JP2018009720A - Heat source device and control method for the same - Google Patents

Heat source device and control method for the same Download PDF

Info

Publication number
JP2018009720A
JP2018009720A JP2016137516A JP2016137516A JP2018009720A JP 2018009720 A JP2018009720 A JP 2018009720A JP 2016137516 A JP2016137516 A JP 2016137516A JP 2016137516 A JP2016137516 A JP 2016137516A JP 2018009720 A JP2018009720 A JP 2018009720A
Authority
JP
Japan
Prior art keywords
heat source
temperature
flowing out
water flowing
source water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016137516A
Other languages
Japanese (ja)
Other versions
JP6676490B2 (en
Inventor
誠二 築山
Seiji Tsukiyama
誠二 築山
山本 学
Manabu Yamamoto
学 山本
勇司 松本
Yuji Matsumoto
勇司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Carrier Corp
Original Assignee
Toshiba Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Carrier Corp filed Critical Toshiba Carrier Corp
Priority to JP2016137516A priority Critical patent/JP6676490B2/en
Publication of JP2018009720A publication Critical patent/JP2018009720A/en
Priority to JP2020042763A priority patent/JP6980829B2/en
Application granted granted Critical
Publication of JP6676490B2 publication Critical patent/JP6676490B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat source device capable of appropriately and efficiently combining preferential operation and following operation of a plurality of kinds of heat source machines in accordance with a requirement of a load, and a control method therefor.SOLUTION: A heat source device comprises first and second heat source machines 1 and 2. When its capacity is short by operation of the first heat source machine only, the heat source device sets a second preset temperature T2s with respect to heat source water flowing out from the second heat source machine based on a preset temperature T3s, flow rates R1 and R2 and a temperature T2 of heat source water flowing out from the second heat source machine 2, while setting a value shifted to a load increase side from the preset temperature T3s by a predetermined value as a new first preset temperature T1s with respect to heat source water flowing out from the first heat source machine 1, controls operation of the first heat source machine such that a temperature T1 of the heat source water flowing out from the first heat source machine becomes the new first preset temperature T1s, and controls operation of the second heat source machine such that the temperature T2 of the heat source water flowing out from the second heat source machine 2 becomes the second preset temperature T2s.SELECTED DRAWING: Figure 1

Description

本発明は、複数種の熱源機を備えた熱源装置およびその制御方法に関する。   The present invention relates to a heat source device including a plurality of types of heat source devices and a control method thereof.

使用するエネルギーの種類が互いに異なる複数種の熱源機を備え、これら熱源機から流出する熱源水を負荷へ供給する熱源装置が知られている。複数種の熱源機として、電気のエネルギーで動作するヒートポンプ式熱源機、電気とは異なるエネルギーである例えば蒸気の熱エネルギーで動作する吸収式熱源機などがある。   There is known a heat source device that includes a plurality of types of heat source units that use different types of energy and supplies heat source water flowing out from these heat source units to a load. As a plurality of types of heat source machines, there are a heat pump type heat source machine that operates with electric energy, and an absorption type heat source machine that operates with heat energy different from electricity, for example, steam.

この熱源装置では、通常はエネルギー消費効率(COP)にすぐれたヒートポンプ式熱源機を優先運転しながら必要に応じて吸収式熱源機を追掛け運転(追従運転ともいう)し、電力不足が予想される状況では吸収式熱源機を優先運転しながら必要に応じてヒートポンプ式熱源機を追掛け運転するといった運用が考えられる。   In this heat source device, a heat pump type heat source machine with excellent energy consumption efficiency (COP) is normally operated with priority, and an absorption type heat source machine is followed as needed (also called follow-up operation), and power shortage is expected. In such a situation, it is conceivable to operate the heat pump type heat source device as needed while performing the priority operation of the absorption type heat source device.

特開2008−45800号公報JP 2008-45800 A 特開2004−278884号公報JP 2004-27884A

複数種の熱源機のいずれかを優先運転する場合、その優先運転と他の熱源機の追掛け運転とを負荷の要求に応じてどのように組み合わせればよいか、その制御は非常に難しい。   When any one of a plurality of types of heat source devices is preferentially operated, it is very difficult to control how to combine the preferential operation and the follow-up operation of another heat source device according to the load demand.

本実施形態の目的は、複数種の熱源機の優先運転と追掛け運転とを負荷の要求に合せて適切かつ効率よく組み合わせることができる熱源装置およびその制御方法を提供することである。   An object of the present embodiment is to provide a heat source device and a control method thereof that can appropriately and efficiently combine priority operation and follow-up operation of a plurality of types of heat source machines according to load requirements.

請求項1の熱源機は、使用するエネルギーの種類が互いに異なる第1および第2熱源機を備え、これら熱源機から流出する熱源水を合流して負荷へ供給するものであって、第1制御手段および第2制御手段を備える。第1制御手段は、前記合流後の熱源水に対し定められた設定温度T3sを前記第1熱源機から流出する熱源水に対する第1設定温度T1sとして定め、前記第1熱源機から流出する熱源水の温度T1が前記第1設定温度T1sとなるように前記第1熱源機の運転を制御する。第2制御手段は、前記第1熱源機の運転だけでは能力が不足する場合に、前記設定温度T3sから負荷増大側に所定値だけシフトした値を前記第1熱源機から流出する熱源水に対する新たな第1設定温度T1sとして定めるとともに、前記設定温度T3s、前記合流後の熱源水の温度T3、前記合流後の熱源水の流量と前記第1熱源機から流出する熱源水の流量との比率R1、前記合流後の熱源水の流量と前記第2熱源機から流出する熱源水の流量との比率R2、および前記第2熱源機から流出する熱源水の温度T2に基づいて、前記第2熱源機から流出する熱源水に対する第2設定温度T2sを定め、前記第1熱源機から流出する熱源水の温度T1が前記新たな第1設定温度T1sとなるように前記第1熱源機の運転を制御し、かつ前記第2熱源機から流出する熱源水の温度T2が前記第2設定温度T2sとなるように前記第2熱源機の運転を制御する。   The heat source machine according to claim 1 includes first and second heat source machines that use different types of energy, joins the heat source water flowing out from these heat source machines, and supplies them to the load. Means and second control means. The first control means determines a set temperature T3s determined for the heat source water after the merging as a first set temperature T1s for the heat source water flowing out from the first heat source unit, and the heat source water flowing out from the first heat source unit The operation of the first heat source machine is controlled so that the temperature T1 of the first temperature becomes the first set temperature T1s. When the capacity is insufficient only by the operation of the first heat source unit, the second control unit newly sets a value shifted by a predetermined value from the set temperature T3s toward the load increasing side with respect to the heat source water flowing out from the first heat source unit. And a ratio R1 of the set temperature T3s, the temperature T3 of the heat source water after joining, the flow rate of the heat source water after joining, and the flow rate of the heat source water flowing out of the first heat source machine. Based on the ratio R2 between the flow rate of the heat source water after the merging and the flow rate of the heat source water flowing out from the second heat source unit, and the temperature T2 of the heat source water flowing out from the second heat source unit, the second heat source unit A second set temperature T2s for the heat source water flowing out from the first heat source unit is determined, and the operation of the first heat source unit is controlled so that the temperature T1 of the heat source water flowing out from the first heat source unit becomes the new first set temperature T1s. And said first It controls the operation of the second heat source unit so that the temperature T2 of the heat source water flowing out from the heat source apparatus is the second set temperature T2s.

請求項5の熱源機の制御方法は、使用するエネルギーの種類が互いに異なる第1および第2熱源機を備え、これら熱源機から流出する熱源水を合流して負荷へ供給する熱源装置の制御方法であって;前記合流後の熱源水に対し定められた設定温度T3sを前記第1熱源機から流出する熱源水に対する第1設定温度T1sとして定め;前記第1熱源機から流出する熱源水の温度T1が前記第1設定温度T1sとなるように前記第1熱源機の運転を制御し;前記第1熱源機の運転だけでは能力が不足する場合に、前記設定温度T3sから負荷増大側に所定値だけシフトした値を前記第1熱源機から流出する熱源水に対する新たな第1設定温度T1sとして定めるとともに、前記設定温度T3s、前記合流後の熱源水の温度T3、前記合流後の熱源水の流量と前記第1熱源機から流出する熱源水の流量との比率R1、前記合流後の熱源水の流量と前記第2熱源機から流出する熱源水の流量との比率R2、および前記第2熱源機から流出する熱源水の温度T2に基づいて前記第2熱源機から流出する熱源水に対する第2設定温度T2sを定め;前記第1熱源機から流出する熱源水の温度T1が前記新たな第1設定温度T1sとなるように前記第1熱源機の運転を制御し;前記第2熱源機から流出する熱源水の温度T2が前記第2設定温度T2sとなるように前記第2熱源機の運転を制御する。   The method for controlling a heat source apparatus according to claim 5 includes first and second heat source apparatuses that use different types of energy, and combines the heat source water flowing out from these heat source apparatuses to supply the heat source apparatus to a load. A set temperature T3s determined for the combined heat source water is defined as a first set temperature T1s for the heat source water flowing out of the first heat source unit; a temperature of the heat source water flowing out of the first heat source unit The operation of the first heat source machine is controlled so that T1 becomes the first set temperature T1s; when the capacity is insufficient only by the operation of the first heat source machine, a predetermined value is set from the set temperature T3s to the load increasing side. A value shifted by only the first heat source water flowing out from the first heat source machine is determined as a new first set temperature T1s, the set temperature T3s, the temperature T3 of the heat source water after the merge, and the heat source after the merge R1 between the flow rate of the heat source water flowing out from the first heat source unit, the ratio R2 between the flow rate of the heat source water after joining and the flow rate of the heat source water flowing out from the second heat source unit, and the second A second set temperature T2s for the heat source water flowing out from the second heat source unit is determined based on the temperature T2 of the heat source water flowing out from the heat source unit; the temperature T1 of the heat source water flowing out from the first heat source unit is the new first temperature T1. The operation of the first heat source unit is controlled so as to be 1 set temperature T1s; the operation of the second heat source unit is controlled such that the temperature T2 of the heat source water flowing out from the second heat source unit becomes the second set temperature T2s. To control.

一実施形態の構成を示すブロック図。The block diagram which shows the structure of one Embodiment. 一実施形態の制御を示すフローチャート。The flowchart which shows the control of one Embodiment. 一実施形態における各熱源機の能力P1,P2、熱源水の温度T1,T2,T3、および設定温度T1s,T2s,T3sの変化の一例を示すタイムチャート。The time chart which shows an example of the capability P1, P2, the temperature T1, T2, T3 of heat source water, and the change of preset temperature T1s, T2s, T3s in each embodiment.

本発明の一実施形態について図面を参照して説明する。
図1に示すように、使用するエネルギーの種類が互いに異なる複数種の熱源機として、ヒートポンプ式熱源機(第1熱源機)1および吸収式熱源機(第2熱源機)2が互いに並列に水配管接続されている。
An embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1, a heat pump heat source machine (first heat source machine) 1 and an absorption heat source machine (second heat source machine) 2 are water in parallel with each other as a plurality of types of heat source machines that use different types of energy. Piping is connected.

ヒートポンプ式熱源機1は、電気をエネルギーとして動作するヒートポンプ式冷凍サイクルを含み、付属または後付のポンプ1pの運転によって水を取込み、取込んだ水をヒートポンプ式冷凍サイクルの運転によって冷却または加熱し空調用の熱源水として送り出す。また、ヒートポンプ式熱源機1は、ヒートポンプ式冷凍サイクルの圧縮機能力およびポンプ1pの運転を制御するコントローラ1aを有する。   The heat pump heat source unit 1 includes a heat pump refrigeration cycle that operates using electricity as energy, takes in water by operating an attached or retrofitted pump 1p, and cools or heats the taken-in water by operating the heat pump refrigeration cycle. It is sent out as heat source water for air conditioning. Moreover, the heat pump type heat source device 1 has a controller 1a that controls the compression functional force of the heat pump type refrigeration cycle and the operation of the pump 1p.

吸収式熱源機2は、周知の蒸発器・吸収器・再生器・凝縮器により構成され、電気とは異なるエネルギー例えばガスバーナー等で加熱された蒸気の熱エネルギーで動作するもので、付属または後付のポンプ2pの運転によって水を取込み、取込んだ水を冷却し空調用の熱源水として送り出す。また、吸収式熱源機2は、蒸発器・吸収器・再生器・凝縮器の運転およびポンプ2pの運転を制御するコントローラ2aを有する。   The absorption heat source unit 2 is composed of a well-known evaporator, absorber, regenerator, and condenser, and operates with energy different from electricity, for example, thermal energy of steam heated by a gas burner or the like. Water is taken in by operating the attached pump 2p, and the taken-in water is cooled and sent out as heat source water for air conditioning. The absorption heat source device 2 has a controller 2a that controls the operation of the evaporator, the absorber, the regenerator, and the condenser and the operation of the pump 2p.

ヒートポンプ式熱源機1から流出する熱源水と吸収式熱源機2から流出する熱源水とが1つの水配管において合流し、合流した熱源水が負荷3に供給される。負荷3は、例えば、空調用の水熱交換器、空調用の空気熱交換器(ラジエータ)、給水用の貯水タンク、給湯用の貯湯タンクなどである。負荷3から流出する水は、2つの水配管に分流して上記ポンプ1p,2pへと流れる。   The heat source water flowing out from the heat pump heat source unit 1 and the heat source water flowing out from the absorption heat source unit 2 merge in one water pipe, and the merged heat source water is supplied to the load 3. The load 3 is, for example, a water heat exchanger for air conditioning, an air heat exchanger (radiator) for air conditioning, a water storage tank for water supply, a hot water storage tank for hot water supply, or the like. The water flowing out from the load 3 is divided into two water pipes and flows to the pumps 1p and 2p.

ヒートポンプ式熱源機1の出口側水配管に、そのヒートポンプ式熱源機1から流出する熱源水の温度T1を検知する温度センサ(第1温度センサ)11が配置されている。吸収式熱源機2の出口側水配管に、その吸収式熱源機2から流出する熱源水の温度T2を検知する温度センサ(第2温度センサ)12が配置されている。ヒートポンプ式熱源機1から流出する熱源水と吸収式熱源機2から流出する熱源水とが合流して流れる水配管に、その合流した熱源水の温度T3を検知する温度センサ(第3温度センサ)13が配置されている。   A temperature sensor (first temperature sensor) 11 for detecting the temperature T1 of the heat source water flowing out from the heat pump heat source unit 1 is disposed on the outlet side water pipe of the heat pump type heat source unit 1. A temperature sensor (second temperature sensor) 12 for detecting the temperature T2 of the heat source water flowing out from the absorption heat source unit 2 is disposed on the outlet side water pipe of the absorption heat source unit 2. A temperature sensor (third temperature sensor) that detects the temperature T3 of the heat source water that has joined the heat source water that flows out of the heat pump heat source unit 1 and the heat source water that flows out of the absorption heat source unit 2 and flows. 13 is arranged.

そして、コントローラ1a,2aおよび温度センサ11,12,13がシステムコントローラ10に接続されている。システムコントローラ10には、さらに、操作表示器14も接続されている。   Controllers 1 a and 2 a and temperature sensors 11, 12 and 13 are connected to the system controller 10. An operation indicator 14 is also connected to the system controller 10.

システムコントローラ10は、ヒートポンプ式熱源機1および吸収式熱源機2の運転を制御するもので、主要な機能として次の(1)〜(5)の手段を備える。   The system controller 10 controls the operation of the heat pump heat source machine 1 and the absorption heat source machine 2, and includes the following means (1) to (5) as main functions.

(1)ヒートポンプ式熱源機1および吸収式熱源機2のどちらを優先的に運転するかを、外部の電力デマンド制御部からの指令や操作表示器14の操作などに応じて選定する選定手段。例えば、通常はエネルギー消費効率(COP)にすぐれたヒートポンプ式熱源機1の優先運転を選定し、電力不足が予想される状況では蒸気の熱エネルギーで動作する吸収式熱源機2の優先運転を選定する。   (1) Selection means for selecting which one of the heat pump heat source apparatus 1 and the absorption heat source apparatus 2 is preferentially operated according to a command from an external power demand control unit, an operation of the operation display 14 or the like. For example, the priority operation of the heat pump heat source unit 1 that usually has excellent energy consumption efficiency (COP) is selected, and the priority operation of the absorption heat source unit 2 that operates with the heat energy of steam is selected in a situation where power shortage is expected. To do.

(2)ヒートポンプ式熱源機1の優先運転時、合流後の熱源水に対し定められた設定温度T3sをヒートポンプ式熱源機1から流出する熱源水に対する設定温度(第1設定温度)T1sとして定め、ヒートポンプ式熱源機1から流出する熱源水の温度T1がその設定温度T1sとなるようにヒートポンプ式熱源機1の運転(および能力P1)を制御する第1制御手段。上記設定温度T3sは、操作表示器14の操作あるいは負荷3からの指示により設定される。   (2) At the time of priority operation of the heat pump heat source machine 1, the set temperature T3s determined for the heat source water after joining is set as the set temperature (first set temperature) T1s for the heat source water flowing out from the heat pump heat source machine 1, First control means for controlling the operation (and capacity P1) of the heat pump heat source unit 1 so that the temperature T1 of the heat source water flowing out from the heat pump type heat source unit 1 becomes the set temperature T1s. The set temperature T3s is set by operating the operation indicator 14 or by an instruction from the load 3.

(3)第1制御手段によるヒートポンプ式熱源機1の運転だけでは能力が不足する場合に、上記設定温度T3sから負荷増大側に所定値ΔT1だけシフトした値をヒートポンプ式熱源機1から流出する熱源水に対する新たな設定温度T1sとして定めるとともに、上記設定温度T3s、合流後の熱源水の温度T3、流量比率R1,R2、および吸収式熱源機2から流出する熱源水の温度T2に基づく演算により吸収式熱源機2から流出する熱源水に対する設定温度(第2設定温度)T2s[=(T3s−T3)×(R1/R2)+T2]を定め、ヒートポンプ式熱源機1から流出する熱源水の温度T1が上記新たな設定温度T1sとなるようにヒートポンプ式熱源機1の運転(および能力P1)を制御し、かつ吸収式熱源機2から流出する熱源水の温度T2が上記定めた設定温度T2sとなるように吸収式熱源機2の運転(および能力P2)を制御する第2制御手段。   (3) A heat source that flows out of the heat pump heat source unit 1 by a value shifted by a predetermined value ΔT1 from the set temperature T3s to the load increasing side when the capacity is insufficient only by the operation of the heat pump heat source unit 1 by the first control means. It is determined as a new set temperature T1s for water, and is absorbed by calculation based on the set temperature T3s, the temperature T3 of the heat source water after joining, the flow rate ratios R1 and R2, and the temperature T2 of the heat source water flowing out from the absorption heat source unit 2. The set temperature (second set temperature) T2s [= (T3s−T3) × (R1 / R2) + T2] for the heat source water flowing out from the heat source device 2 is determined, and the temperature T1 of the heat source water flowing out from the heat pump heat source device 1 Controls the operation (and capacity P1) of the heat pump heat source unit 1 so that the temperature becomes the new set temperature T1s, and the heat source flows out of the absorption heat source unit 2 Second control means for controlling the operation (and capacity P2) of the absorption heat source unit 2 so that the water temperature T2 becomes the set temperature T2s determined above.

冷却時は設定温度T1s=[T3s−ΔT1]、加熱時は設定温度T1s=[T3s+ΔT1]を定める。所定値ΔT1は、ヒートポンプ式熱源機1の定格能力の範囲内で変化させることが可能な熱源水温度の任意の値である。流量比率R1は、合流後の熱源水の流量とヒートポンプ式熱源機1から流出する熱源水の流量との比率のことであり、温度センサ13の検知温度T3と温度センサ12の検知温度T2との差“T3−T2”を、温度センサ11の検知温度T1と第2温度センサ12の検知温度T2との差“T1−T2”で除算することにより、検出できる。R1=(T3−T2)/(T1−T2)。流量比率R2は、合流後の熱源水の流量と吸収式熱源機2から流出する熱源水の流量との比率のことであり、温度センサ13の検知温度T3と温度センサ11の検知温度T1との差“T3−T1”を、温度センサ12の検知温度T2と温度センサ11の検知温度T1との差“T2−T1”で除算することにより、検出できる。R2=(T3−T1)/(T2−T1)。   Set temperature T1s = [T3s−ΔT1] during cooling, and set temperature T1s = [T3s + ΔT1] during heating. The predetermined value ΔT1 is an arbitrary value of the heat source water temperature that can be changed within the range of the rated capacity of the heat pump heat source apparatus 1. The flow rate ratio R1 is a ratio between the flow rate of the heat source water after the merge and the flow rate of the heat source water flowing out from the heat pump heat source unit 1, and is a ratio between the detection temperature T3 of the temperature sensor 13 and the detection temperature T2 of the temperature sensor 12. The difference “T3−T2” can be detected by dividing the difference “T1−T2” between the detected temperature T1 of the temperature sensor 11 and the detected temperature T2 of the second temperature sensor 12. R1 = (T3-T2) / (T1-T2). The flow rate ratio R2 is a ratio between the flow rate of the heat source water after the merge and the flow rate of the heat source water flowing out from the absorption heat source unit 2, and is a ratio between the detection temperature T3 of the temperature sensor 13 and the detection temperature T1 of the temperature sensor 11. The difference “T3−T1” can be detected by dividing the difference “T2−T1” between the detected temperature T2 of the temperature sensor 12 and the detected temperature T1 of the temperature sensor 11. R2 = (T3-T1) / (T2-T1).

(4)吸収式熱源機2の優先運転時、上記設定温度T3sを吸収式熱源機2から流出する熱源水に対する設定温度(第1設定温度)T2sとして定め、吸収式熱源機2から流出する熱源水の温度T2がその設定温度T2sとなるように吸収式熱源機2の運転(および能力P2)を制御する第3制御手段。   (4) During the priority operation of the absorption heat source unit 2, the set temperature T3s is determined as the set temperature (first set temperature) T2s for the heat source water flowing out from the absorption heat source unit 2, and the heat source flowing out from the absorption heat source unit 2 Third control means for controlling the operation (and capacity P2) of the absorption heat source unit 2 so that the water temperature T2 becomes the set temperature T2s.

(5)第3制御手段による吸収式熱源機2の運転だけでは能力が不足する場合に、上記設定温度T3sから負荷増大側に所定値ΔT2だけシフトした値を吸収式熱源機2から流出する熱源水に対する新たな設定温度T2sとして定めるとともに、上記設定温度T3s、合流後の熱源水の温度T3、流量比率R2,R1、およびヒートポンプ式熱源機1から流出する熱源水の温度T1に基づく演算によりヒートポンプ式熱源機1から流出する熱源水に対する設定温度(第2設定温度)T1s[=(T3s−T3)×(R2/R1)+T1]を定め、吸収式熱源機2から流出する熱源水の温度T2が上記新たな設定温度T2sとなるように吸収式熱源機2の運転(および能力P2)を制御し、かつヒートポンプ式熱源機1から流出する熱源水の温度T1が上記定めた設定温度T1sとなるようにヒートポンプ式熱源機1の運転(および能力P1)を制御する第4制御手段。   (5) A heat source that flows out of the absorption heat source unit 2 by a value shifted by a predetermined value ΔT2 from the set temperature T3s to the load increasing side when the capacity is insufficient only by the operation of the absorption heat source unit 2 by the third control means. As a new set temperature T2s for water, a heat pump is calculated by calculation based on the set temperature T3s, the temperature T3 of the heat source water after joining, the flow rate ratios R2 and R1, and the temperature T1 of the heat source water flowing out of the heat pump heat source unit 1. The set temperature (second set temperature) T1s [= (T3s−T3) × (R2 / R1) + T1] for the heat source water flowing out from the heat source unit 1 is determined, and the temperature T2 of the heat source water flowing out from the absorption heat source unit 2 Is the temperature of the heat source water that controls the operation (and the capacity P2) of the absorption heat source unit 2 so that the temperature becomes the new set temperature T2s and flows out of the heat pump type heat source unit 1 Fourth control means for controlling the operation (and capacity P1) of the heat pump heat source apparatus 1 so that T1 becomes the set temperature T1s defined above.

冷却時は設定温度T2s=[T3s−ΔT2]、加熱時は設定温度T2s=[T3s+ΔT2]を定める。所定値ΔT2は、吸収式熱源機2の定格能力の範囲内で変化させることが可能な熱源水温度の任意の値である。   Set temperature T2s = [T3s−ΔT2] during cooling, and set temperature T2s = [T3s + ΔT2] during heating. The predetermined value ΔT2 is an arbitrary value of the heat source water temperature that can be changed within the range of the rated capacity of the absorption heat source unit 2.

なお、流量比率R1,R2は合流後の熱源水の流量を基準として互いに関連するものなので、いずれか一方の流量比率が分かればその流量比率から他方の流量比率を求めることが可能である。この点を考慮し、流量比率R1を上記演算“R1=(T3−T2)/(T1−T2)”により求め、求めた流量比率R1から流量比率R2を算出してもよい。あるいは、流量比率R2を上記演算“R2=(T3−T1)/(T2−T1)”により求め、求めた流量比率R2から流量比率R1を算出してもよい。   Since the flow rate ratios R1 and R2 are related to each other based on the flow rate of the heat source water after joining, if one of the flow rate ratios is known, the other flow rate ratio can be obtained from the flow rate ratio. Considering this point, the flow rate ratio R1 may be obtained by the above calculation “R1 = (T3−T2) / (T1−T2)”, and the flow rate ratio R2 may be calculated from the obtained flow rate ratio R1. Alternatively, the flow rate ratio R2 may be obtained by the above calculation “R2 = (T3−T1) / (T2−T1)”, and the flow rate ratio R1 may be calculated from the obtained flow rate ratio R2.

ポンプ1p,2pの定格能力運転などにより所定の流量比率R1,R2が規定値として決まっている場合には、その流量比率R1,R2のデータをシステムコントローラ10の内部メモリに予め記憶しておき、その流量比率R1,R2のデータを逐次に読出すようにしてもよい。   When the predetermined flow rate ratios R1 and R2 are determined as specified values by operating the rated capacity of the pumps 1p and 2p, the data of the flow rate ratios R1 and R2 are stored in advance in the internal memory of the system controller 10, The data of the flow rate ratios R1 and R2 may be read sequentially.

ヒートポンプ式熱源機1が優先運転の場合の設定温度(第2設定温度)T2sをT2s[=(T3s−T3)×(R1/R2)+T1]と定め、吸収式熱源機2が優先運転の場合の設定温度(第2設定温度)T1sをT1s[=(T3s−T3)×(R2/R1)+T2]と定めたが、ヒートポンプ式熱源機1が優先運転の場合の設定温度(第2設定温度)T2sをT2s[=(T3s−T1)×(R1/R2)+T3s]と定め、吸収式熱源機2が優先運転の場合の設定温度(第2設定温度)T1sをT1s[=(T3s−T2)×(R2/R1)+T3s]と定めてもよい。   When the set temperature (second set temperature) T2s when the heat pump heat source apparatus 1 is in priority operation is defined as T2s [= (T3s−T3) × (R1 / R2) + T1], and the absorption heat source apparatus 2 is in priority operation Set temperature (second set temperature) T1s as T1s [= (T3s-T3) × (R2 / R1) + T2], but the set temperature (second set temperature when the heat pump heat source apparatus 1 is in priority operation) ) T2s is defined as T2s [= (T3s−T1) × (R1 / R2) + T3s], and the set temperature (second set temperature) T1s when the absorption heat source apparatus 2 is in the priority operation is set to T1s [= (T3s−T2 ) × (R2 / R1) + T3s].

つぎに、システムコントローラ10が実行する冷却時の制御を図2のフローチャートおよび図3のタイムチャートを参照しながら説明する。
操作表示器14で冷却運転の開始操作がなされた場合(ステップS1のYES)、システムコントローラ10は、追従フラグf1,f2をそれぞれ初期値“0”にセットする(ステップS2)。続いて、システムコントローラ10は、ヒートポンプ式熱源機1および吸収式熱源機2のどちらの優先運転が選定されているかを判定する(ステップS3)。
Next, the cooling control executed by the system controller 10 will be described with reference to the flowchart of FIG. 2 and the time chart of FIG.
When the operation display 14 is operated to start the cooling operation (YES in step S1), the system controller 10 sets the follow flags f1 and f2 to initial values “0” (step S2). Subsequently, the system controller 10 determines which of the priority operation of the heat pump heat source device 1 and the absorption heat source device 2 is selected (step S3).

[ヒートポンプ式熱源機1の優先運転]
ヒートポンプ式熱源機1の優先運転が選定されている場合(ステップS3のYES)、システムコントローラ10は、ポンプ1pを定格能力で運転をオンするとともに、仮に追従フラグf2が“1”であればそれを初期値“0”に戻しておく(ステップS4)。このポンプ1pの運転オンにより、熱源水がヒートポンプ式熱源機1から流出し、その熱源水が負荷3を通ってヒートポンプ式熱源機1へと流れる。この熱源水の循環に伴い、ヒートポンプ式熱源機1から流出する熱源水の温度T1が温度センサ11で検知されるとともに、合流部の熱源水の温度T3(=T1)が温度センサ13で検知される。
[Priority operation of heat pump heat source unit 1]
When the priority operation of the heat pump heat source unit 1 is selected (YES in step S3), the system controller 10 turns on the operation of the pump 1p with the rated capacity, and if the follow flag f2 is “1”, Is returned to the initial value “0” (step S4). When the pump 1p is turned on, the heat source water flows out of the heat pump heat source unit 1, and the heat source water flows through the load 3 to the heat pump type heat source unit 1. Along with the circulation of the heat source water, the temperature T1 of the heat source water flowing out from the heat pump heat source machine 1 is detected by the temperature sensor 11, and the temperature T3 (= T1) of the heat source water at the junction is detected by the temperature sensor 13. The

ポンプ1pの運転オンに続き、システムコントローラ10は、追従フラグf1が初期値“0”であることにより(ステップS5のYES)、合流後の熱源水に対し定められた設定温度T3sをヒートポンプ式熱源機1から流出する熱源水に対する設定温度(第1設定温度)T1sとして定める(ステップS6)。そして、システムコントローラ10は、温度センサ11の検知温度T1がその設定温度T1sとなるようにヒートポンプ式熱源機1の運転および能力P1を制御する(ステップS7)。すなわち、負荷3の要求に見合う温度の熱源水がヒートポンプ式熱源機1の単独運転によって得られ、その熱源水が負荷3に送られる。   Following the operation on of the pump 1p, the system controller 10 determines that the set temperature T3s determined for the heat source water after merging is the heat pump heat source when the follow-up flag f1 is the initial value “0” (YES in step S5). It is determined as a set temperature (first set temperature) T1s for the heat source water flowing out from the machine 1 (step S6). Then, the system controller 10 controls the operation and capability P1 of the heat pump heat source unit 1 so that the detected temperature T1 of the temperature sensor 11 becomes the set temperature T1s (step S7). That is, heat source water having a temperature that meets the requirements of the load 3 is obtained by the independent operation of the heat pump heat source machine 1, and the heat source water is sent to the load 3.

このヒートポンプ式熱源機1の能力P1が上限値に至らない段階では、システムコントローラ10は、能力不足ではないとの判断の下に(ステップS8のNO)、吸収式熱源機2の運転オフ、ポンプ2pの運転オフ、追従フラグf1の初期値“0”を維持し(ステップS9,S10,S11)、かつ操作表示器14における運転停止操作を監視する(ステップS12)。運転停止操作がなければ(ステップS12のNO)、システムコントローラ10は、ステップS3の優先運転判定に戻って同様の処理を繰り返す。運転停止操作があれば(ステップS12のYES)、システムコントローラ10は、全ての運転をオフし(ステップS13)、最初のステップS1の運転開始判定に戻る。   At a stage where the capacity P1 of the heat pump heat source apparatus 1 does not reach the upper limit value, the system controller 10 determines that the capacity is not insufficient (NO in step S8), turns off the operation of the absorption heat source apparatus 2, and pumps 2p is turned off, the initial value “0” of the follow-up flag f1 is maintained (steps S9, S10, S11), and the operation stop operation on the operation indicator 14 is monitored (step S12). If there is no operation to stop (NO in step S12), the system controller 10 returns to the priority operation determination in step S3 and repeats the same processing. If there is a driving stop operation (YES in step S12), the system controller 10 turns off all driving (step S13) and returns to the first driving start determination in step S1.

ヒートポンプ式熱源機1の能力P1が上限値に達した場合、そのままでは負荷3の要求に見合う温度の熱源水を負荷3に供給できない状態となる。この場合、システムコントローラ10は、能力不足であるとの判断の下に(ステップS8のYES)、ポンプ2pを定格能力で運転オンする(ステップS14)。このポンプ2pの運転オンにより、熱源水が吸収式熱源機2から流出し、その熱源水がヒートポンプ式熱源機1からの熱源水の流れに合流する。吸収式熱源機2から流出する熱源水の温度T2は、温度センサ12で検知される。   When the capacity P1 of the heat pump heat source machine 1 reaches the upper limit value, heat source water having a temperature that meets the requirements of the load 3 cannot be supplied to the load 3 as it is. In this case, the system controller 10 turns on the pump 2p with the rated capacity based on the determination that the capacity is insufficient (YES in Step S8) (Step S14). When the pump 2p is turned on, the heat source water flows out of the absorption heat source unit 2, and the heat source water merges with the heat source water flow from the heat pump type heat source unit 1. The temperature T2 of the heat source water flowing out from the absorption heat source unit 2 is detected by the temperature sensor 12.

ポンプ2pの運転オンに伴い、システムコントローラ10は、追従フラグf1を“1”にセットするとともに(ステップS15)、設定温度T3sから負荷増大側(下降方向)に所定値ΔT1だけシフトした値“T3s−ΔT1”をヒートポンプ式熱源機1から流出する熱源水に対する新たな設定温度T1sとして定める(ステップS16)。続いて、システムコントローラ10は、ヒートポンプ式熱源機1の流量比率R1および吸収式熱源機2の流量比率R2を検出し(ステップS17)、設定温度T3sと温度センサ13の検知温度T3との差“T3s−T3”にその流量比率R1,R2の比“R1/R2”を乗算し、この乗算結果と温度センサ12の検知温度T2との和を吸収式熱源機2から流出する熱源水に対する設定温度T2s[=(T3s−T3)×(R1/R2)+T2]として定める(ステップS18)。流量比率R1,R2をパラメータとして定める設定温度T2sは、合流後の熱源水の温度T3を吸収式熱源機2の追掛け運転(追従運転ともいう)によって設定温度T3s一定に保つためのものである。   As the pump 2p is turned on, the system controller 10 sets the follow-up flag f1 to “1” (step S15), and a value “T3s” shifted by a predetermined value ΔT1 from the set temperature T3s to the load increasing side (downward direction). −ΔT1 ″ is determined as a new set temperature T1s for the heat source water flowing out of the heat pump heat source unit 1 (step S16). Subsequently, the system controller 10 detects the flow rate ratio R1 of the heat pump heat source unit 1 and the flow rate ratio R2 of the absorption heat source unit 2 (step S17), and the difference between the set temperature T3s and the detected temperature T3 of the temperature sensor 13 is “ T3s−T3 ”is multiplied by the ratio“ R1 / R2 ”of the flow rate ratios R1 and R2, and the sum of the multiplication result and the detected temperature T2 of the temperature sensor 12 is set to the set temperature for the heat source water flowing out from the absorption heat source unit 2 T2s [= (T3s−T3) × (R1 / R2) + T2] is determined (step S18). The set temperature T2s that defines the flow rate ratios R1 and R2 as parameters is for keeping the temperature T3 of the heat source water after joining constant at the set temperature T3s by the follow-up operation (also referred to as follow-up operation) of the absorption heat source unit 2. .

設定温度T2sを定めた後、システムコントローラ10は、温度センサ12の検知温度T2がその設定温度T2sとなるように吸収式熱源機2の運転および能力P2を制御し(ステップS19)、かつ操作表示器14における運転停止操作を監視する(ステップS12)。運転停止操作がなければ(ステップS12のNO)、システムコントローラ10は、ステップS3の優先運転判定に戻って同様の処理を繰り返す。   After determining the set temperature T2s, the system controller 10 controls the operation and capacity P2 of the absorption heat source unit 2 so that the detected temperature T2 of the temperature sensor 12 becomes the set temperature T2s (step S19), and displays the operation. The operation stop operation in the container 14 is monitored (step S12). If there is no operation to stop (NO in step S12), the system controller 10 returns to the priority operation determination in step S3 and repeats the same processing.

この繰り返しに際しては、追従フラグf1が“1”にセットされているので(ステップS5のNO)、設定温度T3sを設定温度T1sとして定めるステップS6の処理は実行されることはなく、上記ステップ16で定められた新たな設定温度T1s(=T3s−ΔT1)がステップS7の処理に供される。すなわち、システムコントローラ10は、ヒートポンプ式熱源機1から流出する熱源水の温度T1が新たな設定温度T1s(=T3s−ΔT1)となるようにヒートポンプ式熱源機1の運転(および能力P1)を制御する。   In this repetition, since the follow-up flag f1 is set to “1” (NO in step S5), the process of step S6 for determining the set temperature T3s as the set temperature T1s is not executed. The determined new set temperature T1s (= T3s−ΔT1) is used for the process of step S7. That is, the system controller 10 controls the operation (and capacity P1) of the heat pump heat source unit 1 so that the temperature T1 of the heat source water flowing out from the heat pump type heat source unit 1 becomes a new set temperature T1s (= T3s−ΔT1). To do.

このように、ヒートポンプ式熱源機1の運転だけでは能力が不足する場合に、そのヒートポンプ式熱源機1に対する設定温度T1sを負荷増大方向に所定値ΔT1だけシフトすることにより、ヒートポンプ式熱源機1の優先運転を保ちながら、能力の不足分だけ吸収式熱源機2を追掛け運転することができる。しかも、そのときの流量比率R1,R2の比“R1/R2”に応じて追掛け運転側の吸収式熱源機2に対する設定温度T2sを補正し、補正後の設定温度T2sに基づいて吸収式熱源機2の運転および能力P2を制御するので、合流後の熱源水の温度T3を設定温度T3s一定に保つことができる。すなわち、ヒートポンプ式熱源機1の優先運転と吸収式熱源機2の追掛け運転とを負荷3の要求に合せて適切かつ効率よく組み合わせることができる。ヒートポンプ式熱源機1の設定温度Ts1を所定値ΔT1シフトするだけの簡単な操作でヒートポンプ式熱源機1の優先運転を維持できるので、システムコントローラ10に余計な制御負担がかからない。システムコントローラ10に制御負担を軽減できるので、システムコントローラ10の開発および採用に関わるコストの低減が可能である。   As described above, when the capacity is insufficient only by the operation of the heat pump heat source unit 1, the set temperature T1s for the heat pump type heat source unit 1 is shifted by the predetermined value ΔT1 in the load increasing direction, whereby the heat pump type heat source unit 1 While maintaining the priority operation, the absorption heat source device 2 can be chased for the shortage of capacity. Moreover, the set temperature T2s for the absorption heat source device 2 on the follow-up operation side is corrected according to the ratio “R1 / R2” of the flow rate ratios R1 and R2 at that time, and the absorption heat source is based on the corrected set temperature T2s. Since the operation and capacity P2 of the machine 2 are controlled, the temperature T3 of the heat source water after joining can be kept constant at the set temperature T3s. That is, the priority operation of the heat pump heat source device 1 and the follow-up operation of the absorption heat source device 2 can be combined appropriately and efficiently in accordance with the demand of the load 3. Since the priority operation of the heat pump heat source unit 1 can be maintained by a simple operation that only shifts the set temperature Ts1 of the heat pump type heat source unit 1 by the predetermined value ΔT1, no extra control burden is applied to the system controller 10. Since the control burden on the system controller 10 can be reduced, the costs associated with the development and adoption of the system controller 10 can be reduced.

[吸収式熱源機2の優先運転]
吸収式熱源機2の優先運転が選定されている場合(ステップS3のNO)、システムコントローラ10は、ポンプ2pを定格能力で運転をオンするとともに、仮に追従フラグf1が“1”であればそれを初期値“0”に戻しておく(ステップS20)。このポンプ2pの運転オンにより、熱源水が吸収式熱源機2から流出し、その熱源水が負荷3を通って吸収式熱源機2へと流れる。この熱源水の循環に伴い、吸収式熱源機2から流出する熱源水の温度T2が温度センサ12で検知されるとともに、合流部の熱源水の温度T3(=T2)が温度センサ13で検知される。
[Priority operation of absorption heat source unit 2]
When the priority operation of the absorption heat source unit 2 is selected (NO in step S3), the system controller 10 turns on the operation of the pump 2p with the rated capacity, and if the follow flag f1 is “1”, Is returned to the initial value “0” (step S20). When the pump 2p is turned on, the heat source water flows out from the absorption heat source unit 2, and the heat source water flows to the absorption type heat source unit 2 through the load 3. As the heat source water circulates, the temperature sensor 12 detects the temperature T2 of the heat source water flowing out from the absorption heat source unit 2, and the temperature sensor 13 detects the temperature T3 (= T2) of the heat source water at the junction. The

ポンプ2pの運転オンに続き、システムコントローラ10は、追従フラグf2が初期値“0”であることにより(ステップS21のYES)、合流後の熱源水に対し定められた設定温度T3sを吸収式熱源機2から流出する熱源水に対する設定温度(第1設定温度)T2sとして定める(ステップS22)。そして、システムコントローラ10は、温度センサ12の検知温度T2がその設定温度T2sとなるように吸収式熱源機2の運転および能力P2を制御する(ステップS23)。すなわち、負荷3の要求に見合う温度の熱源水が吸収式熱源機2の単独運転によって得られ、その熱源水が負荷3に送られる。   Following the operation of the pump 2p, when the follow-up flag f2 is the initial value “0” (YES in Step S21), the system controller 10 uses the set temperature T3s determined for the heat source water after merging as an absorption heat source. It is determined as a set temperature (first set temperature) T2s for the heat source water flowing out from the machine 2 (step S22). Then, the system controller 10 controls the operation and capacity P2 of the absorption heat source unit 2 so that the detected temperature T2 of the temperature sensor 12 becomes the set temperature T2s (step S23). That is, heat source water having a temperature that meets the demand of the load 3 is obtained by the independent operation of the absorption heat source unit 2 and the heat source water is sent to the load 3.

この吸収式熱源機2の能力P2が上限値に至らない段階では、システムコントローラ10は、能力不足ではないとの判断の下に(ステップS24のNO)、ヒートポンプ式熱源機1の運転オフ、ポンプ1pの運転オフ、追従フラグf2の初期値“0”を維持し(ステップS25,S26,S27)、かつ操作表示器14における運転停止操作を監視する(ステップS12)。運転停止操作がなければ(ステップS12のNO)、システムコントローラ10は、ステップS3の優先運転判定に戻って同様の処理を繰り返す。運転停止操作があれば(ステップS12のYES)、システムコントローラ10は、全ての運転をオフし(ステップS13)、最初のステップS1の運転開始判定に戻る。   At a stage where the capacity P2 of the absorption heat source unit 2 does not reach the upper limit value, the system controller 10 determines that the capacity is not insufficient (NO in step S24), and turns off the operation of the heat pump type heat source unit 1, the pump 1p is turned off, the initial value “0” of the follow-up flag f2 is maintained (steps S25, S26, S27), and the operation stop operation on the operation indicator 14 is monitored (step S12). If there is no operation to stop (NO in step S12), the system controller 10 returns to the priority operation determination in step S3 and repeats the same processing. If there is a driving stop operation (YES in step S12), the system controller 10 turns off all driving (step S13) and returns to the first driving start determination in step S1.

吸収式熱源機2の能力P2が上限値に達した場合、そのままでは負荷3の要求に見合う温度の熱源水を負荷3に供給できない状態となる。この場合、システムコントローラ10は、能力不足であるとの判断の下に(ステップS24のYES)、ポンプ1pを定格能力で運転オンする(ステップS28)。このポンプ1pの運転オンにより、熱源水がヒートポンプ式熱源機1から流出し、その熱源水が吸収式熱源機2からの熱源水の流れに合流する。ヒートポンプ式熱源機1から流出する熱源水の温度T1は、温度センサ11で検知される。   When the capacity P2 of the absorption heat source device 2 reaches the upper limit value, heat source water having a temperature that meets the requirements of the load 3 cannot be supplied to the load 3 as it is. In this case, the system controller 10 turns on the pump 1p with the rated capacity based on the determination that the capacity is insufficient (YES in step S24) (step S28). When the pump 1p is turned on, the heat source water flows out of the heat pump heat source unit 1, and the heat source water merges with the heat source water flow from the absorption heat source unit 2. The temperature T1 of the heat source water flowing out of the heat pump heat source machine 1 is detected by the temperature sensor 11.

ポンプ1pの運転オンに伴い、システムコントローラ10は、追従フラグf2を“1”にセットするとともに(ステップS28)、設定温度T3sから負荷増大側(下降方向)に所定値ΔT2だけシフトした値“T3s−ΔT2”を吸収式熱源機2から流出する熱源水に対する新たな設定温度T2sとして定める(ステップS30)。続いて、システムコントローラ10は、吸収式熱源機2の流量比率R2およびヒートポンプ式熱源機1の流量比率R1を検出し(ステップS31)、設定温度T3sと温度センサ13の検知温度T3との差“T3s−T3”にその流量比率R2,R1の比“R2/R1”を乗算し、この乗算結果と温度センサ11の検知温度T1との和をヒートポンプ式熱源機1から流出する熱源水に対する設定温度T1s[=(T3s−T3)×(R2/R1)+T1]として定める(ステップS32)。流量比率R2,R1をパラメータとして定める設定温度T1sは、合流後の熱源水の温度T3をヒートポンプ式熱源機1の追掛け運転によって設定温度T3s一定に保つためのものである。   As the pump 1p is turned on, the system controller 10 sets the follow flag f2 to “1” (step S28), and a value “T3s shifted from the set temperature T3s by a predetermined value ΔT2 toward the load increasing side (downward direction). −ΔT2 ″ is determined as a new set temperature T2s for the heat source water flowing out from the absorption heat source unit 2 (step S30). Subsequently, the system controller 10 detects the flow rate ratio R2 of the absorption heat source unit 2 and the flow rate ratio R1 of the heat pump type heat source unit 1 (step S31), and the difference between the set temperature T3s and the detected temperature T3 of the temperature sensor 13 " Multiply the ratio “R2 / R1” of the flow rate ratios R2 and R1 by “T3s−T3” and set the sum of the multiplication result and the detected temperature T1 of the temperature sensor 11 to the set temperature for the heat source water flowing out from the heat pump heat source unit 1 T1s [= (T3s−T3) × (R2 / R1) + T1] is determined (step S32). The set temperature T1s that defines the flow rate ratios R2 and R1 as parameters is for keeping the temperature T3 of the heat source water after joining constant at the set temperature T3s by the follow-up operation of the heat pump heat source unit 1.

設定温度T1sを定めた後、システムコントローラ10は、温度センサ11の検知温度T1がその設定温度T1sとなるようにヒートポンプ式熱源機1の運転および能力P1を制御し(ステップS33)、かつ操作表示器14における運転停止操作を監視する(ステップS12)。運転停止操作がなければ(ステップS12のNO)、システムコントローラ10は、ステップS3の優先運転判定に戻って同様の処理を繰り返す。   After determining the set temperature T1s, the system controller 10 controls the operation and capability P1 of the heat pump heat source unit 1 so that the detected temperature T1 of the temperature sensor 11 becomes the set temperature T1s (step S33), and the operation display. The operation stop operation in the container 14 is monitored (step S12). If there is no operation to stop (NO in step S12), the system controller 10 returns to the priority operation determination in step S3 and repeats the same processing.

この繰り返しに際しては、追従フラグf2が“1”にセットされているので(ステップS21のNO)、設定温度T3sを設定温度T2sとして定めるステップS22の処理は実行されることはなく、上記ステップ30で定められた新たな設定温度T2s(=T3s−ΔT2)がステップS23の処理に供される。すなわち、システムコントローラ10は、吸収式熱源機2から流出する熱源水の温度T2が新たな設定温度T2s(=T3s−ΔT2)となるように吸収式熱源機2の運転(および能力P2)を制御する。   In this repetition, since the follow-up flag f2 is set to “1” (NO in step S21), the process in step S22 for setting the set temperature T3s as the set temperature T2s is not executed, and in step 30 described above. The determined new set temperature T2s (= T3s−ΔT2) is used for the process of step S23. That is, the system controller 10 controls the operation (and capacity P2) of the absorption heat source device 2 so that the temperature T2 of the heat source water flowing out from the absorption heat source device 2 becomes a new set temperature T2s (= T3s−ΔT2). To do.

このように、吸収式熱源機2の運転だけでは能力が不足する場合に、その吸収式熱源機2に対する設定温度T2sを負荷増大方向に所定値ΔT2だけシフトすることにより、吸収式熱源機2の優先運転を保ちながら、能力の不足分だけヒートポンプ式熱源機1を追掛け運転することができる。しかも、そのときの流量比率R2,R1の比“R2/R1”に応じて追掛け運転側のヒートポンプ式熱源機1に対する設定温度T1sを補正し、補正後の設定温度T1sに基づいてヒートポンプ式熱源機1の運転および能力P1を制御するので、合流後の熱源水の温度T3を設定温度T3s一定に保つことができる。すなわち、吸収式熱源機2の優先運転とヒートポンプ式熱源機1の追掛け運転とを負荷3の要求に合せて適切かつ効率よく組み合わせることができる。吸収式熱源機2の設定温度Ts2を所定値ΔT2シフトするだけの簡単な操作で吸収式熱源機2の優先運転を維持できるので、システムコントローラ10に余計な制御負担がかからない。システムコントローラ10に制御負担を軽減できるので、システムコントローラ10の開発および採用に関わるコストの低減が可能である。   As described above, when the capacity is insufficient only by the operation of the absorption heat source unit 2, the set temperature T2s for the absorption type heat source unit 2 is shifted by the predetermined value ΔT2 in the load increasing direction, whereby the absorption type heat source unit 2 While maintaining the priority operation, the heat pump type heat source device 1 can be chased for the shortage of capacity. Moreover, the set temperature T1s for the heat pump heat source unit 1 on the follow-up operation side is corrected according to the ratio “R2 / R1” of the flow rate ratios R2 and R1 at that time, and the heat pump type heat source is based on the corrected set temperature T1s. Since the operation and capacity P1 of the machine 1 are controlled, the temperature T3 of the heat source water after joining can be kept constant at the set temperature T3s. That is, the priority operation of the absorption heat source device 2 and the follow-up operation of the heat pump heat source device 1 can be combined appropriately and efficiently in accordance with the requirements of the load 3. Since the preferential operation of the absorption heat source unit 2 can be maintained by a simple operation that only shifts the set temperature Ts2 of the absorption heat source unit 2 by the predetermined value ΔT2, no extra control burden is imposed on the system controller 10. Since the control burden on the system controller 10 can be reduced, the costs associated with the development and adoption of the system controller 10 can be reduced.

なお、上記実施形態では、使用するエネルギーの種類がヒートポンプ式熱源機1と異なる複数種の熱源機として吸収式熱源機2を用いたが、電気のエネルギーを使用しない熱源機であれば、吸収式熱源機2に限らず、他の熱源機を用いてもよい。   In the above embodiment, the absorption heat source unit 2 is used as a plurality of types of heat source units that are different from the heat pump type heat source unit 1 in the type of energy used. However, if the heat source unit does not use electric energy, the absorption type heat source unit 2 is used. Not only the heat source unit 2 but other heat source units may be used.

その他、上記実施形態および変形例は、例として提示したものであり、発明の範囲を限定することは意図していない。この新規な実施形態および変形例は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、書き換え、変更を行うことができる。これら実施形態や変形は、発明の範囲は要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   In addition, the said embodiment and modification are shown as an example and are not intending limiting the range of invention. The novel embodiments and modifications can be implemented in various other forms, and various omissions, rewrites, and changes can be made without departing from the spirit of the invention. In these embodiments and modifications, the scope of the invention is included in the gist, and is included in the invention described in the claims and the equivalents thereof.

1…ヒートポンプ式熱源機(第1熱源機)、2…吸収式熱源機(第2熱源機)、3…負荷、10…システムコントローラ、11,12,13…温度センサ、14…操作表示器   DESCRIPTION OF SYMBOLS 1 ... Heat pump type heat source machine (1st heat source machine), 2 ... Absorption type heat source machine (2nd heat source machine), 3 ... Load, 10 ... System controller, 11, 12, 13 ... Temperature sensor, 14 ... Operation indicator

Claims (5)

使用するエネルギーの種類が互いに異なる第1および第2熱源機を備え、これら熱源機から流出する熱源水を合流して負荷へ供給する熱源装置であって、
前記合流後の熱源水に対し定められた設定温度T3sを前記第1熱源機から流出する熱源水に対する第1設定温度T1sとして定め、前記第1熱源機から流出する熱源水の温度T1が前記第1設定温度T1sとなるように前記第1熱源機の運転を制御する第1制御手段と、
前記第1熱源機の運転だけでは能力が不足する場合に、前記設定温度T3sから負荷増大側に所定値だけシフトした値を前記第1熱源機から流出する熱源水に対する新たな第1設定温度T1sとして定めるとともに、前記設定温度T3s、前記合流後の熱源水の温度T3、前記合流後の熱源水の流量と前記第1熱源機から流出する熱源水の流量との比率R1、前記合流後の熱源水の流量と前記第2熱源機から流出する熱源水の流量との比率R2、および前記第2熱源機から流出する熱源水の温度T2に基づいて、前記第2熱源機から流出する熱源水に対する第2設定温度T2sを定め、前記第1熱源機から流出する熱源水の温度T1が前記新たな第1設定温度T1sとなるように前記第1熱源機の運転を制御し、かつ前記第2熱源機から流出する熱源水の温度T2が前記第2設定温度T2sとなるように前記第2熱源機の運転を制御する第2制御手段と、
を備えることを特徴とする熱源装置。
A heat source device that includes first and second heat source units that use different types of energy, joins the heat source water flowing out from these heat source units, and supplies them to a load,
The set temperature T3s determined for the heat source water after joining is determined as a first set temperature T1s for the heat source water flowing out from the first heat source unit, and the temperature T1 of the heat source water flowing out from the first heat source unit is set to the first temperature T1s. 1st control means which controls operation of the 1st heat source machine so that it may become 1 preset temperature T1s,
When the capacity is insufficient only by the operation of the first heat source machine, a new first set temperature T1s for the heat source water flowing out from the first heat source machine is obtained by shifting a value shifted from the set temperature T3s to the load increasing side by a predetermined value. And the set temperature T3s, the temperature T3 of the heat source water after joining, the ratio R1 of the flow rate of the heat source water after joining and the flow rate of the heat source water flowing out of the first heat source machine, the heat source after joining Based on the ratio R2 of the flow rate of water and the flow rate of the heat source water flowing out from the second heat source unit, and the temperature T2 of the heat source water flowing out from the second heat source unit, the heat source water flowing out from the second heat source unit A second preset temperature T2s is determined, the operation of the first heat source machine is controlled such that the temperature T1 of the heat source water flowing out from the first heat source machine becomes the new first preset temperature T1s, and the second heat source Leaked from the machine A second control means for the temperature T2 of the heat source water to control the operation of the second heat source unit so that the second set temperature T2s that,
A heat source device comprising:
前記第2制御手段は、
前記合流後の熱源水の温度T3と前記第2熱源機から流出する熱源水の温度T2との差“T3−T2”を、前記第1熱源機から流出する熱源水の温度T1と前記第2熱源機から流出する熱源水の温度T2との差“T1−T2”で除算することにより前記比率R1[=(T3−T2)/(T1−T2)]を求め、この比率R1から前記比率R2を求め、
前記第2設定温度T2s[=(T3s−T3)×(R1/R2)+T2]を定める、
ことを特徴とする請求項1に記載の熱源装置。
The second control means includes
The difference “T3−T2” between the temperature T3 of the heat source water after the merging and the temperature T2 of the heat source water flowing out from the second heat source unit is defined as the temperature T1 of the heat source water flowing out from the first heat source unit and the second temperature T2. The ratio R1 [= (T3−T2) / (T1−T2)] is obtained by dividing by the difference “T1−T2” from the temperature T2 of the heat source water flowing out from the heat source machine, and the ratio R2 is obtained from the ratio R1. Seeking
The second set temperature T2s [= (T3s−T3) × (R1 / R2) + T2] is determined.
The heat source device according to claim 1.
前記第2制御手段は、
前記合流後の熱源水の温度T3と前記第2熱源機から流出する熱源水の温度T2との差“T3−T2”を、前記第1熱源機から流出する熱源水の温度T1と前記第2熱源機から流出する熱源水の温度T2との差“T1−T2”で除算することにより前記比率R1[=(T3−T2)/(T1−T2)]を求め、
前記合流後の熱源水の温度T3と前記第1熱源機から流出する熱源水の温度T1との差“T3−T1”を、前記第2熱源機から流出する熱源水の温度T2と前記第1熱源機から流出する熱源水の温度T1との差“T2−T1”で除算することにより前記比率R2[=(T3−T1)/(T2−T1)]を求める、
前記第2設定温度T2s[=(T3s−T3)×(R1/R2)+T2]を定める、
ことを特徴とする請求項1に記載の熱源装置。
The second control means includes
The difference “T3−T2” between the temperature T3 of the heat source water after the merging and the temperature T2 of the heat source water flowing out from the second heat source unit is defined as the temperature T1 of the heat source water flowing out from the first heat source unit and the second temperature T2. The ratio R1 [= (T3−T2) / (T1−T2)] is obtained by dividing by the difference “T1−T2” from the temperature T2 of the heat source water flowing out from the heat source machine,
The difference “T3−T1” between the temperature T3 of the heat source water after merging and the temperature T1 of the heat source water flowing out from the first heat source unit is defined as the temperature T2 of the heat source water flowing out from the second heat source unit and the first temperature. The ratio R2 [= (T3−T1) / (T2−T1)] is obtained by dividing by the difference “T2−T1” from the temperature T1 of the heat source water flowing out from the heat source machine.
The second set temperature T2s [= (T3s−T3) × (R1 / R2) + T2] is determined.
The heat source device according to claim 1.
前記第1熱源機は、電気のエネルギーで動作するヒートポンプ熱源機であり、
前記第2熱源機は、電気とは異なるエネルギーで動作する熱源機である、
ことを特徴とする請求項1から請求項3のいずれか一項に記載の熱源装置。
The first heat source machine is a heat pump heat source machine that operates with electric energy,
The second heat source machine is a heat source machine that operates with energy different from electricity.
The heat source device according to claim 1, wherein the heat source device is a heat source device.
使用するエネルギーの種類が互いに異なる第1および第2熱源機を備え、これら熱源機から流出する熱源水を合流して負荷へ供給する熱源装置の制御方法であって、
前記合流後の熱源水に対し定められた設定温度T3sを前記第1熱源機から流出する熱源水に対する第1設定温度T1sとして定め、
前記第1熱源機から流出する熱源水の温度T1が前記第1設定温度T1sとなるように前記第1熱源機の運転を制御し、
前記第1熱源機の運転だけでは能力が不足する場合に、前記設定温度T3sから負荷増大側に所定値だけシフトした値を前記第1熱源機から流出する熱源水に対する新たな第1設定温度T1sとして定めるとともに、前記設定温度T3s、前記合流後の熱源水の温度T3、前記合流後の熱源水の流量と前記第1熱源機から流出する熱源水の流量との比率R1、前記合流後の熱源水の流量と前記第2熱源機から流出する熱源水の流量との比率R2、および前記第2熱源機から流出する熱源水の温度T2に基づいて前記第2熱源機から流出する熱源水に対する第2設定温度T2sを定め、
前記第1熱源機から流出する熱源水の温度T1が前記新たな第1設定温度T1sとなるように前記第1熱源機の運転を制御し、
前記第2熱源機から流出する熱源水の温度T2が前記第2設定温度T2sとなるように前記第2熱源機の運転を制御する、
を備えることを特徴とする熱源装置の制御方法。
A method for controlling a heat source device comprising first and second heat source units that use different types of energy, and that joins heat source water flowing out from these heat source units and supplies them to a load,
The set temperature T3s determined for the heat source water after the merge is determined as a first set temperature T1s for the heat source water flowing out of the first heat source unit,
Controlling the operation of the first heat source machine so that the temperature T1 of the heat source water flowing out of the first heat source machine becomes the first set temperature T1s,
When the capacity is insufficient only by the operation of the first heat source machine, a new first set temperature T1s for the heat source water flowing out from the first heat source machine is obtained by shifting a value shifted from the set temperature T3s to the load increasing side by a predetermined value. And the set temperature T3s, the temperature T3 of the heat source water after joining, the ratio R1 of the flow rate of the heat source water after joining and the flow rate of the heat source water flowing out of the first heat source machine, the heat source after joining Based on the ratio R2 between the flow rate of water and the flow rate of the heat source water flowing out from the second heat source unit, and the temperature T2 of the heat source water flowing out from the second heat source unit, the second heat source water flowing out from the second heat source unit 2 Set temperature T2s,
Controlling the operation of the first heat source machine so that the temperature T1 of the heat source water flowing out of the first heat source machine becomes the new first set temperature T1s,
Controlling the operation of the second heat source machine so that the temperature T2 of the heat source water flowing out of the second heat source machine becomes the second set temperature T2s,
A control method for a heat source device, comprising:
JP2016137516A 2016-07-12 2016-07-12 Heat source device and control method thereof Active JP6676490B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016137516A JP6676490B2 (en) 2016-07-12 2016-07-12 Heat source device and control method thereof
JP2020042763A JP6980829B2 (en) 2016-07-12 2020-03-12 Heat source device and its control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016137516A JP6676490B2 (en) 2016-07-12 2016-07-12 Heat source device and control method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020042763A Division JP6980829B2 (en) 2016-07-12 2020-03-12 Heat source device and its control method

Publications (2)

Publication Number Publication Date
JP2018009720A true JP2018009720A (en) 2018-01-18
JP6676490B2 JP6676490B2 (en) 2020-04-08

Family

ID=60995045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016137516A Active JP6676490B2 (en) 2016-07-12 2016-07-12 Heat source device and control method thereof

Country Status (1)

Country Link
JP (1) JP6676490B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138525A (en) * 2018-02-08 2019-08-22 東京瓦斯株式会社 Air conditioning system
WO2024100842A1 (en) * 2022-11-10 2024-05-16 三菱電機株式会社 Air-conditioning device and air-conditioning system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140236A (en) * 1986-12-01 1988-06-11 Hitachi Ltd Control system for the number of heat source machines
JP2008045800A (en) * 2006-08-14 2008-02-28 Yamatake Corp Heat source unit operation control method and device
US20100070092A1 (en) * 2008-09-16 2010-03-18 Williams Furnace Company System and method for controlling a room environment
JP2011137611A (en) * 2009-12-28 2011-07-14 Sanyo Electric Co Ltd Heat source machine, heat source system, and method of controlling operation of the heat source machine
JP2014066453A (en) * 2012-09-26 2014-04-17 Daikin Ind Ltd Heat source system control device
JP2014077621A (en) * 2012-09-21 2014-05-01 Mitsubishi Heavy Ind Ltd Heat source system and method of controlling the same
JP2016006355A (en) * 2014-06-20 2016-01-14 株式会社日立ビルシステム Control method and control apparatus for integrated type heat source system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63140236A (en) * 1986-12-01 1988-06-11 Hitachi Ltd Control system for the number of heat source machines
JP2008045800A (en) * 2006-08-14 2008-02-28 Yamatake Corp Heat source unit operation control method and device
US20100070092A1 (en) * 2008-09-16 2010-03-18 Williams Furnace Company System and method for controlling a room environment
JP2011137611A (en) * 2009-12-28 2011-07-14 Sanyo Electric Co Ltd Heat source machine, heat source system, and method of controlling operation of the heat source machine
JP2014077621A (en) * 2012-09-21 2014-05-01 Mitsubishi Heavy Ind Ltd Heat source system and method of controlling the same
JP2014066453A (en) * 2012-09-26 2014-04-17 Daikin Ind Ltd Heat source system control device
JP2016006355A (en) * 2014-06-20 2016-01-14 株式会社日立ビルシステム Control method and control apparatus for integrated type heat source system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019138525A (en) * 2018-02-08 2019-08-22 東京瓦斯株式会社 Air conditioning system
WO2024100842A1 (en) * 2022-11-10 2024-05-16 三菱電機株式会社 Air-conditioning device and air-conditioning system

Also Published As

Publication number Publication date
JP6676490B2 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
JP6226073B2 (en) Hot water system
EP3115707B1 (en) Heat source device
JP2013119954A (en) Heat pump hot water heater
JP2012159255A (en) Heat pump type heat source device, and heating system
JP2013113534A (en) Heat pump system
JP6676490B2 (en) Heat source device and control method thereof
JP2009068760A (en) Hot water storage type water heater
JP2008309428A (en) Flow rate control device of heat source system and flow rate control method of heat source system
JP2014126309A (en) Air conditioner
JP2010266093A (en) Hot-water supply system
JP6980829B2 (en) Heat source device and its control method
JP2012132583A (en) Heat-pump type heating water heater
JP5575184B2 (en) Heating system
JP5898506B2 (en) Heat pump equipment
JP5664345B2 (en) Hot water storage water heater
CN102997518B (en) The high-accuracy control method of heat-exchange system
JP6257993B2 (en) Refrigeration system and method for controlling the number of refrigeration systems
CN102980335B (en) Variable-frequency heat exchange system
JP2011179764A (en) Refrigeration cycle device
JP6890014B2 (en) Hot water supply system
JP6094447B2 (en) Water heater
JP5972729B2 (en) Hot water storage water heater
JP2014040943A (en) Hot water storage type water heater
JP5986530B2 (en) Water heater
JP5741256B2 (en) Hot water storage water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190403

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200312

R150 Certificate of patent or registration of utility model

Ref document number: 6676490

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150