, and the air conditioner 11 including the drive control device 20 does not perform intermittent operation control when the indoor CO 2 concentration is reduced, and the centralized controller 9 Wait until the sensing stop command is turned off when the indoor CO 2 concentration decreases.
 室内CO濃度低下時のセンシング停止指令がオフである場合(S1223:No)には、駆動制御装置20は、集中コントローラー9から送信される室内CO濃度低下時のセンシング停止指令のオンオフ変化の有無を判定する(S1225)。室内CO濃度低下時のセンシング停止指令のオンオフ変化ありの場合(S1225:Yes)には、空調システム内の他の空調装置11において、室内CO濃度低下時の間欠運転制御が終了し、空調システム全体で室内CO濃度低下時の間欠運転制御状態が解除されたことを意味する。一方、室内CO濃度低下時のセンシング停止指令のオンオフ変化なしの場合(S1225:No)には、センシング停止指令がオフ状態を継続していれば、この駆動制御装置20を備える空調装置11が、空調システム内で最初に室内CO濃度低下時の間欠運転制御を開始することを意味する。 When the sensing stop command when the indoor CO 2 concentration decreases is off (S1223: No), the drive control device 20 changes the on / off change of the sensing stop command when the indoor CO 2 concentration decreases transmitted from the centralized controller 9. The presence or absence is determined (S1225). In the case where there is an on / off change in the sensing stop command when the indoor CO 2 concentration decreases (S1225: Yes), the intermittent operation control when the indoor CO 2 concentration decreases is terminated in the other air conditioners 11 in the air conditioning system, and the air conditioning system It means that the intermittent operation control state when the indoor CO 2 concentration is reduced as a whole is released. On the other hand, if there is no on / off change in the sensing stop command when the indoor CO 2 concentration is reduced (S1225: No), if the sensing stop command continues in the off state, the air conditioner 11 including this drive control device 20 This means that the intermittent operation control when the indoor CO 2 concentration is reduced first is started in the air conditioning system.
 室内CO濃度低下時のセンシング停止指令のオンオフ変化ありの場合(S1225:Yes)には、室内CO濃度低下時の間欠運転制御状態は終了とし(S1228)、給気用送風機24をTf分間運転する(S1229)。なお、S1229は、CO濃度センサー27の濃度検知値の安定が目的であり、設置環境によってこのTf分間は調整され、濃度検知値が待ち時間なく安定するのであれば、Tf=0としてもよい。 If there is an on / off change in the sensing stop command when the indoor CO 2 concentration is reduced (S1225: Yes), the intermittent operation control state when the indoor CO 2 concentration is reduced is terminated (S1228), and the air supply fan 24 is operated for Tf. (S1229). Note that S1229 is for the purpose of stabilizing the concentration detection value of the CO 2 concentration sensor 27, and is adjusted for this Tf minutes depending on the installation environment. If the concentration detection value is stable without waiting time, Tf = 0 may be set. .
 室内CO濃度低下時のセンシング停止指令のオンオフ変化なしの場合(S1225:No)には、給気用送風機24をTe分間だけ停止させ、Tf分間だけ運転させる室内CO濃度低下時の間欠運転制御を行い(S1226)、室内CO濃度低下時の間欠運転制御が終了したか否か判定する(S1227)。ここで、Tf分間の運転は、室内CO濃度を検知するセンシング運転である。 If no on-off change of the sensing stop command at room CO 2 concentration decreased (S1225: No), the supply of air blower 24 only Te minutes stopped, intermittent operation control at the time of lowering the indoor CO 2 concentration be operated by Tf min Is performed (S1226), and it is determined whether or not the intermittent operation control when the indoor CO 2 concentration is reduced is completed (S1227). Here, the operation for Tf is a sensing operation for detecting the indoor CO 2 concentration.
 なお、ここでは、C1=600ppm、Te=30分、Tf=5分とするが、本発明はこれに限定されるものではない。室内CO濃度低下時の間欠運転制御が終了していない場合(S1227:No)には、S1223へ戻る。室内CO濃度低下時の間欠運転制御が終了している場合(S1227:Yes)には、S42へ戻る。 Here, C1 = 600 ppm, Te = 30 minutes, and Tf = 5 minutes, but the present invention is not limited to this. If the intermittent operation control when the indoor CO 2 concentration is decreased is not completed (S1227: No), the process returns to S1223. When the intermittent operation control when the indoor CO 2 concentration is reduced is completed (S1227: Yes), the process returns to S42.
 また、室内CO濃度は、排気用送風機25を運転することで検知することができる。そのため、排気用送風機25は、給気用送風機24の運転に連動させてもよいし、間欠運転としてもよい。 Further, the indoor CO 2 concentration can be detected by operating the exhaust fan 25. Therefore, the exhaust fan 25 may be linked to the operation of the air supply fan 24 or may be intermittently operated.
 また、室内CO濃度が急激に上昇した場合に即座に換気可能とするために、間欠運転時には給気用送風機24を停止させず、Te分間の停止に代えて弱運転を行い、Tf分間の運転に代えて強運転を行い、風量の強弱を周期的に変更するように制御してもよい。 In addition, in order to allow immediate ventilation when the indoor CO 2 concentration suddenly increases, the air supply fan 24 is not stopped during intermittent operation, but instead of stopping for Te minutes, weak operation is performed, and Tf minutes Instead of driving, strong driving may be performed, and control may be performed so as to periodically change the strength of the air volume.
 図27,28は、集中コントローラー9の制御動作の一例を示すフローチャートである。図27,28において、集中コントローラー9の電源がオンされると、集中コントローラー9は、外気低温時の代表センシング装置を「なし」とし、室内CO濃度低下時の代表センシング装置を「なし」として初期化する(S1301)。次に、集中コントローラー9は、外気低温時の代表センシング装置ではない空調装置11から外気低温時の間欠運転制御状態が「実施中」との通知があるか否か判定する(S1302)。この外気低温時の間欠運転制御状態が「実施中」との通知は、S1202にて送信されたものである。外気低温時の間欠運転制御状態が「実施中」との通知がある場合(S1302:Yes)には、集中コントローラー9は、外気低温時の代表センシング装置があるか否か判定する(S1303)。外気低温時の代表センシング装置がある場合(S1303:Yes)には、集中コントローラー9は、外気低温時のセンシング停止指令をオンする送信を行い、すなわち外気低温時の代表センシング装置に外気低温時のセンシングを停止する指令を送信し(S1304)、外気低温時の代表センシング装置がS1302で通知した装置となるよう更新する(S1305)。外気低温時の代表センシング装置がない場合(S1303:No)には、集中コントローラー9は、センシング停止指令を送信することなく外気低温時の代表センシング装置がS1302で通知した装置となるよう更新する(S1305)。すなわち、集中コントローラー9は、外気低温時の代表センシング装置が、最後に外気低温時の間欠運転制御を開始した空調装置となるよう設定する。これにより、先に外気低温時の間欠運転制御を行っていた空調装置に対して外気低温時のセンシング運転を開始させず、不要なセンシング運転の回避により消費電力を抑えることができる。 27 and 28 are flowcharts showing an example of the control operation of the centralized controller 9. 27 and 28, when the power of the centralized controller 9 is turned on, the centralized controller 9 sets “None” as the representative sensing device when the outside air temperature is low, and sets “None” as the representative sensing device when the indoor CO 2 concentration decreases. Initialization is performed (S1301). Next, the centralized controller 9 determines whether or not there is a notification from the air conditioner 11 that is not a representative sensing device when the outside temperature is low that the intermittent operation control state when the outside temperature is low is “in progress” (S1302). The notification that the intermittent operation control state at the time when the outside air is low is “in progress” is transmitted in S1202. When there is a notification that the intermittent operation control state at the time when the outside temperature is low (S1302: Yes), the centralized controller 9 determines whether there is a representative sensing device when the outside temperature is low (S1303). When there is a representative sensing device when the outside air is cold (S1303: Yes), the centralized controller 9 transmits to turn on a sensing stop command when the outside temperature is low, that is, the representative sensing device when the outside temperature is low. A command to stop sensing is transmitted (S1304), and the representative sensing device at the time of low outside temperature is updated to be the device notified in S1302 (S1305). When there is no representative sensing device when the outside air is cold (S1303: No), the centralized controller 9 updates the representative sensing device when the outside temperature is low to be the device notified in S1302 without transmitting a sensing stop command ( S1305). That is, the centralized controller 9 sets the representative sensing device at the time of low outside air temperature to be the air conditioner that finally started the intermittent operation control at the low temperature of outside air. Thereby, it is possible to suppress power consumption by avoiding unnecessary sensing operation without starting the sensing operation at the low temperature of the outside air with respect to the air-conditioning apparatus that has previously performed the intermittent operation control at the low temperature of the outside air.
 なお、外気低温時の間欠運転制御状態が「実施中」である空調装置11が増えることは、外気低温時のセンシング停止指令がオンであることを送信する空調装置11が増えること、及び外気低温時の代表センシング装置が外気低温時の間欠運転制御を終了する場合に集中コントローラー9から外気低温時のセンシング停止指令がオフであることを通知する空調装置11が増えることを意味する。 The increase in the number of air conditioners 11 in which the intermittent operation control state at the time when the outside air is low is “being executed” means that the number of air conditioners 11 that transmit that the sensing stop command is ON when the outside temperature is low, and the time when the outside temperature is low. This means that when the representative sensing device ends the intermittent operation control when the outside temperature is low, the number of air conditioners 11 that notifies the centralized controller 9 that the sensing stop command when the outside temperature is low is off increases.
 外気低温時の間欠運転制御状態が「実施中」との通知がない場合(S1302:No)にも、集中コントローラー9は、外気低温時の代表センシング装置があるか否か判定する(S1306)。外気低温時の代表センシング装置がある場合(S1306:Yes)には、集中コントローラー9は、外気低温時の代表センシング装置である空調装置11から外気低温時の間欠運転制御状態情報が終了したとの通知がなされたか否か判定する(S1307)。外気低温時の代表センシング装置である空調装置11から外気低温時の間欠運転制御状態情報が終了したとの通知がある場合(S1307:Yes)には、外気低温時のセンシング停止指令オンを送信したすべての空調装置11に対して外気低温時のセンシング停止指令をオフするよう送信し(S1308)、外気低温時の代表センシング装置を「なし」として初期化する(S1309)。また、外気低温時の代表センシング装置がない場合(S1306:No)又は外気低温時の代表センシング装置である空調装置11から外気低温時の間欠運転制御状態が終了したとの通知がない場合(S1307:No)にはS1312へ進む。なお、外気低温時の代表センシング装置がS1302で通知した装置となるよう更新し(S1305)、又は外気低温時の代表センシング装置を「なし」として初期化した(S1309)後も同様である。 Even when there is no notification that the intermittent operation control state at the time when the outside air is cold (S1302: No), the centralized controller 9 determines whether there is a representative sensing device when the outside temperature is low (S1306). When there is a representative sensing device when the outside temperature is low (S1306: Yes), the centralized controller 9 notifies that the intermittent operation control state information when the outside temperature is low is finished from the air conditioner 11 which is a representative sensing device when the outside temperature is low. It is determined whether or not has been made (S1307). When there is a notification from the air conditioner 11 that is a representative sensing device when the outside temperature is low that the intermittent operation control state information when the outside temperature is low (S1307: Yes), all of the sensing stop command on when the outside temperature is low are all transmitted Is sent to the air conditioner 11 to turn off the sensing stop command when the outside temperature is low (S1308), and the representative sensing device when the outside temperature is low is initialized as “none” (S1309). Further, when there is no representative sensing device when the outside temperature is low (S1306: No), or when there is no notification from the air conditioner 11 which is the representative sensing device when the outside temperature is low that the intermittent operation control state when the outside temperature is low (S1307: In No), it progresses to S1312. The same applies after updating the representative sensing device at the time of low outside temperature to be the device notified at S1302 (S1305) or initializing the representative sensing device at the low temperature of outside air as “none” (S1309).
 次に、図27の端子Eから図28のS1312へと進み、集中コントローラー9は、室内CO濃度低下時の代表センシング装置ではない空調装置11から室内CO濃度低下時の間欠運転制御状態が「実施中」との通知がなされたか否か判定する(S1312)。この室内CO濃度低下時の間欠運転制御状態が「実施中」との通知は、S1222にて送信されたものである。室内CO濃度低下時の間欠運転制御状態が「実施中」との通知があった場合(S1312:Yes)には、集中コントローラー9は、室内CO濃度低下時の代表センシング装置があるか否か判定する(S1313)。室内CO濃度低下時の代表センシング装置がある場合(S1313:Yes)には、集中コントローラー9は、室内CO濃度低下時のセンシング停止指令をオンする送信を行い、室内CO濃度低下時の代表センシング装置に室内CO濃度低下時のセンシングを停止する指令を送信し(S1314)、室内CO濃度低下時の代表センシング装置がS1312で通知した装置となるよう更新する(S1315)。室内CO濃度低下時の代表センシング装置がない場合(S1313:No)には、集中コントローラー9は、センシング停止指令を送信することなく室内CO濃度低下時の代表センシング装置がS1312で通知した装置となるよう更新する(S1315)。すなわち、集中コントローラー9は、室内CO濃度低下時の代表センシング装置が、最後に室内CO濃度低下時の間欠運転制御を開始した空調装置となるよう設定する。これにより、先に室内CO濃度低下時の間欠運転制御を行っていた空調装置に対して室内CO濃度低下時のセンシング運転を開始させず、不要なセンシング運転の回避により消費電力を抑えることができる。 Then, the process proceeds to S1312 of FIG. 28 from the terminal E in FIG. 27, the centralized controller 9, the air conditioner 11 is not a typical sensing device when the indoor CO 2 concentration decreases the intermittent operation control state in the indoor CO 2 concentration decreases " It is determined whether or not a notification “in progress” has been made (S1312). The notification that the intermittent operation control state when the indoor CO 2 concentration is reduced is “in progress” is transmitted in S1222. When there is a notification that the intermittent operation control state when the indoor CO 2 concentration decreases is “in progress” (S1312: Yes), the centralized controller 9 determines whether there is a representative sensing device when the indoor CO 2 concentration decreases. Determination is made (S1313). If there is a representative sensing device when the indoor CO 2 concentration decreased (S1313: Yes), the centralized controller 9 performs the transmission of turning on the sensing stop command at room CO 2 concentration decreases, when the indoor CO 2 concentration decreases A command to stop sensing when the indoor CO 2 concentration is reduced is transmitted to the representative sensing device (S1314), and the representative sensing device when the indoor CO 2 concentration is reduced is updated to be the device notified in S1312 (S1315). When there is no representative sensing device when the indoor CO 2 concentration is reduced (S1313: No), the centralized controller 9 is the device notified by the representative sensing device when the indoor CO 2 concentration is reduced in S1312 without transmitting a sensing stop command. (S1315). That is, centralized controller 9, a representative sensing device when the indoor CO 2 concentration decreases, set to be the last air-conditioning system has started intermittent operation control at the time of the indoor CO 2 concentration decreases. Thus, previously without starting the sensing operation during indoor CO 2 concentration decreases relative to the air-conditioning apparatus which has been subjected to the intermittent operation control at the time of the indoor CO 2 concentration decreases, it is possible to suppress the power consumption by avoiding unnecessary sensing operation it can.
 なお、室内CO濃度低下時の間欠運転制御状態が「実施中」である空調装置11が増えることは、室内CO濃度低下時のセンシング停止指令がオンであることを送信する空調装置11が増えること、及び室内CO濃度低下時の代表センシング装置が室内CO濃度低下時の間欠運転制御を終了する場合に集中コントローラー9から室内CO濃度低下時のセンシング停止指令がオフであることを通知する空調装置11が増えることを意味する。 An increase in the number of air conditioners 11 in which the intermittent operation control state when the indoor CO 2 concentration is reduced is “in progress” means that the number of air conditioners 11 that transmit that the sensing stop command is ON when the indoor CO 2 concentration is reduced increases. it, and the indoor CO 2 concentration representatives sensing device when lowering notifies the sensing stop command of the indoor CO 2 concentration at reduced from the central controller 9 to terminate the intermittent operation control at the time of the indoor CO 2 concentration decreases is off It means that the air conditioner 11 increases.
 室内CO濃度低下時の間欠運転制御状態が「実施中」との通知がない場合(S1312:No)にも、集中コントローラー9は、室内CO濃度低下時の代表センシング装置があるか否か判定する(S1316)。室内CO濃度低下時の代表センシング装置がある場合(S1316:Yes)には、集中コントローラー9は、室内CO濃度低下時の代表センシング装置である空調装置11から室内CO濃度低下時の間欠運転制御状態が終了したとの通知がなされたか否か判定する(S1317)。室内CO濃度低下時の代表センシング装置である空調装置11から室内CO濃度低下時の間欠運転制御状態が終了したとの通知がある場合(S1317:Yes)には、室内CO濃度低下時のセンシング停止指令がオンであると送信したすべての空調装置11に対して室内CO濃度低下時のセンシング停止指令をオフする送信を行い、室内CO濃度低下時のセンシング停止する指令を送信し(S1318)、室内CO濃度低下時の代表センシング装置を「なし」として初期化する(S1319)。また、室内CO濃度低下時の代表センシング装置がない場合(S1316:No)又は室内CO濃度低下時の代表センシング装置である空調装置11から室内CO濃度低下時の間欠運転制御状態が終了したとの通知がない場合(S1317:No)には図28の端子Fから図27のS1302へ戻る。なお、室内CO濃度低下時の代表センシング装置がS1312で通知した装置となるよう更新し(S1315)、又は室内CO濃度低下時の代表センシング装置を「なし」として初期化した(S1319)後も同様である。 Even when there is no notification that the intermittent operation control state at the time when the indoor CO 2 concentration decreases is “in progress” (S1312: No), the centralized controller 9 determines whether there is a representative sensing device when the indoor CO 2 concentration decreases. (S1316). If there is a representative sensing device when the indoor CO 2 concentration decreases: in (S1316 Yes), the centralized controller 9, the intermittent operation when the indoor CO 2 concentration decreases from the air conditioner 11 is a representative sensing device when the indoor CO 2 concentration decreases It is determined whether or not a notification that the control state has ended has been made (S1317). If there is a notification from the air conditioning device 11 is a representative sensing device when the indoor CO 2 concentration decreases the intermittent operation control state in the indoor CO 2 concentration decreased ended (S1317: Yes), the at indoor CO 2 concentration decreases A transmission to turn off the sensing stop command when the indoor CO 2 concentration decreases is sent to all the air conditioners 11 that have transmitted that the sensing stop command is on, and a command to stop sensing when the indoor CO 2 concentration decreases ( In step S1318, the representative sensing device when the indoor CO 2 concentration decreases is initialized as “none” (S1319). If there is no representative sensing device when the indoor CO 2 concentration decreased (S1316: No), or from the air-conditioning device 11 is a representative sensing device when the indoor CO 2 concentration decreases the intermittent operation control state in the indoor CO 2 concentration decreased ended (S1317: No), the process returns from the terminal F in FIG. 28 to S1302 in FIG. The representative sensing device when the indoor CO 2 concentration is lowered is updated to be the device notified in S1312 (S1315), or the representative sensing device when the indoor CO 2 concentration is lowered is initialized as “none” (S1319). Is the same.
 図29,30,31は、本発明の実施の形態2にかかる空調システムの制御シーケンスの一例を示す図である。図29,30,31には、空調装置11a,11bが外気低温時の間欠運転制御を行い、空調装置11c,11dが室内CO濃度低下時の間欠運転制御を行う際の集中コントローラー9と空調装置11a,11b,11c,11dとの間の制御シーケンスを示している。図29,30,31において、図29のA51,B51,C51,D51,E51は各々図30のA51,B51,C51,D51,E51に続き、図30のA52,B52,C52,D52,E52は各々図31のA52,B52,C52,D52,E52に続く。 29, 30, and 31 are diagrams illustrating an example of a control sequence of the air conditioning system according to the second exemplary embodiment of the present invention. 29, 30, and 31, the air conditioners 11a and 11b perform intermittent operation control when the outside air temperature is low, and the centralized controller 9 and the air conditioner 11a when the air conditioners 11c and 11d perform intermittent operation control when the indoor CO 2 concentration decreases. , 11b, 11c, and 11d. 29, 30, and 31, A51, B51, C51, D51, and E51 of FIG. 29 follow A51, B51, C51, D51, and E51 of FIG. 30, respectively, and A52, B52, C52, D52, and E52 of FIG. Each follows A52, B52, C52, D52, and E52 of FIG.
 なお、図29,30,31における制御シーケンスは、空調システム内で複数台の空調装置11が外気低温時の間欠運転制御及び室内CO濃度低下時の間欠運転制御を行う場合に、集中コントローラー9が外気低温時の代表センシング装置及び室内CO濃度低下時の代表センシング装置を個別に管理し、最後に外気低温時の間欠運転制御を開始した空調装置11bが外気低温時の代表センシング装置となり、この代表センシング装置が外気低温時の間欠運転制御を終了するまでは、外気低温時の間欠運転制御状態が「実施中」である他の空調装置11aが給気用送風機24を常時停止とする状態を維持し、センシング運転を行わず、最後に室内CO濃度低下時の間欠運転制御を開始した空調装置11dが室内CO濃度低下時の代表センシング装置となり、この代表センシング装置が室内CO濃度低下時の間欠運転制御を終了するまでは、室内CO濃度低下時の間欠運転制御状態が「実施中」である他の空調装置11cが給気用送風機24を常時停止とする状態を維持し、センシング運転を行わないことを示している。 29, 30, and 31, the control sequence in the air conditioning system is such that when the plurality of air conditioners 11 perform intermittent operation control when the outside air temperature is low and intermittent operation control when the indoor CO 2 concentration decreases, the central controller 9 The representative sensing device at low temperature and the representative sensing device at low indoor CO 2 concentration are individually managed, and finally the air conditioner 11b that started the intermittent operation control at low outside air temperature becomes the representative sensing device at low outside air temperature. Until the device finishes the intermittent operation control when the outside air is cold, the other air conditioner 11a in which the intermittent operation control state when the outside temperature is low is “practicing” maintains the state where the air supply fan 24 is always stopped, and sensing The air conditioner 11d that has started the intermittent operation control when the indoor CO 2 concentration is lowered lastly without performing the operation is a representative when the indoor CO 2 concentration is lowered. Becomes sensing device, the representative until sensing device terminates the intermittent operation control at the time of the indoor CO 2 concentration decreases, indoor CO 2 concentration other air conditioner 11c is a supply air intermittent operation control state is "during execution" during reduction The state where the blower 24 is always stopped is maintained, and the sensing operation is not performed.
 以上説明した本実施の形態2にかかる空調システムは、複数台の空調装置を管理するコントローラーが、空調装置の間欠運転制御状態を間欠運転制御の種類に応じて管理し、周期の異なる間欠運転制御が同時に発生した場合でも、適切に不要なセンシング運転を行わないようにする。このようにして、複数台の空調装置が、不要なセンシング運転を行わないため、消費電力を抑えることができる。 In the air conditioning system according to the second embodiment described above, the controller that manages a plurality of air conditioners manages the intermittent operation control state of the air conditioners according to the type of intermittent operation control, and intermittent operation control with different periods. Even if both occur simultaneously, avoid unnecessary sensing operation. Thus, since a plurality of air conditioners do not perform unnecessary sensing operation, power consumption can be suppressed.
 なお、S1203においては、外気低温時の間欠運転制御を開始する際の室内CO濃度低下時の間欠運転制御状態を「終了」とした。これは、本実施の形態2においては、外気低温時の間欠運転制御と室内CO濃度低下時の間欠運転制御との2つの間欠運転制御がいずれも給気用送風機に対して間欠運転制御を行うようにしたため、両制御が干渉しないようにした措置である。従って、複数種類の間欠運転制御の制御対象が給気用送風機24と排気用送風機25とで異なっている場合には、複数種類の間欠運転制御が干渉しないので、S1203,S1204を行わないように制御してもよい。 In S1203, the intermittent operation control state at the time when the indoor CO 2 concentration is reduced when the intermittent operation control at the low temperature of the outside air is started is “finished”. In the second embodiment, the two intermittent operation controls, that is, the intermittent operation control when the outside air is cold and the intermittent operation control when the indoor CO 2 concentration is reduced, both perform intermittent operation control on the air supply fan. This is a measure to prevent both controls from interfering with each other. Therefore, when the control targets of the plurality of types of intermittent operation control are different between the air supply fan 24 and the exhaust fan 25, the plurality of types of intermittent operation control do not interfere with each other, so that S1203 and S1204 are not performed. You may control.
 また、実施の形態1,2においては、換気機能を有する空調装置について説明したが本発明はこれに限定されるものではない。本発明の空調装置は加湿装置又は冷暖房装置であってもよい。空調装置が加湿装置である場合には、室内高湿度時の間欠運転制御を行い、複数台の加湿装置を管理するコントローラーが、同一室内にある加湿装置を代表センシング装置を判定するグループとすると、複数台の加湿装置が、不要なセンシング運転を行わず、消費電力を抑えることができる。すなわち、室内外の温度、湿度、ガス濃度といった環境情報を間欠運転制御によりセンシングする空調装置であれば、換気機能を有する空調装置に限定されるものではない。 In the first and second embodiments, the air conditioner having a ventilation function has been described, but the present invention is not limited to this. The air conditioner of the present invention may be a humidifier or an air conditioner. When the air conditioner is a humidifier, the controller that performs intermittent operation control at high humidity in the room and manages the plurality of humidifiers is a group that determines the representative sensing device for the humidifiers in the same room. The humidifier of the stand does not perform unnecessary sensing operation and can reduce power consumption. That is, as long as the air conditioner senses environmental information such as indoor and outdoor temperatures, humidity, and gas concentration by intermittent operation control, the air conditioner is not limited to an air conditioner having a ventilation function.
実施の形態3.
 実施の形態1においては最後に間欠運転制御を開始した空調装置を代表センシング装置としているが、本実施の形態3では最初に間欠運転制御を開始した空調装置を代表センシング装置とする形態について説明する。
Embodiment 3 FIG.
In the first embodiment, the air conditioning apparatus that finally started the intermittent operation control is used as the representative sensing device. In the third embodiment, the air conditioning apparatus that first started the intermittent operation control is used as the representative sensing device. .
 図32は、駆動制御装置20の制御動作の一例を示すフローチャートである。図32に示す制御動作では、間欠運転制御を行っており、排気用送風機25の動作については説明を省略する。なお、実施の形態1と同一機能及び同一構成については同一の符号を用いて説明を省略し、実施の形態1と同様に動作するものについては説明を省略し、援用するものとする。 FIG. 32 is a flowchart showing an example of the control operation of the drive control device 20. In the control operation shown in FIG. 32, intermittent operation control is performed, and the description of the operation of the exhaust fan 25 is omitted. Note that the same reference numerals are used for the same functions and the same configurations as those in the first embodiment, and descriptions thereof are omitted, and those that operate in the same manner as in the first embodiment are omitted and used.
 図32では、図7におけるS504がS1504に変更され、図7におけるS504のセンシング停止指令の送信先がS502で通知した装置に変更されている。S1504においては、集中コントローラー9が、S502で間欠運転制御=「実施中」を通知した空調装置11へ、「センシング停止指令=ON」を送信し、S502へ戻る。すなわち、空調システム内で最初に間欠運転制御が「実施中」であることを通知して代表センシング装置となった空調装置11が、センシング運転を行い、後から間欠運転制御状態が「実施中」であることを通知した空調装置11はセンシング運転を行わないことを意味する。 32, S504 in FIG. 7 is changed to S1504, and the transmission destination of the sensing stop command in S504 in FIG. 7 is changed to the apparatus notified in S502. In S1504, the centralized controller 9 transmits “Sensing stop command = ON” to the air conditioner 11 that has notified intermittent operation control = “in progress” in S502, and returns to S502. That is, the air conditioning apparatus 11 that first notifies that the intermittent operation control is “in progress” in the air conditioning system and becomes the representative sensing apparatus performs the sensing operation, and the intermittent operation control state is “under execution” later. This means that the air conditioner 11 that has notified that the sensing operation is not performed.
 図33,34,35は、本発明の実施の形態3にかかる空調システムの制御シーケンスの一例を示す図である。図33,34,35には、空調装置11a,11b,11r,11sが外気低温時の間欠運転制御を行う際の集中コントローラー9と空調装置11a,11b,11r,11sとの間の制御シーケンスを示している。図33,34,35において、図33のA61,B61,C61,D61,E61は各々図34のA61,B61,C61,D61,E61に続き、図34のA62,B62,C62,D62,E62は各々図35のA62,B62,C62,D62,E62に続く。図33,34,35に示す制御シーケンスでは、空調システム内で複数台の空調装置11が外気低温時の間欠運転制御を行う場合に、最初に外気低温時の間欠運転制御を開始した空調装置11aが代表センシング装置となり、この代表センシング装置が間欠運転制御を終了するまでは、間欠運転制御状態が「実施中」である他の空調装置11では、給気用送風機24が常時停止の状態を維持し、センシング運転を行わないことを示している。 33, 34, and 35 are diagrams illustrating an example of a control sequence of the air conditioning system according to the third embodiment of the present invention. 33, 34, and 35 show a control sequence between the centralized controller 9 and the air conditioners 11a, 11b, 11r, and 11s when the air conditioners 11a, 11b, 11r, and 11s perform intermittent operation control when the outside temperature is low. ing. 33, 34, and 35, A61, B61, C61, D61, and E61 in FIG. 33 follow A61, B61, C61, D61, and E61 in FIG. 34, respectively, and A62, B62, C62, D62, and E62 in FIG. Each follows A62, B62, C62, D62, and E62 in FIG. In the control sequences shown in FIGS. 33, 34, and 35, when a plurality of air conditioners 11 perform intermittent operation control when the outside temperature is low in the air conditioning system, the air conditioner 11a that first started the intermittent operation control when the outside temperature is low is representative. Until the representative sensing device finishes the intermittent operation control, in the other air conditioner 11 in which the intermittent operation control state is “in progress”, the air supply fan 24 maintains a constantly stopped state, This indicates that sensing operation is not performed.
 以上説明した本実施の形態3にかかる空調システムは、間欠運転制御におけるセンシング運転を代表で行う代表センシング装置を最初に間欠運転制御を開始した空調装置に決定し、後に間欠運転制御を開始した空調装置のセンシング運転を行わないように制御しつつ、より早く間欠運転制御から復帰することができる。このようにして、複数台の空調装置が、不要なセンシング運転を行わないため、消費電力を抑えることができる。 The air conditioning system according to the third embodiment described above determines the representative sensing device that performs the sensing operation in the intermittent operation control as the representative air conditioning device that first started the intermittent operation control, and later started the intermittent operation control. While controlling so as not to perform the sensing operation of the device, it is possible to return from the intermittent operation control more quickly. Thus, since a plurality of air conditioners do not perform unnecessary sensing operation, power consumption can be suppressed.
 一例として、間欠運転制御が60分間停止し、3分間運転するように制御する場合に、空調装置11aが最初に間欠運転制御を開始してから30分後に空調装置11bが間欠運転制御を開始した場合、実施の形態1では間欠運転制御を終了するまでに90分かかるが、本実施の形態3では60分で終了する。すなわち、空調装置11aは、より早く間欠運転制御から復帰することができる。 As an example, when intermittent operation control is stopped for 60 minutes and controlled to operate for 3 minutes, the air conditioner 11b starts intermittent operation control 30 minutes after the air conditioner 11a first starts intermittent operation control. In this case, it takes 90 minutes to end the intermittent operation control in the first embodiment, but in 60 minutes in the third embodiment. That is, the air conditioner 11a can return from the intermittent operation control earlier.
 なお、本実施の形態3においては、外気低温時の間欠運転制御を例示して説明したが、本発明はこれに限定されず、外気高湿度時の間欠運転制御、フロアー単位での外気低温時の間欠運転制御、テナント単位での間欠運転制御、室内CO濃度低下時の間欠運転制御にも適用可能である。 In the third embodiment, the intermittent operation control at the low temperature of the outside air is exemplified and described. However, the present invention is not limited to this, and the intermittent operation control at the high temperature of the outside air and the intermittent operation at the low temperature of the outside air in units of floors. The present invention is also applicable to control, intermittent operation control in units of tenants, and intermittent operation control when the indoor CO 2 concentration decreases.
 以上の実施の形態1から3に示した構成は、本発明の内容の一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、本発明の要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。 The configurations shown in the above first to third embodiments show an example of the contents of the present invention, and can be combined with other known techniques, as long as they do not depart from the gist of the present invention. It is possible to omit or change a part of the configuration.
 8,8a,8b,8c,8d,8e,8f,8g,8h,8i,8j,8k,8m,8n,8p,8r,8s 個別リモートコントローラー、9 集中コントローラー、11,11a,11b,11c,11d,11e,11f,11g,11h,11i,11j,11k,11m,11n,11p,11r,11s 空調装置、12 筐体、13 室外側吐出口、15 室外側吸込口、17 室内側吸込口、19 室内側吐出口、20 駆動制御装置、21 熱交換器、24 給気用送風機、25 排気用送風機、26 室外温湿度センサー、27 CO濃度センサー、31 交流電源、32 電源回路、33 マイクロコンピューター、34 給気用送風機駆動回路、35 排気用送風機駆動回路、36 室外温湿度センサー検知回路、37 CO濃度センサー検知回路、38 リモートコントローラー通信回路、39 集中コントローラー通信回路、51 給気風路、53 排気風路、80,80a,80b,80c,80d,80e,80f,80g,80h,80i,80j,80k,80m,80n,80p,80r,80s リモートコントローラー通信用伝送路、90 集中コントローラー通信用伝送路、100,100a ビル。 8, 8a, 8b, 8c, 8d, 8e, 8f, 8g, 8h, 8i, 8j, 8k, 8m, 8n, 8p, 8r, 8s Individual remote controller, 9 Centralized controller, 11, 11a, 11b, 11c, 11d , 11e, 11f, 11g, 11h, 11i, 11j, 11k, 11m, 11n, 11p, 11r, 11s, air conditioner, 12 housing, 13 outdoor discharge port, 15 outdoor discharge port, 17 indoor intake port, 19 Indoor outlet, 20 Drive control device, 21 Heat exchanger, 24 Blower for air supply, 25 Blower for exhaust, 26 Outdoor temperature / humidity sensor, 27 CO 2 concentration sensor, 31 AC power supply, 32 Power supply circuit, 33 Microcomputer, 34 air supply fan drive circuit, 35 an exhaust blower drive circuit, 36 the outdoor temperature and humidity sensor detecting circuit, 37 CO 2 concentration sensor Intelligent circuit, 38 Remote controller communication circuit, 39 Centralized controller communication circuit, 51 Supply air path, 53 Exhaust air path, 80, 80a, 80b, 80c, 80d, 80e, 80f, 80g, 80h, 80i, 80j, 80k, 80m , 80n, 80p, 80r, 80s Remote controller communication transmission line, 90 centralized controller communication transmission line, 100, 100a building.

Claims (5)

  1.  複数台の空調装置を管理するコントローラーを備えた空調システムにおいて、
     前記コントローラーは、前記複数台の空調装置の間欠運転制御状態を管理し、
     前記複数台の空調装置が間欠運転制御を行う際に、前記複数台の空調装置の1つを前記間欠運転制御におけるセンシング運転を代表で行う代表センシング装置と設定し、
     前記複数台の空調装置のうち前記設定された代表センシング装置以外の空調装置は、前記間欠運転制御におけるセンシング運転を行わないように制御されることを特徴とする空調システム。
    In an air conditioning system with a controller that manages multiple air conditioners,
    The controller manages the intermittent operation control state of the plurality of air conditioners,
    When the plurality of air conditioners perform intermittent operation control, one of the plurality of air conditioners is set as a representative sensing device that representatively performs the sensing operation in the intermittent operation control,
    An air conditioning system in which air conditioners other than the set representative sensing device among the plurality of air conditioners are controlled not to perform a sensing operation in the intermittent operation control.
  2.  前記コントローラーは、
     前記間欠運転制御の種類に応じて代表センシング装置を設定することを特徴とする請求項1に記載の空調システム。
    The controller is
    The air conditioning system according to claim 1, wherein a representative sensing device is set according to the type of the intermittent operation control.
  3.  前記コントローラーは、
     管理している前記複数台の空調装置を複数のグループに分割してグループ毎に管理し、
     分割された前記グループ内で複数台の空調装置が間欠運転を行う際には、
     前記グループ内において代表センシング装置を設定し、
     前記グループ内の前記代表センシング装置以外の空調装置は、前記間欠運転制御におけるセンシング運転を行わないように制御されることを特徴とする請求項1又は請求項2に記載の空調システム。
    The controller is
    Dividing the plurality of air conditioners being managed into a plurality of groups and managing each group,
    When a plurality of air conditioners perform intermittent operation in the divided group,
    Set a representative sensing device in the group,
    The air conditioning system according to claim 1 or 2, wherein air conditioners other than the representative sensing device in the group are controlled not to perform the sensing operation in the intermittent operation control.
  4.  前記コントローラーは、
     前記間欠運転制御を最後に開始した空調装置を前記代表センシング装置と設定することを特徴とする請求項1から請求項3のいずれか一項に記載の空調システム。
    The controller is
    The air conditioning system according to any one of claims 1 to 3, wherein the air conditioning device that lastly started the intermittent operation control is set as the representative sensing device.
  5.  前記コントローラーは、
     前記間欠運転制御を最初に開始した空調装置を前記代表センシング装置と設定することを特徴とする請求項1から請求項3のいずれか一項に記載の空調システム。
    The controller is
    The air conditioning system according to any one of claims 1 to 3, wherein the air conditioning device that first starts the intermittent operation control is set as the representative sensing device.
PCT/JP2015/085365 2015-12-17 2015-12-17 Air-conditioning system WO2017104051A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2015/085365 WO2017104051A1 (en) 2015-12-17 2015-12-17 Air-conditioning system
JP2017556278A JP6494797B2 (en) 2015-12-17 2015-12-17 Air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/085365 WO2017104051A1 (en) 2015-12-17 2015-12-17 Air-conditioning system

Publications (1)

Publication Number Publication Date
WO2017104051A1 true WO2017104051A1 (en) 2017-06-22

Family

ID=59056245

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085365 WO2017104051A1 (en) 2015-12-17 2015-12-17 Air-conditioning system

Country Status (2)

Country Link
JP (1) JP6494797B2 (en)
WO (1) WO2017104051A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045035A (en) * 2017-08-31 2019-03-22 株式会社富士通ゼネラル Air conditioning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074937A (en) * 2001-08-31 2003-03-12 Mitsubishi Electric Corp Ventilator
JP2003287258A (en) * 2002-03-28 2003-10-10 Daikin Ind Ltd Air-conditioner
JP2005344940A (en) * 2004-05-31 2005-12-15 Tiger Vacuum Bottle Co Ltd Network appliance
JP2008157601A (en) * 2006-12-26 2008-07-10 Mitsubishi Electric Corp Refrigerating air conditioning system
JP2014173795A (en) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp Ventilation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074937A (en) * 2001-08-31 2003-03-12 Mitsubishi Electric Corp Ventilator
JP2003287258A (en) * 2002-03-28 2003-10-10 Daikin Ind Ltd Air-conditioner
JP2005344940A (en) * 2004-05-31 2005-12-15 Tiger Vacuum Bottle Co Ltd Network appliance
JP2008157601A (en) * 2006-12-26 2008-07-10 Mitsubishi Electric Corp Refrigerating air conditioning system
JP2014173795A (en) * 2013-03-11 2014-09-22 Mitsubishi Electric Corp Ventilation system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019045035A (en) * 2017-08-31 2019-03-22 株式会社富士通ゼネラル Air conditioning system

Also Published As

Publication number Publication date
JP6494797B2 (en) 2019-04-03
JPWO2017104051A1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
US10989429B2 (en) Air conditioning system
ES2758730T3 (en) Air conditioning system
US11365897B2 (en) Refrigerant leak management systems
US10955162B2 (en) Portable thermostat systems and methods
US10495341B2 (en) Supply and exhaust ventilation device
KR102262245B1 (en) Air conditioner and method for control of air conditioner
US10088191B2 (en) Occupancy based control of air conditioning system
WO2015079548A1 (en) Air conditioning system
JP7142682B2 (en) air conditioning system
US11402118B2 (en) Air-conditioning system
CN102374590A (en) Indoor unit for air conditioner and control method thereof
US20220316742A1 (en) Ventilation apparatus, ventilation system, and ventilation control method
JP6494797B2 (en) Air conditioning system
KR102238868B1 (en) Method for controlling air conditioning indoor unit, controller and air conditioner using the same
JP2011158153A (en) Air-conditioning control apparatus
AU2014341785A1 (en) Air-conditioning system
JP2013137189A (en) Air conditioning system
AU2020258187B2 (en) Air conditioning system
WO2019035194A1 (en) Heat exchanging ventilation device
KR20120090272A (en) Ventilator and method for the smae
US11698203B2 (en) Air-conditioning system
KR200446746Y1 (en) Indoor temperature control device
US20220107109A1 (en) Air conditioning system
JP2007285594A (en) Air conditioning system
JP2003207195A (en) Air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15910741

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017556278

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15910741

Country of ref document: EP

Kind code of ref document: A1