JP2001065949A - Controller for multi-chamber type air conditioner - Google Patents

Controller for multi-chamber type air conditioner

Info

Publication number
JP2001065949A
JP2001065949A JP23932399A JP23932399A JP2001065949A JP 2001065949 A JP2001065949 A JP 2001065949A JP 23932399 A JP23932399 A JP 23932399A JP 23932399 A JP23932399 A JP 23932399A JP 2001065949 A JP2001065949 A JP 2001065949A
Authority
JP
Japan
Prior art keywords
heat exchanger
valve opening
compressor
pressure reducing
control mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23932399A
Other languages
Japanese (ja)
Inventor
紀史 ▲よし▼椿
Akifumi Yoshitsubaki
Shigeru Narai
茂 成相
Teruo Fujikoso
輝夫 藤社
Takashi Kakuwa
孝 嘉久和
Akishi Takanashi
陽史 高梨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23932399A priority Critical patent/JP2001065949A/en
Publication of JP2001065949A publication Critical patent/JP2001065949A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To permit the prevention of superheating operation of a refrigerating cycle by a method wherein a means for operating the superheating degree of respective indoor heat exchangers by a pipeline temperature for respective heat exchangers is provided. SOLUTION: A superheating degree operating means 27 operates a superheating degree and a superheating degree of discharging operating means 28 operates the superheating degree of discharging respectively. A valve opening degree control mode table 33 sets the control contents (a value of valve travel and the like) of a variable pressure reducing device, which are capable of obtaining the optimum superheating degree and the optimum superheating degree of discharging in accordance with the operating frequency of a compressor. A valve travel control mode deciding means 31 decides the value of valve travel capable of obtaining the optimum superheating degree or the optimum superheating degree of discharging from the valve travel control mode table 33 in accordance with the operating frequency detected by a compressor operating frequency detecting means 32. In this case, respective values of the valve travel control table 33 are set by the values of experiments. According to this method, condensation on an indoor fan can be prevented while maintaining a high efficiency of a refrigerating cycle.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は一台の室外機と、こ
の室外機に並列に接続した複数台の室内機を備えた多室
形空気調和機の冷凍サイクルにおいて、可変式減圧装置
にて冷房運転または暖房運転時の冷凍サイクルの過熱
度、および吐出過熱度を最適に保つ制御を行う多室形空
気調和機の制御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration cycle of a multi-room air conditioner having one outdoor unit and a plurality of indoor units connected in parallel to the outdoor unit, and uses a variable decompression device. The present invention relates to a control device for a multi-room air conditioner that performs control for optimally controlling the degree of superheat of a refrigeration cycle and the degree of discharge superheat during a cooling operation or a heating operation.

【0002】[0002]

【従来の技術】一般に、多室形空気調和機は図9に示す
ように構成されている。以下、その構成について説明す
る。室外機Cは圧縮機1、冷媒の流れを切り換える四方
弁2、室外熱交換器3、パルス電動膨張弁等の可変式減
圧装置4A、4Bで構成している。室内機A、Bは、室
内熱交換器5A、5Bを備え、室外機Cおよび室内機
A、Bの液側およびガス側をそれぞれ接続配管6A、6
Bおよび接続配管7A、7Bで接続して閉回路となし、
閉回路の内部に冷媒を封入してヒートポンプサイクルを
構成している。また、室外機Cには室外ファン8と室外
吸い込み温度センサ9、圧縮機吐出温度センサ10、お
よび圧縮機吸入温度センサ11が設けられている。ま
た、室内機A、Bには室内ファン12A、12B、室内
吸い込み温度センサ13A、13B、および室内熱交換
器出口温度センサ14A、14Bを設けている。また、
圧縮機1はインバータ駆動の周波数(容量)可変制御形
が採用され、その運転周波数は各室の負荷状態を検出し
て制御(制御手段は図示せず)されるものである。上記
構成において冷房運転状態では、室外熱交換器3は凝縮
器として、室内熱交換器5A、5Bは蒸発器としてそれ
ぞれ働き、冷媒は圧縮機1、四方弁2、室外熱交換器
3、可変式減圧装置4A、4B、各室内熱交換器5A、
5Bと流れ、再び四方弁2から圧縮機1へ戻る順で循環
して各部屋を冷房する。このとき、各部屋に設置された
室内機A、Bの温度調節器(図示せず)の室温設定温度
と、室内吸い込み温度センサ13A、13Bにより検出
された実際の室温との差により、圧縮機1の運転周波数
が制御される。また各室内熱交換器出口温度センサ14
A、14Bにより蒸発器の配管温度を検出して、設定さ
れた温度になるように可変式減圧装置4A、4Bの弁開
度を調節する所謂冷凍サイクルの過熱度制御が行われ、
加えて間接的に圧縮機1の吐出ガス温度の過度な上昇を
押さえる吐出過熱度制御も行われていた。次に暖房運転
状態では、四方弁2を切り換えることにより、冷媒の流
れは冷房運転時と逆になり、各室内熱交換器5A、5B
は凝縮器として、室外熱交換器3は蒸発器としてそれぞ
れ働き、冷媒は圧縮機1、四方弁2、各室内熱交換器5
A,5B、可変式減圧装置4A、4B、室外熱交換器3
と流れ、再び四方弁2から圧縮機1へ戻る順で循環して
各部屋を暖房する。このとき、各部屋に設置された室内
機A、Bの温度調節器の室温設定温度と、室内吸い込み
温度センサ13A、13Bにより検出された実際の室温
との差により、圧縮機1の運転周波数が制御される。ま
た圧縮機吸入温度センサ11により冷媒ガスの吸入温度
を検出して、設定された吸入温度になるように可変式減
圧装置4A、4Bの弁開度を調節する所謂冷凍サイクル
の過熱度制御が行われ、加えて間接的に圧縮機1の吐出
ガス温度の過度な上昇を押さえる吐出過熱度制御も行わ
れていた。
2. Description of the Related Art Generally, a multi-room air conditioner is configured as shown in FIG. Hereinafter, the configuration will be described. The outdoor unit C comprises a compressor 1, a four-way valve 2 for switching the flow of refrigerant, an outdoor heat exchanger 3, and variable pressure reducing devices 4A and 4B such as a pulse electric expansion valve. The indoor units A and B include indoor heat exchangers 5A and 5B, and connect the liquid side and the gas side of the outdoor unit C and the indoor units A and B to connection pipes 6A and 6A, respectively.
B and connected by connecting pipes 7A and 7B to form a closed circuit,
A heat pump cycle is configured by charging a refrigerant inside the closed circuit. Further, the outdoor unit C is provided with an outdoor fan 8, an outdoor suction temperature sensor 9, a compressor discharge temperature sensor 10, and a compressor suction temperature sensor 11. The indoor units A and B are provided with indoor fans 12A and 12B, indoor suction temperature sensors 13A and 13B, and indoor heat exchanger outlet temperature sensors 14A and 14B. Also,
The compressor 1 employs an inverter-driven frequency (capacity) variable control type, and its operating frequency is controlled by detecting the load state of each room (control means is not shown). In the above configuration, in the cooling operation state, the outdoor heat exchanger 3 functions as a condenser, the indoor heat exchangers 5A and 5B function as evaporators, and the refrigerant is a compressor 1, a four-way valve 2, an outdoor heat exchanger 3, and a variable type. Decompression devices 4A, 4B, each indoor heat exchanger 5A,
5B, and circulates again from the four-way valve 2 to the compressor 1 to cool each room. At this time, the difference between the room temperature set temperature of the temperature controllers (not shown) of the indoor units A and B installed in each room and the actual room temperature detected by the indoor suction temperature sensors 13A and 13B is used. 1 is controlled. In addition, each indoor heat exchanger outlet temperature sensor 14
A, 14B detects the pipe temperature of the evaporator and controls the degree of opening of the variable decompression devices 4A, 4B so as to reach the set temperature.
In addition, discharge superheat degree control that indirectly suppresses an excessive rise in the discharge gas temperature of the compressor 1 has also been performed. Next, in the heating operation state, by switching the four-way valve 2, the flow of the refrigerant is reversed from that in the cooling operation, and the indoor heat exchangers 5A, 5B
, The outdoor heat exchanger 3 functions as an evaporator, and the refrigerant flows into the compressor 1, the four-way valve 2, the indoor heat exchanger 5
A, 5B, variable decompression devices 4A, 4B, outdoor heat exchanger 3
And circulate again from the four-way valve 2 to the compressor 1 to heat each room. At this time, the operating frequency of the compressor 1 is determined by the difference between the room temperature set temperature of the temperature controllers of the indoor units A and B installed in each room and the actual room temperature detected by the indoor suction temperature sensors 13A and 13B. Controlled. Also, the compressor suction temperature sensor 11 detects the suction temperature of the refrigerant gas, and controls the degree of valve opening of the variable decompression devices 4A and 4B so as to reach the set suction temperature. In addition, discharge superheat degree control for indirectly suppressing an excessive rise in the discharge gas temperature of the compressor 1 has also been performed.

【0003】これらの制御は、制御手段としてマイクロ
コンピュータ等で実現(手段そのものは図示せず)され
ている。
[0003] These controls are realized by a microcomputer or the like as control means (the means themselves are not shown).

【0004】[0004]

【発明が解決しようとする課題】しかしながら、このよ
うな従来の多室形空気調和機の制御装置では、冷房運転
時においては、各室の室内設定温度と実際の室内温度と
の差に対して、圧縮機1の運転周波数に関係なく、予め
設定された一定の室内熱交換器出口温度となるように可
変式減圧装置4A、4Bの弁開度を調節して過熱度制御
がなされている。ここで言う過熱度は、室内熱交換器5
A、5B即ち蒸発器の蒸発飽和温度と室内熱交換器出口
温度の温度差で有り、通常5〜10度の温度差即ち過熱
度に設定されている。そのため、この過熱度制御ではあ
る程度迄は満足できる制御結果は得られるが、多室形空
気調和機では室内機と室外機の接続配管の長さが大きく
異なるなどの設置条件によって、室内ファン12A、1
2Bへ結露するといった不具合があった。詳述すると、
特に近年3階建て住宅の出現や全館空調の要望等から、
多室形空気調和機の設置形態が多様化し、長配管の傾向
にあり、室内機A、Bと室外機Cの設置状態は、配管長
が30m以上が要求される状態にある。例えば室内機A
が2mの配管長、室内機Bが15mの配管長とした場
合、室内機の配管長に大きな差異が生じ、特に室内機B
側では配管長に伴なう圧力損失が7倍以上となり、室内
機Aが最適な過熱度であっても、室内機Bは最適な過熱
度に制御できず過熱度が大きくなり過ぎる。過熱度が大
きくなり過ぎると、熱交換して冷えた空気と一部熱交換
せずに過熱した空気がミックスして室内ファン12Bを
通過することにより、室内の湿度が高い多湿条件では、
室内ファン12Bの羽根に結露が生じ、場合によっては
室内に吹出して畳を濡らす等の問題が発生する。また、
どのような負荷状態においても最適な過熱度と吐出過熱
度を確保することにより、空気調和機の電気入力当たり
の、冷房能力と暖房能力が大きくなる高効率運転が維持
されることになるが、各部屋の負荷状態、運転台数によ
り圧縮機1の運転周波数は大きく変化するので、全運転
周波数領域にわたってこの過熱度と吐出過熱度を常に最
適な状態に制御すべく対応されていなかった。また、暖
房運転時においても、室外温度と各室の室内設定温度と
実際の室内温度との差に対して、圧縮機1の運転周波数
を制御し、また圧縮機吸入温度センサ11により冷媒ガ
スの温度を検出して、圧縮機1への液冷媒の戻りを防止
する液圧縮運転防止と高効率運転の目的で、設定された
吸入温度になるように可変式減圧装置4A、4Bの弁開
度を調節して、冷凍サイクルの吐出過熱度制御がなされ
ていたが、冷房運転時と同様に配管長が大きく異なる等
の設置条件では、最適な吐出過熱度制御が得られず、結
果圧縮機1への冷媒液戻りによる液圧縮が発生し、圧縮
機破損や高効率運転を阻害する等の課題があった。ま
た、各部屋の負荷状態、運転台数によっても圧縮機1の
運転周波数は大きく変化するので、全運転周波数領域に
わたって、冷凍サイクルの高効率運転と、圧縮機1への
冷媒液戻りのない吐出過熱度制御を実現することは困難
であった。そこで本発明は、かかる従来の課題を解消
し、圧縮機1の運転全周波数領域にわたって、冷凍サイ
クルの過熱度と吐出過熱度の制御を可能とし、熱交換器
の過熱度と吐出過熱度を最適状態にして、冷凍サイクル
の高効率運転を維持しながら、冷房運転時の室内ファン
への結露を防止し、圧縮機での液圧縮運転を防止し、ま
た圧縮機の吐出ガス温度の過度な上昇を押さえて、冷凍
サイクルの過熱運転の防止が可能な、多室形空気調和機
の制御装置を提供するものである。
However, in such a conventional control device for a multi-room air conditioner, during the cooling operation, the difference between the indoor set temperature of each room and the actual indoor temperature is not controlled. Regardless of the operating frequency of the compressor 1, the degree of superheat is controlled by adjusting the valve opening of the variable decompression devices 4A and 4B so that the preset indoor heat exchanger outlet temperature is maintained. The degree of superheat referred to here is the indoor heat exchanger 5
A, 5B, that is, the temperature difference between the evaporation saturation temperature of the evaporator and the outlet temperature of the indoor heat exchanger, and is usually set to a temperature difference of 5 to 10 degrees, that is, the degree of superheat. Therefore, this superheat degree control can provide a satisfactory control result to some extent. However, in the multi-room air conditioner, the indoor fans 12A, 12A, 1
There was a problem such as condensation on 2B. To elaborate,
In particular, due to the emergence of three-story houses and the demand for air conditioning throughout the building in recent years,
The installation form of the multi-room air conditioner is diversified, and there is a tendency for long piping, and the installation state of the indoor units A and B and the outdoor unit C is such that the pipe length is required to be 30 m or more. For example, indoor unit A
Is 2 m and the indoor unit B has a pipe length of 15 m, there is a large difference in the indoor unit pipe length.
On the side, the pressure loss due to the pipe length becomes 7 times or more, and even if the indoor unit A has the optimal superheat degree, the indoor unit B cannot be controlled to the optimal superheat degree and the superheat degree becomes too large. If the degree of superheat is too large, the air that has been cooled by heat exchange and the air that has been superheated without partially exchanging heat will mix and pass through the indoor fan 12B.
Dew condensation occurs on the blades of the indoor fan 12B, and in some cases, problems such as blowing out indoors to wet the tatami mats occur. Also,
By ensuring the optimum degree of superheat and discharge superheat in any load condition, high efficiency operation in which the cooling capacity and heating capacity per electric input of the air conditioner are increased, Since the operating frequency of the compressor 1 greatly changes depending on the load state of each room and the number of operating units, the superheat degree and the discharge superheat degree are not always controlled to the optimum state over the entire operation frequency range. Further, even during the heating operation, the operating frequency of the compressor 1 is controlled with respect to the difference between the outdoor temperature, the indoor set temperature of each room, and the actual indoor temperature. For the purpose of detecting the temperature and preventing the liquid refrigerant from returning to the compressor 1 to prevent the liquid compression operation and the high-efficiency operation, the valve openings of the variable pressure reducing devices 4A and 4B are set so that the set suction temperature is reached. , The discharge superheat degree control of the refrigeration cycle is performed. However, under the installation conditions such as a large difference in the pipe length as in the cooling operation, the optimum discharge superheat degree control cannot be obtained, and as a result, the compressor 1 There is a problem that liquid compression occurs due to the return of the refrigerant liquid to the compressor, and that the compressor is damaged and high-efficiency operation is hindered. Further, since the operating frequency of the compressor 1 greatly changes depending on the load state of each room and the number of operating units, the high efficiency operation of the refrigeration cycle and the discharge overheating without returning the refrigerant liquid to the compressor 1 over the entire operating frequency range. It was difficult to achieve degree control. Therefore, the present invention solves such a conventional problem and enables control of the superheat degree and discharge superheat degree of the refrigeration cycle over the entire operating frequency range of the compressor 1, and optimizes the superheat degree and discharge superheat degree of the heat exchanger. Condition to prevent dew condensation on the indoor fan during cooling operation, prevent liquid compression operation in the compressor, and excessively increase the discharge gas temperature of the compressor while maintaining high efficiency operation of the refrigeration cycle. The present invention provides a control device for a multi-room air conditioner capable of preventing overheating operation of a refrigeration cycle.

【0005】[0005]

【課題を解決するための手段】上記課題を解決するた
め、本発明の請求項1記載の発明は、周波数可変制御形
の圧縮機と室外熱交換器を備えた一台の室外機と、室内
熱交換器を備えた複数台の室内機と、前記各室内機に対
応した可変式減圧装置を、前記室外熱交換器と各室内熱
交換器の冷媒経路配管中途に設けて、接続配管で接続し
た冷凍サイクルにおいて、前記可変式減圧装置を、制御
信号により弁開度が制御される可変式減圧装置とし、さ
らに前記各室内熱交換器の冷媒経路配管の中途に設けら
れ、この冷媒経路配管の温度を検出する室内熱交換器中
間温度検出手段と、前記各室内熱交換器の冷媒経路配管
の出口に設けられ、この冷媒経路配管の温度を検出する
室内熱交換器出口温度検出手段を設け、これら室内熱交
換器中間温度検出手段および室内熱交換器出口温度検出
手段で検出されたそれぞれの配管温度により、前記各室
内熱交換器の過熱度を演算する過熱度演算手段と、前記
圧縮機の運転周波数を検出する圧縮機運転周波数検出手
段と、前記圧縮機運転周波数の数値と前記過熱度演算手
段の演算値から、前記可変式減圧装置の弁開度値が設定
された弁開度制御モードテーブルと、前記圧縮機運転周
波数検出手段により検出された圧縮機運転周波数の数値
と、前記過熱度演算手段の演算値により可変式減圧装置
の制御モードを判定する弁開度制御モード判定手段を設
け、この弁開度制御モード判定手段により判定された制
御モードに基づき、前記弁開度制御モードテーブルから
弁開度値を決定し、可変式減圧装置弁開度変更手段によ
り、前記可変式減圧装置の弁開度を調節して、冷房運転
時における、冷凍サイクルの過熱度制御を行うようにし
たことを特徴とする多室形空気調和機の制御装置であ
る。
In order to solve the above-mentioned problems, the invention according to claim 1 of the present invention provides an outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger, and an indoor unit. A plurality of indoor units equipped with heat exchangers, and a variable decompression device corresponding to each indoor unit are provided in the middle of the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, and connected by connection piping. In the refrigeration cycle, the variable pressure reducing device is a variable pressure reducing device in which the valve opening is controlled by a control signal, and further provided in the middle of the refrigerant path piping of each of the indoor heat exchangers. An indoor heat exchanger intermediate temperature detecting means for detecting a temperature, and an indoor heat exchanger outlet temperature detecting means provided at an outlet of a refrigerant path pipe of each of the indoor heat exchangers and detecting a temperature of the refrigerant path pipe, These indoor heat exchanger intermediate temperature detection means And a superheat degree calculating means for calculating the degree of superheat of each indoor heat exchanger based on the respective pipe temperatures detected by the indoor heat exchanger outlet temperature detecting means, and a compressor operating frequency for detecting an operating frequency of the compressor. Detecting means, a valve opening control mode table in which a valve opening value of the variable pressure reducing device is set from a numerical value of the compressor operating frequency and a calculated value of the superheat calculating means, Means for determining the control mode of the variable pressure reducing device based on the value of the compressor operating frequency detected by the means and the value calculated by the superheat degree calculating means. A valve opening value is determined from the valve opening control mode table on the basis of the control mode determined by the above, and the valve opening of the variable pressure reducing device is adjusted by the variable pressure reducing device valve opening changing means. To, at the time of cooling operation, the control apparatus for a multi-room air conditioning apparatus is characterized in that to perform the superheat degree control of the refrigeration cycle.

【0006】また請求項2記載の発明は、周波数可変制
御形の圧縮機と室外熱交換器を備えた一台の室外機と、
室内熱交換器を備えた複数台の室内機と、前記各室内機
に対応した可変式減圧装置を、前記室外熱交換器と各室
内熱交換器の冷媒経路配管中途に設けて、接続配管で接
続した冷凍サイクルにおいて、前記可変式減圧装置を、
制御信号により弁開度が制御される可変式減圧装置と
し、さらに前記室外熱交換器の冷媒経路配管の中途に設
けられ、この冷媒経路配管の温度を検出する室外熱交換
器中間温度検出手段と、前記圧縮機の吐出配管側に設け
られ、設けられた箇所の配管温度を検出する圧縮機吐出
温度検出手段と、これら室外熱交換器中間温度検出手段
と圧縮機吐出温度検出手段によって、検出されたそれぞ
れの配管温度により、前記冷凍サイクルの吐出過熱度を
演算する吐出過熱度演算手段と、前記圧縮機の運転周波
数を検出する圧縮機運転周波数検出手段と、前記圧縮機
運転周波数の数値と、前記吐出過熱度演算手段の演算値
から前記可変式減圧装置の弁開度が設定された弁開度制
御モードテーブルと、前記圧縮機運転周波数検出手段に
より検出された圧縮機運転周波数の数値と、前記吐出過
熱度演算手段の演算値により前記可変式減圧装置の制御
モードを判定する弁開度制御モード判定手段を設け、こ
の弁開度制御モード判定手段により判定された制御モー
ドに基づき、この弁開度制御モードテーブルから弁開度
値を決定し、可変式減圧装置弁開度変更手段により、前
記可変式減圧装置の弁開度を調節して、冷房運転時にお
ける、冷凍サイクルの吐出過熱度制御を行うようにした
ことを特徴とする多室形空気調和機の制御装置である。
また請求項3記載の発明は、周波数可変制御形の圧縮機
と室外熱交換器を備えた一台の室外機と、室内熱交換器
を備えた複数台の室内機と、前記各室内機に対応した可
変式減圧装置を、前記室外熱交換器と各室内熱交換器の
冷媒経路配管中途に設けて、接続配管で接続した冷凍サ
イクルにおいて、前記可変式減圧装置を、制御信号によ
り弁開度が制御される可変式減圧装置とし、さらに前記
各室内熱交換器の冷媒経路配管の中途に設けられ、この
冷媒経路配管の温度を検出する室内熱交換器中間温度検
出手段と、前記各室内熱交換器の冷媒経路配管の出口に
設けられ、この冷媒経路配管の温度を検出する室内熱交
換器出口温度検出手段と、前記室外熱交換器の冷媒経路
配管の中途に設けられ、この冷媒経路配管の温度を検出
する室外熱交換器中間温度検出手段と、前記圧縮機の吐
出配管側に設けられ、設けられた箇所の配管温度を検出
する圧縮機吐出温度検出手段を設けて、これら室内熱交
換器中間温度検出手段および室内熱交換器出口温度検出
手段で検出されたそれぞれの配管温度により、前記各室
内熱交換器の過熱度を演算する過熱度演算手段と、室外
熱交換器中間温度検出手段と圧縮機吐出温度検出手段に
よって、検出されたそれぞれの配管温度により、前記冷
凍サイクルの吐出過熱度を演算する吐出過熱度演算手段
と、前記圧縮機の運転周波数を検出する圧縮機運転周波
数検出手段と、前記圧縮機運転周波数の数値と前記過熱
度演算手段および前記吐出過熱度演算手段の演算値か
ら、前記可変式減圧装置の弁開度値が設定された弁開度
制御モードテーブルと、前記圧縮機運転周波数検出手段
により検出された圧縮機運転周波数の数値と、前記過熱
度演算手段および吐出過熱度演算手段の演算値により可
変式減圧装置の制御モードを判定する弁開度制御モード
判定手段を設け、この弁開度制御モード判定手段により
判定された制御モードに基づき、前記弁開度制御モード
テーブルから弁開度値を決定し、可変式減圧装置弁開度
変更手段により、前記可変式減圧装置の弁開度を調節し
て、冷房運転時における、冷凍サイクルの過熱度と吐出
過熱度制御を行うようにしたことを特徴とする多室形空
気調和機の制御装置である。また請求項4記載の発明
は、周波数可変制御形の圧縮機と室外熱交換器を備えた
一台の室外機と、室内熱交換器を備えた複数台の室内機
と、前記各室内機に対応した可変式減圧装置を、前記室
外熱交換器と各室内熱交換器の冷媒経路配管中途に設け
て、接続配管で接続した冷凍サイクルにおいて、前記可
変式減圧装置を、制御信号により弁開度が制御される可
変式減圧装置とし、さらに前記室外熱交換器の冷媒経路
配管の中途に設けられ、この冷媒経路配管の温度を検出
する室外熱交換器中間温度検出手段と、前記室外熱交換
器の冷媒経路配管の出口に設けられ、この冷媒経路配管
の温度を検出する室外熱交換器出口温度検出手段を設
け、これら室外熱交換器中間温度検出手段および室外熱
交換器出口温度検出手段で検出されたそれぞれの配管温
度により、前記室外熱交換器の過熱度を演算する過熱度
演算手段と、前記圧縮機の運転周波数を検出する圧縮機
運転周波数検出手段と、前記圧縮機運転周波数の数値と
前記過熱度演算手段の演算値から、前記可変式減圧装置
の弁開度値が設定された弁開度制御モードテーブルと、
前記圧縮機運転周波数検出手段により検出された圧縮機
運転周波数の数値と、前記過熱度演算手段の演算値によ
り可変式減圧装置の制御モードを判定する弁開度制御モ
ード判定手段を設け、この弁開度制御モード判定手段に
より判定された制御モードに基づき、前記弁開度制御モ
ードテーブルから弁開度値を決定し、可変式減圧装置弁
開度変更手段により、前記可変式減圧装置の弁開度を調
節して、暖房運転時における、冷凍サイクルの過熱度制
御を行うようにしたことを特徴とする多室形空気調和機
の制御装置である。
According to a second aspect of the present invention, there is provided an outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger,
A plurality of indoor units provided with an indoor heat exchanger, and a variable decompression device corresponding to each of the indoor units, provided in the middle of the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, with connection piping In the connected refrigeration cycle, the variable decompression device,
A variable pressure reducing device in which the valve opening is controlled by a control signal, and further provided in the middle of the refrigerant path pipe of the outdoor heat exchanger, and an outdoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path pipe; A compressor discharge temperature detecting means provided on the discharge pipe side of the compressor and detecting a pipe temperature at the provided position; and an outdoor heat exchanger intermediate temperature detecting means and a compressor discharge temperature detecting means. With each pipe temperature, discharge superheat degree calculating means for calculating the discharge superheat degree of the refrigeration cycle, compressor operating frequency detecting means for detecting the operating frequency of the compressor, and a numerical value of the compressor operating frequency, A valve opening control mode table in which a valve opening of the variable pressure reducing device is set from a calculation value of the discharge superheat calculating means, and a compression detected by the compressor operating frequency detecting means. Valve opening control mode determining means for determining a control mode of the variable pressure reducing device based on a numerical value of an operating frequency and a calculation value of the discharge superheat calculating means; and a control determined by the valve opening control mode determining means. Based on the mode, the valve opening value is determined from the valve opening control mode table, and the variable pressure reducing device valve opening changing means adjusts the valve opening of the variable pressure reducing device during cooling operation. A control device for a multi-room air conditioner, wherein discharge superheat degree control of a refrigeration cycle is performed.
The invention according to claim 3 provides a single outdoor unit having a frequency variable control compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and each of the indoor units. A corresponding variable pressure reducing device is provided in the middle of the refrigerant path pipe between the outdoor heat exchanger and each indoor heat exchanger, and in a refrigeration cycle connected by a connection pipe, the variable pressure reducing device is controlled by a control signal to open the valve. A variable decompression device, which is controlled, and which is provided in the middle of the refrigerant path piping of each of the indoor heat exchangers, and detects an intermediate temperature of the indoor heat exchanger for detecting the temperature of the refrigerant path piping; An indoor heat exchanger outlet temperature detecting means provided at an outlet of a refrigerant path pipe of the exchanger and detecting a temperature of the refrigerant path pipe; and a refrigerant path pipe provided in the middle of the refrigerant path pipe of the outdoor heat exchanger. Outdoor heat exchanger that detects the temperature of And a compressor discharge temperature detecting means which is provided on the discharge pipe side of the compressor and detects a pipe temperature at the provided location. The indoor heat exchanger intermediate temperature detecting means and the indoor heat exchange means are provided. By each pipe temperature detected by the unit outlet temperature detecting means, the superheat degree calculating means for calculating the degree of superheat of each indoor heat exchanger, the outdoor heat exchanger intermediate temperature detecting means and the compressor discharge temperature detecting means, A discharge superheat degree calculating means for calculating a discharge superheat degree of the refrigeration cycle, a compressor operation frequency detection means for detecting an operation frequency of the compressor, and a numerical value of the compressor operation frequency based on each detected pipe temperature. A valve opening control mode table in which a valve opening value of the variable pressure reducing device is set based on the calculated values of the superheat degree calculating means and the discharge superheat degree calculating means; Valve opening degree control mode determining means for determining the control mode of the variable pressure reducing device based on the value of the compressor operating frequency detected by the frequency detecting means and the calculated value of the superheat degree calculating means and the discharge superheat degree calculating means, Based on the control mode determined by the valve opening control mode determining means, a valve opening value is determined from the valve opening control mode table, and the variable pressure reducing device valve opening changing means controls the variable pressure reducing device. A control device for a multi-room air conditioner, wherein a valve opening is adjusted to control a superheat degree and a discharge superheat degree of a refrigeration cycle during a cooling operation. The invention according to claim 4 is directed to a single outdoor unit having a frequency variable control compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and each of the indoor units. A corresponding variable pressure reducing device is provided in the middle of the refrigerant path pipe between the outdoor heat exchanger and each indoor heat exchanger, and in a refrigeration cycle connected by a connection pipe, the variable pressure reducing device is controlled by a control signal to open the valve. An outdoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path pipe, which is provided in the middle of the refrigerant path pipe of the outdoor heat exchanger; The outdoor heat exchanger outlet temperature detecting means is provided at the outlet of the refrigerant path pipe for detecting the temperature of the refrigerant path pipe, and is detected by the outdoor heat exchanger intermediate temperature detecting means and the outdoor heat exchanger outlet temperature detecting means. Each distribution Superheat degree calculating means for calculating the degree of superheat of the outdoor heat exchanger based on temperature; compressor operating frequency detecting means for detecting the operating frequency of the compressor; numerical values of the compressor operating frequency and the superheat degree calculating means From the calculated value of, the valve opening control mode table in which the valve opening value of the variable pressure reducing device is set,
Valve opening control mode determining means for determining a control mode of the variable pressure reducing device based on a numerical value of the compressor operating frequency detected by the compressor operating frequency detecting means and a calculated value of the superheat degree calculating means; Based on the control mode determined by the opening control mode determining means, a valve opening value is determined from the valve opening control mode table, and the valve opening of the variable pressure reducing apparatus is changed by the variable pressure reducing apparatus valve opening changing means. A controller for a multi-room air conditioner, wherein the degree of superheat is controlled during a heating operation by controlling the degree of superheating of a refrigeration cycle.

【0007】また請求項5記載の発明は、周波数可変制
御形の圧縮機と室外熱交換器を備えた一台の室外機と、
室内熱交換器を備えた複数台の室内機と、前記各室内機
に対応した可変式減圧装置を、前記室外熱交換器と各室
内熱交換器の冷媒経路配管中途に設けて、接続配管で接
続した冷凍サイクルにおいて、前記可変式減圧装置を、
制御信号により弁開度が制御される可変式減圧装置と
し、さらに前記各室内熱交換器の冷媒経路配管の中途に
設けられ、この冷媒経路配管の温度を検出する室内熱交
換器中間温度検出手段と、前記圧縮機の吐出配管側に設
けられ、設けられた箇所の配管温度を検出する圧縮機吐
出温度検出手段と、これら各室内熱交換器中間温度検出
手段と圧縮機吐出温度検出手段によって、検出されたそ
れぞれの配管温度により、前記冷凍サイクルの吐出過熱
度を演算する吐出過熱度演算手段と、前記圧縮機の運転
周波数を検出する圧縮機運転周波数検出手段と、前記圧
縮機運転周波数の数値と、前記吐出過熱度演算手段の演
算値から前記可変式減圧装置の弁開度が設定された弁開
度制御モードテーブルと、前記圧縮機運転周波数検出手
段により検出された圧縮機運転周波数の数値と、前記吐
出過熱度演算手段の演算値により前記可変式減圧装置の
制御モードを判定する弁開度制御モード判定手段を設
け、この弁開度制御モード判定手段により判定された制
御モードに基づき、この弁開度制御モードテーブルから
弁開度値を決定し、可変式減圧装置弁開度変更手段によ
り、前記可変式減圧装置の弁開度を調節して、暖房運転
時における、冷凍サイクルの吐出過熱度制御を行うよう
にしたことを特徴とする多室形空気調和機の制御装置で
ある。
According to a fifth aspect of the present invention, there is provided an outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger,
A plurality of indoor units provided with an indoor heat exchanger, and a variable decompression device corresponding to each of the indoor units, provided in the middle of the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, with connection piping In the connected refrigeration cycle, the variable decompression device,
An indoor heat exchanger intermediate temperature detecting means which is provided in the middle of a refrigerant path pipe of each of the indoor heat exchangers and detects the temperature of the refrigerant path pipe, wherein the variable pressure reducing apparatus has a valve opening controlled by a control signal. And, provided on the discharge pipe side of the compressor, compressor discharge temperature detection means for detecting the pipe temperature of the provided location, by each of these indoor heat exchanger intermediate temperature detection means and compressor discharge temperature detection means, A discharge superheat degree calculating means for calculating a discharge superheat degree of the refrigeration cycle, a compressor operation frequency detection means for detecting an operation frequency of the compressor, and a numerical value of the compressor operation frequency based on each detected pipe temperature. A valve opening control mode table in which a valve opening of the variable decompression device is set based on a calculation value of the discharge superheat calculating means, and the compressor operating frequency detecting means detects the valve opening control mode table. Valve opening control mode determining means for determining a control mode of the variable pressure reducing device based on a numerical value of the compressor operating frequency and a calculation value of the discharge superheat calculating means, and a determination is made by the valve opening control mode determining means; Based on the control mode, the valve opening value is determined from the valve opening control mode table, and the valve opening of the variable pressure reducing device is adjusted by the variable pressure reducing device valve opening changing means so as to adjust the valve opening during the heating operation. The control device for a multi-room air conditioner according to any one of claims 1 to 3, wherein discharge superheat control of the refrigeration cycle is performed.

【0008】また請求項6記載の発明は、周波数可変制
御形の圧縮機と室外熱交換器を備えた一台の室外機と、
室内熱交換器を備えた複数台の室内機と、前記各室内機
に対応した可変式減圧装置を、前記室外熱交換器と各室
内熱交換器の冷媒経路配管中途に設けて、接続配管で接
続した冷凍サイクルにおいて、前記可変式減圧装置を、
制御信号により弁開度が制御される可変式減圧装置と
し、さらに前記室外熱交換器の冷媒経路配管の中途に設
けられ、この冷媒経路配管の温度を検出する室外熱交換
器中間温度検出手段と、前記室外熱交換器の冷媒経路配
管の出口に設けられ、この冷媒経路配管の温度を検出す
る室外熱交換器出口温度検出手段と、前記各室内熱交換
器の冷媒経路配管の中途に設けられ、この冷媒経路配管
の温度を検出する各室内熱交換器中間温度検出手段と、
前記圧縮機の吐出配管側に設けられ、設けられた箇所の
配管温度を検出する圧縮機吐出温度検出手段を設けて、
これら室外熱交換器中間温度検出手段および室外熱交換
器出口温度検出手段で検出された、それぞれの配管温度
により、前記室外熱交換器の過熱度を演算する過熱度演
算手段と、各室内熱交換器中間温度検出手段と圧縮機吐
出温度検出手段によって、検出されたそれぞれの配管温
度により、前記冷凍サイクルの吐出過熱度を演算する吐
出過熱度演算手段と、前記圧縮機の運転周波数を検出す
る圧縮機運転周波数検出手段と、前記圧縮機運転周波数
の数値と前記過熱度演算手段および前記吐出過熱度演算
手段の演算値から、前記可変式減圧装置の弁開度値が設
定された弁開度制御モードテーブルと、前記圧縮機運転
周波数検出手段により検出された圧縮機運転周波数の数
値と、前記過熱度演算手段および吐出過熱度演算手段の
演算値により可変式減圧装置の制御モードを判定する弁
開度制御モード判定手段を設け、この弁開度制御モード
判定手段により判定された制御モードに基づき、前記弁
開度制御モードテーブルから弁開度値を決定し、可変式
減圧装置弁開度変更手段により、前記可変式減圧装置の
弁開度を調節して、暖房運転時における、冷凍サイクル
の過熱度と吐出過熱度制御を行うようにしたことを特徴
とする多室形空気調和機の制御装置である。
According to a sixth aspect of the present invention, there is provided an outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger,
A plurality of indoor units provided with an indoor heat exchanger, and a variable decompression device corresponding to each of the indoor units, provided in the middle of the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, with connection piping In the connected refrigeration cycle, the variable decompression device,
A variable pressure reducing device in which the valve opening is controlled by a control signal, and further provided in the middle of the refrigerant path pipe of the outdoor heat exchanger, and an outdoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path pipe; An outdoor heat exchanger outlet temperature detecting means that is provided at an outlet of a refrigerant path pipe of the outdoor heat exchanger and detects a temperature of the refrigerant path pipe, and is provided in the middle of a refrigerant path pipe of each of the indoor heat exchangers. , Each indoor heat exchanger intermediate temperature detection means for detecting the temperature of the refrigerant path piping,
Provided on the discharge pipe side of the compressor, a compressor discharge temperature detecting means for detecting the pipe temperature of the provided location,
Superheat degree calculating means for calculating the degree of superheat of the outdoor heat exchanger based on the respective pipe temperatures detected by the outdoor heat exchanger intermediate temperature detecting means and the outdoor heat exchanger outlet temperature detecting means; Discharge superheat degree calculating means for calculating the discharge superheat degree of the refrigeration cycle based on the respective pipe temperatures detected by the compressor intermediate temperature detecting means and the compressor discharge temperature detecting means, and compression detecting the operating frequency of the compressor. Valve opening degree control in which a valve opening degree value of the variable pressure reducing device is set based on a machine operation frequency detection means, a value of the compressor operation frequency, and a calculation value of the superheat degree calculation means and the discharge superheat degree calculation means. A mode table, a numerical value of the compressor operating frequency detected by the compressor operating frequency detecting means, and a variable calculated by the superheat calculating means and the discharge superheat calculating means. A valve opening control mode determining means for determining a control mode of the pressure reducing device is provided, and a valve opening value is determined from the valve opening control mode table based on the control mode determined by the valve opening control mode determining means. The variable decompression device valve opening change means, by adjusting the valve opening of the variable decompression device, during the heating operation, superheat degree of the refrigeration cycle and discharge superheat degree is controlled. This is a control device for a multi-room air conditioner.

【0009】また請求項7記載の発明は、冷房運転時の
過熱度優先判定手段および暖房運転時の吐出過熱度優先
判定手段を具備し、冷凍サイクルの過熱度制御と吐出過
熱度制御において、過熱度優先判定手段により、冷房運
転時では吐出過熱度制御よりも過熱度制御を優先し、ま
た吐出過熱度優先判定手段により、暖房運転時では過熱
度制御よりも吐出過熱度制御を優先するようにしたこと
を特徴とする多室形空気調和機の制御装置である。
According to a seventh aspect of the present invention, there is provided a superheat degree priority judging means during a cooling operation and a discharge superheat degree priority judgment means during a heating operation. The degree-of-priority determining means gives priority to the superheat degree control over the discharge superheat degree control during the cooling operation, and the discharge superheat degree priority determining means gives priority to the discharge superheat degree control over the superheat degree control during the heating operation. A control device for a multi-room air conditioner, characterized in that:

【0010】[0010]

【発明の実施の形態】以下、本発明の実施の形態につい
て、図1〜図8をもとに説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to FIGS.

【0011】図1において、室外機Cは、インバータ駆
動の周波数可変制御形(容量可変形)の圧縮機1、冷媒
の流れを切り換えて冷房運転と暖房運転を切り換える四
方弁2、室外熱交換器3、および、例えばパルス信号に
より回転が制御されるステッピングモータ等により弁開
度が制御される、電動膨張弁からなる可変式減圧装置4
A、4Bで構成している。室内機A、Bはそれぞれ室内
熱交換器5Aおよび室内熱交換器5Bを備えている。そ
して、室外機Cおよび室内機A、Bをそれぞれ液側の接
続配管6A、6Bおよびガス側の接続配管7A、7Bで
接続して閉回路となし、閉回路の内部に冷媒を封入して
冷凍サイクルを形成し、冷暖房運転可能なヒートポンプ
サイクルを構成している。さらに室外機Cには、室外熱
交換器3に対向して設けた送風手段としての室外ファン
8と、外気温度の検出手段としての室外吸い込み温度セ
ンサ9と、圧縮機1の吐出側に設けられ、設けられた箇
所の配管温度を検出する手段としての圧縮機吐出温度セ
ンサ10と、室外熱交換器3の冷媒経路配管の出口に設
けられ、この冷媒経路配管の温度を検出する手段として
の室外熱交換器出口温度センサ11と、さらに室外熱交
換器3の冷媒経路配管の中途に設けられ、この冷媒経路
配管の温度を検出する手段としての室外熱交換器中間温
度センサ12が設けられている。また室内機A、Bに
は、室内熱交換器5A、5Bに対向して設けた送風手段
としての室内ファン13A、13Bと、室温検出手段と
しての室内吸い込み温度センサ14A、14Bと、室内
熱交換器5A、5Bの冷媒経路配管の出口に設けられ、
この冷媒経路配管の温度を検出する手段としての室内熱
交換器出口温度センサ15A、15Bと、さらに室内熱
交換器5A、5Bの冷媒経路配管の中途に設けられ、こ
の冷媒経路配管の温度を検出する手段としての室内熱交
換器中間温度センサ16A、16Bを設けている。
In FIG. 1, an outdoor unit C includes a compressor 1 of an inverter-driven variable frequency control type (variable capacity type), a four-way valve 2 for switching a refrigerant flow to switch between a cooling operation and a heating operation, and an outdoor heat exchanger. 3, and a variable pressure reducing device 4 comprising an electric expansion valve whose valve opening is controlled by, for example, a stepping motor whose rotation is controlled by a pulse signal.
A, 4B. Each of the indoor units A and B includes an indoor heat exchanger 5A and an indoor heat exchanger 5B. Then, the outdoor unit C and the indoor units A and B are connected by liquid-side connection pipes 6A and 6B and gas-side connection pipes 7A and 7B, respectively, to form a closed circuit. A cycle is formed, and a heat pump cycle capable of cooling and heating operation is configured. Further, the outdoor unit C is provided on the discharge side of the compressor 1 with an outdoor fan 8 as a blower provided opposite the outdoor heat exchanger 3, an outdoor suction temperature sensor 9 as a detector for the outside air temperature. , A compressor discharge temperature sensor 10 as a means for detecting the temperature of the pipe at the provided location, and an outdoor as a means for detecting the temperature of the refrigerant path pipe provided at the outlet of the refrigerant path pipe of the outdoor heat exchanger 3 A heat exchanger outlet temperature sensor 11 and an outdoor heat exchanger intermediate temperature sensor 12 that is provided in the middle of the refrigerant path pipe of the outdoor heat exchanger 3 and detects the temperature of the refrigerant path pipe are provided. . In the indoor units A and B, indoor fans 13A and 13B as blowing means provided opposite to the indoor heat exchangers 5A and 5B, indoor suction temperature sensors 14A and 14B as room temperature detecting means, and indoor heat exchange are provided. Provided at the outlet of the refrigerant path piping of the vessels 5A and 5B,
Indoor heat exchanger outlet temperature sensors 15A and 15B as means for detecting the temperature of the refrigerant path pipes, and further provided in the refrigerant path pipes of the indoor heat exchangers 5A and 5B to detect the temperature of the refrigerant path pipes For this purpose, the indoor heat exchanger intermediate temperature sensors 16A and 16B are provided as means for performing the operation.

【0012】上記構成において、室内機A、Bを共に運
転すると、次のようになる。
In the above configuration, the operation of the indoor units A and B together is as follows.

【0013】冷房運転時には、室内ファン13A、13
Bおよび室外ファン8と圧縮機1を運転し、圧縮機1か
ら吐出された冷媒は、四方弁2、室外熱交換器3、可変
式減圧装置4A、4B、室内熱交換器5A、5Bと流
れ、再び四方弁2から圧縮機1に戻る順に循環して各部
屋を冷房する。
During the cooling operation, the indoor fans 13A, 13A
B, the outdoor fan 8 and the compressor 1 are operated, and the refrigerant discharged from the compressor 1 flows through the four-way valve 2, the outdoor heat exchanger 3, the variable decompression devices 4A and 4B, and the indoor heat exchangers 5A and 5B. Then, each room is cooled by circulating in order from the four-way valve 2 to the compressor 1 again.

【0014】また、暖房運転時には、四方弁2を切り換
え、冷房運転時と同様に室内ファン13A、13Bおよ
び室外ファン8と圧縮機1を運転し、一方四方弁2を切
り換えることにより、圧縮機1から吐出された冷媒は、
四方弁2、室内熱交換器5A、5B、可変式減圧装置4
A、4B、室外熱交換器3と流れ、再び四方弁2から圧
縮機1に戻る順に循環して各部屋を暖房する。
During the heating operation, the four-way valve 2 is switched, and the indoor fans 13A, 13B and the outdoor fan 8 and the compressor 1 are operated as in the cooling operation. Refrigerant discharged from the
Four-way valve 2, indoor heat exchangers 5A, 5B, variable pressure reducing device 4
A, 4B, flow to the outdoor heat exchanger 3, and circulate again from the four-way valve 2 to the compressor 1 to heat each room.

【0015】そして圧縮機1はインバータ駆動であり、
その可変運転周波数範囲は冷房運転時15Hz〜100
Hz、暖房運転時15Hz〜130Hzと可変幅が広く、
その運転周波数と可変式減圧装置4A、4Bの弁開度の
初期設定は、室内機A、Bの運転台数と各室の負荷状態
に基づいて、総合負荷レベルとして決定される。
The compressor 1 is driven by an inverter.
The variable operation frequency range is 15 Hz to 100 during cooling operation.
Hz, 15Hz ~ 130Hz during heating operation, variable width is wide,
The initial setting of the operation frequency and the valve opening of the variable pressure reducing devices 4A and 4B is determined as a total load level based on the number of operating indoor units A and B and the load state of each room.

【0016】次に、その圧縮機1の運転周波数と可変式
減圧装置4A、4Bの、弁開度の初期設定の決定方法に
ついて下記表1で説明する。ここでは説明の便宜上、表
を簡略化して説明する。
Next, the operation frequency of the compressor 1 and a method of determining the initial setting of the valve opening of the variable pressure reducing devices 4A and 4B will be described with reference to Table 1 below. Here, for convenience of explanation, the table is simplified and described.

【0017】[0017]

【表1】 [Table 1]

【0018】なお、室内機Aまたは室内機Bのいずれか
一方が運転される一台運転時は、他方の室内機の差温Δ
Tを小とみなし、L1〜L3とする。
When one of the indoor units A and B is operated, the temperature difference Δ
T is assumed to be small and L1 to L3.

【0019】表1において、差温ΔTは各室内機A、B
の温度調節器(図示せず)の設定温度Tsと室内吸い込
み温度センサー14A、14Bで検出された実際の室温
Trの差(Tr−Ts)である。すなわち、この差温Δ
T(=Tr−Ts)の大小は各室内機A、Bの負荷の大
小とみなされる。
In Table 1, the temperature difference ΔT is calculated for each of the indoor units A and B.
Is the difference (Tr-Ts) between the set temperature Ts of the temperature controller (not shown) and the actual room temperature Tr detected by the indoor suction temperature sensors 14A and 14B. That is, this temperature difference Δ
The magnitude of T (= Tr−Ts) is regarded as the magnitude of the load on each of the indoor units A and B.

【0020】各室内機A、Bの差温ΔTの大、中、小に
より、その総合負荷(室内機Aの負荷プラス室内機Bの
負荷)に応じた圧縮機1の運転周波数と、それに見合う
可変式減圧装置4A、4Bの弁開度の初期設定レベルが
L1〜L5として設定される。
The operating frequency of the compressor 1 according to the total load (the load of the indoor unit A plus the load of the indoor unit B) is determined by the large, medium, and small differential temperatures ΔT of the indoor units A and B, and the operating frequency is matched. The initial setting levels of the valve openings of the variable pressure reducing devices 4A and 4B are set as L1 to L5.

【0021】例えば室内機A、B共に負荷が大きければ
L5のレベルに設定され、圧縮機1は高い周波数にて運
転され、また可変式減圧装置の弁開度の初期設定値も大
きな弁開度となる。
For example, if the load on both the indoor units A and B is large, the level is set to L5, the compressor 1 is operated at a high frequency, and the initial set value of the valve opening of the variable pressure reducing device is also large. Becomes

【0022】また、逆に各室共に負荷が小であれば、L
1のレベルに設定され、圧縮機1は低い周波数で運転さ
れ、可変式減圧装置4A、4Bの弁開度は小さな弁開度
に設定される。
Conversely, if the load in each chamber is small, L
1, the compressor 1 is operated at a low frequency, and the valve openings of the variable pressure reducing devices 4A, 4B are set to small valve openings.

【0023】また、室内機Aまたは室内機Bのいずれか
一方が運転される一台運転時は、停止している片方の室
内機の負荷を小とみなし、例えば室内機A一台の運転時
に、室内機Aの負荷が大(ΔT=大)であれば、可変式
減圧装置4Aの弁開度はL3のレベルに設定されて運転
される。
When one of the indoor units A or B is operated, the load of one of the stopped indoor units is regarded as small. When the load of the indoor unit A is large (ΔT = large), the variable pressure reducing device 4A is operated with the valve opening set to the level of L3.

【0024】次に本発明の実施の形態における制御装置
の構成と働きを、図2の制御ブロック図を用いて説明す
る。
Next, the configuration and operation of the control device according to the embodiment of the present invention will be described with reference to the control block diagram of FIG.

【0025】図2において、26は運転モード入力手段
で、冷暖運転切り換えスイッチ(図示せず)の操作に応
じて冷房運転と暖房運転を選択する。
In FIG. 2, an operation mode input means 26 selects a cooling operation or a heating operation according to the operation of a cooling / heating operation switch (not shown).

【0026】そして、20は室内熱交換器中間温度検出
手段で、図1の室内熱交換器中間温度センサ16A、1
6Bに相当する。また21は室内熱交換器出口温度検出
手段で、図1の室内熱交換器出口温度センサ15A、1
5Bに相当する。
Reference numeral 20 denotes an indoor heat exchanger intermediate temperature detecting means, which is the indoor heat exchanger intermediate temperature sensors 16A and 16A shown in FIG.
6B. Further, reference numeral 21 denotes an indoor heat exchanger outlet temperature detecting means, which is an indoor heat exchanger outlet temperature sensor 15A,
5B.

【0027】22は室外熱交換器中間温度検出手段で、
図1の室外熱交換器中間温度センサ12に相当する。ま
た23は室外熱交換器出口温度検出手段で、図1の室外
熱交換器出口温度センサ11に相当する。
Reference numeral 22 denotes an outdoor heat exchanger intermediate temperature detecting means.
This corresponds to the outdoor heat exchanger intermediate temperature sensor 12 in FIG. Reference numeral 23 denotes an outdoor heat exchanger outlet temperature detecting means, which corresponds to the outdoor heat exchanger outlet temperature sensor 11 in FIG.

【0028】24は圧縮機吐出温度検出手段で、図1の
圧縮機吐出温度センサ10に相当する。
Reference numeral 24 denotes compressor discharge temperature detecting means, which corresponds to the compressor discharge temperature sensor 10 in FIG.

【0029】そして、25は運転モード判定手段であ
り、前記運転モード入力手段26の信号をもとに、冷房
運転か暖房運転かの運転モードを判定する。
Reference numeral 25 denotes an operation mode judging means for judging an operation mode of a cooling operation or a heating operation based on a signal of the operation mode input means 26.

【0030】27は過熱度演算手段、28は吐出過熱度
演算手段であり、これらは前記運転モード判定手段25
が出力する運転モード信号により、その運転状態により
前記各温度検出手段20〜24の検出温度の中から、必
要な温度検出手段により得られた値を用いて、過熱度演
算手段27は過熱度を、また吐出過熱度演算手段28は
吐出過熱度をそれぞれ算出する。
Reference numeral 27 denotes superheat degree calculating means, and reference numeral 28 denotes discharge superheat degree calculating means.
The superheat degree calculation means 27 calculates the superheat degree by using the value obtained by the necessary temperature detection means from the detected temperatures of the respective temperature detection means 20 to 24 depending on the operation state according to the operation mode signal outputted by Further, the discharge superheat degree calculating means 28 calculates the discharge superheat degree.

【0031】29は過熱度優先判定手段で、冷房運転時
においては過熱度演算手段27の信号が出力されている
場合、前記弁開度制御モード判定手段31へ、この過熱
度制御が終了するまで吐出過熱度演算手段28の信号を
受け付けないように信号を出力する。
Reference numeral 29 denotes a superheat degree priority judging means. When the signal of the superheat degree calculating means 27 is output during the cooling operation, the superheat degree calculating means 27 sends the signal to the valve opening degree control mode judging means 31 until the superheat degree control is completed. A signal is output so as not to receive the signal from the discharge superheat degree calculating means 28.

【0032】30は吐出過熱度優先判定手段で、暖房運
転時においては吐出過熱度演算手段28の信号が出力さ
れている場合、前記弁開度制御モード判定手段31へ、
この吐出過熱度制御が終了するまで過熱度演算手段27
の信号を受け付けないように信号を出力する。
Numeral 30 is a discharge superheat priority determining means. When a signal from the discharge superheat calculating means 28 is output during the heating operation, the discharge superheat degree is determined by the valve opening control mode determining means 31.
Superheat degree calculating means 27 until the discharge superheat degree control is completed.
The signal is output so as not to accept the signal.

【0033】33は弁開度制御モードテーブルで、前記
圧縮機1の運転周波数の値に応じて、最適な過熱度と吐
出過熱度が得られる可変式減圧装置4A、4Bの制御内
容(弁開度値など)が設定されている。ここでは説明の
便宜上圧縮機1の運転周波数の数値に対応してステップ
A、B、Cと3段階に制御して、後述するS1からS4
3の制御モードが設定されている。
Reference numeral 33 denotes a valve opening control mode table, which controls the variable pressure reducing devices 4A and 4B that can obtain the optimum degree of superheat and discharge superheat in accordance with the value of the operating frequency of the compressor 1 (valve opening). Degrees). Here, for convenience of explanation, control is performed in three steps, steps A, B, and C, corresponding to the numerical value of the operating frequency of the compressor 1, and S1 to S4 described later.
3 control modes are set.

【0034】32は圧縮機1の運転周波数を検出する圧
縮機運転周波数検出手段である。
Reference numeral 32 denotes compressor operating frequency detecting means for detecting the operating frequency of the compressor 1.

【0035】31は弁開度制御モード判定手段で、圧縮
機運転周波数検出手段32が検出した運転周波数に応じ
て、最適な過熱度、あるいは吐出過熱度が得られる弁開
度の値を前記弁開度制御モードテーブル33から判定す
る。ここで弁開度制御モードテーブル33の各値は実験
値により設定される。
Numeral 31 denotes a valve opening control mode judging means, which determines a valve opening value at which an optimum degree of superheat or discharge superheat is obtained in accordance with the operating frequency detected by the compressor operating frequency detecting means 32. The determination is made from the opening control mode table 33. Here, each value of the valve opening control mode table 33 is set by an experimental value.

【0036】34は可変式減圧装置弁開度変更手段で、
前記弁開度制御モード判定手段31で選択された最適な
弁開度制御モードに対応して信号を出力する。
Numeral 34 denotes a variable pressure reducing device valve opening changing means.
A signal is output according to the optimal valve opening control mode selected by the valve opening control mode determining means 31.

【0037】35は可変式減圧装置出力手段で、前記可
変式減圧装置弁開度変更手段34からの信号にもとづく
パルス信号を可変式減圧装置4A、4Bへ出力する。そ
の結果可変式減圧装置4A、4Bは常に最適な過熱度あ
るいは吐出過熱度が得られるように弁開度を調節する。
以下、各運転状態における制御について詳述する。ここ
では説明の便宜上、室内機は2台同時運転を行い、冷凍
サイクルが安定した状態から、その内の室内機Aの制御
を取り上げて説明する。
A variable pressure reducing device output means 35 outputs a pulse signal based on a signal from the variable pressure reducing device valve opening changing means 34 to the variable pressure reducing devices 4A and 4B. As a result, the variable decompression devices 4A and 4B adjust the valve opening so as to always obtain the optimum degree of superheat or discharge superheat.
Hereinafter, the control in each operation state will be described in detail. Here, for convenience of explanation, the control of the indoor unit A will be described from the state where two indoor units are simultaneously operated and the refrigeration cycle is stable.

【0038】まず、過熱度制御と吐出過熱度制御の基本
的な考え方を図3、図4を用いて説明する。
First, the basic concept of superheat control and discharge superheat control will be described with reference to FIGS.

【0039】図3において、過熱度SHの変化に対し
て、過熱度SHが、一旦しきい値aの値を越え、しきい
値bの値以上すなわち領域Eに10分以上継続している
場合は、可変式減圧装置4Aの弁開度を、圧縮機1の運
転周波数に対応する弁開度の初期設定値からさらに8パ
ルスずつ開く。弁開度を8パルス開くことにより過熱度
SHは実験値的に通常約1度の低下となる。この動作を
繰り返して行うことにより過熱度が制御される。
In FIG. 3, when the degree of superheat SH temporarily exceeds the value of threshold value a and exceeds the value of threshold value b, that is, the superheat degree SH continues for 10 minutes or more with respect to the change in the degree of superheat SH. Opens the valve opening of the variable pressure reducing device 4A by eight pulses from the initial setting value of the valve opening corresponding to the operating frequency of the compressor 1. By opening the valve opening by eight pulses, the degree of superheat SH is reduced experimentally by about 1 degree normally. The degree of superheat is controlled by repeatedly performing this operation.

【0040】なお領域Fにある場合は、可変式減圧装置
4Aの弁開度は初期設定値で運転が継続され、常に過熱
度SHが過大にならないように過熱度制御が実施され
る。
In the region F, the operation of the variable pressure reducing device 4A is maintained at the initial value and the superheat control is performed so that the superheat SH does not always become excessive.

【0041】また、図4において、吐出過熱度tSHの
変化に対して、吐出過熱度tSHが一旦しきい値cの値
以下で、しきい値dの値以下すなわち領域Gに10分以
上継続している場合は、可変式減圧装置4Aの弁開度
を、圧縮機1の運転周波数に対応する弁開度の初期設定
値からさらに8パルスずつ閉じる。
In FIG. 4, in response to a change in the discharge superheat degree tSH, the discharge superheat degree tSH is once lower than the threshold value c and lower than the threshold value d, that is, continues for 10 minutes or more in the region G. In this case, the valve opening of the variable pressure reducing device 4A is further closed by eight pulses from the initial value of the valve opening corresponding to the operating frequency of the compressor 1.

【0042】弁開度を8パルス閉じることにより吐出過
熱度tSHは実験値的に通常約1度の上昇となる。この
動作を繰り返し行うことにより吐出過熱度が制御され
る。
By closing the valve opening by 8 pulses, the discharge superheat degree tSH usually increases experimentally by about 1 degree. By repeating this operation, the degree of discharge superheat is controlled.

【0043】なお領域Hにある場合は、可変式減圧装置
4Aの弁開度は初期設定値で運転が継続され、常に一定
の吐出過熱度tSHが確保されるように吐出過熱度制御
が実施される。
When it is in the region H, the operation of the variable pressure reducing device 4A is kept at the initial set value and the discharge superheat degree is controlled so that a constant discharge superheat degree tSH is always secured. You.

【0044】つぎに、図2の制御ブロック図および図5
のフローチャートを参照しながら、冷房運転時における
過熱度制御について説明する。ここで過熱度優先判定手
段29は説明の便宜上作動しているものとする。
Next, the control block diagram of FIG. 2 and FIG.
The superheat degree control during the cooling operation will be described with reference to the flowchart of FIG. Here, it is assumed that the superheat priority determination means 29 is operating for convenience of explanation.

【0045】まず、室内熱交換器中間温度検出手段20
にて室内熱交換器中間温度を、また室内熱交換器出口温
度検出手段21にて室内熱交換器出口温度をそれぞれ検
知し(S101、S102)、運転モード判定手段25
からの信号を入力し、過熱度演算手段27により室内熱
交換器5Aの過熱度SHを演算する(S103)。
First, the indoor heat exchanger intermediate temperature detecting means 20
, The indoor heat exchanger intermediate temperature is detected by the indoor heat exchanger outlet temperature detecting means 21 and the indoor heat exchanger outlet temperature is detected by the indoor heat exchanger outlet temperature detecting means 21 (S101, S102).
And the superheat degree calculating means 27 calculates the superheat degree SH of the indoor heat exchanger 5A (S103).

【0046】ここで過熱度は、検知した室内熱交換器中
間温度Tcと室内熱交換器出口温度Tuの差(Tu−Tc)
として、過熱度演算手段27で演算される。
Here, the degree of superheat is the difference between the detected indoor heat exchanger intermediate temperature Tc and the indoor heat exchanger outlet temperature Tu (Tu-Tc).
Is calculated by the superheat degree calculating means 27.

【0047】続いて圧縮機運転周波数検出手段32によ
り圧縮機運転周波数を検知する(S104)。ここで図
5のS1、S2、S3はサブルーチンであり、弁開度制
御モードテーブル33に設定された制御モードを示す。
Subsequently, the compressor operating frequency is detected by the compressor operating frequency detecting means 32 (S104). Here, S1, S2, and S3 in FIG. 5 are subroutines, and indicate the control modes set in the valve opening control mode table 33.

【0048】弁開度制御モード判定手段31により、圧
縮機の運転周波数が30Hz未満であればステップAへ
進み、制御モードS1を選択する。また30Hz以上5
0Hz未満であればステップBに進み制御モードS2を
選択する。さらに何れでもなければステップCに進み制
御モードS3を選択する。
If the operating frequency of the compressor is lower than 30 Hz by the valve opening control mode determining means 31, the process proceeds to step A, and the control mode S1 is selected. 30Hz or more and 5
If it is less than 0 Hz, the process proceeds to step B and selects the control mode S2. If neither is found, the process proceeds to step C to select the control mode S3.

【0049】ステップAに進んだ場合、過熱度SHが
5.0度以上であれば図3に示すように、過熱度SHは
E領域と判断し(S111)、この状態を10分以上継
続した場合は、可変式減圧装置4Aの弁開度を8パルス
開き、タイマをクリアする(S112〜S114)。
In step A, if the superheat degree SH is equal to or higher than 5.0 degrees, as shown in FIG. 3, the superheat degree SH is determined to be in the E region (S111), and this state is continued for 10 minutes or more. In this case, the valve opening of the variable pressure reducing device 4A is opened by eight pulses, and the timer is cleared (S112 to S114).

【0050】また過熱度SHが5.0度未満の場合にお
いて、さらに過熱度SHが3.5度以上であるか(S1
15)、既に領域Fでないと判断し(S116)、また
3.5度未満ならば領域Fと判断する(S117)。そ
してタイマをクリアして、この時タイマは10分以下で
あるのでSTART(S100)に戻る。
When the superheat degree SH is less than 5.0 degrees, whether the superheat degree SH is 3.5 degrees or more (S1
15) It is determined that the area is not the area F (S116), and if it is less than 3.5 degrees, the area is determined to be the area F (S117). Then, the timer is cleared. At this time, since the timer is 10 minutes or less, the process returns to START (S100).

【0051】また3.5度以上で既に領域Eの時は、E
領域にあるとみてS111〜S114の制御を行う。以
下この制御を繰り返す。
When the angle is equal to or more than 3.5 degrees and is already in the area E, E
The control in S111 to S114 is performed assuming that the area exists. Hereinafter, this control is repeated.

【0052】同様に、ステップBに進んだ場合、制御内
容とステップは前記ステップAの場合と同一である(S
120〜S129)が、図3におけるしきい値aの値は
4.5度、しきい値bの値は3.0度となる。
Similarly, when the process proceeds to step B, the control contents and steps are the same as those in step A (S
120 to S129), the value of the threshold value a in FIG. 3 is 4.5 degrees and the value of the threshold value b is 3.0 degrees.

【0053】同様に、ステップCに進んだ場合、制御内
容とステップは前記ステップAの場合と同一である(S
130〜S139)が、図3におけるしきい値aの値は
3.5度、しきい値bの値は2.0度となる。
Similarly, when the process proceeds to step C, the control contents and steps are the same as those in step A (S
130 to S139), the value of the threshold value a in FIG. 3 is 3.5 degrees, and the value of the threshold value b is 2.0 degrees.

【0054】ここで、圧縮機1の設定周波数は30〜5
0Hzを中心に検出して、可変式減圧装置4Aの弁開度
を調節する説明をしたが、この周波数は梅雨時期前後の
気温における実用運転周波数領域であり、最も室内ファ
ン13に結露する可能性が高い気候にある理由からであ
る。
Here, the set frequency of the compressor 1 is 30 to 5
Although the description has been given of adjusting the valve opening of the variable pressure reducing device 4A by detecting the center frequency at 0 Hz, this frequency is a practical operation frequency range at temperatures around the rainy season, and the possibility of condensation on the indoor fan 13 is the highest. Because of the high climate.

【0055】また、過熱度については、前記運転周波数
に対応して5.0〜2.0度の範囲を制御モードS1、
S2、S3と3段階に制御したが、これは一例であり室
内熱交換器5Aの出口で循環冷媒が蒸発を全て完了した
状態となり、室内ファン13Aの表面に最も結露が発生
し難く、また冷凍サイクルの高効率運転が得られること
を実験で確認した値である。
Regarding the degree of superheat, the range of 5.0 to 2.0 degrees corresponding to the operation frequency is set in the control mode S1,
The control was performed in three stages, S2 and S3, but this is merely an example, and the circulating refrigerant is completely evaporated at the outlet of the indoor heat exchanger 5A, and dew condensation is hardly generated on the surface of the indoor fan 13A. It is a value confirmed by experiments that high efficiency operation of the cycle can be obtained.

【0056】また、過熱度の監視時間を10分とした
が、これは通常であれば室内ファン13Aへの結露が実
験的に、ほぼ10分間で成長するため設定したもので、
この時間は条件等によって変更してもよい。
The monitoring time of the degree of superheat was set to 10 minutes, which is set because the condensation on the indoor fan 13A normally grows in approximately 10 minutes experimentally.
This time may be changed depending on conditions or the like.

【0057】また、可変式減圧装置4Aの弁開度を1回
当たり8パルスとしたが、これは8パルスの弁開度に
て、約1度の過熱度変化が得られることを実験で確認し
た値である。
The valve opening of the variable pressure reducing device 4A was set to 8 pulses per time, and it was confirmed by an experiment that a superheat degree change of about 1 degree was obtained with the valve opening of 8 pulses. Value.

【0058】なお、上記の各数値は、圧縮機1の能力や
可変式減圧装置4A、4Bの大きさ等構成部品の違いに
より異なり、実験値で設定される。
The above numerical values are different depending on the components of the compressor 1, such as the capacity of the compressor 1 and the sizes of the variable pressure reducing devices 4A and 4B, and are set as experimental values.

【0059】この制御により、冷房運転時、圧縮機1の
運転周波数全領域において、冷凍サイクルの高効率運転
を維持しながら、室内ファン13Aへの結露を防止する
ことが可能となる。
By this control, it is possible to prevent condensation on the indoor fan 13A while maintaining the high efficiency operation of the refrigeration cycle in the entire operating frequency range of the compressor 1 during the cooling operation.

【0060】次に冷房運転時の吐出過熱度の制御につい
て、図2の制御ブロック図および図6のフローチャート
を参照しながら説明する。
Next, control of the discharge superheat degree during the cooling operation will be described with reference to the control block diagram of FIG. 2 and the flowchart of FIG.

【0061】まず、図6のフローチャートに示すよう
に、室外熱交換器中間温度検出手段22により室外熱交
換器中間温度を、圧縮機吐出温度検出手段24にて圧縮
機吐出温度をそれぞれ検知し(S201、S202)、
運転モード判定手段25からの信号を入力して、吐出過
熱度演算手段28により吐出過熱度tSHを演算する
(203)。ここで吐出過熱度tSHは、検知した圧縮
機吐出温度Tdと室外熱交換器中間温度Tmの差(Td−
Tm)として、吐出過熱度演算手段28で演算される。
First, as shown in the flowchart of FIG. 6, the outdoor heat exchanger intermediate temperature detecting means 22 detects the outdoor heat exchanger intermediate temperature, and the compressor discharge temperature detecting means 24 detects the compressor discharge temperature. S201, S202),
The signal from the operation mode determination means 25 is input, and the discharge superheat degree calculation means 28 calculates the discharge superheat degree tSH (203). Here, the discharge superheat degree tSH is the difference between the detected compressor discharge temperature Td and the outdoor heat exchanger intermediate temperature Tm (Td−
Tm) is calculated by the discharge superheat calculating means 28.

【0062】続いて圧縮機運転周波数検出手段32によ
り圧縮機運転周波数を検知する(S204)。ここで図
6のS21、S22、S23はサブルーチンであり、弁
開度制御モードテーブル33に設定された制御モードを
示す。
Subsequently, the compressor operating frequency is detected by the compressor operating frequency detecting means 32 (S204). Here, S21, S22, and S23 in FIG. 6 are subroutines, and indicate the control modes set in the valve opening control mode table 33.

【0063】弁開度制御モード判定手段31により、圧
縮機運転周波数が40Hz未満であればステップAに進
み制御モードS21を選択する。また40Hz以上60
Hz未満であればステップBに進み制御モードS22を
選択する。そして何れでもなければステップCに進み制
御モードS23を選択する。
If the operating frequency of the compressor is less than 40 Hz by the valve opening control mode determining means 31, the process proceeds to step A and the control mode S21 is selected. 40Hz or more and 60
If it is less than Hz, the process proceeds to step B and the control mode S22 is selected. If not, the process proceeds to step C and selects the control mode S23.

【0064】ステップAに進んだ場合、吐出過熱度tS
Hが8度以下であれば図4に示すように、吐出過熱度t
SHは領域Gと判断し(S211)、この状態を10分
以上継続した場合は、可変式減圧装置4Aの弁開度を8
パルス閉じ、タイマをクリアする(S212〜S21
4)。
When the process proceeds to step A, the discharge superheat degree tS
If H is 8 degrees or less, as shown in FIG.
SH is determined to be in the region G (S211), and if this state is continued for 10 minutes or more, the valve opening of the variable pressure reducing device 4A is set to 8
Close the pulse and clear the timer (S212 to S21)
4).

【0065】また吐出過熱度tSHが8度を超える場合
は、さらに吐出過熱度SHが9度以下であれば(S21
5)、既に領域Gにないと判断し(S216)、また9
度を超えている時は領域Hと判断する(S217)。そ
してタイマをクリアして、この時タイマは10分以下で
あるのでSTART(S200)に戻る。
When the discharge superheat degree tSH exceeds 8 degrees, if the discharge superheat degree SH is 9 degrees or less (S21).
5) It is determined that it is not already in the area G (S216), and 9
If it exceeds the degree, it is determined that the area is H (S217). Then, the timer is cleared. At this time, since the timer is 10 minutes or less, the process returns to START (S200).

【0066】また吐出過熱度tSHが9度以下で既に領
域Gの時は、領域GにあるとみてS211〜S214の
制御を行う。以下、この制御を繰り返す。
When the discharge superheat degree tSH is 9 degrees or less and the area is already in the area G, it is considered that the area is in the area G, and the control of S211 to S214 is performed. Hereinafter, this control is repeated.

【0067】同様に、ステップBに進んだ場合、制御内
容とステップは前記ステップAの場合と同一である(S
220〜S229)が、図4におけるしきい値cの値は
9度、しきい値dの値は10度となる。
Similarly, when the process proceeds to step B, the control contents and steps are the same as those in step A (S
220 to S229), the value of the threshold value c is 9 degrees and the value of the threshold value d is 10 degrees in FIG.

【0068】同様に、ステップCに進んだ場合、制御内
容とステップは前記ステップAの場合と同一である(S
230〜S239)が、図4におけるしきい値cの値は
10度、しきい値dの値は11度となる。
Similarly, when the process proceeds to step C, the control contents and steps are the same as those in step A (S
230 to S239), the value of the threshold value c is 10 degrees and the value of the threshold value d is 11 degrees in FIG.

【0069】ここで、圧縮機1の設定周波数は40〜6
0Hzを中心に検出して、可変式減圧装置4A、4Bの
開度を調節する説明をしたが、この周波数は通常夏の気
温における実用運転周波数領域である。
Here, the set frequency of the compressor 1 is 40 to 6
Although the description has been given of adjusting the opening degree of the variable decompression devices 4A and 4B by detecting about 0 Hz, this frequency is a practical operation frequency range in a normal summer temperature.

【0070】また、吐出過熱度tSHについては、前記
運転周波数に対応して8〜11度の範囲を制御モードS
21、S22、S23と3段階に制御したが、これは一
例であり圧縮機1の液圧縮運転の防止ができ、また電気
入力当たりの冷房能力が大きくなる冷凍サイクルの高効
率運転が得られることを実験で確認した値である。
Regarding the discharge superheat degree tSH, the range of 8 to 11 degrees is set in the control mode S corresponding to the operation frequency.
The control was performed in three stages, ie, 21, S22 and S23, but this is an example, and it is possible to prevent the liquid compression operation of the compressor 1 and to obtain a high efficiency operation of the refrigeration cycle in which the cooling capacity per electric input is increased. Is the value confirmed in the experiment.

【0071】また、吐出過熱度の監視時間を10分とし
たが、これは一例であり可変式減圧装置4Aの開度を変
更してから、吐出過熱度が明らかに変化し、吐出過熱度
の変化が圧縮機1の液圧縮防止や高効率運転に影響を及
ぼさない長さに設定すればよい。
Further, the monitoring time of the discharge superheat was set to 10 minutes, but this is merely an example. After the opening of the variable pressure reducing device 4A was changed, the discharge superheat clearly changed and the discharge superheat was changed. The length may be set so that the change does not affect the liquid compression prevention and the high-efficiency operation of the compressor 1.

【0072】また、可変式減圧装置4Aの開度を1回当
たり8パルスとしたが、これは8パルスの開度にて約1
度の吐出過熱度変化が得られることを実験で確認した値
である。
The opening degree of the variable pressure reducing device 4A is set to 8 pulses per time.
It is a value confirmed by experiments that the degree of discharge superheat change can be obtained.

【0073】なお、上記各数値は前述の過熱度制御と同
様に、使用機器の条件等により実験値で設定することが
望ましい。
It is desirable that each of the above numerical values be set as an experimental value according to the conditions of the equipment to be used, as in the above-described superheat control.

【0074】この制御により、冷房運転時、圧縮機1の
運転周波数全領域において、吐出過熱度tSHを最適状
態に制御して、冷凍サイクルの高効率運転を維持しなが
ら、圧縮機1の液圧縮運転の防止が可能となる。
According to this control, during the cooling operation, the discharge superheat degree tSH is controlled to an optimum state in the entire operating frequency range of the compressor 1 to maintain the high efficiency operation of the refrigeration cycle while the liquid compression of the compressor 1 is maintained. Driving can be prevented.

【0075】つぎに、暖房運転時における過熱度制御に
ついて、図2の制御ブロック図および図7のフローチャ
ートを参照しながら説明する。ここで吐出過熱度優先判
定手段30は説明の便宜上作動しているものとする。
Next, superheat control during the heating operation will be described with reference to the control block diagram of FIG. 2 and the flowchart of FIG. Here, it is assumed that the discharge superheat priority determination means 30 is operating for convenience of explanation.

【0076】まず、図7のフローチャートに示すよう
に、室外熱交換器中間温度検出手段22にて室外熱交換
器中間温度を、室外熱交換器出口温度検出手段23にて
室外熱交換器出口温度をそれぞれ検知し(S301、S
302)、運転モード判定手段25からの信号を入力
し、過熱度演算手段27により室外熱交換器3の過熱度
SHを演算する(S303)。
First, as shown in the flowchart of FIG. 7, the outdoor heat exchanger intermediate temperature is detected by the outdoor heat exchanger intermediate temperature detecting means 22, and the outdoor heat exchanger outlet temperature is detected by the outdoor heat exchanger outlet temperature detecting means 23. (S301, S301
302), a signal from the operation mode determination means 25 is input, and the superheat degree SH of the outdoor heat exchanger 3 is calculated by the superheat degree calculation means 27 (S303).

【0077】続いて圧縮機運転周波数検出手段32にて
圧縮機運転周波数を検知する(S304)。ここで図7
のS31、S32、S33はサブルーチンであり、弁開
度制御モードテーブル33に設定された制御モードを示
す。
Subsequently, the compressor operating frequency is detected by the compressor operating frequency detecting means 32 (S304). Here, FIG.
S31, S32 and S33 are subroutines, and indicate the control modes set in the valve opening control mode table 33.

【0078】弁開度制御モード判定手段31により、圧
縮機の運転周波数が40Hz未満であればステップAに
進み制御モードS31を選択する。また40Hz以上8
0Hz未満であればステップBに進み制御モードS32
を選択する。さらに何れでもなければステップCに進み
制御モードS33を選択する。
If the operating frequency of the compressor is lower than 40 Hz by the valve opening control mode determining means 31, the process proceeds to step A and selects the control mode S31. 40Hz or more and 8
If it is less than 0 Hz, the process proceeds to step B and the control mode S32
Select If neither is found, the process proceeds to step C to select the control mode S33.

【0079】ステップAに進んだ場合、過熱度SHが6
度以上であれば図3に示すように、過熱度SHはE領域
と判断し(S311)、この状態を10分以上継続した
場合は、可変式減圧装置4A、4Bの弁開度を8パルス
開き、タイマをクリアする(S312〜S314)。
When the process proceeds to step A, the superheat degree SH becomes 6
If it is not less than degree, as shown in FIG. 3, the superheat degree SH is determined to be in the E region (S311), and if this state is continued for more than 10 minutes, the valve opening degree of the variable pressure reducing devices 4A and 4B is set to 8 pulses. Open and clear the timer (S312 to S314).

【0080】また過熱度SHが6度未満の場合は、さら
に過熱度SHが5度以上であれば(S315)、既に領
域Eにないと判断し(S316)、また5度未満ならば
領域Fと判断する(S317)。そしてタイマをクリア
して、この時タイマは10分以下であるのでSTART
(S300)に戻る。
When the superheat degree SH is less than 6 degrees, if the superheat degree SH is 5 degrees or more (S315), it is determined that the superheat degree SH is not already in the area E (S316). Is determined (S317). Then, clear the timer. At this time, the timer is less than 10 minutes, so
It returns to (S300).

【0081】また過熱度SHが5度以上で既に領域Eの
時は、領域EにあるとみてS311〜S314の制御を
行う。以下、この制御を繰り返す。
If the degree of superheat SH is 5 degrees or more and the area is already in the area E, it is assumed that the area is in the area E, and the control of S311 to S314 is performed. Hereinafter, this control is repeated.

【0082】同様に、ステップBに進んだ場合、制御内
容とステップは前記ステップAの場合と同一である(S
320〜S329)が、図3におけるしきい値aの値は
7度、しきい値bの値は6度となる。
Similarly, when the process proceeds to step B, the control contents and steps are the same as those in step A (S
320 to S329), the value of the threshold value a in FIG. 3 is 7 degrees, and the value of the threshold value b is 6 degrees.

【0083】同様に、ステップCに進んだ場合、制御内
容とステップは前記ステップAの場合と同一である(S
330〜S339)が、図3におけるしきい値aの値は
8度、しきい値bの値は7度となる。
Similarly, when the process proceeds to step C, the control contents and steps are the same as those in step A (S
330 to S339), the value of the threshold value a in FIG. 3 is 8 degrees, and the value of the threshold value b is 7 degrees.

【0084】ここで、圧縮機の設定周波数は40〜80
Hzを中心に検出して、可変式減圧装置4Aの開度を調
節する説明をしたが、この周波数は通常冬期の気温にお
ける暖房時の実用運転周波数領域である。
Here, the set frequency of the compressor is 40-80.
Although the description has been given of adjusting the opening degree of the variable pressure reducing device 4A by detecting the center frequency Hz, this frequency is a practical operation frequency range at the time of heating at normal winter temperature.

【0085】また、過熱度SHについては、前記運転周
波数に対応して5〜8度の範囲を制御モードS31、S
32、S33と3段階に制御したが、これは一例であり
電気入力当たりの暖房能力が大きくなる冷凍サイクルの
高効率運転が維持され、かつ圧縮機1の吐出ガス温度の
過度な上昇を防止して過熱運転の防止ができることを実
験で確認した値である。
As for the degree of superheat SH, the range of 5 to 8 degrees is set in the control modes S31, S
The control was performed in three stages, S32 and S33, but this is an example, and the high efficiency operation of the refrigeration cycle in which the heating capacity per electric input is increased is maintained, and the discharge gas temperature of the compressor 1 is prevented from excessively increasing. This is a value confirmed by experiments that overheating operation can be prevented.

【0086】また、過熱度の監視時間を10分とした
が、これは可変式減圧装置の開度を変更してから、過熱
度が明らかに変化し、過熱度の変化が冷凍サイクルの過
熱運転防止や高効率運転に影響を及ぼさない長さに設定
すればよい。
The monitoring time of the degree of superheat was set to 10 minutes. This is because the degree of superheat obviously changed after the opening of the variable pressure reducing device was changed, and the change in the degree of superheat was caused by the superheat operation of the refrigeration cycle. The length may be set so as not to affect prevention and high-efficiency operation.

【0087】また、可変式減圧装置4Aの開度を1回当
たり8パルスとしたが、これは8パルスの開度にて約1
度の過熱度変化が得られることを実験で確認した値であ
る。
The opening degree of the variable pressure reducing device 4A is set to 8 pulses per time.
It is a value confirmed by experiments that a degree of superheat change can be obtained.

【0088】なお、上記各数値は前述と同様に、使用機
器の条件によって変わるものであり実験値で設定するこ
とが望ましい。
Note that each of the above numerical values changes according to the conditions of the equipment to be used, as described above, and it is desirable to set them with experimental values.

【0089】この制御により、暖房運転時、圧縮機1の
運転周波数の全領域において、過熱度を最適状態に制御
して冷凍サイクルの高効率運転を維持しながら、圧縮機
の吐出ガス温度の過度な上昇を防止して冷凍サイクルの
過熱運転を防止することができる。
According to this control, during the heating operation, the superheat degree is controlled to the optimum state in the entire operating frequency range of the compressor 1 to maintain the high efficiency operation of the refrigeration cycle, while the discharge gas temperature of the compressor is excessive. A remarkable rise can be prevented, and the overheating operation of the refrigeration cycle can be prevented.

【0090】つぎに、暖房運転時の吐出過熱度の制御に
ついて、図2の制御ブロック図および図8のフローチャ
ートを参照しながら説明する。
Next, control of the discharge superheat degree during the heating operation will be described with reference to the control block diagram of FIG. 2 and the flowchart of FIG.

【0091】まず、図8のフローチャートに示すよう
に、室内熱交換器中間温度検出手段20にて室内熱交換
器中間温度を、また圧縮機吐出温度検出手段24にて圧
縮機吐出温度をそれぞれ検知し(S401、S40
2)、運転モード判定手段25からの信号を入力して吐
出過熱度演算手段28により吐出過熱度tSHを演算す
る(S403)。
First, as shown in the flowchart of FIG. 8, the indoor heat exchanger intermediate temperature detecting means 20 detects the indoor heat exchanger intermediate temperature, and the compressor discharge temperature detecting means 24 detects the compressor discharge temperature. (S401, S40
2), a signal from the operation mode determination means 25 is input, and the discharge superheat degree calculating means 28 calculates the discharge superheat degree tSH (S403).

【0092】ここで吐出過熱度tSHは、検知した圧縮
機吐出温度Tdhと室内熱交換器中間温度Tmhの差
(Tdh−Tmh)として、吐出過熱度演算手段28で
演算される。
Here, the discharge superheat degree tSH is calculated by the discharge superheat degree calculation means 28 as a difference (Tdh-Tmh) between the detected compressor discharge temperature Tdh and the indoor heat exchanger intermediate temperature Tmh.

【0093】続いて圧縮機運転周波数検出手段32によ
り圧縮機運転周波数を検知する(S404)。ここで図
8のS41、S42、S43はサブルーチンであり、弁
開度制御モードテーブル33に設定された制御モードを
示す。
Subsequently, the compressor operating frequency is detected by the compressor operating frequency detecting means 32 (S404). Here, S41, S42, and S43 in FIG. 8 are subroutines, and indicate the control modes set in the valve opening control mode table 33.

【0094】弁開度制御モード判定手段31により、圧
縮機1の運転周波数が40Hz未満であればステップA
に進み制御モードS41を選択する。また40Hz以上
60Hz未満であればステップBに進み制御モードS4
2を選択する。さらに何れでもなければステップCに進
み制御モードS43を選択する。
If the operating frequency of the compressor 1 is less than 40 Hz by the valve opening control mode determining means 31, step A
And the control mode S41 is selected. If it is 40 Hz or more and less than 60 Hz, the process proceeds to step B and the control mode S4
Select 2. If neither is found, the process proceeds to step C to select the control mode S43.

【0095】ステップAに進んだ場合、吐出過熱度tS
Hが8度以下であれば図4に示すように、吐出過熱度t
SHは領域Gと判断し(S411)、この状態を10分
以上継続した場合は、可変式減圧装置4Aの弁開度を8
パルス閉じ、タイマをクリアする(S412〜S41
4)。
When the process proceeds to step A, the discharge superheat degree tS
If H is 8 degrees or less, as shown in FIG.
SH is determined to be in the area G (S411), and if this state is continued for 10 minutes or more, the valve opening of the variable pressure reducing device 4A is set to 8
Close the pulse and clear the timer (S412 to S41
4).

【0096】また吐出過熱度tSHが8度を超える場合
は、さらに吐出過熱度tSHが9度以下であれば(S4
15)、既に領域Gでないと判断し(S416)、また
9度を超えている時は領域Hと判断する(S417)。
そしてタイマをクリアして、この時タイマは10分以下
であるのでSTART(S400)に戻る。
When the discharge superheat degree tSH exceeds 8 degrees, if the discharge superheat degree tSH is 9 degrees or less (S4).
15) It is determined that the area is not already the area G (S416), and when it exceeds 9 degrees, it is determined that the area is the area H (S417).
Then, the timer is cleared. At this time, since the timer is 10 minutes or less, the process returns to START (S400).

【0097】また吐出過熱度tSHが8度以下で既に領
域Gの時は、領域GにあるとみてS411〜S414の
制御を行う。以下、この制御を繰り返す。
When the discharge superheat degree tSH is 8 degrees or less and the area is already in the area G, it is considered that the area is in the area G, and the control of S411 to S414 is performed. Hereinafter, this control is repeated.

【0098】同様に、ステップBに進んだ場合、制御内
容とステップは前記ステップAの場合と同一である(S
420〜S429)が、図4におけるしきい値cの値は
9度、しきい値dの値は10度となる。
Similarly, when the process proceeds to step B, the control contents and steps are the same as those in step A (S
420 to S429), the value of the threshold value c is 9 degrees and the value of the threshold value d is 10 degrees in FIG.

【0099】同様に、ステップCに進んだ場合、制御内
容とステップは前記ステップAの場合と同一である(S
430〜S439)が、図4におけるしきい値cの値は
10度、しきい値dの値は11度となる。
Similarly, when the process proceeds to step C, the control contents and steps are the same as those in step A (S
430 to S439), the threshold value c in FIG. 4 is 10 degrees, and the threshold value d is 11 degrees.

【0100】また、吐出過熱度については、前記運転周
波数に対応して8〜11度の範囲を制御モードS41、
S42、S43と3段階に制御したが、これは一例であ
り圧縮機1の液圧縮の防止ができ、また電気入力当たり
の冷房能力が大きくなる冷凍サイクルの高効率運転が得
られることを実験で確認した値である。
The discharge superheat degree is set in the control mode S41 in the range of 8 to 11 degrees corresponding to the operation frequency.
S42 and S43 were controlled in three stages, but this is merely an example, and experiments have shown that it is possible to prevent liquid compression of the compressor 1 and to obtain a high efficiency operation of the refrigeration cycle in which the cooling capacity per electric input is increased. This is the confirmed value.

【0101】また、吐出過熱度の監視時間を10分とし
たが、これは一例であり可変式減圧装置4Aの開度を変
更してから、吐出過熱度が明らかに変化し、吐出過熱度
の変化が圧縮機1の液圧縮防止や高効率運転に影響を及
ぼさない長さに設定すればよい。
The monitoring time of the discharge superheat was set to 10 minutes, but this is merely an example. After the opening of the variable pressure reducing device 4A was changed, the discharge superheat clearly changed, and the discharge superheat was changed. The length may be set so that the change does not affect the liquid compression prevention and the high-efficiency operation of the compressor 1.

【0102】また、可変式減圧装置4Aの開度を1回当
たり8パルスとしたが、これは8パルスの開度にて約1
度の吐出過熱度変化が得られることを実験で確認した値
である。
Further, the opening of the variable pressure reducing device 4A is set to 8 pulses per time.
It is a value confirmed by experiments that the degree of discharge superheat change can be obtained.

【0103】なお、上記各数値は冷房運転時と同様に、
使用機器の条件等によって変わるものであり実験値で設
定することが望ましい。
The above numerical values are the same as in the cooling operation.
It depends on the conditions of the equipment used, etc., and is preferably set with experimental values.

【0104】この制御により、暖房運転時、圧縮機1の
運転周波数全領域において、吐出過熱度を最適状態に制
御して、冷凍サイクルの高効率運転を維持しながら、圧
縮機1の液圧縮運転の防止が可能となる。
According to this control, during the heating operation, the discharge superheat degree is controlled to an optimum state in the entire operating frequency range of the compressor 1, and the liquid compression operation of the compressor 1 is performed while maintaining the high efficiency operation of the refrigeration cycle. Can be prevented.

【0105】なお上述の記載は、室内機Aの制御をとり
あげて説明したが、室内機Bの制御についても上述と同
様に制御されるものである。
Although the above description has been made with reference to the control of the indoor unit A, the control of the indoor unit B is also controlled in the same manner as described above.

【0106】すなわち、室内機Aの過熱度制御あるいは
吐出過熱度制御が行われると、冷凍サイクル内の圧力
(冷媒循環量)が変動し、僅かに室内機Bに影響が生じ
るが、各検出手段により適正な過熱度あるいは吐出過熱
度が得られるよに、上述した室内機Aと同様の、室内機
Bの制御が行われ、全体として冷凍サイクルのバランス
が得られるように動作する。
That is, when the superheat control or the discharge superheat control of the indoor unit A is performed, the pressure (refrigerant circulation amount) in the refrigeration cycle fluctuates and slightly affects the indoor unit B. Thus, the indoor unit B is controlled in the same manner as the indoor unit A described above so that an appropriate degree of superheat or discharge superheat is obtained, and the operation is performed so as to obtain the balance of the refrigeration cycle as a whole.

【0107】また、室内熱交換器中間温度センサ16
A、16Bと室内熱交換器出口温度センサ15A、15
Bおよび室外熱交換器中間温度センサ12と室外熱交換
器出口温度センサ11を設けたことにより、室内機A、
Bの接続配管6A、6B、7A、7Bの配管長に大きな
差異があっても、配管長に関係なく各熱交換器そのもの
の配管温度が検出され、正味の過熱度SHと吐出過熱度
tSHが演算されることになる。
The indoor heat exchanger intermediate temperature sensor 16
A, 16B and indoor heat exchanger outlet temperature sensors 15A, 15
B and the outdoor heat exchanger intermediate temperature sensor 12 and the outdoor heat exchanger outlet temperature sensor 11 provide the indoor unit A,
Even if there is a large difference between the pipe lengths of the connection pipes 6A, 6B, 7A, and 7B of B, the pipe temperature of each heat exchanger itself is detected regardless of the pipe length, and the net superheat degree SH and discharge superheat degree tSH are reduced. It will be calculated.

【0108】また、冷房運転時において、図2に示す過
熱度優先判定手段29を設けたことにより、いずれか一
室が過熱度制御中であれば、吐出過熱度制御は待機状態
で過熱度制御が終了するまで行なえない。
Further, by providing the superheat degree priority judging means 29 shown in FIG. 2 during the cooling operation, if any one of the rooms is under superheat degree control, the discharge superheat degree control is performed in a standby state. Can not be done until is over.

【0109】さらに、暖房運転時において、図2に示す
吐出過熱度優先判定手段30を設けたことにより、いず
れか一室でも吐出過熱度制御中であれば、過熱度制御は
待機状態で吐出過熱度制御が終了するまで行われない。
Further, during the heating operation, by providing the discharge superheat priority determination means 30 shown in FIG. 2, if the discharge superheat control is being performed in any one of the chambers, the superheat control is performed in the standby state while the discharge superheat is being controlled. It is not performed until the degree control ends.

【0110】この優先制御を実施する理由は、冷房運転
時においては、室内ファン13Aへの結露防止が、冷凍
サイクルの高効率運転や過熱運転防止よりも、実用上重
要であり、また暖房運転時は一定の吐出過熱度を確保し
て圧縮機1への液冷媒の戻りを防ぐ液圧縮運転の防止
が、冷凍サイクルの高効率運転や過熱運転防止よりも、
実用上重要であるためである。
The reason for performing this priority control is that, during cooling operation, prevention of dew condensation on the indoor fan 13A is more important in practical use than high efficiency operation of the refrigeration cycle and prevention of overheating operation. The prevention of the liquid compression operation, which secures a constant discharge superheat degree and prevents the liquid refrigerant from returning to the compressor 1, is more effective than the refrigeration cycle high efficiency operation and the overheating operation prevention.
This is because it is important in practical use.

【0111】この過熱度優先判定手段29および吐出過
熱度優先判定手段30を設けたことにより、過熱度制御
と吐出過熱度制御を同時に採用した時に、最適な過熱度
制御と最適な吐出過熱度を両立させた制御が可能とな
る。
By providing the superheat degree priority judging means 29 and the discharge superheat degree priority judging means 30, when the superheat degree control and the discharge superheat degree control are simultaneously adopted, the optimum superheat degree control and the optimal discharge superheat degree can be attained. Control that achieves both is possible.

【0112】また、過熱度制御あるいは吐出過熱度制御
が実施されている途中で、例えば室内機A、B共に運転
中に片方の室内機Bの運転停止などで、圧縮機1の運転
周波数が10Hz以上変化したときは、可変式減圧装置
4A、4Bの弁開度は、表1で示した弁開度の初期設定
の値で運転される制御となる。
Further, while the superheat control or the discharge superheat control is being performed, for example, when the operation of one of the indoor units B is stopped while both the indoor units A and B are operating, the operating frequency of the compressor 1 becomes 10 Hz. When the above changes occur, the valve openings of the variable decompression devices 4A and 4B are controlled to operate at the initial values of the valve openings shown in Table 1.

【0113】また、上述の説明では、一台の室外機Cに
二台の室内機A、Bを接続した多室形空気調和機を例に
とり説明したが、室内機の台数は必ずしも二台に限定さ
れるものではなく、室内機が三台以上の場合でも同様の
考え方に基づいて、略同じ制御内容によりシステムを制
御することができる。
In the above description, a multi-room air conditioner in which two outdoor units A and B are connected to one outdoor unit C has been described as an example, but the number of indoor units is not necessarily two. The present invention is not limited to this. Even when there are three or more indoor units, the system can be controlled with substantially the same control contents based on the same concept.

【0114】また、室内熱交換器中間温度センサ16
A、16B、および室外熱交換器中間温度センサ12の
取付け位置は、必ずしも中間でなく、蒸発器あるいは凝
縮器としての冷媒の飽和温度を検知する目的が達成でき
る位置であればよいので、かなり広範囲の位置が選択可
能である。
Further, the indoor heat exchanger intermediate temperature sensor 16
The mounting positions of the intermediate temperature sensors A, 16B, and the outdoor heat exchanger intermediate temperature sensor 12 are not necessarily intermediate, and may be any positions that can achieve the purpose of detecting the saturation temperature of the refrigerant as the evaporator or the condenser, and therefore, are quite wide. Is selectable.

【0115】また、本発明の実施の形態においては、可
変式減圧装置4A、4Bは、図1に示すように室外機C
に設けて説明したが、室内機A、Bの室内熱交換器5
A、5Bと接続配管6A、6Bの配管経路の途中に配置
してもよい。
Further, in the embodiment of the present invention, the variable pressure reducing devices 4A and 4B are connected to the outdoor unit C as shown in FIG.
The indoor heat exchangers 5 of the indoor units A and B have been described.
A, 5B and the connecting pipes 6A, 6B may be arranged in the middle of the pipe route.

【0116】また、本発明の実施の形態においては、冷
房運転時の過熱度制御、および吐出過熱度制御、そして
暖房運転時の過熱度制御、および吐出過熱度制御と別々
に説明したが、これらの制御は独立して個別に、またそ
れぞれを組み合せて冷房専用機、冷暖両用機等に自在に
採用できる。
In the embodiment of the present invention, the superheat control during the cooling operation and the discharge superheat control, and the superheat control during the heating operation and the discharge superheat control are described separately. Can be adopted independently and individually, or in combination with each other, for a cooling only machine, a cooling / heating machine or the like.

【0117】[0117]

【0118】[0118]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載するような効果を奏する。請求項1
記載の発明によれば、各室内熱交換器の冷媒経路配管の
中途に室内熱交換器中間温度検出手段と、各室内熱交換
器の冷媒経路配管の出口に室内熱交換器出口温度検出手
段を設け、これら検出されたそれぞれの配管温度によ
り、各室内熱交換器の過熱度を演算する過熱度演算手段
と、さらに圧縮機の運転周波数を検出する圧縮機運転周
波数検出手段を設け、検出した圧縮機運転周波数の数値
と過熱度演算手段の演算値から、可変式減圧装置の弁開
度値が設定された弁開度制御モードテーブルと、圧縮機
運転周波数の数値と、過熱度演算手段の演算値により可
変式減圧装置の制御モードを判定する弁開度制御モード
判定手段を設け、この弁開度制御モード判定手段により
判定された制御モードに基づき、弁開度制御モードテー
ブルから弁開度値を決定して可変式減圧装置の弁開度を
調節して、冷房運転時の冷凍サイクルの過熱度を制御す
ることにより、冷房運転時において室内機の配管長の差
異に対しても、圧縮機の全運転周波数領域にわたり冷凍
サイクルの高効率運転を維持しながら、室内ファンへの
結露を防止できる。
The present invention is embodied in the form described above, and has the following effects. Claim 1
According to the described invention, the indoor heat exchanger intermediate temperature detecting means is provided in the middle of the refrigerant path pipe of each indoor heat exchanger, and the indoor heat exchanger outlet temperature detecting means is provided at the outlet of the refrigerant path pipe of each indoor heat exchanger. A superheat degree calculating means for calculating a superheat degree of each indoor heat exchanger based on each of the detected pipe temperatures, and a compressor operating frequency detecting means for detecting an operating frequency of the compressor. The valve opening control mode table in which the valve opening value of the variable pressure reducing device is set from the numerical value of the machine operating frequency and the calculated value of the superheat calculating means, the numerical value of the compressor operating frequency, and the calculation of the superheat calculating means A valve opening control mode determining means for determining a control mode of the variable pressure reducing device based on the control value, and a valve opening value from a valve opening control mode table based on the control mode determined by the valve opening control mode determining means. To By controlling the degree of superheating of the refrigeration cycle during cooling operation by adjusting the valve opening of the variable pressure reducing device, the compressor Dew condensation on the indoor fan can be prevented while maintaining the high efficiency operation of the refrigeration cycle over the entire operation frequency range.

【0119】また、請求項2記載の発明によれば、室外
熱交換器の冷媒経路配管の中途に室外熱交換器中間温度
検出手段と、圧縮機の吐出配管側に圧縮機吐出温度検出
手段を設け、検出されたそれぞれの配管温度により冷凍
サイクルの吐出過熱度を演算する吐出過熱度演算手段
と、さらに圧縮機の運転周波数を検出する圧縮機運転周
波数検出手段を設け、検出した圧縮機運転周波数の数値
と、吐出過熱度演算手段の演算値から可変式減圧装置の
弁開度が設定された弁開度制御モードテーブルと、圧縮
機運転周波数の数値と、吐出過熱度演算手段の演算値に
より可変式減圧装置の制御モードを判定する弁開度制御
モード判定手段を設け、この弁開度制御モード判定手段
により判定された制御モードに基づき、弁開度値を決定
して可変式減圧装置の弁開度を調節して、冷房運転時の
冷凍サイクルの吐出過熱度を制御することにより、冷房
運転時において室内機の配管長の差異に対しても、圧縮
機の全運転周波数領域にわたり冷凍サイクルの高効率運
転を維持しながら、圧縮機の液圧縮運転を防止できる。
According to the invention of claim 2, the outdoor heat exchanger intermediate temperature detecting means is provided in the middle of the refrigerant path pipe of the outdoor heat exchanger, and the compressor discharge temperature detecting means is provided on the discharge pipe side of the compressor. A discharge superheat degree calculating means for calculating a discharge superheat degree of the refrigeration cycle based on each detected pipe temperature; and a compressor operation frequency detection means for detecting a compressor operation frequency, and the detected compressor operation frequency is provided. And the valve opening control mode table in which the valve opening of the variable pressure reducing device is set from the calculated value of the discharge superheat calculating means, the numerical value of the compressor operating frequency, and the calculated value of the discharge superheat calculating means. A valve opening control mode determining means for determining a control mode of the variable pressure reducing device; a valve opening value is determined based on the control mode determined by the valve opening control mode determining means; By controlling the degree of valve opening and controlling the degree of superheat of the refrigeration cycle during the cooling operation, the refrigeration cycle can be controlled over the entire operating frequency range of the compressor, even if the pipe length of the indoor unit differs during the cooling operation. The liquid compression operation of the compressor can be prevented while maintaining the high efficiency operation.

【0120】また、請求項3記載の発明によれば、各室
内熱交換器の冷媒経路配管の中途に室内熱交換器中間温
度検出手段と、各室内熱交換器の冷媒経路配管の出口に
室内熱交換器出口温度検出手段と、室外熱交換器の冷媒
経路配管の中途に室外熱交換器中間温度検出手段と、圧
縮機の吐出配管側に圧縮機吐出温度検出手段を設けて、
これら検出されたそれぞれの配管温度により、各室内熱
交換器の過熱度を演算する過熱度演算手段と、冷凍サイ
クルの吐出過熱度を演算する吐出過熱度演算手段を設
け、さらに圧縮機の運転周波数を検出する圧縮機運転周
波数検出手段を設け、検出した圧縮機運転周波数の数値
と過熱度演算手段および吐出過熱度演算手段の演算値か
ら、可変式減圧装置の弁開度値が設定された弁開度制御
モードテーブルと、圧縮機運転周波数の数値と過熱度演
算手段および吐出過熱度演算手段の演算値により、可変
式減圧装置の制御モードを判定する弁開度制御モード判
定手段を設けて、判定された制御モードに基づき弁開度
値を決定して可変式減圧装置の弁開度を調節して、冷房
運転時の冷凍サイクルの過熱度と吐出過熱度を制御する
ことにより、冷房運転時において室内機の配管長の差異
に対しても、圧縮機の全運転周波数領域にわたり冷凍サ
イクルの高効率運転を維持しながら、室内ファンへの結
露の防止と、圧縮機の液圧縮運転が防止できる。
According to the third aspect of the present invention, the indoor heat exchanger intermediate temperature detecting means is provided in the middle of the refrigerant path pipe of each indoor heat exchanger, and the indoor path is provided at the outlet of the refrigerant path pipe of each indoor heat exchanger. Heat exchanger outlet temperature detection means, an outdoor heat exchanger intermediate temperature detection means in the middle of the refrigerant path piping of the outdoor heat exchanger, and a compressor discharge temperature detection means provided on the discharge pipe side of the compressor,
A superheat degree calculating means for calculating the degree of superheat of each indoor heat exchanger based on the detected pipe temperatures and a discharge superheat degree calculating means for calculating the discharge superheat degree of the refrigeration cycle are provided. A valve in which a valve opening value of a variable pressure reducing device is set from a value of the detected compressor operating frequency and a value calculated by the superheat degree calculation means and the discharge superheat degree calculation means. An opening degree control mode table, a valve opening degree control mode determining means for determining a control mode of the variable pressure reducing device based on a value of the compressor operating frequency and a calculated value of the superheat degree calculating means and the discharge superheat degree calculating means, By determining the valve opening value based on the determined control mode and adjusting the valve opening of the variable pressure reducing device to control the degree of superheat and discharge superheat of the refrigeration cycle during the cooling operation, the cooling operation is controlled. Even when the piping length of the indoor unit differs, the high efficiency operation of the refrigeration cycle is maintained over the entire operating frequency range of the compressor, while preventing condensation on the indoor fan and preventing liquid compression operation of the compressor. it can.

【0121】また、請求項4記載の発明によれば、室外
熱交換器の冷媒経路配管の中途に室外熱交換器中間温度
検出手段と、室外熱交換器の冷媒経路配管の出口に室外
熱交換器出口温度検出手段を設け、これら検出されたそ
れぞれの配管温度により、室外熱交換器の過熱度を演算
する過熱度演算手段を設け、さらに圧縮機の運転周波数
を検出する圧縮機運転周波数検出手段を設け、検出した
圧縮機運転周波数の数値と過熱度演算手段の演算値か
ら、可変式減圧装置の弁開度値が設定された弁開度制御
モードテーブルと、圧縮機運転周波数の数値と過熱度演
算手段の演算値により、可変式減圧装置の制御モードを
判定する弁開度制御モード判定手段を設け、この弁開度
制御モード判定手段により判定された制御モードに基づ
き、弁開度値を決定して可変式減圧装置の弁開度を調節
して、暖房運転時の冷凍サイクルの過熱度を制御するこ
とにより、暖房運転時において室内機の配管長の差異に
対しても、圧縮機の全運転周波数領域にわたり、冷凍サ
イクルの高効率運転を維持しながら、圧縮機の吐出ガス
温度の過度な上昇を防止して冷凍サイクルの過熱運転を
防止できる。
According to the fourth aspect of the present invention, the outdoor heat exchanger intermediate temperature detecting means is provided in the middle of the refrigerant path pipe of the outdoor heat exchanger, and the outdoor heat exchanger is provided at the outlet of the refrigerant path pipe of the outdoor heat exchanger. A compressor outlet temperature detecting means, a superheat degree calculating means for calculating a superheat degree of the outdoor heat exchanger based on each detected pipe temperature, and a compressor operating frequency detecting means for detecting an operating frequency of the compressor. The valve opening control mode table in which the valve opening value of the variable pressure reducing device is set from the detected value of the compressor operating frequency and the value calculated by the superheat calculating means, and the value of the compressor operating frequency and the overheating Valve opening control mode determining means for determining the control mode of the variable pressure reducing device based on the calculated value of the degree calculating means, and the valve opening value is determined based on the control mode determined by the valve opening control mode determining means. Decision By adjusting the valve opening of the variable decompression device to control the degree of superheating of the refrigeration cycle during the heating operation, the entire operation of the compressor can be performed even when the pipe length of the indoor unit differs during the heating operation. Over the frequency range, while maintaining the high efficiency operation of the refrigeration cycle, it is possible to prevent an excessive rise in the discharge gas temperature of the compressor and prevent the refrigeration cycle from overheating.

【0122】また、請求項5記載の発明によれば、各室
内熱交換器の冷媒経路配管の中途に室内熱交換器中間温
度検出手段と、圧縮機の吐出配管側に圧縮機吐出温度検
出手段を設け、これら検出されたそれぞれの配管温度に
より、冷凍サイクルの吐出過熱度を演算する吐出過熱度
演算手段を設け、さらに圧縮機の運転周波数を検出する
圧縮機運転周波数検出手段を設け、検出した圧縮機運転
周波数の数値と吐出過熱度演算手段の演算値から可変式
減圧装置の弁開度が設定された弁開度制御モードテーブ
ルと、圧縮機運転周波数の数値と吐出過熱度演算手段の
演算値により可変式減圧装置の制御モードを判定する弁
開度制御モード判定手段を設け、この弁開度制御モード
判定手段により判定された制御モードに基づき、弁開度
制御モードテーブルから弁開度値を決定して、可変式減
圧装置の弁開度を調節して暖房運転時の冷凍サイクルの
吐出過熱度を制御することにより、暖房運転時において
室内機の配管長の差異に対しても、圧縮機の全運転周波
数領域にわたり、冷凍サイクルの高効率運転を維持しな
がら、圧縮機の液圧縮運転を防止できる。
According to the fifth aspect of the present invention, the indoor heat exchanger intermediate temperature detecting means is provided in the refrigerant passage pipe of each indoor heat exchanger, and the compressor discharge temperature detecting means is provided on the discharge pipe side of the compressor. Provided, a discharge superheat degree calculating means for calculating the discharge superheat degree of the refrigeration cycle, and a compressor operating frequency detecting means for detecting the operating frequency of the compressor, based on the detected respective pipe temperatures. A valve opening control mode table in which the valve opening of the variable pressure reducing device is set from the value of the compressor operating frequency and the calculated value of the discharge superheat calculating means, and the calculation of the numerical value of the compressor operating frequency and the discharge superheat calculating means A valve opening control mode determining means for determining a control mode of the variable pressure reducing device based on the value, and a valve opening control mode table based on the control mode determined by the valve opening control mode determining means. By controlling the valve opening of the variable pressure reducing device to control the discharge superheat of the refrigeration cycle during the heating operation, the difference in the indoor unit piping length during the heating operation is determined. On the other hand, the liquid compression operation of the compressor can be prevented while maintaining the high efficiency operation of the refrigeration cycle over the entire operation frequency range of the compressor.

【0123】また、請求項6記載の発明によれば、室外
熱交換器の冷媒経路配管の中途に室外熱交換器中間温度
検出手段と、室外熱交換器の冷媒経路配管の出口に室外
熱交換器出口温度検出手段と、各室内熱交換器の冷媒経
路配管の中途に室内熱交換器中間温度検出手段と、圧縮
機の吐出配管側に圧縮機吐出温度検出手段を設けて、こ
れら検出されたそれぞれの配管温度により、室外熱交換
器の過熱度を演算する過熱度演算手段と、冷凍サイクル
の吐出過熱度を演算する吐出過熱度演算手段を設け、さ
らに圧縮機の運転周波数を検出する圧縮機運転周波数検
出手段を設け、検出した圧縮機運転周波数の数値と過熱
度演算手段および前記吐出過熱度演算手段の演算値か
ら、前記可変式減圧装置の弁開度値が設定された弁開度
制御モードテーブルと、圧縮機運転周波数の数値と過熱
度演算手段および吐出過熱度演算手段の演算値により可
変式減圧装置の制御モードを判定する弁開度制御モード
判定手段を設け、この弁開度制御モード判定手段により
判定された制御モードに基づき、弁開度制御モードテー
ブルから弁開度値を決定し、可変式減圧装置の弁開度を
調節して暖房運転時の冷凍サイクルの過熱度および吐出
過熱度を制御することにより、暖房運転時において室内
機の配管長の差異に対しても、圧縮機の全運転周波数領
域にわたり、冷凍サイクルの高効率運転を維持しなが
ら、圧縮機の液圧縮運転を防止し、また圧縮機の吐出ガ
ス温度の過度な上昇を防止して、冷凍サイクルの過熱運
転を防止できる。
According to the invention of claim 6, the outdoor heat exchanger intermediate temperature detecting means is provided in the middle of the refrigerant path pipe of the outdoor heat exchanger, and the outdoor heat exchanger is provided at the outlet of the refrigerant path pipe of the outdoor heat exchanger. The outlet temperature detecting means, the indoor heat exchanger intermediate temperature detecting means in the middle of the refrigerant path piping of each indoor heat exchanger, and the compressor discharge temperature detecting means on the discharge pipe side of the compressor are provided. A superheat degree calculating means for calculating the superheat degree of the outdoor heat exchanger based on the respective pipe temperatures, and a discharge superheat degree calculation means for calculating the discharge superheat degree of the refrigeration cycle, and a compressor for detecting the operating frequency of the compressor Valve opening control in which a valve opening value of the variable decompression device is set based on the detected compressor operating frequency and a value calculated by the superheat degree calculation means and the discharge superheat degree calculation means by providing an operation frequency detection means; Mode table A valve opening control mode determining means for determining a control mode of the variable pressure reducing device based on a value of the compressor operating frequency and a calculated value of the superheat degree calculating means and the discharge superheat degree calculating means. Based on the control mode determined by the above, the valve opening value is determined from the valve opening control mode table, and the degree of superheating and discharge superheating of the refrigeration cycle during the heating operation is adjusted by adjusting the valve opening of the variable pressure reducing device. The control prevents the liquid compression operation of the compressor while maintaining the high efficiency operation of the refrigeration cycle over the entire operation frequency range of the compressor, even if the pipe length of the indoor unit is different during the heating operation. In addition, it is possible to prevent the discharge gas temperature of the compressor from excessively rising, thereby preventing the refrigerating cycle from overheating.

【0124】また、請求項7記載の発明によれば、冷房
運転時の過熱度優先手段および暖房運転時の吐出過熱度
優先手段を具備し、冷凍サイクルの過熱度制御と吐出過
熱度制御において、過熱度優先手段により、冷房運転時
では吐出過熱度制御よりも過熱度制御を優先し、また吐
出過熱度優先判定手段により、暖房運転時では過熱度制
御よりも吐出過熱度制御を優先するようにしたことによ
り、過熱度制御と吐出過熱度制御を同時に採用して、最
適な過熱度制御と最適な吐出過熱度制御を両立して行う
ことができる。すなわち、冷房運転時においては過熱度
優先判定手段を設けたことにより、一室でも過熱度制御
中であれば吐出過熱度制御は待機状態となり、過熱度優
先制御により、常に優先して室内ファンへの結露防止を
行ない、暖房運転時においては、一室でも吐出過熱度制
御中であれば過熱度制御は待機状態となり、吐出過熱度
優先制御により、常に優先して圧縮機の液圧縮運転の防
止を行なうことができる。
According to the seventh aspect of the present invention, there is provided a superheat degree prioritizing means during the cooling operation and a discharge superheat degree prioritizing means during the heating operation. In the superheat degree control and the discharge superheat degree control of the refrigeration cycle, The superheat degree priority means gives priority to the superheat degree control over the discharge superheat degree control at the time of the cooling operation, and the discharge superheat degree control gives priority to the discharge superheat degree control at the time of the heating operation by the discharge superheat degree priority determination means. With this, the superheat degree control and the discharge superheat degree control are simultaneously adopted, so that the optimum superheat degree control and the optimum discharge superheat degree control can both be performed. That is, during the cooling operation, the superheat degree priority determination means is provided, so that even in one room, the discharge superheat degree control is in a standby state if the superheat degree control is being performed, and the superheat degree priority control always gives priority to the indoor fan. During the heating operation, if even one room is under discharge superheat control, the superheat control is in a standby state, and the discharge superheat priority control always gives priority to preventing the liquid compression operation of the compressor. Can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態における多室形空気調和機
の冷凍サイクル図
FIG. 1 is a refrigeration cycle diagram of a multi-room air conditioner according to an embodiment of the present invention.

【図2】本発明の実施の形態における多室形空気調和機
の制御ブロック図
FIG. 2 is a control block diagram of the multi-room air conditioner according to the embodiment of the present invention.

【図3】本発明の実施の形態における多室形空気調和機
の、過熱度制御の基本の考え方を示す特性図
FIG. 3 is a characteristic diagram showing a basic concept of superheat control of the multi-room air conditioner according to the embodiment of the present invention.

【図4】本発明の実施の形態における多室形空気調和機
の、吐出過熱度制御の基本の考え方を示す特性図
FIG. 4 is a characteristic diagram showing a basic concept of discharge superheat control of the multi-room air conditioner according to the embodiment of the present invention.

【図5】本発明の実施の形態における多室形空気調和機
の、冷房運転時の過熱度制御を示すフローチャート
FIG. 5 is a flowchart showing superheat degree control during cooling operation of the multi-room air conditioner according to the embodiment of the present invention.

【図6】本発明の実施の形態における多室形空気調和機
の、冷房運転時の吐出過熱度制御を示すフローチャート
FIG. 6 is a flowchart showing discharge superheat degree control during cooling operation of the multi-room air conditioner according to the embodiment of the present invention.

【図7】本発明の実施の形態における多室形空気調和機
の、暖房運転時の過熱度制御を示す制御フローチャート
FIG. 7 is a control flowchart showing superheat degree control during heating operation of the multi-room air conditioner according to the embodiment of the present invention.

【図8】本発明の実施の形態における多室形空気調和機
の、暖房運転時の吐出過熱度制御を示す制御フローチャ
ート
FIG. 8 is a control flowchart showing discharge superheat degree control during a heating operation of the multi-room air conditioner according to the embodiment of the present invention.

【図9】従来の多室形空気調和機の冷凍サイクル図FIG. 9 is a refrigeration cycle diagram of a conventional multi-room air conditioner.

【符号の説明】[Explanation of symbols]

1圧縮機 2四方弁 3室外熱交換器 4A、4B可変式減圧装置 5A、5B室内熱交換器 6A、6B、7A、7B接続配管 8室外フアン 9室外吸い込み温度センサ 10吐出配管温度センサ 11室外熱交換器出口温度センサ 12室外熱交換器中間温度センサ 13A、13B室内フアン 14A、14B室内吸い込み温度センサ 15A、15B室内熱交換器出口温度センサ 16A、16B室内熱交換器中間温度センサ 20室内熱交換器中間温度検出手段 21室内熱交換器出口温度検出手段 22室外熱交換器中間温度検出手段 23室外熱交換器出口温度検出手段 24圧縮機吐出温度検出手段 25運転モード判定手段 27過熱度演算手段 28吐出過熱度演算手段 29過熱度優先判定手段 30吐出過熱度優先判定手段 31弁開度制御モード判定手段 32圧縮機運転周波数検出手段 33弁開度制御モードテーブル 34可変式減圧装置弁開度変更手段 35可変式減圧装置出力手段 1 compressor 2 four-way valve 3 outdoor heat exchanger 4A, 4B variable decompression device 5A, 5B indoor heat exchanger 6A, 6B, 7A, 7B connection piping 8 outdoor fan 9 outdoor suction temperature sensor 10 discharge piping temperature sensor 11 outdoor heat Exchanger outlet temperature sensor 12 Outdoor heat exchanger intermediate temperature sensor 13A, 13B Indoor fan 14A, 14B Indoor suction temperature sensor 15A, 15B Indoor heat exchanger outlet temperature sensor 16A, 16B Indoor heat exchanger intermediate temperature sensor 20 Indoor heat exchanger Intermediate temperature detecting means 21 Indoor heat exchanger outlet temperature detecting means 22 Outdoor heat exchanger intermediate temperature detecting means 23 Outdoor heat exchanger outlet temperature detecting means 24 Compressor discharge temperature detecting means 25 Operating mode determining means 27 Superheat degree calculating means 28 Discharge Superheat degree calculation means 29 Superheat degree priority determination means 30 Discharge superheat degree priority determination means 31 Valve opening control mode determination Setting means 32 compressor operating frequency detecting means 33 valve opening degree control mode table 34 variable pressure reducing apparatus valve opening changing means 35 variable pressure reducing apparatus output means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 藤社 輝夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 嘉久和 孝 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 高梨 陽史 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 3L060 AA01 CC04 CC19 DD05 EE04 EE09  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Teruo Fujisha 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Inventor Yoji Takanashi 1006 Kazuma Kadoma, Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 3L060 AA01 CC04 CC19 DD05 EE04 EE09

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】周波数可変制御形の圧縮機と室外熱交換器
を備えた一台の室外機と、室内熱交換器を備えた複数台
の室内機と、前記各室内機に対応した可変式減圧装置
を、前記室外熱交換器と各室内熱交換器の冷媒経路配管
中途に設けて、接続配管で接続した冷凍サイクルにおい
て、前記可変式減圧装置を、制御信号により弁開度が制
御される可変式減圧装置とし、さらに前記各室内熱交換
器の冷媒経路配管の中途に設けられ、この冷媒経路配管
の温度を検出する室内熱交換器中間温度検出手段と、前
記各室内熱交換器の冷媒経路配管の出口に設けられ、こ
の冷媒経路配管の温度を検出する室内熱交換器出口温度
検出手段を設け、これら室内熱交換器中間温度検出手段
および室内熱交換器出口温度検出手段で検出されたそれ
ぞれの配管温度により、前記各室内熱交換器の過熱度を
演算する過熱度演算手段と、前記圧縮機の運転周波数を
検出する圧縮機運転周波数検出手段と、前記圧縮機運転
周波数の数値と前記過熱度演算手段の演算値から、前記
可変式減圧装置の弁開度値が設定された弁開度制御モー
ドテーブルと、前記圧縮機運転周波数検出手段により検
出された圧縮機運転周波数の数値と、前記過熱度演算手
段の演算値により可変式減圧装置の制御モードを判定す
る弁開度制御モード判定手段を設け、この弁開度制御モ
ード判定手段により判定された制御モードに基づき、前
記弁開度制御モードテーブルから弁開度値を決定し、可
変式減圧装置弁開度変更手段により、前記可変式減圧装
置の弁開度を調節して、冷房運転時における、冷凍サイ
クルの過熱度を制御する多室形空気調和機の制御装置。
1. An outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and a variable type corresponding to each of the indoor units. A pressure reducing device is provided in the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, and in a refrigeration cycle connected by a connection pipe, the valve opening of the variable pressure reducing device is controlled by a control signal. A variable pressure reducing device, further provided in the middle of the refrigerant path piping of each of the indoor heat exchangers, an indoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path piping, and a refrigerant of each of the indoor heat exchangers An indoor heat exchanger outlet temperature detecting means is provided at an outlet of the path pipe and detects the temperature of the refrigerant path pipe, and the temperature is detected by the indoor heat exchanger intermediate temperature detecting means and the indoor heat exchanger outlet temperature detecting means. Depends on each piping temperature A superheat degree calculating means for calculating the degree of superheat of each of the indoor heat exchangers; a compressor operating frequency detecting means for detecting an operating frequency of the compressor; and a numerical value of the compressor operating frequency and the superheat degree calculating means. From the calculated value, a valve opening control mode table in which the valve opening value of the variable pressure reducing device is set, a numerical value of the compressor operating frequency detected by the compressor operating frequency detecting means, and the superheat degree calculating means A valve opening control mode determining means for determining a control mode of the variable pressure reducing device based on the calculated value of the valve opening control mode determining means. Based on the control mode determined by the valve opening control mode determining means, the valve is controlled from the valve opening control mode table. A multi-chamber air conditioner that determines an opening value and controls the valve opening of the variable decompression device by a variable decompression device valve opening changing means to control the degree of superheating of the refrigeration cycle during cooling operation. Machine of the control device.
【請求項2】周波数可変制御形の圧縮機と室外熱交換器
を備えた一台の室外機と、室内熱交換器を備えた複数台
の室内機と、前記各室内機に対応した可変式減圧装置
を、前記室外熱交換器と各室内熱交換器の冷媒経路配管
中途に設けて、接続配管で接続した冷凍サイクルにおい
て、前記可変式減圧装置を、制御信号により弁開度が制
御される可変式減圧装置とし、さらに前記室外熱交換器
の冷媒経路配管の中途に設けられ、この冷媒経路配管の
温度を検出する室外熱交換器中間温度検出手段と、前記
圧縮機の吐出配管側に設けられ、設けられた箇所の配管
温度を検出する圧縮機吐出温度検出手段と、これら室外
熱交換器中間温度検出手段と圧縮機吐出温度検出手段に
よって、検出されたそれぞれの配管温度により、前記冷
凍サイクルの吐出過熱度を演算する吐出過熱度演算手段
と、前記圧縮機の運転周波数を検出する圧縮機運転周波
数検出手段と、前記圧縮機運転周波数の数値と、前記吐
出過熱度演算手段の演算値から前記可変式減圧装置の弁
開度が設定された弁開度制御モードテーブルと、前記圧
縮機運転周波数検出手段により検出された圧縮機運転周
波数の数値と、前記吐出過熱度演算手段の演算値により
前記可変式減圧装置の制御モードを判定する弁開度制御
モード判定手段を設け、この弁開度制御モード判定手段
により判定された制御モードに基づき、この弁開度制御
モードテーブルから弁開度値を決定し、可変式減圧装置
弁開度変更手段により、前記可変式減圧装置の弁開度を
調節して、冷房運転時における、冷凍サイクルの吐出過
熱度を制御する多室形空気調和機の制御装置。
2. An outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and a variable type corresponding to each of the indoor units. A pressure reducing device is provided in the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, and in a refrigeration cycle connected by a connection pipe, the valve opening of the variable pressure reducing device is controlled by a control signal. A variable pressure reducing device, further provided in the middle of the refrigerant path piping of the outdoor heat exchanger, an outdoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path piping, and provided on the discharge pipe side of the compressor. A compressor discharge temperature detecting means for detecting a pipe temperature at a location provided; and an outdoor heat exchanger intermediate temperature detecting means and a compressor discharge temperature detecting means. Over-discharge Discharge superheat calculating means for calculating the degree of operation, compressor operating frequency detecting means for detecting the operating frequency of the compressor, a numerical value of the compressor operating frequency, and the variable expression from the calculated value of the discharge superheat calculating means. The valve opening control mode table in which the valve opening of the pressure reducing device is set, the numerical value of the compressor operating frequency detected by the compressor operating frequency detecting means, and the variable value calculated by the calculated value of the discharge superheat calculating means. A valve opening control mode determining means for determining a control mode of the pressure reducing device is provided, and a valve opening value is determined from the valve opening control mode table based on the control mode determined by the valve opening control mode determining means. A variable pressure reducing device valve opening changing means adjusts a valve opening of the variable pressure reducing device to control a discharge superheat degree of a refrigeration cycle during a cooling operation. Apparatus.
【請求項3】周波数可変制御形の圧縮機と室外熱交換器
を備えた一台の室外機と、室内熱交換器を備えた複数台
の室内機と、前記各室内機に対応した可変式減圧装置
を、前記室外熱交換器と各室内熱交換器の冷媒経路配管
中途に設けて、接続配管で接続した冷凍サイクルにおい
て、前記可変式減圧装置を、制御信号により弁開度が制
御される可変式減圧装置とし、さらに前記各室内熱交換
器の冷媒経路配管の中途に設けられ、この冷媒経路配管
の温度を検出する室内熱交換器中間温度検出手段と、前
記各室内熱交換器の冷媒経路配管の出口に設けられ、こ
の冷媒経路配管の温度を検出する室内熱交換器出口温度
検出手段と、前記室外熱交換器の冷媒経路配管の中途に
設けられ、この冷媒経路配管の温度を検出する室外熱交
換器中間温度検出手段と、前記圧縮機の吐出配管側に設
けられ、設けられた箇所の配管温度を検出する圧縮機吐
出温度検出手段を設けて、これら室内熱交換器中間温度
検出手段および室内熱交換器出口温度検出手段で検出さ
れたそれぞれの配管温度により、前記各室内熱交換器の
過熱度を演算する過熱度演算手段と、室外熱交換器中間
温度検出手段と圧縮機吐出温度検出手段によって、検出
されたそれぞれの配管温度により、前記冷凍サイクルの
吐出過熱度を演算する吐出過熱度演算手段と、前記圧縮
機の運転周波数を検出する圧縮機運転周波数検出手段
と、前記圧縮機運転周波数の数値と前記過熱度演算手段
および前記吐出過熱度演算手段の演算値から、前記可変
式減圧装置の弁開度値が設定された弁開度制御モードテ
ーブルと、前記圧縮機運転周波数検出手段により検出さ
れた圧縮機運転周波数の数値と、前記過熱度演算手段お
よび吐出過熱度演算手段の演算値により可変式減圧装置
の制御モードを判定する弁開度制御モード判定手段を設
け、この弁開度制御モード判定手段により判定された制
御モードに基づき、前記弁開度制御モードテーブルから
弁開度値を決定し、可変式減圧装置弁開度変更手段によ
り、前記可変式減圧装置の弁開度を調節して、冷房運転
時における、冷凍サイクルの過熱度と吐出過熱度を制御
する多室形空気調和機の制御装置。
3. An outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and a variable type corresponding to each of the indoor units. A pressure reducing device is provided in the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, and in a refrigeration cycle connected by a connection pipe, the valve opening of the variable pressure reducing device is controlled by a control signal. A variable pressure reducing device, further provided in the middle of the refrigerant path piping of each of the indoor heat exchangers, an indoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path piping, and a refrigerant of each of the indoor heat exchangers An indoor heat exchanger outlet temperature detecting means provided at the outlet of the path pipe and detecting the temperature of the refrigerant path pipe, and provided in the middle of the refrigerant path pipe of the outdoor heat exchanger and detecting the temperature of the refrigerant path pipe Outdoor heat exchanger intermediate temperature detection And a compressor discharge temperature detecting means provided on the discharge pipe side of the compressor and detecting a pipe temperature at the provided location. The indoor heat exchanger intermediate temperature detecting means and the indoor heat exchanger outlet temperature detecting means are provided. Means for calculating the degree of superheat of each of the indoor heat exchangers based on the respective pipe temperatures detected by the means, an outdoor heat exchanger intermediate temperature detecting means and a compressor discharge temperature detecting means, respectively. Discharge superheat degree calculating means for calculating the discharge superheat degree of the refrigeration cycle based on the pipe temperature, compressor operating frequency detecting means for detecting the operating frequency of the compressor, a numerical value of the compressor operating frequency and the superheat degree A valve opening control mode table in which a valve opening value of the variable pressure reducing device is set based on a calculation value of the calculation means and the discharge superheat degree calculation means; And a valve opening control mode determining means for determining the control mode of the variable pressure reducing device based on the numerical value of the compressor operating frequency detected by the above and the calculated values of the superheat degree calculating means and the discharge superheat degree calculating means. The valve opening value is determined from the valve opening control mode table based on the control mode determined by the degree control mode determining means, and the valve opening degree of the variable pressure reducing apparatus is determined by the variable pressure reducing apparatus valve opening changing means. A multi-room air conditioner control device that controls the degree of superheat and discharge superheat of the refrigeration cycle during cooling operation by adjusting the temperature.
【請求項4】周波数可変制御形の圧縮機と室外熱交換器
を備えた一台の室外機と、室内熱交換器を備えた複数台
の室内機と、前記各室内機に対応した可変式減圧装置
を、前記室外熱交換器と各室内熱交換器の冷媒経路配管
中途に設けて、接続配管で接続した冷凍サイクルにおい
て、前記可変式減圧装置を、制御信号により弁開度が制
御される可変式減圧装置とし、さらに前記室外熱交換器
の冷媒経路配管の中途に設けられ、この冷媒経路配管の
温度を検出する室外熱交換器中間温度検出手段と、前記
室外熱交換器の冷媒経路配管の出口に設けられ、この冷
媒経路配管の温度を検出する室外熱交換器出口温度検出
手段を設け、これら室外熱交換器中間温度検出手段およ
び室外熱交換器出口温度検出手段で検出されたそれぞれ
の配管温度により、前記室外熱交換器の過熱度を演算す
る過熱度演算手段と、前記圧縮機の運転周波数を検出す
る圧縮機運転周波数検出手段と、前記圧縮機運転周波数
の数値と前記過熱度演算手段の演算値から、前記可変式
減圧装置の弁開度値が設定された弁開度制御モードテー
ブルと、前記圧縮機運転周波数検出手段により検出され
た圧縮機運転周波数の数値と、前記過熱度演算手段の演
算値により可変式減圧装置の制御モードを判定する弁開
度制御モード判定手段を設け、この弁開度制御モード判
定手段により判定された制御モードに基づき、前記弁開
度制御モードテーブルから弁開度値を決定し、可変式減
圧装置弁開度変更手段により、前記可変式減圧装置の弁
開度を調節して、暖房運転時における、冷凍サイクルの
過熱度を制御する多室形空気調和機の制御装置。
4. An outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and a variable type corresponding to each of the indoor units. A pressure reducing device is provided in the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, and in a refrigeration cycle connected by a connection pipe, the valve opening of the variable pressure reducing device is controlled by a control signal. A variable pressure reducing device, further provided in the middle of the refrigerant path pipe of the outdoor heat exchanger, an outdoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path pipe, and a refrigerant path pipe of the outdoor heat exchanger And an outdoor heat exchanger outlet temperature detecting means for detecting the temperature of the refrigerant path piping, provided by the outdoor heat exchanger intermediate temperature detecting means and the outdoor heat exchanger outlet temperature detecting means. Depending on the piping temperature, Superheat degree calculation means for calculating the degree of superheat of the outdoor heat exchanger, compressor operation frequency detection means for detecting the operation frequency of the compressor, a numerical value of the compressor operation frequency and a calculation value of the superheat degree calculation means From the above, the valve opening control mode table in which the valve opening value of the variable pressure reducing device is set, the numerical value of the compressor operating frequency detected by the compressor operating frequency detecting means, and the calculation of the superheat degree calculating means A valve opening control mode determining means for determining a control mode of the variable pressure reducing device based on the value; a valve opening control mode table based on the control mode determined by the valve opening control mode determining means; Determine the value, by adjusting the valve opening of the variable pressure reducing device by the variable pressure reducing device valve opening changing means, during the heating operation, the multi-room air conditioner that controls the degree of superheat of the refrigeration cycle Control device.
【請求項5】周波数可変制御形の圧縮機と室外熱交換器
を備えた一台の室外機と、室内熱交換器を備えた複数台
の室内機と、前記各室内機に対応した可変式減圧装置
を、前記室外熱交換器と各室内熱交換器の冷媒経路配管
中途に設けて、接続配管で接続した冷凍サイクルにおい
て、前記可変式減圧装置を、制御信号により弁開度が制
御される可変式減圧装置とし、さらに前記各室内熱交換
器の冷媒経路配管の中途に設けられ、この冷媒経路配管
の温度を検出する室内熱交換器中間温度検出手段と、前
記圧縮機の吐出配管側に設けられ、設けられた箇所の配
管温度を検出する圧縮機吐出温度検出手段と、これら各
室内熱交換器中間温度検出手段と圧縮機吐出温度検出手
段によって、検出されたそれぞれの配管温度により、前
記冷凍サイクルの吐出過熱度を演算する吐出過熱度演算
手段と、前記圧縮機の運転周波数を検出する圧縮機運転
周波数検出手段と、前記圧縮機運転周波数の数値と、前
記吐出過熱度演算手段の演算値から前記可変式減圧装置
の弁開度が設定された弁開度制御モードテーブルと、前
記圧縮機運転周波数検出手段により検出された圧縮機運
転周波数の数値と、前記吐出過熱度演算手段の演算値に
より前記可変式減圧装置の制御モードを判定する弁開度
制御モード判定手段を設け、この弁開度制御モード判定
手段により判定された制御モードに基づき、この弁開度
制御モードテーブルから弁開度値を決定し、可変式減圧
装置弁開度変更手段により、前記可変式減圧装置の弁開
度を調節して、暖房運転時における、冷凍サイクルの吐
出過熱度を制御する多室形空気調和機の制御装置。
5. An outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and a variable type corresponding to each of the indoor units. A pressure reducing device is provided in the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, and in a refrigeration cycle connected by a connection pipe, the valve opening of the variable pressure reducing device is controlled by a control signal. A variable pressure reducing device, further provided in the middle of the refrigerant path piping of each of the indoor heat exchangers, an indoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path piping, and a discharge pipe side of the compressor. Provided, the compressor discharge temperature detecting means for detecting the pipe temperature of the provided location, and the respective pipe temperatures detected by the indoor heat exchanger intermediate temperature detecting means and the compressor discharge temperature detecting means. Refrigeration cycle spitting Discharge superheat degree calculating means for calculating the degree of superheat, compressor operating frequency detecting means for detecting the operating frequency of the compressor, the variable value from the numerical value of the compressor operating frequency, and the calculated value of the discharge superheat degree calculating means. The valve opening control mode table in which the valve opening of the pressure reducing device is set, the numerical value of the compressor operating frequency detected by the compressor operating frequency detecting means, and the variable value calculated by the calculated value of the discharge superheat calculating means. A valve opening control mode determining means for determining a control mode of the pressure reducing device, and a valve opening value is determined from the valve opening control mode table based on the control mode determined by the valve opening control mode determining means. A multi-chamber air conditioner that controls the degree of superheating of the refrigeration cycle during heating operation by adjusting the valve opening of the variable pressure reducing device by means of the variable pressure reducing device valve opening changing means. The control device.
【請求項6】周波数可変制御形の圧縮機と室外熱交換器
を備えた一台の室外機と、室内熱交換器を備えた複数台
の室内機と、前記各室内機に対応した可変式減圧装置
を、前記室外熱交換器と各室内熱交換器の冷媒経路配管
中途に設けて、接続配管で接続した冷凍サイクルにおい
て、前記可変式減圧装置を、制御信号により弁開度が制
御される可変式減圧装置とし、さらに前記室外熱交換器
の冷媒経路配管の中途に設けられ、この冷媒経路配管の
温度を検出する室外熱交換器中間温度検出手段と、前記
室外熱交換器の冷媒経路配管の出口に設けられ、この冷
媒経路配管の温度を検出する室外熱交換器出口温度検出
手段と、前記各室内熱交換器の冷媒経路配管の中途に設
けられ、この冷媒経路配管の温度を検出する各室内熱交
換器中間温度検出手段と、前記圧縮機の吐出配管側に設
けられ、設けられた箇所の配管温度を検出する圧縮機吐
出温度検出手段を設けて、これら室外熱交換器中間温度
検出手段および室外熱交換器出口温度検出手段で検出さ
れた、それぞれの配管温度により、前記室外熱交換器の
過熱度を演算する過熱度演算手段と、各室内熱交換器中
間温度検出手段と圧縮機吐出温度検出手段によって、検
出されたそれぞれの配管温度により、前記冷凍サイクル
の吐出過熱度を演算する吐出過熱度演算手段と、前記圧
縮機の運転周波数を検出する圧縮機運転周波数検出手段
と、前記圧縮機運転周波数の数値と前記過熱度演算手段
および前記吐出過熱度演算手段の演算値から、前記可変
式減圧装置の弁開度値が設定された弁開度制御モードテ
ーブルと、前記圧縮機運転周波数検出手段により検出さ
れた圧縮機運転周波数の数値と、前記過熱度演算手段お
よび吐出過熱度演算手段の演算値により可変式減圧装置
の制御モードを判定する弁開度制御モード判定手段を設
け、この弁開度制御モード判定手段により判定された制
御モードに基づき、前記弁開度制御モードテーブルから
弁開度値を決定し、可変式減圧装置弁開度変更手段によ
り、前記可変式減圧装置の弁開度を調節して、暖房運転
時における、冷凍サイクルの過熱度と吐出過熱度を制御
する多室形空気調和機の制御装置。
6. An outdoor unit having a variable frequency control type compressor and an outdoor heat exchanger, a plurality of indoor units having an indoor heat exchanger, and a variable type corresponding to each of the indoor units. A pressure reducing device is provided in the refrigerant path piping of the outdoor heat exchanger and each indoor heat exchanger, and in a refrigeration cycle connected by a connection pipe, the valve opening of the variable pressure reducing device is controlled by a control signal. A variable pressure reducing device, further provided in the middle of the refrigerant path pipe of the outdoor heat exchanger, an outdoor heat exchanger intermediate temperature detecting means for detecting the temperature of the refrigerant path pipe, and a refrigerant path pipe of the outdoor heat exchanger , An outdoor heat exchanger outlet temperature detecting means for detecting the temperature of the refrigerant path piping, and provided in the middle of the refrigerant path pipes of the indoor heat exchangers for detecting the temperature of the refrigerant path pipes Each indoor heat exchanger intermediate temperature detection And a compressor discharge temperature detecting means provided on the discharge pipe side of the compressor and detecting a pipe temperature at the provided location, and detecting the intermediate temperature of the outdoor heat exchanger and detecting the temperature of the outlet of the outdoor heat exchanger. The superheat degree calculating means for calculating the superheat degree of the outdoor heat exchanger based on the respective pipe temperatures detected by the means, the indoor heat exchanger intermediate temperature detecting means, and the compressor discharge temperature detecting means. A discharge superheat degree calculating means for calculating a discharge superheat degree of the refrigeration cycle, a compressor operation frequency detection means for detecting an operation frequency of the compressor, a numerical value of the compressor operation frequency and the superheat A valve opening control mode table in which a valve opening value of the variable decompression device is set based on the operation values of the degree calculating means and the discharge superheat degree calculating means; Valve opening degree control mode determining means for determining the control mode of the variable pressure reducing device based on the value of the compressor operating frequency detected by the stage and the calculated values of the superheat degree calculating means and the discharge superheat degree calculating means; Based on the control mode determined by the opening control mode determining means, a valve opening value is determined from the valve opening control mode table, and the valve opening of the variable pressure reducing apparatus is changed by the variable pressure reducing apparatus valve opening changing means. A control device for a multi-room air conditioner that controls the degree of superheat and discharge superheat of the refrigeration cycle during heating operation by adjusting the degree of heating.
【請求項7】冷房運転時の過熱度優先判定手段および暖
房運転時の吐出過熱度優先判定手段を具備し、冷凍サイ
クルの過熱度制御と吐出過熱度制御において、過熱度優
先判定手段により、冷房運転時では吐出過熱度制御より
も過熱度制御を優先し、また吐出過熱度優先判定手段に
より、暖房運転時では過熱度制御よりも吐出過熱度制御
を優先するようにした請求項3、6に記載の多室形空気
調和機の制御装置。
7. A superheat degree priority judging means for cooling operation and a discharge superheat degree priority judgment means for heating operation. In superheat degree control and discharge superheat degree control of the refrigeration cycle, the superheat degree priority judgment means performs the cooling operation. The superheat degree control is prioritized over the discharge superheat degree control during the operation, and the discharge superheat degree control is prioritized over the superheat degree control during the heating operation by the discharge superheat degree priority determination means. The control device of the multi-room air conditioner according to the above.
JP23932399A 1999-08-26 1999-08-26 Controller for multi-chamber type air conditioner Pending JP2001065949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23932399A JP2001065949A (en) 1999-08-26 1999-08-26 Controller for multi-chamber type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23932399A JP2001065949A (en) 1999-08-26 1999-08-26 Controller for multi-chamber type air conditioner

Publications (1)

Publication Number Publication Date
JP2001065949A true JP2001065949A (en) 2001-03-16

Family

ID=17043018

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23932399A Pending JP2001065949A (en) 1999-08-26 1999-08-26 Controller for multi-chamber type air conditioner

Country Status (1)

Country Link
JP (1) JP2001065949A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988617B1 (en) 2006-02-02 2010-10-18 엘지전자 주식회사 Air-Condition and the control method for the same
JP2011163669A (en) * 2010-02-10 2011-08-25 Mitsubishi Electric Corp Air conditioning device and air conditioning control program
KR101153420B1 (en) 2008-10-06 2012-06-05 위니아만도 주식회사 Method for controlling air-conditioner
US20130180274A1 (en) * 2010-10-29 2013-07-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration cycle control method
KR101479240B1 (en) 2008-07-14 2015-01-06 삼성전자 주식회사 Air conditioner and method of controlling the same
KR101528139B1 (en) * 2007-12-24 2015-06-11 엘지전자 주식회사 Multi air conditioner
JP2017215114A (en) * 2016-06-01 2017-12-07 ダイキン工業株式会社 Multi-type air conditioning device
KR101806839B1 (en) 2011-07-26 2018-01-10 삼성전자주식회사 Multi air conditioner and method for controlling the same
WO2018090626A1 (en) * 2016-11-17 2018-05-24 广东美的暖通设备有限公司 Anti-slugging control method and control apparatus for air-conditioning system, and air-conditioning system
CN111023435A (en) * 2019-12-30 2020-04-17 Tcl空调器(中山)有限公司 Control method and system for expansion valve of air conditioner and air conditioner
JP2020098079A (en) * 2018-12-19 2020-06-25 三菱重工サーマルシステムズ株式会社 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system
CN113739340A (en) * 2021-09-17 2021-12-03 宁波奥克斯电气股份有限公司 Multi-split coil pipe temperature self-repairing control method and device, air conditioner and storage medium

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100988617B1 (en) 2006-02-02 2010-10-18 엘지전자 주식회사 Air-Condition and the control method for the same
KR101528139B1 (en) * 2007-12-24 2015-06-11 엘지전자 주식회사 Multi air conditioner
KR101479240B1 (en) 2008-07-14 2015-01-06 삼성전자 주식회사 Air conditioner and method of controlling the same
KR101153420B1 (en) 2008-10-06 2012-06-05 위니아만도 주식회사 Method for controlling air-conditioner
JP2011163669A (en) * 2010-02-10 2011-08-25 Mitsubishi Electric Corp Air conditioning device and air conditioning control program
US20130180274A1 (en) * 2010-10-29 2013-07-18 Mitsubishi Electric Corporation Refrigeration cycle apparatus and refrigeration cycle control method
KR101806839B1 (en) 2011-07-26 2018-01-10 삼성전자주식회사 Multi air conditioner and method for controlling the same
WO2017209188A1 (en) * 2016-06-01 2017-12-07 ダイキン工業株式会社 Multi-type air-conditioning device
JP2017215114A (en) * 2016-06-01 2017-12-07 ダイキン工業株式会社 Multi-type air conditioning device
CN109196288A (en) * 2016-06-01 2019-01-11 大金工业株式会社 Multi-type air-conditioning device
CN109196288B (en) * 2016-06-01 2020-10-23 大金工业株式会社 Multi-connected air conditioner
WO2018090626A1 (en) * 2016-11-17 2018-05-24 广东美的暖通设备有限公司 Anti-slugging control method and control apparatus for air-conditioning system, and air-conditioning system
EP3396262A4 (en) * 2016-11-17 2018-11-21 GD Midea Heating & Ventilating Equipment Co., Ltd. Anti-slugging control method and control apparatus for air-conditioning system, and air-conditioning system
JP2020098079A (en) * 2018-12-19 2020-06-25 三菱重工サーマルシステムズ株式会社 Control device of air conditioning system, air conditioning system, control method of air conditioning system, and control program of air conditioning system
JP7171414B2 (en) 2018-12-19 2022-11-15 三菱重工サーマルシステムズ株式会社 Air conditioning system controller, air conditioning system, air conditioning system control method, and air conditioning system control program
CN111023435A (en) * 2019-12-30 2020-04-17 Tcl空调器(中山)有限公司 Control method and system for expansion valve of air conditioner and air conditioner
CN113739340A (en) * 2021-09-17 2021-12-03 宁波奥克斯电气股份有限公司 Multi-split coil pipe temperature self-repairing control method and device, air conditioner and storage medium

Similar Documents

Publication Publication Date Title
KR100468917B1 (en) Multi-type air conditioner
US5344069A (en) Air conditioning apparatus for distributing primarily-conditioned air to rooms
JPH0828985A (en) Air conditioner
JP2001065949A (en) Controller for multi-chamber type air conditioner
JP3772777B2 (en) Air conditioner and control method of air conditioner
JP2001248937A (en) Heat pump hot water supply air conditioner
JP3815199B2 (en) Air conditioner
JP2017009269A5 (en)
JPH1163628A (en) Air conditioner
KR100692894B1 (en) Air conditioner and IN DOOR UINT in use with it and method for dehumidifying
JPH06159770A (en) Air conditioner
KR100561943B1 (en) Control method for electro-drive expansion valve
KR20190073870A (en) Air conditioner and control method of air conditioner
JP4151219B2 (en) Multi-chamber air conditioner
JP2005016884A (en) Air conditioner
JP6937925B2 (en) Air conditioner
JP2005055053A (en) Air conditioner
JP2536313B2 (en) Operation control device for air conditioner
JP2002048382A (en) Air conditioner
WO2024100842A1 (en) Air-conditioning device and air-conditioning system
JPH10332186A (en) Air conditioner
JPH07151420A (en) Air conditioner with water heater
JP2001208441A (en) Air conditioning apparatus
JPH10141788A (en) Multi-room split type air conditioner
JPH09145191A (en) Air conditioner