WO2024100842A1 - Air-conditioning device and air-conditioning system - Google Patents

Air-conditioning device and air-conditioning system Download PDF

Info

Publication number
WO2024100842A1
WO2024100842A1 PCT/JP2022/041927 JP2022041927W WO2024100842A1 WO 2024100842 A1 WO2024100842 A1 WO 2024100842A1 JP 2022041927 W JP2022041927 W JP 2022041927W WO 2024100842 A1 WO2024100842 A1 WO 2024100842A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
temperature
refrigerant
heat exchanger
control
Prior art date
Application number
PCT/JP2022/041927
Other languages
French (fr)
Japanese (ja)
Inventor
▲琢▼哉 阿川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2022/041927 priority Critical patent/WO2024100842A1/en
Publication of WO2024100842A1 publication Critical patent/WO2024100842A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/46Improving electric energy efficiency or saving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/54Control or safety arrangements characterised by user interfaces or communication using one central controller connected to several sub-controllers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants

Definitions

  • This disclosure relates to air conditioning devices and air conditioning systems.
  • Air conditioners have been known for some time that perform control (hereinafter also referred to as energy-saving control) to improve operating efficiency by changing the target evaporation temperature for evaporating the refrigerant in the evaporator according to the air-conditioning load.
  • Air conditioners that perform energy-saving control are expected to achieve greater energy savings in buildings with low air-conditioning loads or in intermediate seasons (spring and fall) when the heat generation load is low, because they can control the refrigerant temperature to the target evaporation temperature with small temperature changes.
  • the indoor temperature is brought close to the set temperature set by the user in a short period of time, mainly from the perspective of ensuring comfort, so that they are designed not to enter energy-saving control for a certain period of time after the compressor is started (thermo on).
  • the air conditioner in Patent Document 1 determines the control characteristics of the target value of the evaporating temperature in response to the cooling load characteristics of the building.
  • the air conditioner in Patent Document 1 is configured to change the target value of the evaporating temperature based on the temperature difference between the indoor set temperature and the outdoor air temperature in accordance with this control characteristic.
  • the air conditioner in Patent Document 2 (JP Patent Publication 2015-021656 A) predicts the generated heat load from the temperature difference between the room's set temperature and the actual intake temperature, turns on the thermo function, and continues operation for a certain period of time. After that, if the temperature difference is greater than the set value, the air conditioner in Patent Document 2 executes control to set the compressor rotation speed to the minimum value.
  • the air conditioner described in Patent Document 1 is capable of suppressing excessive air conditioning capacity when an inside/outside temperature difference, which is the difference between the indoor set temperature and the outside air temperature, occurs constantly.
  • the air conditioner described in Patent Document 1 does not take into consideration reducing the frequency of compressor start-up and stoppage when the air conditioning load rate is low.
  • the air conditioner described in Patent Document 2 (JP 2015-021656 A) predicts the heat load generated from the temperature difference between the set temperature and the suction temperature, and is able to reduce the frequency with which the compressor is started and stopped repeatedly.
  • the air conditioner described in Patent Document 2 does not anticipate cases where the air conditioning load rate is low, in which a temperature difference between the set temperature and the suction temperature is unlikely to occur, and in such cases the energy saving effect is limited.
  • Patent Document 1 JP 2002-147823 A
  • Patent Document 2 JP 2015-021656 A
  • the objective of this disclosure is to provide an air conditioning device and air conditioning system that can achieve energy conservation effects when using an air conditioning device with a low air conditioning load factor, and that can be operated in a way that takes into account the conditioning of the target space by multiple air conditioning systems.
  • the air conditioning apparatus relates to an air conditioning apparatus that conditions a target space using multiple air conditioning systems.
  • Each of the multiple air conditioning systems has a refrigerant circuit composed of a first heat exchanger arranged outside the target space, a second heat exchanger arranged within the target space, an expansion valve, and a compressor.
  • refrigerant circuit in each air conditioning system refrigerant flows through the compressor, first heat exchanger, expansion valve, second heat exchanger, and compressor in this order during cooling operation.
  • the air conditioning apparatus includes a detection device that detects data during operation of each refrigerant circuit, and a control device that controls each refrigerant circuit.
  • the control device calculates the air conditioning processing capacity exerted by the air conditioning apparatus from the data detected by the detection device, and controls each compressor to operate in a first mode if the ratio of the calculated air conditioning processing capacity to the rated capacity of the air conditioning apparatus is greater than a preset threshold value, and controls each compressor to operate in a second mode if the ratio is equal to or less than the threshold value.
  • the first mode is an operation mode in which control is performed to change the target value of the temperature of the refrigerant flowing through the corresponding second heat exchanger from a first temperature to a second temperature different from the first temperature after a certain grace period has elapsed since the start of operation of each compressor.
  • the second mode is an operation mode in which control is performed to change the target value of the temperature of the refrigerant flowing through the corresponding second heat exchanger from a first temperature to a second temperature after a grace period shorter than that in the first mode from the start of operation of each compressor.
  • the control device executes control using a first threshold value as a threshold value when less than a specific number of air conditioning systems are in operation among the multiple air conditioning systems, and executes control using a second threshold value larger than the first threshold value as a threshold value when a specific number or more of air conditioning systems are in operation.
  • the air conditioning system includes an air conditioning device that conditions a target space using multiple air conditioning systems, and a server device connected to the air conditioning device via a network.
  • Each of the multiple air conditioning systems has a refrigerant circuit composed of a first heat exchanger arranged outside the target space, a second heat exchanger arranged within the target space, an expansion valve, and a compressor.
  • refrigerant circuit in each air conditioning system refrigerant flows through the compressor, the first heat exchanger, the expansion valve, the second heat exchanger, and the compressor in this order during cooling operation.
  • the air conditioning device includes a detection device that detects data during operation of each refrigerant circuit, and a control device that controls each refrigerant circuit.
  • the server device calculates the air conditioning processing capacity exerted by the air conditioning device from the data detected by the detection device, and creates first control data for operating each compressor in a first mode if the ratio of the calculated air conditioning processing capacity to the rated capacity of the air conditioning device is greater than a preset threshold, and creates second control data for operating each compressor in a second mode if the ratio is equal to or less than the threshold.
  • the first control data is control data for changing a target value of the temperature of the refrigerant flowing through the corresponding second heat exchanger from a first temperature to a second temperature different from the first temperature after a certain grace period has elapsed since the start of operation of each compressor.
  • the second control data is control data for changing a target value of the temperature of the refrigerant flowing through the corresponding second heat exchanger from a first temperature to a second temperature after a grace period shorter than the first mode has elapsed since the start of operation of each compressor.
  • the server device creates control data using a first threshold value as a threshold value when less than a specific number of air conditioning systems are in operation among the multiple air conditioning systems, and creates control data using a second threshold value larger than the first threshold value as a threshold value when a specific number or more of the air conditioning systems are in operation.
  • the air conditioning processing capacity exerted by the air conditioning device is calculated from the data detected by the detection device, and if the ratio of the calculated air conditioning processing capacity to the rated capacity of the air conditioning device is greater than a preset threshold, each compressor is controlled to operate in a first mode, and if the ratio is equal to or less than the threshold, each compressor is controlled to operate in a second mode.
  • the control device executes control using a first threshold as the threshold when less than a specific number of air conditioning systems out of the multiple air conditioning systems are in operation, and executes control using a second threshold greater than the first threshold as the threshold when a specific number or more of air conditioning systems are in operation.
  • the air conditioning device and air conditioning system of the present disclosure can achieve energy conservation effects when using an air conditioning device with a low air conditioning load rate, and can operate in a way that takes into account the air conditioning of the target space with multiple air conditioning systems.
  • FIG. 1 is a schematic diagram showing the configuration of an air conditioning apparatus in a first embodiment.
  • 1 is a diagram showing a refrigerant circuit of an air-conditioning apparatus according to a first embodiment.
  • FIG. 2 is a diagram showing the arrangement of indoor units in a target space in the first embodiment.
  • 11 is a graph showing the relationship between the difference between the suction temperature and the set temperature in the indoor unit and the target evaporation temperature. 1 is a graph showing the relationship between time and a target evaporation temperature.
  • 5 is a flowchart showing control during cooling operation in the first embodiment.
  • FIG. 11 is a diagram showing the arrangement of indoor units in a target space in embodiment 2.
  • 13 is a flowchart showing control during cooling operation in the second embodiment.
  • FIG. 13 is a diagram showing the arrangement of indoor units in a target space in embodiment 3.
  • 13 is a flowchart showing control during cooling operation in the third embodiment.
  • FIG. 11 is a schematic diagram showing the configuration of an air conditioning system in embodiment
  • Embodiment 1. 1 is a schematic diagram showing the configuration of an air conditioning apparatus 1 in embodiment 1.
  • the air conditioning apparatus 1 includes an indoor unit 110A, an outdoor unit 12 connected to the indoor unit 110A, an indoor unit 110B, an outdoor unit 12 connected to the indoor unit 110B, and a control device 20.
  • Each of the indoor unit 110A and the indoor unit 110B includes a plurality of indoor units 11. There may be any number of indoor units 11 included in one indoor unit.
  • the air conditioning apparatus 1 may be configured to include three or more indoor units.
  • the air conditioning device 1 multiple indoor units 11 and outdoor units 12 are connected by piping to form a refrigerant circuit.
  • the inside of the piping is configured so that refrigerant circulates.
  • the outdoor units 12 are installed outside the target space to be air-conditioned.
  • the indoor units 11 are installed within the target space to be air-conditioned.
  • the air conditioning device 1 conditions the target space using multiple air conditioning (refrigerant) systems.
  • the target space is, for example, the interior of a building.
  • the refrigerant circuit made up of multiple indoor units 11 and outdoor units 12 is described as one air conditioning (refrigerant) system.
  • the refrigerant filled in the refrigerant circuit is, for example, an HFC refrigerant such as R32, an HCFC refrigerant such as R22, or a natural refrigerant such as R410A, CO 2 or R290.
  • the refrigerant may be a refrigerant other than the refrigerants shown here.
  • the control device 20 is composed of a CPU (Central Processing Unit) 21, memory 22 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output device (not shown) for inputting and outputting various signals.
  • the CPU 21 deploys a program stored in the ROM to the RAM, etc. and executes it.
  • the program stored in the ROM is a program in which the processing procedures of the control device 20 are written.
  • the control device 20 controls each device in the indoor unit 11 and the outdoor unit 12 in accordance with these programs. This control is not limited to processing by software, and can also be processed by dedicated hardware (electronic circuits).
  • the control device 20 may be provided on either the indoor unit 11 side or the outdoor unit 12 side.
  • FIG. 2 is a diagram showing the refrigerant circuit of the air conditioner 1 in embodiment 1.
  • the air conditioner 1 includes refrigerant circuits 10A and 10B.
  • the refrigerant circuit 10A includes multiple indoor units 11 included in the indoor unit 110A, and an outdoor unit 12.
  • the refrigerant circuit 10B includes multiple indoor units 11 included in the indoor unit 110B, and an outdoor unit 12.
  • the outdoor unit 12 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, and a fan 7.
  • the indoor unit 11 includes an expansion valve 5, an indoor heat exchanger 6, and a fan 8.
  • the compressor 2 draws in, compresses, and discharges the refrigerant.
  • the four-way valve 3 switches the refrigerant circulation direction between cooling and heating operations.
  • the flow direction of the refrigerant during cooling operation is indicated by solid arrows.
  • the indoor heat exchanger 6 functions as an evaporator
  • the outdoor heat exchanger 4 functions as a condenser.
  • the refrigerant flow direction is reversed.
  • the indoor heat exchanger 6 functions as a condenser
  • the outdoor heat exchanger 4 functions as an evaporator.
  • the outdoor heat exchanger 4 has multiple heat transfer tubes, and exchanges heat between the outdoor air blown by the fan 7 and the refrigerant passing through the multiple heat transfer tubes.
  • the expansion valve 5 expands the refrigerant and reduces its pressure.
  • the expansion valve 5 is a device that can arbitrarily control the opening degree of, for example, an electronic expansion valve.
  • the indoor heat exchanger 6 has multiple heat transfer tubes, and exchanges heat between the indoor air blown by the fan 8 and the refrigerant passing through the multiple heat transfer tubes.
  • the air conditioning device 1 is equipped with a plurality of sensors as detection devices for detecting data during operation of the refrigerant circuits 10A and 10B.
  • a pressure sensor 31a is provided on the refrigerant intake side of the compressor 2 to detect the low pressure of the refrigerant circuits 10A and 10B.
  • a pressure sensor 31b is provided on the refrigerant discharge side of the compressor 2 to detect the high pressure of the refrigerant circuits 10A and 10B.
  • a refrigerant temperature sensor 32a and a refrigerant temperature sensor 32b are provided on both ends of the outdoor heat exchanger 4 to detect the temperature of the refrigerant.
  • the refrigerant temperature sensor 32a detects the refrigerant temperature on the inlet side of the outdoor heat exchanger 4, and the refrigerant temperature sensor 32b detects the refrigerant temperature on the outlet side of the outdoor heat exchanger 4.
  • the refrigerant temperature sensor 32a detects the refrigerant temperature on the outlet side of the outdoor heat exchanger 4
  • the refrigerant temperature sensor 32b detects the refrigerant temperature on the inlet side of the outdoor heat exchanger 4.
  • Refrigerant temperature sensors 33a and 33b are provided at both ends of the indoor heat exchanger 6 to detect the temperature of the refrigerant.
  • the refrigerant temperature sensor 33b detects the refrigerant temperature on the inlet side of the indoor heat exchanger 6, and the refrigerant temperature sensor 33a detects the refrigerant temperature on the outlet side of the indoor heat exchanger 6.
  • the refrigerant temperature sensor 33b detects the refrigerant temperature on the outlet side of the indoor heat exchanger 6, and the refrigerant temperature sensor 33a detects the refrigerant temperature on the inlet side of the indoor heat exchanger 6.
  • the refrigerant temperature sensors 32a, 32b, 33a, and 33b are connected to the control device 20 via signal lines not shown.
  • the pressure sensors 31a and 31b are connected to the control device 20 via signal lines not shown.
  • the outdoor unit 12 is provided with an outdoor air temperature sensor that detects the outdoor air temperature
  • the indoor unit 11 is provided with a room temperature sensor that detects the room temperature and a humidity sensor that detects the room humidity.
  • the indoor unit 11 may also be provided with an air volume sensor that detects the air volume at the air outlet.
  • the control device 20 performs arithmetic processing using the data transmitted from each sensor. The details of the arithmetic processing will be described later.
  • the control device 20 controls the compressor 2, fans 7 and 8, and expansion valve 5 using control data created based on the arithmetic processing.
  • FIG. 3 is a diagram showing the arrangement of indoor units in a target space in embodiment 1.
  • target space TS includes air conditioning (refrigerant) system 200A and air conditioning (refrigerant) system 200B.
  • a plurality of indoor units 11 are arranged in air conditioning (refrigerant) system 200A and air conditioning (refrigerant) system 200B.
  • the number and arrangement of indoor units 11 may be any arrangement, and the number of air conditioning (refrigerant) systems may be increased.
  • FIG. 4 is a graph showing the relationship between the difference between the suction temperature and the set temperature in indoor units 110A, 110B, and the target evaporation temperature.
  • the suction temperature is the indoor temperature detected by an indoor temperature sensor provided in the indoor unit 11.
  • the set temperature is an arbitrary temperature set by the user via an input device such as a remote control.
  • the target evaporation temperature is the target temperature for the refrigerant flowing through indoor heat exchanger 6, which functions as an evaporator.
  • the target evaporation temperature is high.
  • the target evaporation temperature is low.
  • the target evaporation temperature can be set higher than when the difference between the suction temperature and the set temperature is large.
  • Being able to set the target evaporation temperature high means that the change in the operating frequency of compressor 2 can be controlled more gently. Therefore, when the target evaporation temperature is set high, a greater energy saving effect can be obtained than when the target evaporation temperature is set low.
  • FIG. 5 is a graph showing the relationship between time and target evaporation temperature.
  • FIG. 5(a) shows the relationship between time and target evaporation temperature when compressor 2 is controlled in the first mode during normal operation.
  • FIG. 5(b) shows the relationship between time and target evaporation temperature when compressor 2 is controlled in the second mode during energy saving operation.
  • Thermo On in the figure indicates that compressor 2 is started, and Thermo Off indicates that compressor 2 is stopped.
  • the control device 20 executes control in the first mode or the second mode by controlling the rotation speed of compressor 2. Note that Thermo On also controls the rotation speed so as to increase it from zero to a preset value when compressor 2 is started, and can therefore also be said to be an operation of setting the rotation speed.
  • the control device 20 maintains the refrigerant temperature of the indoor heat exchanger 6, which functions as an evaporator, at a target value a [°C] for a predetermined certain grace period ⁇ 1 [min] after the grace period ⁇ 1 [min] has elapsed.
  • the control device 20 controls the target value of the refrigerant temperature to be changed from a [°C] to b [°C], which is higher than a [°C], after the grace period ⁇ 1 [min] has elapsed.
  • ⁇ 1 is, for example, 10 [min].
  • the refrigerant temperature of the indoor heat exchanger 6 is changed from a [°C] to b [°C].
  • the control device 20 turns the compressor 2 thermo-off after maintaining the target value of the refrigerant temperature at b [°C] for a certain period of time. Thereafter, the control device 20 repeats the control of changing the target evaporation temperature from a [°C] to b [°C], thereby repeatedly turning the compressor 2 thermo-on and thermo-off.
  • the control device 20 controls the refrigerant temperature of the indoor heat exchanger 6 to change from the target value a [°C] to b [°C] higher than a [°C] without providing a grace period ⁇ 1 [min].
  • the refrigerant temperature of the indoor heat exchanger 6 changes from a [°C] to b [°C].
  • the control device 20 thermo-offs the compressor 2 after maintaining the target value of the refrigerant temperature at b [°C] for a certain period of time.
  • the second mode there is no grace period ⁇ 1 [min], and the period during which the target value of the refrigerant temperature is b [°C] is longer than in the first mode.
  • the period during which the target value of the refrigerant temperature is controlled at b [°C] is longer than in the first mode, and the number of thermo-on and thermo-off of the compressor 2 is reduced accordingly.
  • a [°C] is, for example, 0 [°C]
  • b [°C] is, for example, 9 [°C].
  • the second mode in which the period during which the target value of the refrigerant temperature is b [°C] is longer than the first mode, can be said to have a higher energy saving effect.
  • the first mode the refrigerant temperature is set low immediately after the compressor 2 is turned on, so that the indoor temperature can be brought closer to the set temperature set by the user in a short period of time.
  • the first mode is an operation in which the time spent rapidly cooling at a low temperature is extended, and then the temperature is gradually changed to the set temperature. Therefore, the first mode can reduce discomfort and improve comfort in a short period of time.
  • the second mode energy saving effects are achieved when an air conditioner 1 with a low air conditioning load rate is used.
  • a low air conditioning load rate means that the indoor temperature can be effectively lowered even with low power consumption.
  • the second mode is an operation that eliminates the initial rapid cooling time, and cools the indoor temperature over a long period of time until it reaches the set temperature.
  • the number of times the compressor 2 is turned on and off can be reduced more than in the first mode, and a high energy saving effect can be achieved when an air conditioner 1 with a low air conditioning load rate is used.
  • FIG. 6 is a flowchart showing the control during cooling operation in embodiment 1.
  • the process of the flowchart in FIG. 6 is repeatedly called and executed as a subroutine from the main routine in the control of the control device 20.
  • the process during cooling operation will be described.
  • step S the control device 20 acquires operation data during cooling operation from multiple sensors, which are detection devices.
  • the control device 20 calculates the air conditioning processing capacity (generated air conditioning load) (S12).
  • the air conditioning processing capacity refers to the processing capacity of the air conditioner 1. Therefore, the air conditioning processing capacity is equal to the generated air conditioning load in that the air conditioning load generated in the room is changed by exerting the processing capacity.
  • the calculation of the air conditioning processing capacity is obtained, for example, by the method described in Patent No. 6739671.
  • control device 20 obtains the refrigerant flow rate in the outdoor unit 12 from a data table showing the relationship between the rotation speed of the compressor 2, the high pressure detected by the pressure sensor 31b, the low pressure detected by the pressure sensor 31a, and the refrigerant flow rate.
  • the control device 20 calculates the Cv value from the opening of the expansion valve 5 and the expansion valve characteristic data table.
  • the Cv value is a unique coefficient that indicates the ease of fluid flow.
  • the control device 20 calculates the evaporator outlet specific enthalpy using the liquid refrigerant temperature and gas refrigerant temperature of the indoor unit 11 and the evaporator outlet specific enthalpy data table.
  • the control device 20 adds up the air conditioning processing capacities of each indoor unit 11 to calculate the air conditioning processing capacity of the entire indoor unit 110A.
  • the control device 20 calculates the air conditioning processing capacity of the entire indoor unit 110B in the same way and adds them up to calculate the air conditioning processing capacity of the air conditioner 1.
  • the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS (S14).
  • the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS, for example, by receiving data input by the user indicating which air conditioning (refrigerant) system is to be operated.
  • control device 20 determines in S14 that there are not multiple air conditioning (refrigerant) systems in operation in the target space TS (only one air conditioning (refrigerant) system is in operation) (NO in S14), it determines whether or not air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 1 (S15).
  • ⁇ 1 is an arbitrary setting value that can be set by the user for determining whether or not to perform energy saving control during cooling operation. If the control device 20 determines in S15 that air conditioning processing capacity (air conditioning load)/rated capacity> ⁇ 1 (NO in S15), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S17), and returns processing from the subroutine to the main routine.
  • the first mode is a mode in which a grace period ⁇ 1 is set.
  • control device 20 determines in S15 that the air conditioning processing capacity (air conditioning load)/rated capacity is less than or equal to ⁇ 1 (YES in S15), it sets the compressor 2 to be controlled in the second mode, which is an energy-saving operation (S16), and returns the process from the subroutine to the main routine.
  • the second mode is a mode in which the refrigerant temperature is changed without providing a grace period ⁇ 1.
  • control device 20 determines in S14 that there are multiple air conditioning (refrigerant) systems in operation in the target space TS (two air conditioning (refrigerant) systems are in operation) (YES in S14), it determines whether or not air conditioning processing capacity (air conditioning load)/rated capacity ⁇ ⁇ 2 (S18).
  • ⁇ 2 is an arbitrary setting value that can be set by the user for determining whether or not to perform energy saving control during cooling operation. If the control device 20 determines in S18 that air conditioning processing capacity (air conditioning load)/rated capacity > ⁇ 2 (NO in S18), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S20), and returns processing from the subroutine to the main routine.
  • the first mode is a mode in which a grace period ⁇ 1 is set.
  • control device 20 determines in S18 that the air conditioning processing capacity (air conditioning load)/rated capacity is less than or equal to ⁇ 2 (YES in S18), it sets the compressor 2 to be controlled in the second mode, which is an energy-saving operation (S19), and returns the process from the subroutine to the main routine.
  • the second mode is a mode in which the refrigerant temperature is changed without providing a grace period ⁇ 1.
  • the number of times the compressor 2 is turned on and off in the second mode is roughly halved compared to the first mode.
  • This allows the air conditioner 1 to extend the time it takes to reach the target evaporation temperature (e.g., b [°C] in Figure 5), enabling energy-saving operation.
  • the judgment value for the ratio of air conditioning processing capacities in the air conditioner 1 is set to ⁇ 1 ⁇ ⁇ 2. For example, ⁇ 1 is 0.7 and ⁇ 2 is 0.8.
  • a large value of ⁇ means that there is a margin of air conditioning processing capacity.
  • the threshold standard can be relaxed more easily than when there are not multiple air conditioning (refrigerant) systems in operation in the target space TS, so the value of ⁇ is set large. This makes it easier for the air conditioning device 1 to enter energy-saving operation when there are multiple air conditioning (refrigerant) systems in operation in the target space TS than when there are not multiple air conditioning (refrigerant) systems in operation in the target space TS.
  • the air conditioning device 1 can achieve energy conservation effects when an air conditioning device 1 with a low air conditioning load factor is used, and can be operated in a way that takes into account the air conditioning of the target space TS using multiple air conditioning (refrigerant) systems.
  • the indoor heat exchanger 6 functions as a condenser and the outdoor heat exchanger 4 functions as an evaporator by switching the four-way valve 3 shown in FIG. 2 to the dotted line side.
  • a target condensation temperature (a temperature that is a target value of the refrigerant flowing through the indoor heat exchanger 6 functioning as a condenser) is used instead of the target evaporation temperature shown in FIG. 5.
  • the control device 20 maintains the temperature of the refrigerant in the indoor heat exchanger 6 functioning as a condenser at a target value a [°C] for a predetermined certain grace period ⁇ 2 [min] after the thermo-on in the first mode.
  • the control device 20 controls the target value of the refrigerant temperature to be changed from a [°C] to b [°C] lower than a [°C] after the grace period ⁇ 2 [min] has elapsed.
  • the temperature of the refrigerant in the indoor heat exchanger 6 is changed from a [°C] to b [°C].
  • the control device 20 thermo-offs the compressor 2 after maintaining the target value of the refrigerant temperature at b [°C] for a certain period. Thereafter, the control device 20 repeatedly changes the target condensing temperature from a [°C] to b [°C], thereby repeatedly turning the compressor 2 on and off.
  • the control device 20 controls the refrigerant temperature of the indoor heat exchanger 6 to change from the target value a1 [°C] to b1 [°C], which is lower than a1 [°C], without providing a grace period ⁇ 2 [min] after the thermo-on.
  • the refrigerant temperature of the indoor heat exchanger 6 changes from a1 [°C] to b1 [°C].
  • the control device 20 turns the compressor 2 thermo-off after maintaining the target value of the refrigerant temperature at b1 [°C] for a certain period of time.
  • the grace period ⁇ 2 [min] is not provided, and the period during which the target value of the refrigerant temperature is b1 [°C] is longer than in the first mode.
  • the period during which the target value of the refrigerant temperature is controlled at b1 [°C] is longer than in the first mode, and the number of thermo-on and thermo-off of the compressor 2 is reduced accordingly.
  • the air conditioning device 1 can extend the time to reach the target condensing temperature, and can operate in an energy-saving manner.
  • the control device 20 executes the processes corresponding to S11 to S20 in the same way as during cooling operation.
  • Embodiment 2 The air conditioning device 1 of the second embodiment differs from the first embodiment in that the target space TS is divided into an interior zone IZ and a perimeter zone PZ.
  • Fig. 7 is a diagram showing the arrangement of the indoor units 11 in the target space TS in the second embodiment.
  • the interior zone is the central part of a room in a building or the like, and is an area where the effect of air conditioning is large and the temperature is not easily affected by sunlight, outside air, etc.
  • the perimeter zone is an area that is easily affected by outside air such as near a window and where the load of air conditioning is large.
  • the perimeter zone PZ is an area within the target space TS that corresponds to a first area close to the boundary between the target space TS and the outside of the target space TS.
  • the interior zone IZ is an area that corresponds to a second area that is more inward than the perimeter zone PZ.
  • the interior zone IZ is composed of air conditioning (refrigerant) system 201A and air conditioning (refrigerant) system 201B.
  • the perimeter zone PZ is composed of air conditioning (refrigerant) system 201C and air conditioning (refrigerant) system 201D.
  • the number of air conditioning (refrigerant) systems included in each zone may be one, or three or more.
  • FIG. 8 is a flowchart showing the control during cooling operation in embodiment 2.
  • the process of the flowchart in FIG. 8 is repeatedly called and executed as a subroutine from the main routine in the control of the control device 20.
  • the process during cooling operation will be described.
  • step S31 the control device 20 acquires operating data during cooling operation from multiple sensors, which are detection devices.
  • the control device 20 calculates the air conditioning processing capacity (generated air conditioning load) (S32).
  • the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS (S34).
  • the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation, for example, by receiving data input by the user indicating which air conditioning (refrigerant) system is to be operated.
  • control device 20 determines in S34 that there are not multiple air conditioning (refrigerant) systems in operation in the target space TS (only one air conditioning (refrigerant) system is in operation) (NO in S34), it determines whether or not air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 1 (S35).
  • ⁇ 1 is an arbitrary setting value that can be set by the user for determining whether or not to perform energy saving control during cooling operation. If the control device 20 determines in S35 that air conditioning processing capacity (air conditioning load)/rated capacity> ⁇ 1 (NO in S35), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S37), and returns processing from the subroutine to the main routine.
  • the first mode is a mode in which a grace period ⁇ 1 is set.
  • control device 20 determines in S35 that air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 1 (YES in S35), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S36), and returns processing from the subroutine to the main routine.
  • the second mode is a mode in which the refrigerant temperature is changed without providing a grace period ⁇ 1.
  • the processing of S36 is based on the premise that the interior zone IZ is in operation, and excludes the case where only the perimeter zone PZ is in operation. This is because when only the perimeter zone PZ is in operation, there is a high air conditioning load, so a transition to energy saving operation is not made.
  • control device 20 determines in S34 that there are multiple air conditioning (refrigerant) systems in operation in the target space TS (two air conditioning (refrigerant) systems are in operation in the interior zone IZ) (YES in S34), it determines whether the air conditioning includes the perimeter zone PZ (S38).
  • the control device 20 determines whether the air conditioning (refrigerant) system of the perimeter zone PZ is in operation, for example, by receiving data input by the user indicating whether the air conditioning (refrigerant) system of the perimeter zone PZ is in operation. If the control device 20 determines in S38 that the air conditioning includes the perimeter zone PZ (YES in S38), it determines whether air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 3 (S39).
  • ⁇ 3 is an arbitrary setting value that can be set by the user to determine whether or not to perform energy saving control during cooling operation.
  • control device 20 determines in S39 that air conditioning processing capacity (air conditioning load)/rated capacity> ⁇ 3 (NO in S39), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S41), and returns processing from the subroutine to the main routine. If the control device 20 determines in S39 that air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 3 (YES in S39), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S40), and returns processing from the subroutine to the main routine.
  • control device 20 determines in S38 that the air conditioning does not include the perimeter zone PZ (NO in S38), it determines whether or not the air conditioning processing capacity (air conditioning load)/rated capacity is less than or equal to ⁇ 2 (S42).
  • ⁇ 2 is an arbitrary setting value that can be set by the user to determine whether or not to perform energy saving control during cooling operation.
  • control device 20 determines in S42 that air conditioning processing capacity (air conditioning load)/rated capacity> ⁇ 2 (NO in S42), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S44), and returns processing from the subroutine to the main routine. If the control device 20 determines in S42 that air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 2 (YES in S42), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S43), and returns processing from the subroutine to the main routine.
  • the judgment value of the ratio of the air conditioning processing capacity in the air conditioning device 1 of the second embodiment is set as ⁇ 3 ⁇ 1 ⁇ 2.
  • ⁇ 1 is 0.7
  • ⁇ 2 is 0.9
  • ⁇ 3 is 0.6
  • a large value of ⁇ means that there is a margin in the air conditioning processing capacity.
  • a small value of ⁇ means that there is no margin in the air conditioning processing capacity and the temperature needs to be changed quickly.
  • the control device 20 switches between the first mode and the second mode using ⁇ 1 as a medium threshold.
  • control device 20 executes a judgment as to whether the air conditioning (refrigerant) system in the perimeter zone PZ is in operation.
  • the control device 20 strengthens the threshold to perform a quick temperature change, and switches between the first and second modes of control using ⁇ 3, which is lower than ⁇ 1, as the threshold.
  • the control device 20 relaxes the threshold, and switches between the first and second modes of control using ⁇ 2, which is higher than ⁇ 1, as the threshold.
  • the air conditioning device 1 can achieve energy conservation effects when an air conditioning device 1 with a low air conditioning load factor is used, and can be operated with consideration given to air conditioning the target space TS with multiple air conditioning (refrigerant) systems. Furthermore, the air conditioning device 1 switches between the first and second control modes using different thresholds depending on whether the air conditioning (refrigerant) system of the perimeter zone PZ is in operation, so can be operated with consideration given to the air conditioning (refrigerant) system of the perimeter zone PZ.
  • the four-way valve 3 shown in FIG. 2 is switched to the dotted line side, so that the indoor heat exchanger 6 functions as a condenser and the outdoor heat exchanger 4 functions as an evaporator.
  • the temperature relationship is reversed compared to cooling operation, as described above.
  • the control device 20 executes the processes corresponding to S31 to S44 in the same way as during cooling operation.
  • Embodiment 3 The air conditioning device 1 of the third embodiment differs from the first embodiment in that an area closed by a wall is provided in the target space TS.
  • FIG. 9 is a diagram showing the arrangement of the indoor units 11 in the target space TS in the third embodiment.
  • the target space TS of the third embodiment is provided with three areas KS closed by walls.
  • an independent air conditioning (refrigerant) system is provided in each room as a third air conditioning (refrigerant) system.
  • the areas KS are assumed to be, for example, a room such as a conference room in a building.
  • a fourth air conditioning (refrigerant) system consisting of air conditioning (refrigerant) system 202A and air conditioning (refrigerant) system 202B is disposed in an area within target space TS that is not closed off by a wall.
  • air conditioning (refrigerant) system 202A and air conditioning (refrigerant) system 202B are disposed can also be said to be closed off by a wall when viewed from the perspective of the building as a whole, but below it will be described as an area closed off by a wall.
  • Area KS may be provided with only one air conditioning (refrigerant) system, and the number of air conditioning (refrigerant) systems can be changed as appropriate.
  • FIG. 10 is a flowchart showing the control during cooling operation in embodiment 3.
  • the process of the flowchart in FIG. 10 is repeatedly called and executed as a subroutine from the main routine in the control of the control device 20.
  • the process during cooling operation will be described.
  • step S51 the control device 20 acquires operating data during cooling operation from multiple sensors, which are detection devices.
  • the control device 20 calculates the air conditioning processing capacity (generated air conditioning load) (S52).
  • the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS (S54).
  • the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation, for example, by receiving data input by the user indicating which air conditioning (refrigerant) system is to be operated.
  • control device 20 determines in S54 that there are not multiple air conditioning (refrigerant) systems in operation in the target space TS (only one air conditioning (refrigerant) system is in operation) (NO in S54), it determines whether or not air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 1 (S55).
  • ⁇ 1 is an arbitrary setting value that can be set by the user for determining whether or not to perform energy saving control during cooling operation. If the control device 20 determines in S55 that air conditioning processing capacity (air conditioning load)/rated capacity> ⁇ 1 (NO in S55), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S57), and returns processing from the subroutine to the main routine.
  • the first mode is a mode in which a grace period ⁇ 1 is set.
  • control device 20 determines in S55 that air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 1 (YES in S55), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S56), and returns the process from the subroutine to the main routine.
  • the second mode is a mode in which the refrigerant temperature is changed without providing a grace period ⁇ 1.
  • the process of S54 is based on the premise that the fourth air conditioning (refrigerant) system in the area not enclosed by a wall is in operation, and excludes the case where only the third air conditioning (refrigerant) system located in area KS is in operation.
  • control device 20 determines in S54 that there are multiple air conditioning (refrigerant) systems in operation in the target space TS (two air conditioning (refrigerant) systems are operating in an area not enclosed by a wall) (YES in S54), it determines whether the air conditioning includes an area KS enclosed by a wall such as a conference room (S58). The control device 20 determines whether the air conditioning (refrigerant) system of the area KS is operating by receiving data input by the user, for example, indicating whether the air conditioning (refrigerant) system of the area KS is operating.
  • control device 20 determines in S58 that the air conditioning includes an area KS enclosed by a wall such as a conference room (YES in S58), it determines whether air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 3 (S59).
  • ⁇ 3 is an arbitrary setting value that can be set by the user for determining whether to perform energy saving control during cooling operation.
  • control device 20 determines in S59 that air conditioning processing capacity (air conditioning load)/rated capacity> ⁇ 3 (NO in S59), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S61), and returns processing from the subroutine to the main routine. If the control device 20 determines in S59 that air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 3 (YES in S59), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S60), and returns processing from the subroutine to the main routine.
  • control device 20 determines in S58 that the air conditioning does not include an area KS enclosed by walls such as a conference room (NO in S58), it determines whether or not the air conditioning processing capacity (air conditioning load)/rated capacity is less than or equal to ⁇ 2 (S62).
  • ⁇ 2 is an arbitrary setting value that can be set by the user to determine whether or not to perform energy saving control during cooling operation.
  • control device 20 determines in S62 that air conditioning processing capacity (air conditioning load)/rated capacity> ⁇ 2 (NO in S62), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S64), and returns processing from the subroutine to the main routine. If the control device 20 determines in S62 that air conditioning processing capacity (air conditioning load)/rated capacity ⁇ 2 (YES in S62), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S63), and returns processing from the subroutine to the main routine.
  • the judgment value of the ratio of the air conditioning processing capacity in the air conditioning device 1 of the third embodiment is set as ⁇ 3 ⁇ 1 ⁇ 2.
  • ⁇ 1 is 0.7
  • ⁇ 2 is 0.8
  • ⁇ 3 is 0.6.
  • a large value of ⁇ means that there is a margin in the air conditioning processing capacity.
  • a small value of ⁇ means that there is no margin in the air conditioning processing capacity and it is necessary to change the temperature quickly.
  • the control device 20 switches between the first mode and the second mode using ⁇ 1 as a medium threshold. Also, in the process of FIG. 10, when there are multiple air conditioning (refrigerant) systems in operation in the target space TS (when two air conditioning (refrigerant) systems are in operation in an area not closed by a wall), the control device 20 executes a judgment as to whether or not the air conditioning (refrigerant) system in the area KS closed by a wall such as a conference room is in operation.
  • the control device 20 strengthens the threshold to achieve rapid temperature changes, and switches between the first and second modes of control using ⁇ 3, which is lower than ⁇ 1, as the threshold.
  • the control device 20 relaxes the threshold, and switches between the first and second modes of control using ⁇ 2, which is higher than ⁇ 1, as the threshold.
  • the air conditioning device 1 can achieve energy conservation effects when an air conditioning device 1 with a low air conditioning load factor is used, and can be operated with consideration given to air conditioning the target space TS with multiple air conditioning (refrigerant) systems. Furthermore, the air conditioning device 1 switches between the first and second modes of control using different thresholds depending on whether the air conditioning (refrigerant) system of an area KS enclosed by walls, such as a conference room, is in operation, so it can be operated with consideration given to the air conditioning (refrigerant) system of an area KS enclosed by walls, such as a conference room.
  • the four-way valve 3 shown in FIG. 2 is switched to the dotted line side, so that the indoor heat exchanger 6 functions as a condenser and the outdoor heat exchanger 4 functions as an evaporator.
  • the temperature relationship is reversed compared to cooling operation, as described above.
  • the control device 20 executes the processes corresponding to S51 to S64 in the same way as during cooling operation.
  • FIG. 11 is a schematic diagram showing the configuration of the air conditioning system 100 in the fourth embodiment.
  • the server device 40 is configured to include a CPU (Central Processing Unit) 41, a memory 42 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output device (not shown) for inputting and outputting various signals.
  • the CPU 41 expands a program stored in the ROM into the RAM or the like and executes it.
  • the program stored in the ROM is a program in which the processing procedure of the server device 40 is written. This control is not limited to processing by software, and can also be processed by dedicated hardware (electronic circuitry).
  • the control device 20 of the air conditioning device 1 is executed by the server device 40.
  • the processing executed by the control device 20 of the air conditioning device 1 and the server device 40 is described below.
  • the control device 20 transmits detection data during operation of the refrigerant circuits 10A, 10B detected by multiple sensors to the server device 40.
  • the server device 40 calculates the air conditioning processing capacity exerted by the air conditioning device 1 based on the received detection data using the processing flow shown in Figure 6 or the like.
  • the server device 40 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS by receiving data input by the user indicating which air conditioning (refrigerant) system is to be operated.
  • the server device 40 determines whether the ratio (air conditioning processing capacity (air conditioning load)/rated capacity) of the air conditioning capacity calculated using different thresholds for when there are multiple air conditioning (refrigerant) systems in operation in the target space TS and when there are not is equal to or less than the threshold. If the ratio is greater than a preset threshold, the server device 40 creates control data to operate each compressor 2 in the first mode, and if the ratio is equal to or less than the threshold, creates control data to operate each compressor 2 in the second mode.
  • the ratio air conditioning processing capacity (air conditioning load)/rated capacity
  • the server device 40 transmits the created control data to the control device 20. Based on the received control data, the control device 20 controls the compressor 2 to operate in the first mode or the second mode. This reduces the processing load on the control device 20.
  • the control device 20 controls the rotation speed of the compressor 2 to execute control in the first mode or the second mode.
  • the control device 20 may control the rotation speed of the fan 8 in addition to the control of the compressor 2.
  • the control device 20 may execute control to change the target value of the temperature of the refrigerant flowing through the indoor heat exchanger 6 from a first temperature to a second temperature higher than the first temperature by reducing the rotation speed of the fan 8 during cooling operation.
  • the control device 20 may execute control to change the target value of the temperature of the refrigerant flowing through the indoor heat exchanger 6 from a first temperature to a second temperature lower than the first temperature by reducing the rotation speed of the fan 8 during heating operation.
  • the air conditioner 1 may further execute control to change the target temperature using the fan 7 of the outdoor unit 12.
  • the air conditioner 1 may execute control to execute the first mode or the second mode only by controlling the fans 7 and 8.
  • the air conditioning device 1 and the air conditioning system 100 have been described as not providing a grace period in the second mode. However, the air conditioning device 1 and the air conditioning system 100 may also provide a grace period in the second mode that is shorter than that in the first mode.
  • the present disclosure relates to an air conditioner 1 that conditions a target space TS using multiple air conditioning systems.
  • Each of the multiple air conditioning systems has a refrigerant circuit 10A, 10B that is composed of an outdoor heat exchanger 4 arranged outside the target space TS, an indoor heat exchanger 6 arranged inside the target space TS, an expansion valve 5, and a compressor 2.
  • refrigerant circuit 10A, 10B in each air conditioning system refrigerant flows through the compressor 2, the outdoor heat exchanger 4, the expansion valve 5, the indoor heat exchanger 6, and the compressor 2 in this order during cooling operation.
  • the air conditioner 1 includes multiple sensors as detection devices that detect data during operation of each refrigerant circuit 10A, 10B, and a control device 20 that controls each refrigerant circuit 10A, 10B.
  • the control device 20 calculates the air conditioning capacity of the air conditioner 1 from the data detected by the detection device, and controls each compressor 2 to operate in a first mode when the ratio of the calculated air conditioning capacity to the rated capacity of the air conditioner 1 is greater than a preset threshold value, and controls each compressor 2 to operate in a second mode when the ratio is equal to or less than the threshold value.
  • the first mode is an operation mode in which control is performed to change the target value of the temperature of the refrigerant flowing through the corresponding indoor heat exchanger 6 from a first temperature to a second temperature different from the first temperature after a certain grace period has elapsed since the start of operation of each compressor 2.
  • the second mode is an operation mode in which control is performed to change the target value of the temperature of the refrigerant flowing through the corresponding indoor heat exchanger 6 from a first temperature to a second temperature after a grace period shorter than that of the first mode after the start of operation of each compressor 2.
  • control device 20 When less than a specific number of air conditioning systems among the multiple air conditioning systems are in operation, the control device 20 performs control using a first threshold value as a threshold value, and when a specific number or more of air conditioning systems are in operation, the control device 20 performs control using a second threshold value greater than the first threshold value as a threshold value.
  • the multiple air conditioning systems include a first air conditioning system in which an area corresponding to a first area close to the boundary between the target space TS and the outside of the target space TS is arranged in a perimeter zone PZ within the target space TS, and a second air conditioning system arranged in an interior zone IZ corresponding to a second area inside the first area (perimeter zone PZ).
  • the control device 20 determines that the refrigerant circuits of the first air conditioning system and the second air conditioning system are operating, it executes control using a third threshold value that is equal to or lower than the first threshold value, and when it determines that only the refrigerant circuit of the second air conditioning system is operating, it executes control using the second threshold value.
  • the multiple air conditioning systems include a third air conditioning system included in an area KS enclosed by a wall in the target space TS, and a fourth air conditioning system that does not include an area KS enclosed by a wall in the target space TS.
  • the control device 20 determines that the refrigerant circuits of the third and fourth air conditioning systems are operating, it executes control using a third threshold value that is equal to or lower than the first threshold value, and when it determines that only the refrigerant circuit of the fourth air conditioning system is operating, it executes control using the second threshold value.
  • the second temperature is higher than the first temperature.
  • Each indoor heat exchanger 6 functions as an evaporator during cooling operation.
  • the control device 20 executes control to change the target value of the temperature of the refrigerant flowing through each indoor heat exchanger 6 from the first temperature to the second temperature.
  • each of the multiple air conditioning systems further includes a fan 8 that supplies air for heat exchange with the refrigerant flowing through the indoor heat exchanger 6.
  • the control device 20 executes control to change the target value of the refrigerant temperature from the first temperature to the second temperature by reducing the rotation speed of each fan 8.
  • the second temperature is lower than the first temperature.
  • Each indoor heat exchanger 6 functions as a condenser during heating operation.
  • the control device 20 executes control to change the target value of the temperature of the refrigerant flowing through each indoor heat exchanger 6 from the first temperature to the second temperature.
  • each of the multiple air conditioning systems further includes a fan 8 that supplies air for heat exchange with the refrigerant flowing through the indoor heat exchanger 6.
  • the control device 20 executes control to change the target value of the refrigerant temperature from the first temperature to the second temperature by reducing the rotation speed of each fan 8.
  • the air conditioning system 100 of the present disclosure comprises an air conditioning apparatus 1 that conditions a target space TS using multiple air conditioning systems, and a server device 40 connected to the air conditioning apparatus 1 via a network 9.
  • Each of the multiple air conditioning systems has a refrigerant circuit 10A, 10B composed of an outdoor heat exchanger 4 arranged outside the target space TS, an indoor heat exchanger 6 arranged within the target space TS, an expansion valve 5, and a compressor 2.
  • refrigerant circuits 10A, 10B in each air conditioning system refrigerant flows through the compressor 2, outdoor heat exchanger 4, expansion valve 5, indoor heat exchanger 6, and compressor 2 in this order during cooling operation.
  • the air conditioning apparatus 1 comprises multiple sensors as detection devices that detect data during operation of each refrigerant circuit 10A, 10B, and a control device 20 that controls each refrigerant circuit 10A, 10B.
  • the server device 40 calculates the air conditioning capacity of the air conditioner 1 from the data detected by the detection device, and creates first control data for operating each compressor 2 in a first mode when the ratio of the calculated air conditioning capacity to the rated capacity of the air conditioner 1 is greater than a preset threshold value, and creates second control data for operating each compressor 2 in a second mode when the ratio is equal to or less than the threshold value.
  • the first control data is control data for changing the target value of the temperature of the refrigerant flowing through the corresponding indoor heat exchanger 6 from a first temperature to a second temperature different from the first temperature after a certain grace period has elapsed since the start of operation of each compressor 2.
  • the second control data is control data for changing the target value of the temperature of the refrigerant flowing through the corresponding indoor heat exchanger 6 from a first temperature to a second temperature after a grace period shorter than the first mode from the start of operation of each compressor 2.
  • the server device 40 creates control data using a first threshold value as a threshold value when less than a specific number of the multiple air conditioning systems are in operation, and creates control data using a second threshold value greater than the first threshold value as a threshold value when a specific number or more of the multiple air conditioning systems are in operation.
  • the air conditioning device 1 and air conditioning system 100 disclosed herein can achieve energy conservation effects when using an air conditioning device 1 with a low air conditioning load rate, and can also be operated in a way that takes into account the target space TS being air-conditioned by multiple air conditioning systems.
  • 1 air conditioning unit 2 compressor, 3 four-way valve, 4 outdoor heat exchanger, 5 expansion valve, 6 indoor heat exchanger, 7, 8 fan, 9 network, 10A, 10B refrigerant circuit, 11 indoor unit, 12 outdoor unit, 20 control device, 31a, 31b pressure sensor, 32a, 32b, 33a, 33b refrigerant temperature sensor, 40 server device, 100 air conditioning system, 110A, 110B indoor unit, 200A, 200B, 201A, 201B, 201C, 201D, 202A, 202B air conditioning (refrigerant) system, IZ interior zone, KS area, PZ perimeter zone, TS target space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

An air-conditioning device (1) comprises: a detection device that detects data during the operation of each refrigerant circuit (10A, 10B); and a control device (20). The control device (20) computes, from the data detected by the detection device, an air-conditioning processing performance demonstrated by the air-conditioning device (1), controls each of compressors (2) so as to operate in a first mode when the ratio of the computed air-conditioning processing performance to the rated performance of the air-conditioning device (1) is greater than a preset threshold, and controls each of the compressors (2) so as to operate in a second mode when said ratio is less than or equal to the threshold. The control device (20) performs control using a first threshold as the threshold when the number of air-conditioning systems in operation is less than a specific number from among a plurality of air-conditioning systems, and performs control using a second threshold, which is greater than the first threshold, as the threshold when the number of air-conditioning systems in operation is the specific number or greater.

Description

空気調和装置および空気調和システムAir conditioner and air conditioning system
 本開示は、空気調和装置および空気調和システムに関する。 This disclosure relates to air conditioning devices and air conditioning systems.
 従来から、蒸発器における冷媒を蒸発させるための目標蒸発温度を空調負荷に応じて変化させることにより運転効率を向上させる制御(以下、省エネルギー制御とも称する)を実行する空気調和装置が知られている。省エネルギー制御を実行する空気調和装置は、空調負荷が小さい建物、あるいは発生熱負荷が小さい中間期(春・秋)では、少しの温度変化により冷媒の温度を目標蒸発温度に制御可能であるため、より大きな省エネルギー効果が期待される。このような空気調和装置では、主に快適性確保の観点から短時間でユーザが設定する設定温度に室内温度を近づけるため、一律に圧縮機の起動(サーモオン)から一定の時間は省エネルギー制御に入らない仕様となっている。  Air conditioners have been known for some time that perform control (hereinafter also referred to as energy-saving control) to improve operating efficiency by changing the target evaporation temperature for evaporating the refrigerant in the evaporator according to the air-conditioning load. Air conditioners that perform energy-saving control are expected to achieve greater energy savings in buildings with low air-conditioning loads or in intermediate seasons (spring and fall) when the heat generation load is low, because they can control the refrigerant temperature to the target evaporation temperature with small temperature changes. In such air conditioners, the indoor temperature is brought close to the set temperature set by the user in a short period of time, mainly from the perspective of ensuring comfort, so that they are designed not to enter energy-saving control for a certain period of time after the compressor is started (thermo on).
 特許文献1(特開2002-147823号公報)の空気調和装置は、建物の冷房負荷特性に対応して蒸発温度の目標値の制御特性を決定している。特許文献1の空気調和装置は、この制御特性に従って室内の設定温度と外気温度との内外温度差に基づき蒸発温度の目標値を変更するように構成されている。 The air conditioner in Patent Document 1 (JP Patent Publication 2002-147823 A) determines the control characteristics of the target value of the evaporating temperature in response to the cooling load characteristics of the building. The air conditioner in Patent Document 1 is configured to change the target value of the evaporating temperature based on the temperature difference between the indoor set temperature and the outdoor air temperature in accordance with this control characteristic.
 特許文献2(特開2015-021656号公報)の空気調和装置は、室内の設定温度と実際の吸い込み温度との差温から発生熱負荷を予測し、サーモオンを実行するとともに、運転を一定時間継続する。その後、特許文献2の空気調和装置は、差温が設定値より大きい場合は圧縮機の回転速度を最小値に設定する制御を実行する。 The air conditioner in Patent Document 2 (JP Patent Publication 2015-021656 A) predicts the generated heat load from the temperature difference between the room's set temperature and the actual intake temperature, turns on the thermo function, and continues operation for a certain period of time. After that, if the temperature difference is greater than the set value, the air conditioner in Patent Document 2 executes control to set the compressor rotation speed to the minimum value.
特開2002-147823号公報JP 2002-147823 A 特開2015-021656号公報JP 2015-021656 A
 空気調和装置の機種選定では、空調負荷に対して過剰気味の能力を有する空気調和装置が選定される傾向にある。このため、例えば、空調負荷が高い夏期においても空調負荷に対して過剰気味の能力を有する空気調和装置では、空調能力に対する負荷率(以下、空調負荷率とも称する)は低い値となっている。空調負荷率が低い空気調和装置を用いて省エネルギー制御を実行しようとする場合、圧縮機の起動(サーモオン)と圧縮機の停止(サーモオフ)とを繰り返すことにより、期待している省エネルギー効果を得られないことが課題となっている。 When selecting an air conditioning unit model, there is a tendency to select an air conditioning unit with a capacity that is somewhat excessive relative to the air conditioning load. For this reason, for example, in air conditioning units that have a capacity that is somewhat excessive relative to the air conditioning load even in the summer when the air conditioning load is high, the load rate relative to the air conditioning capacity (hereinafter also referred to as the air conditioning load rate) is low. When attempting to implement energy saving control using an air conditioning unit with a low air conditioning load rate, the issue is that the expected energy saving effect cannot be obtained due to the repeated starting (thermo on) and stopping (thermo off) of the compressor.
 特許文献1(特開2002-147823号公報)に記載の空気調和装置は、室内の設定温度と外気温度との差である内外温度差が常に発生する場合において過剰気味の空調能力を抑制することは可能である。しかしながら、特許文献1(特開2002-147823号公報)に記載の空気調和装置は、空調負荷率が低い場合において圧縮機の起動と停止との繰返し頻度を低減することは考慮されていない。 The air conditioner described in Patent Document 1 (JP Patent Publication 2002-147823) is capable of suppressing excessive air conditioning capacity when an inside/outside temperature difference, which is the difference between the indoor set temperature and the outside air temperature, occurs constantly. However, the air conditioner described in Patent Document 1 (JP Patent Publication 2002-147823) does not take into consideration reducing the frequency of compressor start-up and stoppage when the air conditioning load rate is low.
 特許文献2(特開2015-021656号公報)に記載の空気調和装置は、設定温度と吸い込み温度との差温から発生熱負荷を予測し、圧縮機の起動と停止との繰返し頻度を低減することはできる。しかしながら、特許文献2(特開2015-021656号公報)に記載の空気調和装置は、設定温度と吸い込み温度との差温が発生しづらい空調負荷率が低い場合が想定されておらず、このような場合に省エネルギー効果が限定される。 The air conditioner described in Patent Document 2 (JP 2015-021656 A) predicts the heat load generated from the temperature difference between the set temperature and the suction temperature, and is able to reduce the frequency with which the compressor is started and stopped repeatedly. However, the air conditioner described in Patent Document 2 (JP 2015-021656 A) does not anticipate cases where the air conditioning load rate is low, in which a temperature difference between the set temperature and the suction temperature is unlikely to occur, and in such cases the energy saving effect is limited.
 特許文献1(特開2002-147823号公報)および特許文献2(特開2015-021656号公報)に記載の空気調和装置は、空調の対象となる対象空間を空調する空調系統が1つであるため、対象空間を複数の空調系統により空調する空気調和装置については考慮されていない。 The air conditioners described in Patent Document 1 (JP 2002-147823 A) and Patent Document 2 (JP 2015-021656 A) have one air conditioning system that conditions the target space to be air-conditioned, and do not take into consideration air conditioners that condition the target space with multiple air conditioning systems.
 本開示の目的は、空調負荷率が低い空気調和装置を用いた場合に省エネルギー効果を得ることが可能であるとともに、対象空間を複数の空調系統により空調することを考慮した運転が可能な空気調和装置および空気調和システムを提供することである。 The objective of this disclosure is to provide an air conditioning device and air conditioning system that can achieve energy conservation effects when using an air conditioning device with a low air conditioning load factor, and that can be operated in a way that takes into account the conditioning of the target space by multiple air conditioning systems.
 本開示に係る空気調和装置は、対象空間を複数の空調系統により空調する空気調和装置に関する。複数の空調系統の各々は、対象空間外に配置される第1熱交換器と、対象空間内に配置される第2熱交換器と、膨張弁と、圧縮機とにより構成される冷媒回路を有する。各空調系統における冷媒回路において、冷房運転中に圧縮機、第1熱交換器、膨張弁、第2熱交換器、圧縮機の順に冷媒が流れる。空気調和装置は、各冷媒回路の運転中のデータを検出する検出装置と、各冷媒回路を制御する制御装置と、を備える。制御装置は、検出装置が検出したデータから空気調和装置が発揮している空調処理能力を演算し、演算した空調処理能力の、空気調和装置の定格能力に対する比率が予め設定した閾値よりも大きい場合、各圧縮機を第1モードで運転するように制御し、比率が閾値以下の場合、各圧縮機を第2モードで運転するように制御する。第1モードは、各圧縮機の運転開始から一定の猶予期間経過後に対応する第2熱交換器を流れる冷媒の温度の目標値を第1温度から第1温度とは異なる第2温度へ変更する制御を行なう運転モードである。第2モードは、各圧縮機の運転開始から第1モードよりも短い猶予期間後に、対応する第2熱交換器を流れる冷媒の温度の目標値を第1温度から第2温度へ変更する制御を行なう運転モードである。制御装置は、複数の空調系統のうち特定数未満の空調系統が運転中の場合、閾値として第1閾値を用いた制御を実行し、特定数以上の空調系統が運転中の場合、閾値として第1閾値よりも大きい第2閾値を用いた制御を実行する。 The air conditioning apparatus according to the present disclosure relates to an air conditioning apparatus that conditions a target space using multiple air conditioning systems. Each of the multiple air conditioning systems has a refrigerant circuit composed of a first heat exchanger arranged outside the target space, a second heat exchanger arranged within the target space, an expansion valve, and a compressor. In the refrigerant circuit in each air conditioning system, refrigerant flows through the compressor, first heat exchanger, expansion valve, second heat exchanger, and compressor in this order during cooling operation. The air conditioning apparatus includes a detection device that detects data during operation of each refrigerant circuit, and a control device that controls each refrigerant circuit. The control device calculates the air conditioning processing capacity exerted by the air conditioning apparatus from the data detected by the detection device, and controls each compressor to operate in a first mode if the ratio of the calculated air conditioning processing capacity to the rated capacity of the air conditioning apparatus is greater than a preset threshold value, and controls each compressor to operate in a second mode if the ratio is equal to or less than the threshold value. The first mode is an operation mode in which control is performed to change the target value of the temperature of the refrigerant flowing through the corresponding second heat exchanger from a first temperature to a second temperature different from the first temperature after a certain grace period has elapsed since the start of operation of each compressor. The second mode is an operation mode in which control is performed to change the target value of the temperature of the refrigerant flowing through the corresponding second heat exchanger from a first temperature to a second temperature after a grace period shorter than that in the first mode from the start of operation of each compressor. The control device executes control using a first threshold value as a threshold value when less than a specific number of air conditioning systems are in operation among the multiple air conditioning systems, and executes control using a second threshold value larger than the first threshold value as a threshold value when a specific number or more of air conditioning systems are in operation.
 本開示に係る空気調和システムは、対象空間を複数の空調系統により空調する空気調和装置と、ネットワークを介して空気調和装置と接続されるサーバ装置と、を備える。複数の空調系統の各々は、対象空間外に配置される第1熱交換器と、対象空間内に配置される第2熱交換器と、膨張弁と、圧縮機とにより構成される冷媒回路を有する。各空調系統における冷媒回路において、冷房運転中に圧縮機、第1熱交換器、膨張弁、第2熱交換器、圧縮機の順に冷媒が流れる。空気調和装置は、各冷媒回路の運転中のデータを検出する検出装置と、各冷媒回路を制御する制御装置と、を備える。サーバ装置は、検出装置が検出したデータから空気調和装置が発揮している空調処理能力を演算し、演算した空調処理能力の、空気調和装置の定格能力に対する比率が予め設定した閾値よりも大きい場合、各圧縮機を第1モードで運転する第1制御データを作成し、比率が閾値以下の場合、各圧縮機を第2モードで運転する第2制御データを作成する。第1制御データは、各圧縮機の運転開始から一定の猶予期間経過後に対応する第2熱交換器を流れる冷媒の温度の目標値を第1温度から第1温度とは異なる第2温度へ変更する制御データである。第2制御データは、各圧縮機の運転開始から第1モードよりも短い猶予期間後に、対応する第2熱交換器を流れる冷媒の温度の目標値を第1温度から第2温度へ変更する制御データである。サーバ装置は、複数の空調系統のうち特定数未満の空調系統が運転中の場合、閾値として第1閾値を用いた制御データを作成し、特定数以上の空調系統が運転中の場合、閾値として第1閾値よりも大きい第2閾値を用いた制御データを作成する。 The air conditioning system according to the present disclosure includes an air conditioning device that conditions a target space using multiple air conditioning systems, and a server device connected to the air conditioning device via a network. Each of the multiple air conditioning systems has a refrigerant circuit composed of a first heat exchanger arranged outside the target space, a second heat exchanger arranged within the target space, an expansion valve, and a compressor. In the refrigerant circuit in each air conditioning system, refrigerant flows through the compressor, the first heat exchanger, the expansion valve, the second heat exchanger, and the compressor in this order during cooling operation. The air conditioning device includes a detection device that detects data during operation of each refrigerant circuit, and a control device that controls each refrigerant circuit. The server device calculates the air conditioning processing capacity exerted by the air conditioning device from the data detected by the detection device, and creates first control data for operating each compressor in a first mode if the ratio of the calculated air conditioning processing capacity to the rated capacity of the air conditioning device is greater than a preset threshold, and creates second control data for operating each compressor in a second mode if the ratio is equal to or less than the threshold. The first control data is control data for changing a target value of the temperature of the refrigerant flowing through the corresponding second heat exchanger from a first temperature to a second temperature different from the first temperature after a certain grace period has elapsed since the start of operation of each compressor. The second control data is control data for changing a target value of the temperature of the refrigerant flowing through the corresponding second heat exchanger from a first temperature to a second temperature after a grace period shorter than the first mode has elapsed since the start of operation of each compressor. The server device creates control data using a first threshold value as a threshold value when less than a specific number of air conditioning systems are in operation among the multiple air conditioning systems, and creates control data using a second threshold value larger than the first threshold value as a threshold value when a specific number or more of the air conditioning systems are in operation.
 本開示の空気調和装置および空気調和システムによれば、検出装置が検出したデータから空気調和装置が発揮している空調処理能力を演算し、演算した空調処理能力の、空気調和装置の定格能力に対する比率が予め設定した閾値よりも大きい場合、各圧縮機を第1モードで運転するように制御し、比率が閾値以下の場合、各圧縮機を第2モードで運転するように制御する。制御装置は、複数の空調系統のうち特定数未満の空調系統が運転中の場合、閾値として第1閾値を用いた制御を実行し、特定数以上の空調系統が運転中の場合、閾値として第1閾値よりも大きい第2閾値を用いた制御を実行する。これによって、本開示の空気調和装置および空気調和システムは、空調負荷率が低い空気調和装置を用いた場合に省エネルギー効果を得ることが可能であるとともに、対象空間を複数の空調系統により空調することを考慮した運転が可能である。 According to the air conditioning device and air conditioning system of the present disclosure, the air conditioning processing capacity exerted by the air conditioning device is calculated from the data detected by the detection device, and if the ratio of the calculated air conditioning processing capacity to the rated capacity of the air conditioning device is greater than a preset threshold, each compressor is controlled to operate in a first mode, and if the ratio is equal to or less than the threshold, each compressor is controlled to operate in a second mode. The control device executes control using a first threshold as the threshold when less than a specific number of air conditioning systems out of the multiple air conditioning systems are in operation, and executes control using a second threshold greater than the first threshold as the threshold when a specific number or more of air conditioning systems are in operation. As a result, the air conditioning device and air conditioning system of the present disclosure can achieve energy conservation effects when using an air conditioning device with a low air conditioning load rate, and can operate in a way that takes into account the air conditioning of the target space with multiple air conditioning systems.
実施の形態1における空気調和装置の構成を示す概略図である。1 is a schematic diagram showing the configuration of an air conditioning apparatus in a first embodiment. 実施の形態1における空気調和装置の冷媒回路を示す図である。1 is a diagram showing a refrigerant circuit of an air-conditioning apparatus according to a first embodiment. 実施の形態1における対象空間内の室内機の配置を示す図である。FIG. 2 is a diagram showing the arrangement of indoor units in a target space in the first embodiment. 室内ユニットにおける吸込み温度と設定温度の差と、目標蒸発温度との関係を示すグラフである。11 is a graph showing the relationship between the difference between the suction temperature and the set temperature in the indoor unit and the target evaporation temperature. 時間と目標蒸発温度との関係を示すグラフである。1 is a graph showing the relationship between time and a target evaporation temperature. 実施の形態1における冷房運転中の制御を示すフローチャートである。5 is a flowchart showing control during cooling operation in the first embodiment. 実施の形態2における対象空間内の室内機の配置を示す図である。FIG. 11 is a diagram showing the arrangement of indoor units in a target space in embodiment 2. 実施の形態2における冷房運転中の制御を示すフローチャートである。13 is a flowchart showing control during cooling operation in the second embodiment. 実施の形態3における対象空間内の室内機の配置を示す図である。FIG. 13 is a diagram showing the arrangement of indoor units in a target space in embodiment 3. 実施の形態3における冷房運転中の制御を示すフローチャートである。13 is a flowchart showing control during cooling operation in the third embodiment. 実施の形態4における空気調和システムの構成を示す概略図である。FIG. 11 is a schematic diagram showing the configuration of an air conditioning system in embodiment 4.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本開示の範囲は必ずしもその個数、量などに限定されない。同一の部品、相当部品に対しては、同一の参照番号を付し、重複する説明は繰り返さない場合がある。実施の形態における構成を適宜組み合わせて用いることは当初から予定されている。 Below, the embodiments of the present disclosure will be described in detail with reference to the drawings. In the embodiments described below, when numbers, quantities, etc. are mentioned, the scope of the present disclosure is not necessarily limited to those numbers, quantities, etc., unless otherwise specified. The same reference numbers will be used for the same parts or equivalent parts, and duplicate descriptions may not be repeated. It is intended from the beginning that the configurations in the embodiments will be used in appropriate combinations.
 実施の形態1.
 図1は、実施の形態1における空気調和装置1の構成を示す概略図である。空気調和装置1は、室内ユニット110Aと、室内ユニット110Aに接続される室外機12と、室内ユニット110Bと、室内ユニット110Bに接続される室外機12と、制御装置20と、を備える。室内ユニット110Aおよび室内ユニット110Bの各々は、複数の室内機11を含む。1つの室内ユニットに含まれる室内機11の数は、いくつであってもよい。空気調和装置1は、3つ以上の室内ユニットを備える構成であってもよい。
Embodiment 1.
1 is a schematic diagram showing the configuration of an air conditioning apparatus 1 in embodiment 1. The air conditioning apparatus 1 includes an indoor unit 110A, an outdoor unit 12 connected to the indoor unit 110A, an indoor unit 110B, an outdoor unit 12 connected to the indoor unit 110B, and a control device 20. Each of the indoor unit 110A and the indoor unit 110B includes a plurality of indoor units 11. There may be any number of indoor units 11 included in one indoor unit. The air conditioning apparatus 1 may be configured to include three or more indoor units.
 空気調和装置1では、複数の室内機11と、室外機12とが、配管により接続されて冷媒回路を構成する。配管の内部は、冷媒が循環するように構成される。室外機12は、空調の対象となる対象空間外に設置される。室内機11は、空調の対象となる対象空間内に設置される。空気調和装置1は、対象空間を複数の空調(冷媒)系統により空調する。対象空間とは、例えば、建物における室内である。以下では、複数の室内機11と、室外機12とで構成される冷媒回路を1つの空調(冷媒)系統として説明する。 In the air conditioning device 1, multiple indoor units 11 and outdoor units 12 are connected by piping to form a refrigerant circuit. The inside of the piping is configured so that refrigerant circulates. The outdoor units 12 are installed outside the target space to be air-conditioned. The indoor units 11 are installed within the target space to be air-conditioned. The air conditioning device 1 conditions the target space using multiple air conditioning (refrigerant) systems. The target space is, for example, the interior of a building. Below, the refrigerant circuit made up of multiple indoor units 11 and outdoor units 12 is described as one air conditioning (refrigerant) system.
 冷媒回路に充填される冷媒は、例えば、R32などのHFC冷媒、R22などのHCFC冷媒、R410A,CO,R290などの自然冷媒などである。冷媒は、ここに示す冷媒以外の冷媒であってもよい。 The refrigerant filled in the refrigerant circuit is, for example, an HFC refrigerant such as R32, an HCFC refrigerant such as R22, or a natural refrigerant such as R410A, CO 2 or R290. The refrigerant may be a refrigerant other than the refrigerants shown here.
 制御装置20は、CPU(Central Processing Unit)21と、メモリ22(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための図示しない入出力装置等を含んで構成される。CPU21は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置20の処理手順が記されたプログラムである。制御装置20は、これらのプログラムに従って、室内機11および室外機12における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。なお、制御装置20は、室内機11側または室外機12側のいずれか一方に設けるようにすればよい。 The control device 20 is composed of a CPU (Central Processing Unit) 21, memory 22 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output device (not shown) for inputting and outputting various signals. The CPU 21 deploys a program stored in the ROM to the RAM, etc. and executes it. The program stored in the ROM is a program in which the processing procedures of the control device 20 are written. The control device 20 controls each device in the indoor unit 11 and the outdoor unit 12 in accordance with these programs. This control is not limited to processing by software, and can also be processed by dedicated hardware (electronic circuits). The control device 20 may be provided on either the indoor unit 11 side or the outdoor unit 12 side.
 図2は、実施の形態1における空気調和装置1の冷媒回路を示す図である。空気調和装置1は、冷媒回路10Aと冷媒回路10Bとを備える。冷媒回路10Aは、室内ユニット110Aに含まれる複数の室内機11と、室外機12とを備える。冷媒回路10Bは、室内ユニット110Bに含まれる複数の室内機11と、室外機12とを備える。室外機12は、圧縮機2と、四方弁3と、室外熱交換器4と、ファン7とを含む。室内機11は、膨張弁5と、室内熱交換器6と、ファン8とを含む。 FIG. 2 is a diagram showing the refrigerant circuit of the air conditioner 1 in embodiment 1. The air conditioner 1 includes refrigerant circuits 10A and 10B. The refrigerant circuit 10A includes multiple indoor units 11 included in the indoor unit 110A, and an outdoor unit 12. The refrigerant circuit 10B includes multiple indoor units 11 included in the indoor unit 110B, and an outdoor unit 12. The outdoor unit 12 includes a compressor 2, a four-way valve 3, an outdoor heat exchanger 4, and a fan 7. The indoor unit 11 includes an expansion valve 5, an indoor heat exchanger 6, and a fan 8.
 圧縮機2は、冷媒を吸入し圧縮して吐出する。四方弁3は、冷房運転と暖房運転とで冷媒の循環方向を切替える。図2の冷媒回路10Aおよび冷媒回路10Bでは、冷房運転中の冷媒の流れ方向が実線の矢印で示されている。冷房運転中は、室内熱交換器6が蒸発器として機能し、室外熱交換器4が凝縮器として機能する。暖房運転中は、冷媒の流れ方向が逆向きとなる。暖房運転中は、室内熱交換器6が凝縮器として機能し、室外熱交換器4が蒸発器として機能する。 The compressor 2 draws in, compresses, and discharges the refrigerant. The four-way valve 3 switches the refrigerant circulation direction between cooling and heating operations. In the refrigerant circuits 10A and 10B in FIG. 2, the flow direction of the refrigerant during cooling operation is indicated by solid arrows. During cooling operation, the indoor heat exchanger 6 functions as an evaporator, and the outdoor heat exchanger 4 functions as a condenser. During heating operation, the refrigerant flow direction is reversed. During heating operation, the indoor heat exchanger 6 functions as a condenser, and the outdoor heat exchanger 4 functions as an evaporator.
 室外熱交換器4は、複数の伝熱管を有し、ファン7によって送風される室外空気と複数の伝熱管を通過する冷媒との間で熱交換を行う。膨張弁5は、冷媒を膨張し減圧させる。膨張弁5は、例えば、電子膨張弁等の開度を任意に制御することができる装置である。室内熱交換器6は、複数の伝熱管を有し、ファン8によって送風される室内空気と複数の伝熱管を通過する冷媒との間で熱交換を行う。 The outdoor heat exchanger 4 has multiple heat transfer tubes, and exchanges heat between the outdoor air blown by the fan 7 and the refrigerant passing through the multiple heat transfer tubes. The expansion valve 5 expands the refrigerant and reduces its pressure. The expansion valve 5 is a device that can arbitrarily control the opening degree of, for example, an electronic expansion valve. The indoor heat exchanger 6 has multiple heat transfer tubes, and exchanges heat between the indoor air blown by the fan 8 and the refrigerant passing through the multiple heat transfer tubes.
 空気調和装置1は、冷媒回路10Aおよび冷媒回路10Bの運転中のデータを検出する検出装置として、複数のセンサを備える。圧縮機2の冷媒吸入側には、冷媒回路10Aおよび冷媒回路10Bの低圧圧力を検出する圧力センサ31aが設けられている。圧縮機2の冷媒吐出側には、冷媒回路10Aおよび冷媒回路10Bの高圧圧力を検出する圧力センサ31bが設けられている。室外熱交換器4の両端には、冷媒の温度を検出する冷媒温度センサ32aおよび冷媒温度センサ32bが設けられている。室外熱交換器4が凝縮器として機能する場合、冷媒温度センサ32aは室外熱交換器4の入口側の冷媒温度を検出し、冷媒温度センサ32bは室外熱交換器4の出口側の冷媒温度を検出する。室外熱交換器4が蒸発器として機能する場合、冷媒温度センサ32aは室外熱交換器4の出口側の冷媒温度を検出し、冷媒温度センサ32bは室外熱交換器4の入口側の冷媒温度を検出する。 The air conditioning device 1 is equipped with a plurality of sensors as detection devices for detecting data during operation of the refrigerant circuits 10A and 10B. A pressure sensor 31a is provided on the refrigerant intake side of the compressor 2 to detect the low pressure of the refrigerant circuits 10A and 10B. A pressure sensor 31b is provided on the refrigerant discharge side of the compressor 2 to detect the high pressure of the refrigerant circuits 10A and 10B. A refrigerant temperature sensor 32a and a refrigerant temperature sensor 32b are provided on both ends of the outdoor heat exchanger 4 to detect the temperature of the refrigerant. When the outdoor heat exchanger 4 functions as a condenser, the refrigerant temperature sensor 32a detects the refrigerant temperature on the inlet side of the outdoor heat exchanger 4, and the refrigerant temperature sensor 32b detects the refrigerant temperature on the outlet side of the outdoor heat exchanger 4. When the outdoor heat exchanger 4 functions as an evaporator, the refrigerant temperature sensor 32a detects the refrigerant temperature on the outlet side of the outdoor heat exchanger 4, and the refrigerant temperature sensor 32b detects the refrigerant temperature on the inlet side of the outdoor heat exchanger 4.
 室内熱交換器6の両端には、冷媒の温度を検出する冷媒温度センサ33aおよび冷媒温度センサ33bが設けられている。室内熱交換器6が蒸発器として機能する場合、冷媒温度センサ33bは室内熱交換器6の入口側の冷媒温度を検出し、冷媒温度センサ33aは室内熱交換器6の出口側の冷媒温度を検出する。室内熱交換器6が凝縮器として機能する場合、冷媒温度センサ33bは室内熱交換器6の出口側の冷媒温度を検出し、冷媒温度センサ33aは室内熱交換器6の入口側の冷媒温度を検出する。冷媒温度センサ32a,32b,33a、および33bは図示しない信号線を介して制御装置20と接続されている。圧力センサ31aおよび31bは図示しない信号線を介して制御装置20と接続されている。 Refrigerant temperature sensors 33a and 33b are provided at both ends of the indoor heat exchanger 6 to detect the temperature of the refrigerant. When the indoor heat exchanger 6 functions as an evaporator, the refrigerant temperature sensor 33b detects the refrigerant temperature on the inlet side of the indoor heat exchanger 6, and the refrigerant temperature sensor 33a detects the refrigerant temperature on the outlet side of the indoor heat exchanger 6. When the indoor heat exchanger 6 functions as a condenser, the refrigerant temperature sensor 33b detects the refrigerant temperature on the outlet side of the indoor heat exchanger 6, and the refrigerant temperature sensor 33a detects the refrigerant temperature on the inlet side of the indoor heat exchanger 6. The refrigerant temperature sensors 32a, 32b, 33a, and 33b are connected to the control device 20 via signal lines not shown. The pressure sensors 31a and 31b are connected to the control device 20 via signal lines not shown.
 なお、図示を省略するが、室外機12には、外気温度を検出する外気温度センサが設けられ、室内機11には、室内の温度を検出する室温センサおよび室内の湿度を検出する湿度センサが設けられている。室内機11には、吹出口の風量を検出する風量センサが設けられていてもよい。これらのセンサは図示しない信号線を介して制御装置20と接続されるようにすればよい。これにより、各センサにより検出されたデータが制御装置20へ送信される。 Although not shown, the outdoor unit 12 is provided with an outdoor air temperature sensor that detects the outdoor air temperature, and the indoor unit 11 is provided with a room temperature sensor that detects the room temperature and a humidity sensor that detects the room humidity. The indoor unit 11 may also be provided with an air volume sensor that detects the air volume at the air outlet. These sensors may be connected to the control device 20 via signal lines (not shown). This allows data detected by each sensor to be sent to the control device 20.
 制御装置20は、各センサから送信されるデータを用いて演算処理を実行する。演算処理の詳細は後述する。制御装置20は、演算処理に基づいて作成した制御データを用いて、圧縮機2、ファン7,8、および膨張弁5を制御する。 The control device 20 performs arithmetic processing using the data transmitted from each sensor. The details of the arithmetic processing will be described later. The control device 20 controls the compressor 2, fans 7 and 8, and expansion valve 5 using control data created based on the arithmetic processing.
 図3は、実施の形態1における対象空間内の室内機の配置を示す図である。図3に示すように、対象空間TSは、空調(冷媒)系統200Aと空調(冷媒)系統200Bとを含む。空調(冷媒)系統200Aおよび空調(冷媒)系統200Bには、複数の室内機11が配置されている。室内機11の数および配置は、どのように配置されてもよいし、空調(冷媒)系統の数を増加してもよい。 FIG. 3 is a diagram showing the arrangement of indoor units in a target space in embodiment 1. As shown in FIG. 3, target space TS includes air conditioning (refrigerant) system 200A and air conditioning (refrigerant) system 200B. A plurality of indoor units 11 are arranged in air conditioning (refrigerant) system 200A and air conditioning (refrigerant) system 200B. The number and arrangement of indoor units 11 may be any arrangement, and the number of air conditioning (refrigerant) systems may be increased.
 次に、冷房運転中の室内ユニット110A,110Bにおける吸込み温度と設定温度の差と、目標蒸発温度との関係について説明する。図4は、室内ユニット110A,110Bにおける吸込み温度と設定温度の差と、目標蒸発温度との関係を示すグラフである。吸込み温度は、室内機11に設けられる室内温度センサにより検出される室内の温度である。設定温度とは、リモコン等の入力装置を介してユーザが設定する任意の温度である。目標蒸発温度とは、蒸発器として機能する室内熱交換器6を流れる冷媒の目標値となる温度のことである。 Next, the relationship between the difference between the suction temperature and the set temperature in indoor units 110A, 110B during cooling operation, and the target evaporation temperature will be described. Figure 4 is a graph showing the relationship between the difference between the suction temperature and the set temperature in indoor units 110A, 110B, and the target evaporation temperature. The suction temperature is the indoor temperature detected by an indoor temperature sensor provided in the indoor unit 11. The set temperature is an arbitrary temperature set by the user via an input device such as a remote control. The target evaporation temperature is the target temperature for the refrigerant flowing through indoor heat exchanger 6, which functions as an evaporator.
 図4に示すように、室内ユニット110A,110Bにおける吸込み温度と設定温度の差が小さいときは、目標蒸発温度が高い。逆に、室内ユニット110A,110Bにおける吸込み温度と設定温度の差が大きいときは、目標蒸発温度が低い。つまり、吸込み温度と設定温度の差が小さいときの方が、吸込み温度と設定温度の差が大きいときよりも、目標蒸発温度を高く設定できることになる。目標蒸発温度を高く設定できるということは、圧縮機2の運転周波数の変化を緩やかに制御できるということになる。よって、目標蒸発温度を高く設定している場合は、目標蒸発温度を低く設定している場合よりも高い省エネルギー効果を得ることができる。 As shown in FIG. 4, when the difference between the suction temperature and the set temperature in indoor units 110A, 110B is small, the target evaporation temperature is high. Conversely, when the difference between the suction temperature and the set temperature in indoor units 110A, 110B is large, the target evaporation temperature is low. In other words, when the difference between the suction temperature and the set temperature is small, the target evaporation temperature can be set higher than when the difference between the suction temperature and the set temperature is large. Being able to set the target evaporation temperature high means that the change in the operating frequency of compressor 2 can be controlled more gently. Therefore, when the target evaporation temperature is set high, a greater energy saving effect can be obtained than when the target evaporation temperature is set low.
 図5は、時間と目標蒸発温度との関係を示すグラフである。図5(a)は、通常運転中において第1モードで圧縮機2を制御したときの時間と目標蒸発温度との関係を示している。図5(b)は、省エネルギー運転中において第2モードで圧縮機2を制御したときの時間と目標蒸発温度との関係を示している。図中のサーモオンは、圧縮機2が起動することを示し、サーモオフは、圧縮機2が停止することを示している。制御装置20は、圧縮機2の回転速度を制御することにより第1モードあるいは第2モードでの制御を実行する。なお、サーモオンは、圧縮機2が起動する際にゼロから既定値に増加させるように回転速度を制御することでもあるため、回転速度を設定する動作であるとも言える。 FIG. 5 is a graph showing the relationship between time and target evaporation temperature. FIG. 5(a) shows the relationship between time and target evaporation temperature when compressor 2 is controlled in the first mode during normal operation. FIG. 5(b) shows the relationship between time and target evaporation temperature when compressor 2 is controlled in the second mode during energy saving operation. Thermo On in the figure indicates that compressor 2 is started, and Thermo Off indicates that compressor 2 is stopped. The control device 20 executes control in the first mode or the second mode by controlling the rotation speed of compressor 2. Note that Thermo On also controls the rotation speed so as to increase it from zero to a preset value when compressor 2 is started, and can therefore also be said to be an operation of setting the rotation speed.
 図5(a)に示すように、制御装置20は、第1モードにおいてサーモオン後、予め定められた一定の猶予期間β1[min]において、蒸発器として機能する室内熱交換器6の冷媒の温度を目標値であるa[℃]に保つ。制御装置20は、猶予期間β1[min]経過後に、冷媒の温度の目標値をa[℃]からa[℃]よりも高いb[℃]へ変更するように制御する。β1は、例えば、10[min]である。室内熱交換器6の冷媒の温度は、a[℃]からb[℃]へ変更される。制御装置20は、冷媒の温度の目標値をb[℃]で一定期間保った後に、圧縮機2をサーモオフする。以降、制御装置20は、目標蒸発温度をa[℃]からb[℃]へ変更する制御を繰り返すことにより、圧縮機2のサーモオンとサーモオフとを繰り返す。 As shown in FIG. 5(a), in the first mode, the control device 20 maintains the refrigerant temperature of the indoor heat exchanger 6, which functions as an evaporator, at a target value a [°C] for a predetermined certain grace period β1 [min] after the grace period β1 [min] has elapsed. The control device 20 controls the target value of the refrigerant temperature to be changed from a [°C] to b [°C], which is higher than a [°C], after the grace period β1 [min] has elapsed. β1 is, for example, 10 [min]. The refrigerant temperature of the indoor heat exchanger 6 is changed from a [°C] to b [°C]. The control device 20 turns the compressor 2 thermo-off after maintaining the target value of the refrigerant temperature at b [°C] for a certain period of time. Thereafter, the control device 20 repeats the control of changing the target evaporation temperature from a [°C] to b [°C], thereby repeatedly turning the compressor 2 thermo-on and thermo-off.
 図5(b)に示すように、制御装置20は、第2モードにおいてサーモオン後、猶予期間β1[min]を設けずに室内熱交換器6の冷媒の温度を目標値であるa[℃]からa[℃]よりも高いb[℃]へ変更するように制御する。これにより、室内熱交換器6の冷媒の温度は、a[℃]からb[℃]へ変更される。制御装置20は、冷媒の温度の目標値をb[℃]で一定期間保った後に、圧縮機2をサーモオフする。第2モードは、猶予期間β1[min]が設けられておらず、冷媒の温度の目標値がb[℃]である期間が第1モードに比べ長くなっている。つまり、第2モードでは、第1モードに比べ、冷媒の温度の目標値をb[℃]で制御する期間が長くなり、その分、圧縮機2のサーモオンとサーモオフの回数が減少する。 As shown in FIG. 5(b), in the second mode, after thermo-on, the control device 20 controls the refrigerant temperature of the indoor heat exchanger 6 to change from the target value a [°C] to b [°C] higher than a [°C] without providing a grace period β1 [min]. As a result, the refrigerant temperature of the indoor heat exchanger 6 changes from a [°C] to b [°C]. The control device 20 thermo-offs the compressor 2 after maintaining the target value of the refrigerant temperature at b [°C] for a certain period of time. In the second mode, there is no grace period β1 [min], and the period during which the target value of the refrigerant temperature is b [°C] is longer than in the first mode. In other words, in the second mode, the period during which the target value of the refrigerant temperature is controlled at b [°C] is longer than in the first mode, and the number of thermo-on and thermo-off of the compressor 2 is reduced accordingly.
 図5において、a[℃]は、例えば0[℃]であり、b[℃]は、例えば9[℃]である。図4に示したように、目標蒸発温度を高く設定している場合は、目標蒸発温度を低く設定している場合よりも高い省エネルギー効果を得ることができる。このため、冷媒の温度の目標値がb[℃]である期間が第1モードよりも長い第2モードは、省エネルギー効果が高いと言える。 In FIG. 5, a [°C] is, for example, 0 [°C], and b [°C] is, for example, 9 [°C]. As shown in FIG. 4, when the target evaporation temperature is set high, a higher energy saving effect can be obtained than when the target evaporation temperature is set low. For this reason, the second mode, in which the period during which the target value of the refrigerant temperature is b [°C] is longer than the first mode, can be said to have a higher energy saving effect.
 ここで、通常運転の第1モードと省エネルギー運転の第2モードとについて詳しく説明する。第1モードでは、圧縮機2のサーモオン直後から冷媒の温度を低く設定することにより、短時間でユーザが設定する設定温度に室内温度を近づけることができる。つまり、第1モードは、低い温度で急激に冷却する時間を長くし、その後、緩やかに設定温度に変化させるような運転である。このため、第1モードは、短時間で不快感を低減し、快適性を向上させることができる。 Here, we will explain in detail the first mode of normal operation and the second mode of energy saving operation. In the first mode, the refrigerant temperature is set low immediately after the compressor 2 is turned on, so that the indoor temperature can be brought closer to the set temperature set by the user in a short period of time. In other words, the first mode is an operation in which the time spent rapidly cooling at a low temperature is extended, and then the temperature is gradually changed to the set temperature. Therefore, the first mode can reduce discomfort and improve comfort in a short period of time.
 第2モードでは、空調負荷率が低い空気調和装置1を用いる場合に省エネルギー効果を発揮する。空調負荷率が低いということは、少ない消費電力であっても効果的に室内温度を下げることができるということである。空調負荷率が低い空気調和装置1を用いることにより、高い目標蒸発温度において緩やかに室内の熱負荷を処理することが可能となり、高い目標蒸発温度で制御される期間を長くすることができる。つまり、第2モードは、最初に急激に冷却する時間を無くし、室内温度が設定温度に至るまで長い期間をかけて冷やすような運転である。これにより、第2モードでは、第1モードよりも圧縮機2のサーモオンとサーモオフの回数を減少させることができ、空調負荷率が低い空気調和装置1を用いた場合に高い省エネルギー効果を得ることができる。 In the second mode, energy saving effects are achieved when an air conditioner 1 with a low air conditioning load rate is used. A low air conditioning load rate means that the indoor temperature can be effectively lowered even with low power consumption. By using an air conditioner 1 with a low air conditioning load rate, it is possible to gradually process the indoor heat load at a high target evaporation temperature, and the period during which control is performed at a high target evaporation temperature can be extended. In other words, the second mode is an operation that eliminates the initial rapid cooling time, and cools the indoor temperature over a long period of time until it reaches the set temperature. As a result, in the second mode, the number of times the compressor 2 is turned on and off can be reduced more than in the first mode, and a high energy saving effect can be achieved when an air conditioner 1 with a low air conditioning load rate is used.
 次に、制御装置20が実行する制御内容について説明する。図6は、実施の形態1における冷房運転中の制御を示すフローチャートである。図6のフローチャートの処理は、制御装置20の制御におけるメインルーチンから、サブルーチンとして繰返し呼び出されて実行される。図6では、冷房運転中の処理について説明する。 Next, the control contents executed by the control device 20 will be described. FIG. 6 is a flowchart showing the control during cooling operation in embodiment 1. The process of the flowchart in FIG. 6 is repeatedly called and executed as a subroutine from the main routine in the control of the control device 20. In FIG. 6, the process during cooling operation will be described.
 制御装置20は、まずステップS(以下、単に「S」と示す)11において、検出装置である複数のセンサから冷房運転中の運転データを取得する。次いで、制御装置20は、空調処理能力(発生する空調負荷)を算出する(S12)。ここで、空調処理能力は、空気調和装置1の処理能力のことである。よって、処理能力が発揮されることにより室内に発生する空調負荷が変更される点において、空調処理能力は、発生する空調負荷と大きさが等しい。空調処理能力の演算は、例えば、特許第6739671号に記載の方法により求める。具体的に、制御装置20は、圧縮機2の回転速度、圧力センサ31bから検出される高圧圧力、および圧力センサ31aから検出される低圧圧力と、冷媒流量との関係を示すデータテーブルから室外機12における冷媒流量を求める。 First, in step S (hereinafter simply referred to as "S") 11, the control device 20 acquires operation data during cooling operation from multiple sensors, which are detection devices. Next, the control device 20 calculates the air conditioning processing capacity (generated air conditioning load) (S12). Here, the air conditioning processing capacity refers to the processing capacity of the air conditioner 1. Therefore, the air conditioning processing capacity is equal to the generated air conditioning load in that the air conditioning load generated in the room is changed by exerting the processing capacity. The calculation of the air conditioning processing capacity is obtained, for example, by the method described in Patent No. 6739671. Specifically, the control device 20 obtains the refrigerant flow rate in the outdoor unit 12 from a data table showing the relationship between the rotation speed of the compressor 2, the high pressure detected by the pressure sensor 31b, the low pressure detected by the pressure sensor 31a, and the refrigerant flow rate.
 制御装置20は、膨張弁5の開度と、膨張弁特性データテーブルとからCv値を求める。Cv値とは流体の流れやすさを示す固有の係数である。制御装置20は、Cv値を用いて室内機11における冷媒流量を求める。具体的には、制御装置20は、対象となる室内機11の冷媒流量=室外機12における冷媒流量×[対象の室内機11のCv値/室内機11のCv値の合計値]の関係式から求める。次に、制御装置20は、室外機12の冷媒出口の液冷媒の温度と、蒸発器入口の比エンタルピデータテーブルと、を用いて蒸発器入口比エンタルピを求める。制御装置20は、室内機11の液冷媒温度およびガス冷媒温度と、蒸発器出口比エンタルピデータテーブルと、を用いて蒸発器出口比エンタルピを求める。制御装置20は、空調処理能力[kW]=室内機11の冷媒流量[kg/h]/3600×[蒸発器出口比エンタルピ-蒸発器入口比エンタルピ][kJ/kg]の関係式から、空調処理能力を求める。制御装置20は、各室内機11の空調処理能力を足し合わせ室内ユニット110A全体の空調処理能力を求める。制御装置20は、室内ユニット110B全体の空調処理能力も同様に求めて足し合わせることによって、空気調和装置1の空調処理能力を求める。 The control device 20 calculates the Cv value from the opening of the expansion valve 5 and the expansion valve characteristic data table. The Cv value is a unique coefficient that indicates the ease of fluid flow. The control device 20 uses the Cv value to calculate the refrigerant flow rate in the indoor unit 11. Specifically, the control device 20 calculates the refrigerant flow rate of the target indoor unit 11 = refrigerant flow rate of the outdoor unit 12 x [Cv value of the target indoor unit 11 / total value of the Cv values of the indoor units 11]. Next, the control device 20 calculates the evaporator inlet specific enthalpy using the liquid refrigerant temperature at the refrigerant outlet of the outdoor unit 12 and the evaporator inlet specific enthalpy data table. The control device 20 calculates the evaporator outlet specific enthalpy using the liquid refrigerant temperature and gas refrigerant temperature of the indoor unit 11 and the evaporator outlet specific enthalpy data table. The control device 20 calculates the air conditioning processing capacity from the relational equation: air conditioning processing capacity [kW] = refrigerant flow rate of indoor unit 11 [kg/h]/3600 x [evaporator outlet specific enthalpy - evaporator inlet specific enthalpy] [kJ/kg]. The control device 20 adds up the air conditioning processing capacities of each indoor unit 11 to calculate the air conditioning processing capacity of the entire indoor unit 110A. The control device 20 calculates the air conditioning processing capacity of the entire indoor unit 110B in the same way and adds them up to calculate the air conditioning processing capacity of the air conditioner 1.
 次いで、制御装置20は、空気調和装置1が備える定格能力に対する空調処理能力の比率=[空調処理能力(空調負荷)/定格能力]を求める(S13)。次いで、制御装置20は、対象空間TSに運転中の空調(冷媒)系統が複数あるか否かを判定する(S14)。制御装置20は、例えば、ユーザが入力した、いずれの空調(冷媒)系統を運転するかを示すデータを受信することにより、対象空間TSに運転中の空調(冷媒)系統が複数あるか否かを判定する。 Then, the control device 20 calculates the ratio of the air conditioning processing capacity to the rated capacity of the air conditioning device 1 = [air conditioning processing capacity (air conditioning load) / rated capacity] (S13). Next, the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS (S14). The control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS, for example, by receiving data input by the user indicating which air conditioning (refrigerant) system is to be operated.
 制御装置20は、S14において、対象空間TSに運転中の空調(冷媒)系統が複数ない(1つの空調(冷媒)系統のみ運転している)と判定した場合(S14のNO)、空調処理能力(空調負荷)/定格能力≦α1となるか否かを判定する(S15)。α1は、ユーザにより設定可能な冷房運転中に省エネルギー制御とするか否かの判定をするための任意の設定値である。制御装置20は、S15において、空調処理能力(空調負荷)/定格能力>α1と判定した場合(S15のNO)、通常運転である第1モードで圧縮機2を制御するように設定し(S17)、処理をサブルーチンからメインルーチンに戻す。第1モードは、猶予期間β1が設定されているモードである。 If the control device 20 determines in S14 that there are not multiple air conditioning (refrigerant) systems in operation in the target space TS (only one air conditioning (refrigerant) system is in operation) (NO in S14), it determines whether or not air conditioning processing capacity (air conditioning load)/rated capacity≦α1 (S15). α1 is an arbitrary setting value that can be set by the user for determining whether or not to perform energy saving control during cooling operation. If the control device 20 determines in S15 that air conditioning processing capacity (air conditioning load)/rated capacity>α1 (NO in S15), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S17), and returns processing from the subroutine to the main routine. The first mode is a mode in which a grace period β1 is set.
 制御装置20は、S15において、空調処理能力(空調負荷)/定格能力≦α1と判定した場合(S15のYES)、省エネルギー運転である第2モードで圧縮機2を制御するように設定し(S16)、処理をサブルーチンからメインルーチンに戻す。第2モードは、猶予期間β1を設けずに、冷媒の温度を変更するモードである。 If the control device 20 determines in S15 that the air conditioning processing capacity (air conditioning load)/rated capacity is less than or equal to α1 (YES in S15), it sets the compressor 2 to be controlled in the second mode, which is an energy-saving operation (S16), and returns the process from the subroutine to the main routine. The second mode is a mode in which the refrigerant temperature is changed without providing a grace period β1.
 制御装置20は、S14において、対象空間TSに運転中の空調(冷媒)系統が複数ある(2つの空調(冷媒)系統が運転している)と判定した場合(S14のYES)、空調処理能力(空調負荷)/定格能力≦α2となるか否かを判定する(S18)。α2は、ユーザにより設定可能な冷房運転中に省エネルギー制御とするか否かの判定をするための任意の設定値である。制御装置20は、S18において、空調処理能力(空調負荷)/定格能力>α2と判定した場合(S18のNO)、通常運転である第1モードで圧縮機2を制御するように設定し(S20)、処理をサブルーチンからメインルーチンに戻す。第1モードは、猶予期間β1が設定されているモードである。 If the control device 20 determines in S14 that there are multiple air conditioning (refrigerant) systems in operation in the target space TS (two air conditioning (refrigerant) systems are in operation) (YES in S14), it determines whether or not air conditioning processing capacity (air conditioning load)/rated capacity ≦ α2 (S18). α2 is an arbitrary setting value that can be set by the user for determining whether or not to perform energy saving control during cooling operation. If the control device 20 determines in S18 that air conditioning processing capacity (air conditioning load)/rated capacity > α2 (NO in S18), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S20), and returns processing from the subroutine to the main routine. The first mode is a mode in which a grace period β1 is set.
 制御装置20は、S18において、空調処理能力(空調負荷)/定格能力≦α2と判定した場合(S18のYES)、省エネルギー運転である第2モードで圧縮機2を制御するように設定し(S19)、処理をサブルーチンからメインルーチンに戻す。第2モードは、猶予期間β1を設けずに、冷媒の温度を変更するモードである。 If the control device 20 determines in S18 that the air conditioning processing capacity (air conditioning load)/rated capacity is less than or equal to α2 (YES in S18), it sets the compressor 2 to be controlled in the second mode, which is an energy-saving operation (S19), and returns the process from the subroutine to the main routine. The second mode is a mode in which the refrigerant temperature is changed without providing a grace period β1.
 空気調和装置1は、第2モードにおける圧縮機2のサーモオンとサーモオフの回数は第1モードに比べおおよそ半減する。これによって、空気調和装置1は、目標蒸発温度(例えば、図5のb[℃])に入る時間を長くすることができ、省エネルギー運転をすることができる。さらに、空気調和装置1における空調処理能力の比率の判定値は、α1<α2と設定される。例えば、α1は0.7であり、α2は0.8である。 In the air conditioner 1, the number of times the compressor 2 is turned on and off in the second mode is roughly halved compared to the first mode. This allows the air conditioner 1 to extend the time it takes to reach the target evaporation temperature (e.g., b [°C] in Figure 5), enabling energy-saving operation. Furthermore, the judgment value for the ratio of air conditioning processing capacities in the air conditioner 1 is set to α1 < α2. For example, α1 is 0.7 and α2 is 0.8.
 ここで、αの値が大きいということは空調処理能力に余裕があるということである。つまり、対象空間TSに運転中の空調(冷媒)系統が複数ある場合は、対象空間TSに運転中の空調(冷媒)系統が複数ない場合よりも閾値の基準を緩和することができるため、αの値を大きく設定している。これによって、空気調和装置1は、対象空間TSに運転中の空調(冷媒)系統が複数ある場合は、対象空間TSに運転中の空調(冷媒)系統が複数ない場合よりも省エネルギー運転により入り易くすることができる。 Here, a large value of α means that there is a margin of air conditioning processing capacity. In other words, when there are multiple air conditioning (refrigerant) systems in operation in the target space TS, the threshold standard can be relaxed more easily than when there are not multiple air conditioning (refrigerant) systems in operation in the target space TS, so the value of α is set large. This makes it easier for the air conditioning device 1 to enter energy-saving operation when there are multiple air conditioning (refrigerant) systems in operation in the target space TS than when there are not multiple air conditioning (refrigerant) systems in operation in the target space TS.
 このように、空気調和装置1は、空調負荷率が低い空気調和装置1を用いた場合に省エネルギー効果を得ることが可能であるとともに、対象空間TSを複数の空調(冷媒)系統により空調することを考慮した運転が可能である。 In this way, the air conditioning device 1 can achieve energy conservation effects when an air conditioning device 1 with a low air conditioning load factor is used, and can be operated in a way that takes into account the air conditioning of the target space TS using multiple air conditioning (refrigerant) systems.
 なお、暖房運転中は、図2に示す四方弁3を点線側に切り換えることにより、室内熱交換器6が凝縮器として機能し、室外熱交換器4が蒸発器として機能する。暖房運転中は、図5に示す目標蒸発温度の代わりに目標凝縮温度(凝縮器として機能する室内熱交換器6を流れる冷媒の目標値となる温度)が用いられる。例えば、図5を参考に、制御装置20は、第1モードにおいてサーモオン後、予め定められた一定の猶予期間β2[min]において、凝縮器として機能する室内熱交換器6の冷媒の温度を目標値であるa[℃]に保つ。制御装置20は、猶予期間β2[min]経過後に、冷媒の温度の目標値をa[℃]からa[℃]よりも低いb[℃]へ変更するように制御する。室内熱交換器6の冷媒の温度は、a[℃]からb[℃]へ変更される。制御装置20は、冷媒の温度の目標値をb[℃]で一定期間保った後に、圧縮機2をサーモオフする。以降、制御装置20は、目標凝縮温度をa[℃]からb[℃]へ変更する制御を繰り返すことにより、圧縮機2のサーモオンとサーモオフとを繰り返す。 During heating operation, the indoor heat exchanger 6 functions as a condenser and the outdoor heat exchanger 4 functions as an evaporator by switching the four-way valve 3 shown in FIG. 2 to the dotted line side. During heating operation, a target condensation temperature (a temperature that is a target value of the refrigerant flowing through the indoor heat exchanger 6 functioning as a condenser) is used instead of the target evaporation temperature shown in FIG. 5. For example, referring to FIG. 5, the control device 20 maintains the temperature of the refrigerant in the indoor heat exchanger 6 functioning as a condenser at a target value a [°C] for a predetermined certain grace period β2 [min] after the thermo-on in the first mode. The control device 20 controls the target value of the refrigerant temperature to be changed from a [°C] to b [°C] lower than a [°C] after the grace period β2 [min] has elapsed. The temperature of the refrigerant in the indoor heat exchanger 6 is changed from a [°C] to b [°C]. The control device 20 thermo-offs the compressor 2 after maintaining the target value of the refrigerant temperature at b [°C] for a certain period. Thereafter, the control device 20 repeatedly changes the target condensing temperature from a [°C] to b [°C], thereby repeatedly turning the compressor 2 on and off.
 制御装置20は、第2モードにおいてサーモオン後、猶予期間β2[min]を設けずに室内熱交換器6の冷媒の温度を目標値であるa1[℃]からa1[℃]よりも低いb1[℃]へ変更するように制御する。これにより、室内熱交換器6の冷媒の温度は、a1[℃]からb1[℃]へ変更される。制御装置20は、冷媒の温度の目標値をb1[℃]で一定期間保った後に、圧縮機2をサーモオフする。第2モードは、猶予期間β2[min]が設けられておらず、冷媒の温度の目標値がb1[℃]である期間が第1モードに比べ長くなっている。つまり、第2モードでは、第1モードに比べ、冷媒の温度の目標値をb1[℃]で制御する期間が長くなり、その分、圧縮機2のサーモオンとサーモオフと回数が減少する。これにより、空気調和装置1は、目標凝縮温度に入る時間を長くすることができ、省エネルギー運転をすることができる。 In the second mode, the control device 20 controls the refrigerant temperature of the indoor heat exchanger 6 to change from the target value a1 [°C] to b1 [°C], which is lower than a1 [°C], without providing a grace period β2 [min] after the thermo-on. As a result, the refrigerant temperature of the indoor heat exchanger 6 changes from a1 [°C] to b1 [°C]. The control device 20 turns the compressor 2 thermo-off after maintaining the target value of the refrigerant temperature at b1 [°C] for a certain period of time. In the second mode, the grace period β2 [min] is not provided, and the period during which the target value of the refrigerant temperature is b1 [°C] is longer than in the first mode. In other words, in the second mode, the period during which the target value of the refrigerant temperature is controlled at b1 [°C] is longer than in the first mode, and the number of thermo-on and thermo-off of the compressor 2 is reduced accordingly. As a result, the air conditioning device 1 can extend the time to reach the target condensing temperature, and can operate in an energy-saving manner.
 このように、暖房運中は冷房運転中と比較し温度の関係が逆である。制御装置20は、暖房運転中においてS11からS20の処理に対応する処理を冷房運転中と同様に実行する。 In this way, the temperature relationship during heating operation is the opposite to that during cooling operation. During heating operation, the control device 20 executes the processes corresponding to S11 to S20 in the same way as during cooling operation.
 実施の形態2.
 実施の形態2の空気調和装置1は、実施の形態1と比較し、対象空間TSがインテリアゾーンIZとペリメータゾーンPZとに分かれている点が異なる。以下では、実施の形態1と異なる部分を中心に説明し、実施の形態1と同様の構成については説明を省略する。図7は、実施の形態2における対象空間TS内の室内機11の配置を示す図である。ここで、インテリアゾーンとは、ビルなどにおける室内の中央部であり、空調の効果が大きく日差し、外気などで温度が影響されにくいエリアのことである。ペリメータゾーンとは、窓際などで外気の影響を受けやすく空調の負荷が大きいエリアのことである。
Embodiment 2.
The air conditioning device 1 of the second embodiment differs from the first embodiment in that the target space TS is divided into an interior zone IZ and a perimeter zone PZ. The following mainly describes the parts that are different from the first embodiment, and the same configuration as the first embodiment is omitted. Fig. 7 is a diagram showing the arrangement of the indoor units 11 in the target space TS in the second embodiment. Here, the interior zone is the central part of a room in a building or the like, and is an area where the effect of air conditioning is large and the temperature is not easily affected by sunlight, outside air, etc. The perimeter zone is an area that is easily affected by outside air such as near a window and where the load of air conditioning is large.
 図7に示すように、対象空間TS内において対象空間TSと対象空間TS外との境界に近い第1領域に対応する領域がペリメータゾーンPZである。図7に示すように、ペリメータゾーンPZよりも内側の第2領域に対応する領域がインテリアゾーンIZである。図7に示すように、インテリアゾーンIZは、空調(冷媒)系統201Aと空調(冷媒)系統201Bとから構成される。図7に示すように、ペリメータゾーンPZは、空調(冷媒)系統201Cと空調(冷媒)系統201Dとから構成される。なお、各ゾーンに含まれる空調(冷媒)系統の数は、1つであってもよいし、3つ以上であってもよい。 As shown in FIG. 7, the perimeter zone PZ is an area within the target space TS that corresponds to a first area close to the boundary between the target space TS and the outside of the target space TS. As shown in FIG. 7, the interior zone IZ is an area that corresponds to a second area that is more inward than the perimeter zone PZ. As shown in FIG. 7, the interior zone IZ is composed of air conditioning (refrigerant) system 201A and air conditioning (refrigerant) system 201B. As shown in FIG. 7, the perimeter zone PZ is composed of air conditioning (refrigerant) system 201C and air conditioning (refrigerant) system 201D. The number of air conditioning (refrigerant) systems included in each zone may be one, or three or more.
 次に、制御装置20が実行する制御内容について説明する。図8は、実施の形態2における冷房運転中の制御を示すフローチャートである。図8のフローチャートの処理は、制御装置20の制御におけるメインルーチンから、サブルーチンとして繰返し呼び出されて実行される。図8では、冷房運転中の処理について説明する。 Next, the control contents executed by the control device 20 will be described. FIG. 8 is a flowchart showing the control during cooling operation in embodiment 2. The process of the flowchart in FIG. 8 is repeatedly called and executed as a subroutine from the main routine in the control of the control device 20. In FIG. 8, the process during cooling operation will be described.
 制御装置20は、まずステップS31において、検出装置である複数のセンサから冷房運転中の運転データを取得する。次いで、制御装置20は、空調処理能力(発生する空調負荷)を算出する(S32)。次いで、制御装置20は、空気調和装置1が備える定格能力に対する空調処理能力の比率=[空調処理能力(空調負荷)/定格能力]を求める(S33)。次いで、制御装置20は、対象空間TSに運転中の空調(冷媒)系統が複数あるか否かを判定する(S34)。制御装置20は、例えば、ユーザが入力した、いずれの空調(冷媒)系統を運転するかを示すデータを受信することにより、運転中の空調(冷媒)系統が複数あるか否かを判定する。 First, in step S31, the control device 20 acquires operating data during cooling operation from multiple sensors, which are detection devices. Next, the control device 20 calculates the air conditioning processing capacity (generated air conditioning load) (S32). Next, the control device 20 determines the ratio of the air conditioning processing capacity to the rated capacity of the air conditioner 1 = [air conditioning processing capacity (air conditioning load) / rated capacity] (S33). Next, the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS (S34). The control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation, for example, by receiving data input by the user indicating which air conditioning (refrigerant) system is to be operated.
 制御装置20は、S34において、対象空間TSに運転中の空調(冷媒)系統が複数ない(1つの空調(冷媒)系統のみ運転している)と判定した場合(S34のNO)、空調処理能力(空調負荷)/定格能力≦α1となるか否かを判定する(S35)。α1は、ユーザにより設定可能な冷房運転中に省エネルギー制御とするか否かの判定をするための任意の設定値である。制御装置20は、S35において、空調処理能力(空調負荷)/定格能力>α1と判定した場合(S35のNO)、通常運転である第1モードで圧縮機2を制御するように設定し(S37)、処理をサブルーチンからメインルーチンに戻す。第1モードは、猶予期間β1が設定されているモードである。 If the control device 20 determines in S34 that there are not multiple air conditioning (refrigerant) systems in operation in the target space TS (only one air conditioning (refrigerant) system is in operation) (NO in S34), it determines whether or not air conditioning processing capacity (air conditioning load)/rated capacity≦α1 (S35). α1 is an arbitrary setting value that can be set by the user for determining whether or not to perform energy saving control during cooling operation. If the control device 20 determines in S35 that air conditioning processing capacity (air conditioning load)/rated capacity>α1 (NO in S35), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S37), and returns processing from the subroutine to the main routine. The first mode is a mode in which a grace period β1 is set.
 制御装置20は、S35において、空調処理能力(空調負荷)/定格能力≦α1と判定した場合(S35のYES)、省エネルギー運転である第2モードで圧縮機2を制御するように設定し(S36)、処理をサブルーチンからメインルーチンに戻す。第2モードは、猶予期間β1を設けずに、冷媒の温度を変更するモードである。ここで、S36の処理は、インテリアゾーンIZが運転中である場合を前提にし、ペリメータゾーンPZのみが運転中の場合は除外している。これは、ペリメータゾーンPZのみが運転中の場合、高空調負荷であるため、省エネルギー運転へは遷移しないようにするためである。 If the control device 20 determines in S35 that air conditioning processing capacity (air conditioning load)/rated capacity≦α1 (YES in S35), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S36), and returns processing from the subroutine to the main routine. The second mode is a mode in which the refrigerant temperature is changed without providing a grace period β1. Here, the processing of S36 is based on the premise that the interior zone IZ is in operation, and excludes the case where only the perimeter zone PZ is in operation. This is because when only the perimeter zone PZ is in operation, there is a high air conditioning load, so a transition to energy saving operation is not made.
 制御装置20は、S34において、対象空間TSに運転中の空調(冷媒)系統が複数ある(インテリアゾーンIZにおいて2つの空調(冷媒)系統が運転している)と判定した場合(S34のYES)、ペリメータゾーンPZを含む空調であるか否かを判定する(S38)。制御装置20は、例えば、ユーザが入力した、ペリメータゾーンPZの空調(冷媒)系統を運転するかを示すデータを受信することにより、ペリメータゾーンPZの空調(冷媒)系統が運転してるか否かを判定する。制御装置20は、S38において、ペリメータゾーンPZを含む空調であると判定した場合(S38のYES)、空調処理能力(空調負荷)/定格能力≦α3となるか否かを判定する(S39)。α3は、ユーザにより設定可能な冷房運転中に省エネルギー制御とするか否かの判定をするための任意の設定値である。 If the control device 20 determines in S34 that there are multiple air conditioning (refrigerant) systems in operation in the target space TS (two air conditioning (refrigerant) systems are in operation in the interior zone IZ) (YES in S34), it determines whether the air conditioning includes the perimeter zone PZ (S38). The control device 20 determines whether the air conditioning (refrigerant) system of the perimeter zone PZ is in operation, for example, by receiving data input by the user indicating whether the air conditioning (refrigerant) system of the perimeter zone PZ is in operation. If the control device 20 determines in S38 that the air conditioning includes the perimeter zone PZ (YES in S38), it determines whether air conditioning processing capacity (air conditioning load)/rated capacity≦α3 (S39). α3 is an arbitrary setting value that can be set by the user to determine whether or not to perform energy saving control during cooling operation.
 制御装置20は、S39において、空調処理能力(空調負荷)/定格能力>α3と判定した場合(S39のNO)、通常運転である第1モードで圧縮機2を制御するように設定し(S41)、処理をサブルーチンからメインルーチンに戻す。制御装置20は、S39において、空調処理能力(空調負荷)/定格能力≦α3と判定した場合(S39のYES)、省エネルギー運転である第2モードで圧縮機2を制御するように設定し(S40)、処理をサブルーチンからメインルーチンに戻す。 If the control device 20 determines in S39 that air conditioning processing capacity (air conditioning load)/rated capacity>α3 (NO in S39), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S41), and returns processing from the subroutine to the main routine. If the control device 20 determines in S39 that air conditioning processing capacity (air conditioning load)/rated capacity≦α3 (YES in S39), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S40), and returns processing from the subroutine to the main routine.
 制御装置20は、S38において、ペリメータゾーンPZを含まない空調であると判定した場合(S38のNO)、空調処理能力(空調負荷)/定格能力≦α2となるか否かを判定する(S42)。α2は、ユーザにより設定可能な冷房運転中に省エネルギー制御とするか否かの判定をするための任意の設定値である。 If the control device 20 determines in S38 that the air conditioning does not include the perimeter zone PZ (NO in S38), it determines whether or not the air conditioning processing capacity (air conditioning load)/rated capacity is less than or equal to α2 (S42). α2 is an arbitrary setting value that can be set by the user to determine whether or not to perform energy saving control during cooling operation.
 制御装置20は、S42おいて、空調処理能力(空調負荷)/定格能力>α2と判定した場合(S42のNO)、通常運転である第1モードで圧縮機2を制御するように設定し(S44)、処理をサブルーチンからメインルーチンに戻す。制御装置20は、S42において、空調処理能力(空調負荷)/定格能力≦α2と判定した場合(S42のYES)、省エネルギー運転である第2モードで圧縮機2を制御するように設定し(S43)、処理をサブルーチンからメインルーチンに戻す。 If the control device 20 determines in S42 that air conditioning processing capacity (air conditioning load)/rated capacity>α2 (NO in S42), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S44), and returns processing from the subroutine to the main routine. If the control device 20 determines in S42 that air conditioning processing capacity (air conditioning load)/rated capacity≦α2 (YES in S42), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S43), and returns processing from the subroutine to the main routine.
 実施の形態2の空気調和装置1における空調処理能力の比率の判定値は、α3<α1<α2と設定される。例えば、α1は0.7であり、α2は0.9であり、α3は0.6である。ここで、αの値が大きいということは空調処理能力に余裕があるということである。一方、αの値が小さいということは空調処理能力に余裕がなく素早く温度を変化させる必要があるということである。図8の処理において、制御装置20は、対象空間TSに運転中の空調(冷媒)系統が複数ない場合(インテリアゾーンIZにおいて1つの空調(冷媒)系統が運転中の場合)、中程度の閾値としてα1を用いた第1モードと第2モードとの制御の切替えを行う。また、図8の処理において、制御装置20は、対象空間TSに運転中の空調(冷媒)系統が複数ある場合(インテリアゾーンIZにおいて2つの空調(冷媒)系統が運転中の場合)は、ペリメータゾーンPZの空調(冷媒)系統が運転中か否かの判定を実行する。 The judgment value of the ratio of the air conditioning processing capacity in the air conditioning device 1 of the second embodiment is set as α3<α1<α2. For example, α1 is 0.7, α2 is 0.9, and α3 is 0.6. Here, a large value of α means that there is a margin in the air conditioning processing capacity. On the other hand, a small value of α means that there is no margin in the air conditioning processing capacity and the temperature needs to be changed quickly. In the process of FIG. 8, when there are not multiple air conditioning (refrigerant) systems in operation in the target space TS (when one air conditioning (refrigerant) system is in operation in the interior zone IZ), the control device 20 switches between the first mode and the second mode using α1 as a medium threshold. Also, in the process of FIG. 8, when there are multiple air conditioning (refrigerant) systems in operation in the target space TS (when two air conditioning (refrigerant) systems are in operation in the interior zone IZ), the control device 20 executes a judgment as to whether the air conditioning (refrigerant) system in the perimeter zone PZ is in operation.
 図8の処理において、制御装置20は、ペリメータゾーンPZの空調(冷媒)系統が運転中の場合は、素早い温度変化を行うため閾値を強化し、α1よりも低いα3を閾値として用いた第1モードと第2モードとの制御の切替えを行う。一方、制御装置20は、ペリメータゾーンPZの空調(冷媒)系統が運転中でない場合は、閾値を緩和し、α1よりも高いα2を閾値として用いた第1モードと第2モードとの制御の切替えを行う。 In the process of FIG. 8, when the air conditioning (refrigerant) system of the perimeter zone PZ is in operation, the control device 20 strengthens the threshold to perform a quick temperature change, and switches between the first and second modes of control using α3, which is lower than α1, as the threshold. On the other hand, when the air conditioning (refrigerant) system of the perimeter zone PZ is not in operation, the control device 20 relaxes the threshold, and switches between the first and second modes of control using α2, which is higher than α1, as the threshold.
 このように、空気調和装置1は、空調負荷率が低い空気調和装置1を用いた場合に省エネルギー効果を得ることが可能であるとともに、対象空間TSを複数の空調(冷媒)系統により空調することを考慮した運転が可能である。さらに、空気調和装置1は、ペリメータゾーンPZの空調(冷媒)系統が運転中か否かにより異なる閾値を用いて第1モードと第2モードとの制御の切替えを行うため、ペリメータゾーンPZの空調(冷媒)系統を考慮した運転が可能である。 In this way, the air conditioning device 1 can achieve energy conservation effects when an air conditioning device 1 with a low air conditioning load factor is used, and can be operated with consideration given to air conditioning the target space TS with multiple air conditioning (refrigerant) systems. Furthermore, the air conditioning device 1 switches between the first and second control modes using different thresholds depending on whether the air conditioning (refrigerant) system of the perimeter zone PZ is in operation, so can be operated with consideration given to the air conditioning (refrigerant) system of the perimeter zone PZ.
 なお、暖房運転中は、図2に示す四方弁3を点線側に切り換えることにより、室内熱交換器6が凝縮器として機能し、室外熱交換器4が蒸発器として機能する。暖房運中は、上述したように冷房運転中と比較し温度の関係が逆である。制御装置20は、暖房運転中においてS31からS44の処理に対応する処理を冷房運転中と同様に実行する。 During heating operation, the four-way valve 3 shown in FIG. 2 is switched to the dotted line side, so that the indoor heat exchanger 6 functions as a condenser and the outdoor heat exchanger 4 functions as an evaporator. During heating operation, the temperature relationship is reversed compared to cooling operation, as described above. During heating operation, the control device 20 executes the processes corresponding to S31 to S44 in the same way as during cooling operation.
 実施の形態3.
 実施の形態3の空気調和装置1は、実施の形態1と比較し、対象空間TSにおいて壁で閉鎖された領域が設けられている点が異なる。以下では、実施の形態1と異なる部分を中心に説明し、実施の形態1と同様の構成については説明を省略する。図9は、実施の形態3における対象空間TS内の室内機11の配置を示す図である。実施の形態3の対象空間TSは、壁で閉鎖された領域KSが3部屋設けられている。領域KSは、第3空調(冷媒)系統としてそれぞれの部屋で独立した空調(冷媒)系統が配置されている。領域KSは、例えば、ビルにおける会議室のような部屋を想定している。
Embodiment 3.
The air conditioning device 1 of the third embodiment differs from the first embodiment in that an area closed by a wall is provided in the target space TS. The following mainly describes the parts that are different from the first embodiment, and the description of the same configuration as the first embodiment is omitted. FIG. 9 is a diagram showing the arrangement of the indoor units 11 in the target space TS in the third embodiment. The target space TS of the third embodiment is provided with three areas KS closed by walls. In the areas KS, an independent air conditioning (refrigerant) system is provided in each room as a third air conditioning (refrigerant) system. The areas KS are assumed to be, for example, a room such as a conference room in a building.
 図9に示すように、対象空間TS内において壁で閉鎖されていない領域には、空調(冷媒)系統202Aと空調(冷媒)系統202Bとから構成される第4空調(冷媒)系統が配置されている。なお、空調(冷媒)系統202Aと空調(冷媒)系統202Bとが配置される領域も実際は建物全体として見れば壁で閉鎖されていると言えるが、以下では壁で閉鎖された領域として説明する。領域KSは、1つの空調(冷媒)系統のみ設けられるようにしてもよいし、空調(冷媒)系統の数は適宜変更可能である。 As shown in FIG. 9, a fourth air conditioning (refrigerant) system consisting of air conditioning (refrigerant) system 202A and air conditioning (refrigerant) system 202B is disposed in an area within target space TS that is not closed off by a wall. Note that the area in which air conditioning (refrigerant) system 202A and air conditioning (refrigerant) system 202B are disposed can also be said to be closed off by a wall when viewed from the perspective of the building as a whole, but below it will be described as an area closed off by a wall. Area KS may be provided with only one air conditioning (refrigerant) system, and the number of air conditioning (refrigerant) systems can be changed as appropriate.
 次に、制御装置20が実行する制御内容について説明する。図10は、実施の形態3における冷房運転中の制御を示すフローチャートである。図10のフローチャートの処理は、制御装置20の制御におけるメインルーチンから、サブルーチンとして繰返し呼び出されて実行される。図10では、冷房運転中の処理について説明する。 Next, the control contents executed by the control device 20 will be described. FIG. 10 is a flowchart showing the control during cooling operation in embodiment 3. The process of the flowchart in FIG. 10 is repeatedly called and executed as a subroutine from the main routine in the control of the control device 20. In FIG. 10, the process during cooling operation will be described.
 制御装置20は、まずステップS51において、検出装置である複数のセンサから冷房運転中の運転データを取得する。次いで、制御装置20は、空調処理能力(発生する空調負荷)を算出する(S52)。次いで、制御装置20は、空気調和装置1が備える定格能力に対する空調処理能力の比率=[空調処理能力(空調負荷)/定格能力]を求める(S53)。次いで、制御装置20は、対象空間TSに運転中の空調(冷媒)系統が複数あるか否かを判定する(S54)。制御装置20は、例えば、ユーザが入力した、いずれの空調(冷媒)系統を運転するかを示すデータを受信することにより、運転中の空調(冷媒)系統が複数あるか否かを判定する。 First, in step S51, the control device 20 acquires operating data during cooling operation from multiple sensors, which are detection devices. Next, the control device 20 calculates the air conditioning processing capacity (generated air conditioning load) (S52). Next, the control device 20 determines the ratio of the air conditioning processing capacity to the rated capacity of the air conditioner 1 = [air conditioning processing capacity (air conditioning load) / rated capacity] (S53). Next, the control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS (S54). The control device 20 determines whether there are multiple air conditioning (refrigerant) systems in operation, for example, by receiving data input by the user indicating which air conditioning (refrigerant) system is to be operated.
 制御装置20は、S54において、対象空間TSに運転中の空調(冷媒)系統が複数ない(1つの空調(冷媒)系統のみ運転している)と判定した場合(S54のNO)、空調処理能力(空調負荷)/定格能力≦α1となるか否かを判定する(S55)。α1は、ユーザにより設定可能な冷房運転中に省エネルギー制御とするか否かの判定をするための任意の設定値である。制御装置20は、S55において、空調処理能力(空調負荷)/定格能力>α1と判定した場合(S55のNO)、通常運転である第1モードで圧縮機2を制御するように設定し(S57)、処理をサブルーチンからメインルーチンに戻す。第1モードは、猶予期間β1が設定されているモードである。 If the control device 20 determines in S54 that there are not multiple air conditioning (refrigerant) systems in operation in the target space TS (only one air conditioning (refrigerant) system is in operation) (NO in S54), it determines whether or not air conditioning processing capacity (air conditioning load)/rated capacity≦α1 (S55). α1 is an arbitrary setting value that can be set by the user for determining whether or not to perform energy saving control during cooling operation. If the control device 20 determines in S55 that air conditioning processing capacity (air conditioning load)/rated capacity>α1 (NO in S55), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S57), and returns processing from the subroutine to the main routine. The first mode is a mode in which a grace period β1 is set.
 制御装置20は、S55において、空調処理能力(空調負荷)/定格能力≦α1と判定した場合(S55のYES)、省エネルギー運転である第2モードで圧縮機2を制御するように設定し(S56)、処理をサブルーチンからメインルーチンに戻す。第2モードは、猶予期間β1を設けずに、冷媒の温度を変更するモードである。ここで、S54の処理は、壁で閉鎖されていない領域にある第4空調(冷媒)系統が運転中である場合を前提にし、領域KSに配置される第3空調(冷媒)系統のみが運転中の場合は除外している。 If the control device 20 determines in S55 that air conditioning processing capacity (air conditioning load)/rated capacity≦α1 (YES in S55), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S56), and returns the process from the subroutine to the main routine. The second mode is a mode in which the refrigerant temperature is changed without providing a grace period β1. Here, the process of S54 is based on the premise that the fourth air conditioning (refrigerant) system in the area not enclosed by a wall is in operation, and excludes the case where only the third air conditioning (refrigerant) system located in area KS is in operation.
 制御装置20は、S54において、対象空間TSに運転中の空調(冷媒)系統が複数ある(壁で閉鎖されていない領域において2つの空調(冷媒)系統が運転している)と判定した場合(S54のYES)、会議室のような壁で閉鎖された領域KSを含む空調であるか否かを判定する(S58)。制御装置20は、例えば、ユーザが入力した、領域KSの空調(冷媒)系統を運転するかを示すデータを受信することにより、領域KSの空調(冷媒)系統が運転してるか否かを判定する。制御装置20は、S58において、会議室のような壁で閉鎖された領域KSを含む空調であると判定した場合(S58のYES)、空調処理能力(空調負荷)/定格能力≦α3となるか否かを判定する(S59)。α3は、ユーザにより設定可能な冷房運転中に省エネルギー制御とするか否かの判定をするための任意の設定値である。 If the control device 20 determines in S54 that there are multiple air conditioning (refrigerant) systems in operation in the target space TS (two air conditioning (refrigerant) systems are operating in an area not enclosed by a wall) (YES in S54), it determines whether the air conditioning includes an area KS enclosed by a wall such as a conference room (S58). The control device 20 determines whether the air conditioning (refrigerant) system of the area KS is operating by receiving data input by the user, for example, indicating whether the air conditioning (refrigerant) system of the area KS is operating. If the control device 20 determines in S58 that the air conditioning includes an area KS enclosed by a wall such as a conference room (YES in S58), it determines whether air conditioning processing capacity (air conditioning load)/rated capacity≦α3 (S59). α3 is an arbitrary setting value that can be set by the user for determining whether to perform energy saving control during cooling operation.
 制御装置20は、S59において、空調処理能力(空調負荷)/定格能力>α3と判定した場合(S59のNO)、通常運転である第1モードで圧縮機2を制御するように設定し(S61)、処理をサブルーチンからメインルーチンに戻す。制御装置20は、S59において、空調処理能力(空調負荷)/定格能力≦α3と判定した場合(S59のYES)、省エネルギー運転である第2モードで圧縮機2を制御するように設定し(S60)、処理をサブルーチンからメインルーチンに戻す。 If the control device 20 determines in S59 that air conditioning processing capacity (air conditioning load)/rated capacity>α3 (NO in S59), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S61), and returns processing from the subroutine to the main routine. If the control device 20 determines in S59 that air conditioning processing capacity (air conditioning load)/rated capacity≦α3 (YES in S59), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S60), and returns processing from the subroutine to the main routine.
 制御装置20は、S58において、会議室のような壁で閉鎖された領域KSを含まない空調であると判定した場合(S58のNO)、空調処理能力(空調負荷)/定格能力≦α2となるか否かを判定する(S62)。α2は、ユーザにより設定可能な冷房運転中に省エネルギー制御とするか否かの判定をするための任意の設定値である。 If the control device 20 determines in S58 that the air conditioning does not include an area KS enclosed by walls such as a conference room (NO in S58), it determines whether or not the air conditioning processing capacity (air conditioning load)/rated capacity is less than or equal to α2 (S62). α2 is an arbitrary setting value that can be set by the user to determine whether or not to perform energy saving control during cooling operation.
 制御装置20は、S62おいて、空調処理能力(空調負荷)/定格能力>α2と判定した場合(S62のNO)、通常運転である第1モードで圧縮機2を制御するように設定し(S64)、処理をサブルーチンからメインルーチンに戻す。制御装置20は、S62において、空調処理能力(空調負荷)/定格能力≦α2と判定した場合(S62のYES)、省エネルギー運転である第2モードで圧縮機2を制御するように設定し(S63)、処理をサブルーチンからメインルーチンに戻す。 If the control device 20 determines in S62 that air conditioning processing capacity (air conditioning load)/rated capacity>α2 (NO in S62), it sets the compressor 2 to be controlled in the first mode, which is normal operation (S64), and returns processing from the subroutine to the main routine. If the control device 20 determines in S62 that air conditioning processing capacity (air conditioning load)/rated capacity≦α2 (YES in S62), it sets the compressor 2 to be controlled in the second mode, which is energy saving operation (S63), and returns processing from the subroutine to the main routine.
 実施の形態3の空気調和装置1における空調処理能力の比率の判定値は、α3<α1<α2と設定される。例えば、α1は0.7であり、α2は0.8であり、α3は0.6である。ここで、αの値が大きいということは空調処理能力に余裕があるということである。一方、αの値が小さいということは空調処理能力に余裕がなく素早く温度を変化させる必要があるということである。図10の処理において、制御装置20は、対象空間TSに運転中の空調(冷媒)系統が複数ない場合(壁で閉鎖されていない領域において1つの空調(冷媒)系統が運転中の場合)、中程度の閾値としてα1を用いた第1モードと第2モードとの制御の切替えを行う。また、図10の処理において、制御装置20は、対象空間TSに運転中の空調(冷媒)系統が複数ある場合(壁で閉鎖されていない領域において2つの空調(冷媒)系統が運転中の場合)は、会議室のような壁で閉鎖された領域KSの空調(冷媒)系統が運転中か否かの判定を実行する。 The judgment value of the ratio of the air conditioning processing capacity in the air conditioning device 1 of the third embodiment is set as α3<α1<α2. For example, α1 is 0.7, α2 is 0.8, and α3 is 0.6. Here, a large value of α means that there is a margin in the air conditioning processing capacity. On the other hand, a small value of α means that there is no margin in the air conditioning processing capacity and it is necessary to change the temperature quickly. In the process of FIG. 10, when there are not multiple air conditioning (refrigerant) systems in operation in the target space TS (when one air conditioning (refrigerant) system is in operation in an area not closed by a wall), the control device 20 switches between the first mode and the second mode using α1 as a medium threshold. Also, in the process of FIG. 10, when there are multiple air conditioning (refrigerant) systems in operation in the target space TS (when two air conditioning (refrigerant) systems are in operation in an area not closed by a wall), the control device 20 executes a judgment as to whether or not the air conditioning (refrigerant) system in the area KS closed by a wall such as a conference room is in operation.
 図10の処理において、制御装置20は、会議室のような壁で閉鎖された領域KSの空調(冷媒)系統が運転中の場合は、素早い温度変化を行うため閾値を強化し、α1よりも低いα3を閾値として用いた第1モードと第2モードとの制御の切替えを行う。一方、制御装置20は、会議室のような壁で閉鎖された領域KSの空調(冷媒)系統が運転中でない場合は、閾値を緩和し、α1よりも高いα2を閾値として用いた第1モードと第2モードとの制御の切替えを行う。 In the process of FIG. 10, when the air conditioning (refrigerant) system of an area KS enclosed by walls such as a conference room is in operation, the control device 20 strengthens the threshold to achieve rapid temperature changes, and switches between the first and second modes of control using α3, which is lower than α1, as the threshold. On the other hand, when the air conditioning (refrigerant) system of an area KS enclosed by walls such as a conference room is not in operation, the control device 20 relaxes the threshold, and switches between the first and second modes of control using α2, which is higher than α1, as the threshold.
 このように、空気調和装置1は、空調負荷率が低い空気調和装置1を用いた場合に省エネルギー効果を得ることが可能であるとともに、対象空間TSを複数の空調(冷媒)系統により空調することを考慮した運転が可能である。さらに、空気調和装置1は、会議室のような壁で閉鎖された領域KSの空調(冷媒)系統が運転中か否かにより異なる閾値を用いて第1モードと第2モードとの制御の切替えを行うため、会議室のような壁で閉鎖された領域KSの空調(冷媒)系統を考慮した運転が可能である。 In this way, the air conditioning device 1 can achieve energy conservation effects when an air conditioning device 1 with a low air conditioning load factor is used, and can be operated with consideration given to air conditioning the target space TS with multiple air conditioning (refrigerant) systems. Furthermore, the air conditioning device 1 switches between the first and second modes of control using different thresholds depending on whether the air conditioning (refrigerant) system of an area KS enclosed by walls, such as a conference room, is in operation, so it can be operated with consideration given to the air conditioning (refrigerant) system of an area KS enclosed by walls, such as a conference room.
 なお、暖房運転中は、図2に示す四方弁3を点線側に切り換えることにより、室内熱交換器6が凝縮器として機能し、室外熱交換器4が蒸発器として機能する。暖房運中は、上述したように冷房運転中と比較し温度の関係が逆である。制御装置20は、暖房運転中においてS51からS64の処理に対応する処理を冷房運転中と同様に実行する。 During heating operation, the four-way valve 3 shown in FIG. 2 is switched to the dotted line side, so that the indoor heat exchanger 6 functions as a condenser and the outdoor heat exchanger 4 functions as an evaporator. During heating operation, the temperature relationship is reversed compared to cooling operation, as described above. During heating operation, the control device 20 executes the processes corresponding to S51 to S64 in the same way as during cooling operation.
 実施の形態4.
 実施の形態4の空気調和システム100は、空気調和装置1がネットワーク9を介してサーバ装置40と接続される点が異なる。図11は、実施の形態4における空気調和システム100の構成を示す概略図である。図11に示すように、サーバ装置40は、CPU(Central Processing Unit)41と、メモリ42(ROM(Read Only Memory)およびRAM(Random Access Memory))と、各種信号を入出力するための図示しない入出力装置等を含んで構成される。CPU41は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、サーバ装置40の処理手順が記されたプログラムである。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
Embodiment 4.
The air conditioning system 100 of the fourth embodiment is different in that the air conditioning device 1 is connected to the server device 40 via a network 9. FIG. 11 is a schematic diagram showing the configuration of the air conditioning system 100 in the fourth embodiment. As shown in FIG. 11, the server device 40 is configured to include a CPU (Central Processing Unit) 41, a memory 42 (ROM (Read Only Memory) and RAM (Random Access Memory)), and an input/output device (not shown) for inputting and outputting various signals. The CPU 41 expands a program stored in the ROM into the RAM or the like and executes it. The program stored in the ROM is a program in which the processing procedure of the server device 40 is written. This control is not limited to processing by software, and can also be processed by dedicated hardware (electronic circuitry).
 空気調和システム100においては、空気調和装置1の制御装置20において実行される処理の一部がサーバ装置40において実行される。以下に、空気調和装置1の制御装置20およびサーバ装置40が実行する処理について説明する。制御装置20は、複数のセンサが検出した冷媒回路10A,10Bの運転中の検出データをサーバ装置40へ送信する。サーバ装置40は、図6に示した処理フロー等により、受信した検出データを基に空気調和装置1が発揮している空調処理能力を演算する。サーバ装置40は、ユーザが入力した、いずれの空調(冷媒)系統を運転するかを示すデータを受信することにより、対象空間TSに運転中の空調(冷媒)系統が複数あるか否かを判定する。 In the air conditioning system 100, some of the processing executed by the control device 20 of the air conditioning device 1 is executed by the server device 40. The processing executed by the control device 20 of the air conditioning device 1 and the server device 40 is described below. The control device 20 transmits detection data during operation of the refrigerant circuits 10A, 10B detected by multiple sensors to the server device 40. The server device 40 calculates the air conditioning processing capacity exerted by the air conditioning device 1 based on the received detection data using the processing flow shown in Figure 6 or the like. The server device 40 determines whether there are multiple air conditioning (refrigerant) systems in operation in the target space TS by receiving data input by the user indicating which air conditioning (refrigerant) system is to be operated.
 サーバ装置40は、対象空間TSに運転中の空調(冷媒)系統が複数ある場合と、ない場合とで異なる閾値により演算した空調処理能力の、空気調和装置1の定格能力に対する比率(空調処理能力(空調負荷)/定格能力)が閾値以下であるか否かの判定を実行する。サーバ装置40は、比率が予め設定した閾値よりも大きい場合、各圧縮機2を第1モードで運転する制御データを作成し、比率が閾値以下の場合、各圧縮機2を第2モードで運転する制御データを作成する。 The server device 40 determines whether the ratio (air conditioning processing capacity (air conditioning load)/rated capacity) of the air conditioning capacity calculated using different thresholds for when there are multiple air conditioning (refrigerant) systems in operation in the target space TS and when there are not is equal to or less than the threshold. If the ratio is greater than a preset threshold, the server device 40 creates control data to operate each compressor 2 in the first mode, and if the ratio is equal to or less than the threshold, creates control data to operate each compressor 2 in the second mode.
 サーバ装置40は、作成した制御データを制御装置20へ送信する。制御装置20は、受信した制御データを基に、圧縮機2を第1モードまたは第2モードで運転するように制御する。これによって、制御装置20の処理負担を軽減することができる。 The server device 40 transmits the created control data to the control device 20. Based on the received control data, the control device 20 controls the compressor 2 to operate in the first mode or the second mode. This reduces the processing load on the control device 20.
 <変形例>
 空気調和装置1においては、制御装置20が圧縮機2の回転速度を制御することにより第1モードあるいは第2モードでの制御を実行する場合を説明した。制御装置20は、圧縮機2の制御とともに、ファン8の回転速度を制御するようにしてもよい。制御装置20は、冷房運転中において、ファン8の回転速度を低下させることにより室内熱交換器6を流れる冷媒の温度の目標値を第1温度から第1温度よりも高い第2温度へと変更する制御を実行してもよい。制御装置20は、暖房運転中において、ファン8の回転速度を低下させることにより室内熱交換器6を流れる冷媒の温度の目標値を第1温度から第1温度よりも低い第2温度へと変更する制御を実行してもよい。空気調和装置1は、さらに室外機12のファン7を用いて目標温度を変更する制御を実行してもよい。空気調和装置1は、ファン7,8の制御のみで第1モードあるいは第2モードの制御を実行してもよい。
<Modification>
In the air conditioner 1, the control device 20 controls the rotation speed of the compressor 2 to execute control in the first mode or the second mode. The control device 20 may control the rotation speed of the fan 8 in addition to the control of the compressor 2. The control device 20 may execute control to change the target value of the temperature of the refrigerant flowing through the indoor heat exchanger 6 from a first temperature to a second temperature higher than the first temperature by reducing the rotation speed of the fan 8 during cooling operation. The control device 20 may execute control to change the target value of the temperature of the refrigerant flowing through the indoor heat exchanger 6 from a first temperature to a second temperature lower than the first temperature by reducing the rotation speed of the fan 8 during heating operation. The air conditioner 1 may further execute control to change the target temperature using the fan 7 of the outdoor unit 12. The air conditioner 1 may execute control to execute the first mode or the second mode only by controlling the fans 7 and 8.
 空気調和装置1および空気調和システム100は、第2モードにおいて猶予期間を設けない場合を説明した。しかしながら、空気調和装置1および空気調和システム100は、第2モードにおいて第1モードよりも短い猶予期間を設けるようにしてもよい。 The air conditioning device 1 and the air conditioning system 100 have been described as not providing a grace period in the second mode. However, the air conditioning device 1 and the air conditioning system 100 may also provide a grace period in the second mode that is shorter than that in the first mode.
 <まとめ>
 本開示は、対象空間TSを複数の空調系統により空調する空気調和装置1に関する。複数の空調系統の各々は、対象空間TS外に配置される室外熱交換器4と、対象空間TS内に配置される室内熱交換器6と、膨張弁5と、圧縮機2とにより構成される冷媒回路10A,10Bを有する。各空調系統における冷媒回路10A,10Bにおいて、冷房運転中に圧縮機2、室外熱交換器4、膨張弁5、室内熱交換器6、圧縮機2の順に冷媒が流れる。空気調和装置1は、各冷媒回路10A,10Bの運転中のデータを検出する検出装置としての複数のセンサと、各冷媒回路10A,10Bを制御する制御装置と20、を備える。制御装置20は、検出装置が検出したデータから空気調和装置1が発揮している空調処理能力を演算し、演算した空調処理能力の、空気調和装置1の定格能力に対する比率が予め設定した閾値よりも大きい場合、各圧縮機2を第1モードで運転するように制御し、比率が閾値以下の場合、各圧縮機2を第2モードで運転するように制御する。第1モードは、各圧縮機2の運転開始から一定の猶予期間経過後に対応する室内熱交換器6を流れる冷媒の温度の目標値を第1温度から第1温度とは異なる第2温度へ変更する制御を行なう運転モードである。第2モードは、各圧縮機2の運転開始から第1モードよりも短い猶予期間後に、対応する室内熱交換器6を流れる冷媒の温度の目標値を第1温度から第2温度へ変更する制御を行なう運転モードである。制御装置20は、複数の空調系統のうち特定数未満の空調系統が運転中の場合、閾値として第1閾値を用いた制御を実行し、特定数以上の空調系統が運転中の場合、閾値として第1閾値よりも大きい第2閾値を用いた制御を実行する。
<Summary>
The present disclosure relates to an air conditioner 1 that conditions a target space TS using multiple air conditioning systems. Each of the multiple air conditioning systems has a refrigerant circuit 10A, 10B that is composed of an outdoor heat exchanger 4 arranged outside the target space TS, an indoor heat exchanger 6 arranged inside the target space TS, an expansion valve 5, and a compressor 2. In the refrigerant circuit 10A, 10B in each air conditioning system, refrigerant flows through the compressor 2, the outdoor heat exchanger 4, the expansion valve 5, the indoor heat exchanger 6, and the compressor 2 in this order during cooling operation. The air conditioner 1 includes multiple sensors as detection devices that detect data during operation of each refrigerant circuit 10A, 10B, and a control device 20 that controls each refrigerant circuit 10A, 10B. The control device 20 calculates the air conditioning capacity of the air conditioner 1 from the data detected by the detection device, and controls each compressor 2 to operate in a first mode when the ratio of the calculated air conditioning capacity to the rated capacity of the air conditioner 1 is greater than a preset threshold value, and controls each compressor 2 to operate in a second mode when the ratio is equal to or less than the threshold value. The first mode is an operation mode in which control is performed to change the target value of the temperature of the refrigerant flowing through the corresponding indoor heat exchanger 6 from a first temperature to a second temperature different from the first temperature after a certain grace period has elapsed since the start of operation of each compressor 2. The second mode is an operation mode in which control is performed to change the target value of the temperature of the refrigerant flowing through the corresponding indoor heat exchanger 6 from a first temperature to a second temperature after a grace period shorter than that of the first mode after the start of operation of each compressor 2. When less than a specific number of air conditioning systems among the multiple air conditioning systems are in operation, the control device 20 performs control using a first threshold value as a threshold value, and when a specific number or more of air conditioning systems are in operation, the control device 20 performs control using a second threshold value greater than the first threshold value as a threshold value.
 好ましくは、複数の空調系統は、対象空間TS内において対象空間TSと対象空間TS外との境界に近い第1領域に対応する領域がペリメータゾーンPZに配置される第1空調系統と、第1領域(ペリメータゾーンPZ)の内側の第2領域に対応するインテリアゾーンIZに配置される第2空調系統と、を含む。制御装置20は、第1空調系統および第2空調系統の冷媒回路が運転していると判定した場合、第1閾値以下の第3閾値を用いた制御を実行し、第2空調系統の冷媒回路のみが運転していると判定した場合、第2閾値を用いた制御を実行する。 Preferably, the multiple air conditioning systems include a first air conditioning system in which an area corresponding to a first area close to the boundary between the target space TS and the outside of the target space TS is arranged in a perimeter zone PZ within the target space TS, and a second air conditioning system arranged in an interior zone IZ corresponding to a second area inside the first area (perimeter zone PZ). When the control device 20 determines that the refrigerant circuits of the first air conditioning system and the second air conditioning system are operating, it executes control using a third threshold value that is equal to or lower than the first threshold value, and when it determines that only the refrigerant circuit of the second air conditioning system is operating, it executes control using the second threshold value.
 好ましくは、複数の空調系統は、対象空間TS内において壁で閉鎖された領域KSに含まれる第3空調系統と、対象空間TSにおいて壁で閉鎖された領域KSを含まない第4空調系統と、を含む。制御装置20は、第3空調系統および第4空調系統の冷媒回路が運転していると判定した場合、第1閾値以下の第3閾値を用いた制御を実行し、第4空調系統の冷媒回路のみが運転していると判定した場合、第2閾値を用いた制御を実行する。 Preferably, the multiple air conditioning systems include a third air conditioning system included in an area KS enclosed by a wall in the target space TS, and a fourth air conditioning system that does not include an area KS enclosed by a wall in the target space TS. When the control device 20 determines that the refrigerant circuits of the third and fourth air conditioning systems are operating, it executes control using a third threshold value that is equal to or lower than the first threshold value, and when it determines that only the refrigerant circuit of the fourth air conditioning system is operating, it executes control using the second threshold value.
 好ましくは、第2温度は、第1温度よりも高い。各室内熱交換器6は、冷房運転中において蒸発器として機能する。制御装置20は、第2モードの冷房運転中において、各室内熱交換器6を流れる冷媒の温度の目標値を第1温度から第2温度へと変更する制御を実行する。 Preferably, the second temperature is higher than the first temperature. Each indoor heat exchanger 6 functions as an evaporator during cooling operation. During cooling operation in the second mode, the control device 20 executes control to change the target value of the temperature of the refrigerant flowing through each indoor heat exchanger 6 from the first temperature to the second temperature.
 好ましくは、複数の空調系統の各々は、室内熱交換器6を流れる冷媒と熱交換する空気を供給するファン8をさらに備える。制御装置20は、各ファン8の回転速度を低下させることにより、冷媒の温度の目標値を第1温度から第2温度へと変更する制御を実行する。 Preferably, each of the multiple air conditioning systems further includes a fan 8 that supplies air for heat exchange with the refrigerant flowing through the indoor heat exchanger 6. The control device 20 executes control to change the target value of the refrigerant temperature from the first temperature to the second temperature by reducing the rotation speed of each fan 8.
 好ましくは、第2温度は、第1温度よりも低い。各室内熱交換器6は、暖房運転中において凝縮器として機能する。制御装置20は、第2モードの暖房運転中において、各室内熱交換器6を流れる冷媒の温度の目標値を第1温度から第2温度へと変更する制御を実行する。 Preferably, the second temperature is lower than the first temperature. Each indoor heat exchanger 6 functions as a condenser during heating operation. During heating operation in the second mode, the control device 20 executes control to change the target value of the temperature of the refrigerant flowing through each indoor heat exchanger 6 from the first temperature to the second temperature.
 好ましくは、複数の空調系統の各々は、室内熱交換器6を流れる冷媒と熱交換する空気を供給するファン8をさらに備える。制御装置20は、各ファン8の回転速度を低下させることにより、冷媒の温度の目標値を第1温度から第2温度へと変更する制御を実行する。 Preferably, each of the multiple air conditioning systems further includes a fan 8 that supplies air for heat exchange with the refrigerant flowing through the indoor heat exchanger 6. The control device 20 executes control to change the target value of the refrigerant temperature from the first temperature to the second temperature by reducing the rotation speed of each fan 8.
 本開示の空気調和システム100は、対象空間TSを複数の空調系統により空調する空気調和装置1と、ネットワーク9を介して空気調和装置1と接続されるサーバ装置40と、を備える。複数の空調系統の各々は、対象空間TS外に配置される室外熱交換器4と、対象空間TS内に配置される室内熱交換器6と、膨張弁5と、圧縮機2とにより構成される冷媒回路10A,10Bを有する。各空調系統における冷媒回路10A,10Bにおいて、冷房運転中に圧縮機2、室外熱交換器4、膨張弁5、室内熱交換器6、圧縮機2の順に冷媒が流れる。空気調和装置1は、各冷媒回路10A,10Bの運転中のデータを検出する検出装置としての複数のセンサと、各冷媒回路10A,10Bを制御する制御装置20と、を備える。サーバ装置40は、検出装置が検出したデータから空気調和装置1が発揮している空調処理能力を演算し、演算した空調処理能力の、空気調和装置1の定格能力に対する比率が予め設定した閾値よりも大きい場合、各圧縮機2を第1モードで運転する第1制御データを作成し、比率が閾値以下の場合、各圧縮機2を第2モードで運転する第2制御データを作成する。第1制御データは、各圧縮機2の運転開始から一定の猶予期間経過後に対応する室内熱交換器6を流れる冷媒の温度の目標値を第1温度から第1温度とは異なる第2温度へ変更する制御データである。第2制御データは、各圧縮機2の運転開始から第1モードよりも短い猶予期間後に、対応する室内熱交換器6を流れる冷媒の温度の目標値を第1温度から第2温度へ変更する制御データである。サーバ装置40は、複数の空調系統のうち特定数未満の空調系統が運転中の場合、閾値として第1閾値を用いた制御データを作成し、特定数以上の空調系統が運転中の場合、閾値として第1閾値よりも大きい第2閾値を用いた制御データを作成する。 The air conditioning system 100 of the present disclosure comprises an air conditioning apparatus 1 that conditions a target space TS using multiple air conditioning systems, and a server device 40 connected to the air conditioning apparatus 1 via a network 9. Each of the multiple air conditioning systems has a refrigerant circuit 10A, 10B composed of an outdoor heat exchanger 4 arranged outside the target space TS, an indoor heat exchanger 6 arranged within the target space TS, an expansion valve 5, and a compressor 2. In the refrigerant circuits 10A, 10B in each air conditioning system, refrigerant flows through the compressor 2, outdoor heat exchanger 4, expansion valve 5, indoor heat exchanger 6, and compressor 2 in this order during cooling operation. The air conditioning apparatus 1 comprises multiple sensors as detection devices that detect data during operation of each refrigerant circuit 10A, 10B, and a control device 20 that controls each refrigerant circuit 10A, 10B. The server device 40 calculates the air conditioning capacity of the air conditioner 1 from the data detected by the detection device, and creates first control data for operating each compressor 2 in a first mode when the ratio of the calculated air conditioning capacity to the rated capacity of the air conditioner 1 is greater than a preset threshold value, and creates second control data for operating each compressor 2 in a second mode when the ratio is equal to or less than the threshold value. The first control data is control data for changing the target value of the temperature of the refrigerant flowing through the corresponding indoor heat exchanger 6 from a first temperature to a second temperature different from the first temperature after a certain grace period has elapsed since the start of operation of each compressor 2. The second control data is control data for changing the target value of the temperature of the refrigerant flowing through the corresponding indoor heat exchanger 6 from a first temperature to a second temperature after a grace period shorter than the first mode from the start of operation of each compressor 2. The server device 40 creates control data using a first threshold value as a threshold value when less than a specific number of the multiple air conditioning systems are in operation, and creates control data using a second threshold value greater than the first threshold value as a threshold value when a specific number or more of the multiple air conditioning systems are in operation.
 このように、本開示の空気調和装置1および空気調和システム100によれば、空調負荷率が低い空気調和装置1を用いた場合に省エネルギー効果を得ることが可能であるとともに、対象空間TSを複数の空調系統により空調することを考慮した運転が可能である。 In this way, the air conditioning device 1 and air conditioning system 100 disclosed herein can achieve energy conservation effects when using an air conditioning device 1 with a low air conditioning load rate, and can also be operated in a way that takes into account the target space TS being air-conditioned by multiple air conditioning systems.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed herein should be considered in all respects as illustrative and not restrictive. The scope of the present disclosure is indicated by the claims, not by the description of the embodiments above, and is intended to include all modifications within the meaning and scope of the claims.
 1 空気調和装置、2 圧縮機、3 四方弁、4 室外熱交換器、5 膨張弁、6 室内熱交換器、7,8 ファン、9 ネットワーク、10A,10B 冷媒回路、11 室内機、12 室外機、20 制御装置、31a,31b 圧力センサ、32a,32b,33a,33b 冷媒温度センサ、40 サーバ装置、100 空気調和システム、110A,110B 室内ユニット、200A,200B,201A,201B,201C,201D,202A,202B 空調(冷媒)系統、IZ インテリアゾーン、KS 領域、PZ ペリメータゾーン、TS 対象空間。 1 air conditioning unit, 2 compressor, 3 four-way valve, 4 outdoor heat exchanger, 5 expansion valve, 6 indoor heat exchanger, 7, 8 fan, 9 network, 10A, 10B refrigerant circuit, 11 indoor unit, 12 outdoor unit, 20 control device, 31a, 31b pressure sensor, 32a, 32b, 33a, 33b refrigerant temperature sensor, 40 server device, 100 air conditioning system, 110A, 110B indoor unit, 200A, 200B, 201A, 201B, 201C, 201D, 202A, 202B air conditioning (refrigerant) system, IZ interior zone, KS area, PZ perimeter zone, TS target space.

Claims (8)

  1.  対象空間を複数の空調系統により空調する空気調和装置であって、
     前記複数の空調系統の各々は、前記対象空間外に配置される第1熱交換器と、前記対象空間内に配置される第2熱交換器と、膨張弁と、圧縮機とにより構成される冷媒回路を有し、
     各空調系統における冷媒回路において、冷房運転中に前記圧縮機、前記第1熱交換器、前記膨張弁、前記第2熱交換器、前記圧縮機の順に冷媒が流れ、
     前記空気調和装置は、
      各冷媒回路の運転中のデータを検出する検出装置と、
      各冷媒回路を制御する制御装置と、を備え、
     前記制御装置は、前記検出装置が検出したデータから前記空気調和装置が発揮している空調処理能力を演算し、演算した前記空調処理能力の、前記空気調和装置の定格能力に対する比率が予め設定した閾値よりも大きい場合、各圧縮機を第1モードで運転するように制御し、前記比率が前記閾値以下の場合、各圧縮機を第2モードで運転するように制御し、
     前記第1モードは、各圧縮機の運転開始から一定の猶予期間経過後に対応する第2熱交換器を流れる冷媒の温度の目標値を第1温度から前記第1温度とは異なる第2温度へ変更する制御を行なう運転モードであり、
     前記第2モードは、各圧縮機の運転開始から前記第1モードよりも短い猶予期間後に、対応する第2熱交換器を流れる冷媒の温度の目標値を前記第1温度から前記第2温度へ変更する制御を行なう運転モードであり、
     前記制御装置は、前記複数の空調系統のうち特定数未満の空調系統が運転中の場合、前記閾値として第1閾値を用いた制御を実行し、前記特定数以上の空調系統が運転中の場合、前記閾値として前記第1閾値よりも大きい第2閾値を用いた制御を実行する、空気調和装置。
    An air conditioning apparatus that conditions a target space using multiple air conditioning systems,
    Each of the plurality of air conditioning systems has a refrigerant circuit including a first heat exchanger arranged outside the target space, a second heat exchanger arranged within the target space, an expansion valve, and a compressor;
    In the refrigerant circuit in each air conditioning system, during cooling operation, the refrigerant flows through the compressor, the first heat exchanger, the expansion valve, the second heat exchanger, and the compressor in this order;
    The air conditioning device includes:
    A detection device for detecting data during operation of each refrigerant circuit;
    A control device for controlling each refrigerant circuit,
    The control device calculates an air conditioning processing capacity exhibited by the air conditioning device from the data detected by the detection device, and when a ratio of the calculated air conditioning processing capacity to a rated capacity of the air conditioning device is greater than a preset threshold value, controls each compressor to operate in a first mode, and when the ratio is equal to or less than the threshold value, controls each compressor to operate in a second mode;
    the first mode is an operation mode in which control is performed to change a target value of a temperature of a refrigerant flowing through a corresponding second heat exchanger after a certain grace period has elapsed since the start of operation of each compressor from a first temperature to a second temperature different from the first temperature;
    the second mode is an operation mode in which control is performed to change a target value of a temperature of the refrigerant flowing through a corresponding second heat exchanger from the first temperature to the second temperature after a grace period that is shorter than that in the first mode from the start of operation of each compressor,
    The control device executes control using a first threshold value as the threshold value when less than a specific number of the multiple air conditioning systems are in operation, and executes control using a second threshold value greater than the first threshold value as the threshold value when the specific number or more of the air conditioning systems are in operation.
  2.  前記複数の空調系統は、前記対象空間内において前記対象空間と前記対象空間外との境界に近い第1領域に配置される第1空調系統と、前記第1領域の内側の第2領域に配置される第2空調系統と、を含み、
     前記制御装置は、
      前記第1空調系統および前記第2空調系統の冷媒回路が運転していると判定した場合、前記第1閾値以下の第3閾値を用いた制御を実行し、
      前記第2空調系統の冷媒回路のみが運転していると判定した場合、前記第2閾値を用いた制御を実行する、請求項1に記載の空気調和装置。
    the plurality of air conditioning systems include a first air conditioning system arranged in a first region within the target space close to a boundary between the target space and an outside of the target space, and a second air conditioning system arranged in a second region inside the first region,
    The control device includes:
    When it is determined that the refrigerant circuits of the first air conditioning system and the second air conditioning system are operating, control is performed using a third threshold value that is equal to or lower than the first threshold value;
    The air-conditioning apparatus according to claim 1 , wherein when it is determined that only the refrigerant circuit of the second air-conditioning system is operating, control is executed using the second threshold value.
  3.  前記複数の空調系統は、前記対象空間内において壁で閉鎖された領域に含まれる第3空調系統と、前記対象空間において壁で閉鎖された領域を含まない第4空調系統と、を含み、
     前記制御装置は、
      前記第3空調系統および前記第4空調系統の冷媒回路が運転していると判定した場合、前記第1閾値以下の第3閾値を用いた制御を実行し、
      前記第4空調系統の冷媒回路のみが運転していると判定した場合、前記第2閾値を用いた制御を実行する、請求項1に記載の空気調和装置。
    The plurality of air conditioning systems include a third air conditioning system included in an area enclosed by a wall in the target space, and a fourth air conditioning system not including an area enclosed by a wall in the target space,
    The control device includes:
    When it is determined that the refrigerant circuits of the third air conditioning system and the fourth air conditioning system are operating, control is performed using a third threshold value that is equal to or lower than the first threshold value;
    The air-conditioning apparatus according to claim 1 , wherein, when it is determined that only the refrigerant circuit of the fourth air-conditioning system is operating, control using the second threshold value is executed.
  4.  前記第2温度は、前記第1温度よりも高く、
     各第2熱交換器は、冷房運転中において蒸発器として機能し、
     前記制御装置は、前記第2モードの冷房運転中において、各第2熱交換器を流れる冷媒の温度の目標値を前記第1温度から前記第2温度へと変更する制御を実行する、請求項1から請求項3のいずれか1項に記載の空気調和装置。
    the second temperature is greater than the first temperature;
    Each second heat exchanger functions as an evaporator during cooling operation;
    4. The air conditioning apparatus according to claim 1, wherein the control device executes control to change a target value of a temperature of the refrigerant flowing through each second heat exchanger from the first temperature to the second temperature during cooling operation in the second mode.
  5.  前記複数の空調系統の各々は、前記第2熱交換器を流れる冷媒と熱交換する空気を供給するファンをさらに備え、
     前記制御装置は、各ファンの回転速度を低下させることにより、冷媒の温度の目標値を前記第1温度から前記第2温度へと変更する制御を実行する、請求項4に記載の空気調和装置。
    Each of the plurality of air conditioning systems further includes a fan that supplies air that exchanges heat with the refrigerant flowing through the second heat exchanger,
    The air conditioner according to claim 4 , wherein the control device executes control to change a target value of the refrigerant temperature from the first temperature to the second temperature by reducing a rotation speed of each fan.
  6.  前記第2温度は、前記第1温度よりも低く、
     各第2熱交換器は、暖房運転中において凝縮器として機能し、
     前記制御装置は、前記第2モードの暖房運転中において、各第2熱交換器を流れる冷媒の温度の目標値を前記第1温度から前記第2温度へと変更する制御を実行する、請求項1から請求項3のいずれか1項に記載の空気調和装置。
    the second temperature is lower than the first temperature;
    Each second heat exchanger functions as a condenser during heating operation;
    4. The air conditioning apparatus according to claim 1, wherein the control device executes control to change a target value of a temperature of the refrigerant flowing through each second heat exchanger from the first temperature to the second temperature during heating operation in the second mode.
  7.  前記複数の空調系統の各々は、前記第2熱交換器を流れる冷媒と熱交換する空気を供給するファンをさらに備え、
     前記制御装置は、各ファンの回転速度を低下させることにより、冷媒の温度の目標値を前記第1温度から前記第2温度へと変更する制御を実行する、請求項6に記載の空気調和装置。
    Each of the plurality of air conditioning systems further includes a fan that supplies air that exchanges heat with the refrigerant flowing through the second heat exchanger,
    The air-conditioning apparatus according to claim 6 , wherein the control device executes control to change a target value of the refrigerant temperature from the first temperature to the second temperature by reducing a rotation speed of each fan.
  8.  対象空間を複数の空調系統により空調する空気調和装置と、
     ネットワークを介して前記空気調和装置と接続されるサーバ装置と、を備え、
     前記複数の空調系統の各々は、前記対象空間外に配置される第1熱交換器と、前記対象空間内に配置される第2熱交換器と、膨張弁と、圧縮機とにより構成される冷媒回路を有し、
     各空調系統における冷媒回路において、冷房運転中に前記圧縮機、前記第1熱交換器、前記膨張弁、前記第2熱交換器、前記圧縮機の順に冷媒が流れ、
     前記空気調和装置は、
      各冷媒回路の運転中のデータを検出する検出装置と、
      各冷媒回路を制御する制御装置と、を備え、
     前記サーバ装置は、前記検出装置が検出したデータから前記空気調和装置が発揮している空調処理能力を演算し、演算した前記空調処理能力の、前記空気調和装置の定格能力に対する比率が予め設定した閾値よりも大きい場合、各圧縮機を第1モードで運転する第1制御データを作成し、前記比率が前記閾値以下の場合、各圧縮機を第2モードで運転する第2制御データを作成し、
     前記第1制御データは、各圧縮機の運転開始から一定の猶予期間経過後に対応する第2熱交換器を流れる冷媒の温度の目標値を第1温度から前記第1温度とは異なる第2温度へ変更する制御データであり、
     前記第2制御データは、各圧縮機の運転開始から前記第1モードよりも短い猶予期間後に、対応する第2熱交換器を流れる冷媒の温度の目標値を前記第1温度から前記第2温度へ変更する制御データであり、
     前記サーバ装置は、前記複数の空調系統のうち特定数未満の空調系統が運転中の場合、前記閾値として第1閾値を用いた制御データを作成し、前記特定数以上の空調系統が運転中の場合、前記閾値として前記第1閾値よりも大きい第2閾値を用いた制御データを作成する、空気調和システム。
    An air conditioning device that conditions a target space using a plurality of air conditioning systems;
    A server device connected to the air conditioning apparatus via a network,
    Each of the plurality of air conditioning systems has a refrigerant circuit including a first heat exchanger arranged outside the target space, a second heat exchanger arranged within the target space, an expansion valve, and a compressor;
    In the refrigerant circuit in each air conditioning system, during cooling operation, the refrigerant flows through the compressor, the first heat exchanger, the expansion valve, the second heat exchanger, and the compressor in this order;
    The air conditioning device includes:
    A detection device for detecting data during operation of each refrigerant circuit;
    A control device for controlling each refrigerant circuit,
    the server device calculates an air conditioning processing capacity exerted by the air conditioning apparatus from the data detected by the detection device, and if a ratio of the calculated air conditioning processing capacity to a rated capacity of the air conditioning apparatus is greater than a preset threshold value, creates first control data for operating each compressor in a first mode, and if the ratio is equal to or less than the threshold value, creates second control data for operating each compressor in a second mode;
    the first control data is control data for changing a target value of a temperature of a refrigerant flowing through a corresponding second heat exchanger after a certain grace period has elapsed since the start of operation of each compressor, from a first temperature to a second temperature different from the first temperature,
    the second control data is control data for changing a target value of a temperature of the refrigerant flowing through a corresponding second heat exchanger from the first temperature to the second temperature after a grace period that is shorter than the grace period in the first mode from a start of operation of each compressor,
    The server device creates control data using a first threshold value as the threshold value when less than a specific number of the multiple air conditioning systems are in operation, and creates control data using a second threshold value greater than the first threshold value as the threshold value when the specific number or more of the air conditioning systems are in operation.
PCT/JP2022/041927 2022-11-10 2022-11-10 Air-conditioning device and air-conditioning system WO2024100842A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041927 WO2024100842A1 (en) 2022-11-10 2022-11-10 Air-conditioning device and air-conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/041927 WO2024100842A1 (en) 2022-11-10 2022-11-10 Air-conditioning device and air-conditioning system

Publications (1)

Publication Number Publication Date
WO2024100842A1 true WO2024100842A1 (en) 2024-05-16

Family

ID=91032565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041927 WO2024100842A1 (en) 2022-11-10 2022-11-10 Air-conditioning device and air-conditioning system

Country Status (1)

Country Link
WO (1) WO2024100842A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061925A (en) * 2000-08-23 2002-02-28 Daikin Ind Ltd Air conditioner
JP2012233689A (en) * 2012-08-03 2012-11-29 Mitsubishi Electric Corp Controller, control method and program
JP2013253718A (en) * 2012-06-05 2013-12-19 Daikin Industries Ltd Air conditioner control device
WO2014061130A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
JP2018009720A (en) * 2016-07-12 2018-01-18 東芝キヤリア株式会社 Heat source device and control method for the same
JP2019168150A (en) * 2018-03-23 2019-10-03 株式会社富士通ゼネラル Air conditioning device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002061925A (en) * 2000-08-23 2002-02-28 Daikin Ind Ltd Air conditioner
JP2013253718A (en) * 2012-06-05 2013-12-19 Daikin Industries Ltd Air conditioner control device
JP2012233689A (en) * 2012-08-03 2012-11-29 Mitsubishi Electric Corp Controller, control method and program
WO2014061130A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
JP2018009720A (en) * 2016-07-12 2018-01-18 東芝キヤリア株式会社 Heat source device and control method for the same
JP2019168150A (en) * 2018-03-23 2019-10-03 株式会社富士通ゼネラル Air conditioning device

Similar Documents

Publication Publication Date Title
EP1626233A2 (en) Driving control method for central air conditioner
US20050257538A1 (en) Apparatus and method for controlling air-conditioner
EP1598606A2 (en) Air conditioner and method for controlling operation thereof
WO2022002286A1 (en) Air conditioner and control method thereof
KR20030097179A (en) Heat-Pump Air Conditioner&#39;s Operating Method
JP3740637B2 (en) Air conditioner
JP6595288B2 (en) Air conditioner
CN113531856A (en) Multi-connected air conditioning system and refrigerant flow control method thereof
JP2004170023A (en) Control method for multicellular air-conditioner
KR100619733B1 (en) Driving control method for unitary air conditioner
EP1956306B1 (en) Multi-system air-conditioner and method for controlling the same
JP7316759B2 (en) Air conditioner and air conditioning system
WO2024100842A1 (en) Air-conditioning device and air-conditioning system
KR102558826B1 (en) Air conditioner system and control method
WO2021224962A1 (en) Air conditioning device
WO2024009434A1 (en) Air conditioning device and air conditioning system
JP6707698B2 (en) Air conditioning system control device and control method, and air conditioning system
JP7068537B1 (en) Air conditioner and control method
JP2019128085A (en) Air conditioning system
JP7233568B2 (en) Air conditioning system and its control method
US20240230137A9 (en) Air-conditioning apparatus
US20240133573A1 (en) Air-conditioning apparatus
JP2845617B2 (en) Air conditioner
KR100685754B1 (en) Air-conditioner System for having two compressor and method for controlling the same air-conditioner
JP2001041540A (en) Air-conditioner and method for controlling the air- conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22965167

Country of ref document: EP

Kind code of ref document: A1