JP2005133970A - Air-conditioner - Google Patents

Air-conditioner Download PDF

Info

Publication number
JP2005133970A
JP2005133970A JP2003367088A JP2003367088A JP2005133970A JP 2005133970 A JP2005133970 A JP 2005133970A JP 2003367088 A JP2003367088 A JP 2003367088A JP 2003367088 A JP2003367088 A JP 2003367088A JP 2005133970 A JP2005133970 A JP 2005133970A
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
value
indoor unit
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003367088A
Other languages
Japanese (ja)
Inventor
Takayuki Izeki
貴之 井関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003367088A priority Critical patent/JP2005133970A/en
Publication of JP2005133970A publication Critical patent/JP2005133970A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To effectively control equipment without impairing comfortability while avoiding the destruction of a compressor due to sharp suction pressure rise of the compressor by performing heat exchange after increasing the frequency of the compressor when starting the cooling or dehumidifying operation of an indoor unit during operation with an evaporating temperature being high in other rooms. <P>SOLUTION: In the case of determining that the indoor unit has cooling or dehumidifying operation in other rooms, when a value for a suction pressure detecting device 9 is greater than a set value LPa, the stop of an indoor blower 12 or the operation of an solenoid expansion valve 13 with a slightly opening pulse Pexmin (or in a fully closed state) is controlled for a predetermined time after starting operation. When the value of the suction pressure detecting device 9 is smaller than a set value LPb (LPb=LPa-1kg/cm2G), that the compressor starts increasing the frequency is determined and the operation of the blower 12 or the operation of the solenoid expansion valve 13 with an initial opening Pex is controlled to be started. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、容量(周波数)可変圧縮機をインバータにより可変制御する多室型の空気調和装置に関するものである。   The present invention relates to a multi-chamber air conditioner that variably controls a capacity (frequency) variable compressor by an inverter.

従来、この種の空気調和装置では、容量(周波数)可変形圧縮機を用い、1台あるいは複数台冷房(あるいは除湿)運転中に追加で冷房(あるいは除湿)運転を開始すると、追加運転開始と同時に追加運転室内機の電磁膨張弁が初期設定値で(室内要求負荷に応じたあらかじめ設定された初期設定値)、追加運転室内機の送風機がリモコン設定値で運転を開始し、追加で運転を開始した室内機の要求負荷に応じて容量(周波数)可変形圧縮機の周波数が上昇していた(例えば、特許文献1参照)。
特開昭53−53145号公報
Conventionally, this type of air conditioner uses a variable capacity (frequency) compressor, and when one or more units are cooled (or dehumidified) during the cooling (or dehumidification) operation, At the same time, the electromagnetic expansion valve of the additional operation indoor unit is set to the initial setting value (preset initial setting value corresponding to the indoor required load), and the blower of the additional operation indoor unit starts operation with the remote control setting value. The frequency of the capacity (frequency) variable compressor increased according to the required load of the indoor unit that was started (see, for example, Patent Document 1).
JP-A-53-53145

しかしながら、従来の空気調和装置では、追加運転開始と同時に追加運転室内機の電磁膨張弁が初期設定値で(室内要求負荷に応じたあらかじめ設定された初期設定値)、追加運転室内機の送風機がリモコン設定値で運転を開始するが、室外機は一定のインターバルで周波数の上昇下降の制御を行っているため、要求負荷に対する室内機と室外機の反応に時間差を生じる(最大で制御のインターバル時間分のずれを生じる)。   However, in the conventional air conditioner, the electromagnetic expansion valve of the additional operation indoor unit is set to the initial setting value at the same time as the start of the additional operation (initial setting value set in advance according to the indoor required load), and the blower of the additional operation indoor unit is Operation starts with the remote control set value, but because the outdoor unit controls the frequency rise and fall at regular intervals, there is a time difference in the response of the indoor unit and the outdoor unit to the required load (maximum control interval time) A minute shift).

従って、圧縮機周波数が上昇する前に室内機の送風機を運転し電磁膨張弁を初期設定値に設定し運転を開始することもある。このような場合、蒸発温度(吸入圧力)が圧縮機周波数が上昇するまで一時的に急激に上昇してしまう。   Therefore, before the compressor frequency increases, the blower of the indoor unit may be operated to set the electromagnetic expansion valve to the initial set value and start the operation. In such a case, the evaporation temperature (suction pressure) temporarily rises abruptly until the compressor frequency rises.

また、前記時間のずれがわずかでも、圧縮機の周波数の上昇スピードには信頼性を補償するための限界があるため、圧縮機周波数を徐々に上昇せざるを得ず、この上昇中に蒸発温度(吸入圧力)が一時的に急激に上昇してしまう。この蒸発温度(吸入圧力)の上昇により、圧縮機の軸受け荷重が増加し、スラスト軸受けの損傷がおき圧縮機の信頼性が著しく低下することがある。   In addition, even if the time lag is slight, there is a limit for compensating the reliability of the speed of increase in the frequency of the compressor, so the compressor frequency must be gradually increased. (Suction pressure) temporarily increases suddenly. This increase in the evaporation temperature (suction pressure) increases the bearing load of the compressor, which may damage the thrust bearing and significantly reduce the reliability of the compressor.

以上の不具合を回避するために、運転中の蒸発温度(圧縮機吸入圧力)は追加運転時の圧力上昇を見越して圧縮機の仕様に対して低めに設定せざるを得ず、要求負荷が低いのにもかかわらず圧縮機周波数を高めに運転し吸入圧力を下げたり(要求負荷が低い場合は圧縮機周波数をさげて運転をセーブしたいができない)、室内機の結露を回避するのに蒸発温度を上げたいが、出来ないために風量アップや風向変更で室内機の結露を回避する手段を取っており、快適性を若干損なって運転をしていた。   In order to avoid the above problems, the evaporation temperature during operation (compressor suction pressure) must be set lower than the compressor specifications in anticipation of pressure increase during additional operation, and the required load is low. However, if the compressor frequency is increased and the suction pressure is reduced (if the required load is low, it is not possible to save the operation by reducing the compressor frequency), the evaporation temperature can be avoided to prevent condensation in the indoor unit. However, because it was not possible, we took measures to avoid condensation in the indoor unit by increasing the air volume and changing the direction of the wind, and we were operating with a slight loss of comfort.

本発明は上記従来の欠点を解消するもので、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に機器を制御するものである。   The present invention eliminates the above-mentioned conventional drawbacks, and effectively controls equipment while protecting equipment such as a compressor and without impairing comfort.

上記課題を解決するために本発明は、可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、前記室内機の冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、一の室内機が冷房あるいは除湿運転開始時、他の室内機が冷房あるいは除湿で運転中の場合、前記膨張弁を閉から徐々に開く制御装置を設けたものである。   In order to solve the above problems, the present invention connects an outdoor unit having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, a refrigerant gas pipe, and a plurality of indoor units having a heat exchanger and a blower. An electric refrigerant expansion valve is interposed between the refrigerant liquid pipe of the indoor unit and the indoor heat exchanger to form a refrigeration cycle. When one indoor unit starts cooling or dehumidifying operation, the other indoor units A control device is provided for gradually opening the expansion valve from the closed state during operation by cooling or dehumidification.

また、可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、少なくとも前記室外機の冷媒吸入管に吸入圧力検知装置を設け、冷房あるいは除湿運転開始時、前記吸入圧力検知装置の信号と他室運転状況により前記送風機の風量を制御する制御装置を設けた空気調和装置において、一の室内機が冷房あるいは除湿運転開始時に他の室内機が冷房あるいは除湿で運転中の場合、前記吸入圧力検知装置の値が所定の圧力値より高い場合、所定時間前記室内送風機を最低風量で運転するか、あるいは停止するものである。   Further, a plurality of outdoor units having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, and a refrigerant gas pipe and an indoor unit having a heat exchanger and a blower are connected, and the refrigerant liquid pipe and the indoor heat are connected. An electric refrigerant expansion valve is interposed between the exchangers to constitute a refrigeration cycle, and at least a refrigerant suction pipe of the outdoor unit is provided with a suction pressure detection device, and when the cooling or dehumidifying operation starts, the signal of the suction pressure detection device In the air conditioner provided with a control device for controlling the air volume of the blower according to the operation status of the other room, when the other indoor unit is operating in the cooling or dehumidifying operation when the one indoor unit starts the cooling or dehumidifying operation, the suction When the value of the pressure detection device is higher than the predetermined pressure value, the indoor blower is operated at the minimum air volume for a predetermined time or stopped.

また、可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、前記室内機の冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、一の室内機には他の室内機の熱交換器の温度を検知する他室室内熱交換器温度検知装置を設け、冷房あるいは除湿運転開始時他室が冷房あるいは除湿で運転中の場合、前記他室室内熱交換器温度検知装置の値が所定温度値より高い場合、所定温度復帰値を下回るまで膨張弁を微開あるいは閉で運転するものである。   Further, a plurality of outdoor units having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, and a refrigerant gas pipe, and an indoor unit having a heat exchanger and a blower are connected, and the refrigerant liquid pipe of the indoor unit And the indoor heat exchanger, an electric refrigerant expansion valve is interposed to constitute a refrigeration cycle, and one indoor unit detects the temperature of the heat exchanger of the other indoor unit. When the other room is operating in the cooling or dehumidifying operation when the cooling or dehumidifying operation is started, if the value of the other-room indoor heat exchanger temperature detecting device is higher than the predetermined temperature value, until the temperature falls below the predetermined temperature return value The expansion valve is operated slightly opened or closed.

上記発明によって、吸入圧力の急激な上昇を抑え、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に機器を制御することが可能となる。   According to the above-described invention, it is possible to control a device effectively while suppressing a sudden increase in suction pressure, protecting a device such as a compressor, and not impairing comfort.

本発明の空気調和装置は、圧縮機周波数上昇前に、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。   The air conditioner of the present invention can avoid a sudden rise in evaporation pressure due to a sudden increase in indoor heat exchange capacity before a compressor frequency rise, can avoid a compressor breakdown due to a rise in compressor suction pressure, and can improve the reliability of equipment. In addition, the reliability of the compressor is improved.

また、このことにより、圧縮機などの機器を保護しながらかつ快適性を損わない空気調和装置の運転が可能となる。   In addition, this makes it possible to operate the air conditioner while protecting equipment such as a compressor and not impairing comfort.

また、風量ダウンの時間を短くでき、さらに快適性が向上し、圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   In addition, the air flow down time can be shortened, the comfort can be further improved, and the air conditioner can be operated without impairing the comfort while protecting equipment such as a compressor.

また、運運転開始時に使用者の設定した風量で運転しないといった不具合を回避でき、且つ圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   In addition, it is possible to avoid the problem of not operating with the air volume set by the user at the start of operation, and to operate the air conditioner without sacrificing comfort while protecting equipment such as a compressor.

また、冷媒流量調整の時間を短くでき快適性がさらに向上し、圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   Moreover, the time for adjusting the refrigerant flow rate can be shortened, and the comfort is further improved, and the air conditioner can be operated without sacrificing the comfort while protecting the equipment such as the compressor.

また、室外側と通信を行う必要がなく、且つ吸入圧力センサーが不要になりコストダウンが図れる。   Further, it is not necessary to communicate with the outdoor side, and the suction pressure sensor is not necessary, thereby reducing the cost.

第1の発明は、可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、前記室内機の冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、一の室内機が冷房あるいは除湿運転開始時、他の室内機が冷房あるいは除湿で運転中の場合、前記膨張弁を閉から徐々に開く制御装置を設けたものである。   According to a first aspect of the present invention, a plurality of outdoor units having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, and a refrigerant gas pipe, and a plurality of indoor units having a heat exchanger and a blower are connected. An electric refrigerant expansion valve is interposed between the refrigerant liquid pipe and the indoor heat exchanger to form a refrigeration cycle. When one indoor unit starts cooling or dehumidifying operation, the other indoor unit is operated by cooling or dehumidifying In the case of the inside, a control device for gradually opening the expansion valve from the closed state is provided.

この構成をなすことにより、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回
避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。
By adopting this configuration, it is possible to avoid a sudden increase in evaporation pressure due to a sudden increase in indoor heat exchange capacity, avoid a compressor breakdown due to an increase in compressor suction pressure, and improve equipment reliability and compressor reliability. To do.

第2の発明は、可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、少なくとも前記室外機の冷媒吸入管に吸入圧力検知装置を設け、冷房あるいは除湿運転開始時、前記吸入圧力検知装置の信号と他室運転状況により前記送風機の風量を制御する制御装置を設けた空気調和装置において、一の室内機が冷房あるいは除湿運転開始時に他の室内機が冷房あるいは除湿で運転中の場合、前記吸入圧力検知装置の値が所定の圧力値より高い場合、所定時間前記室内送風機を最低風量で運転するか、あるいは停止するものである。   According to a second aspect of the present invention, a plurality of outdoor units having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, and a refrigerant gas pipe, and a plurality of indoor units having a heat exchanger and a blower are connected. An refrigeration cycle with an electric refrigerant expansion valve interposed between the heat exchanger and the indoor heat exchanger, and a suction pressure detection device is provided at least in the refrigerant suction pipe of the outdoor unit. In the air conditioner provided with a control device that controls the air volume of the blower according to the signal of the detection device and the operation status of the other room, when one indoor unit starts cooling or dehumidifying operation, the other indoor unit is operating by cooling or dehumidifying In this case, when the value of the suction pressure detection device is higher than a predetermined pressure value, the indoor fan is operated at a minimum air volume for a predetermined time or is stopped.

この構成をなすことにより、圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   With this configuration, it is possible to operate an air conditioner that protects equipment such as a compressor and does not impair comfort.

第3の発明は、冷房あるいは除湿運転開始時、吸入圧力検知装置の値が第1の所定圧力値より高い場合、第2の所定圧力復帰値を下回るまで前記室内送風機を最低風量で運転するか、あるいは停止するものである。   According to a third aspect of the present invention, at the start of cooling or dehumidifying operation, if the value of the suction pressure detection device is higher than the first predetermined pressure value, is the indoor fan operated at the minimum air volume until it falls below the second predetermined pressure return value? Or stop.

この構成をなすことにより、圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   With this configuration, it is possible to operate an air conditioner that protects equipment such as a compressor and does not impair comfort.

第4の発明は、少なくとも室外機の冷媒吸入管に吸入圧力検知装置を設け、一の室内機が冷房あるいは除湿運転開始時開始時、他の室内機が冷房あるいは除湿で運転中の場合、前記吸入圧力検知装置の値が所定圧力値より高い場合、所定時間前記膨張弁を微開あるいは閉で運転するものである。   The fourth invention provides a suction pressure detection device at least in the refrigerant suction pipe of the outdoor unit, when one indoor unit is started at the start of cooling or dehumidifying operation, and when the other indoor unit is operating by cooling or dehumidifying, When the value of the suction pressure detection device is higher than a predetermined pressure value, the expansion valve is operated with the valve slightly opened or closed for a predetermined time.

この構成をなすことにより、圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   With this configuration, it is possible to operate an air conditioner that protects equipment such as a compressor and does not impair comfort.

第5の発明は、冷房あるいは除湿運転開始時、吸入圧力検知装置の値が所定圧力値より高い場合、設定圧力復帰値を下回るまで前記膨張弁を微開あるいは閉で運転するものである。   According to a fifth aspect of the present invention, when the value of the suction pressure detecting device is higher than a predetermined pressure value at the start of cooling or dehumidifying operation, the expansion valve is operated with being slightly opened or closed until it falls below a set pressure return value.

この構成をなすことにより、圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   With this configuration, it is possible to operate an air conditioner that protects equipment such as a compressor and does not impair comfort.

第6の発明は、熱交換器の温度を検知する他室内熱交換器温度検知装置を設け、一の室内機が冷房あるいは除湿運転開始時、前記他室内熱交換器温度検知装置の値が所定温度値より高い場合、所定温度復帰値を下回るまで前記室内送風機を最低風量あるいは停止で運転するものである。   According to a sixth aspect of the present invention, there is provided another indoor heat exchanger temperature detection device that detects the temperature of the heat exchanger, and when one indoor unit starts cooling or dehumidifying operation, the value of the other indoor heat exchanger temperature detection device is predetermined. When the temperature is higher than the temperature value, the indoor blower is operated at the minimum air volume or stopped until the temperature falls below a predetermined temperature return value.

この構成をなすことにより、圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   With this configuration, it is possible to operate an air conditioner that protects equipment such as a compressor and does not impair comfort.

第7の発明は、可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、前記室内機の冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、一の室内機には他の室内機の熱交換器の温度を検知する他室室内熱交換器温度検知装置を設け、冷房あるいは除湿運転開始時他室が冷房あるいは除湿で運転中の場合、前記他室室内熱交換
器温度検知装置の値が所定温度値より高い場合、所定温度復帰値を下回るまで膨張弁を微開あるいは閉で運転するものである。
According to a seventh aspect of the present invention, a plurality of outdoor units having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, and a refrigerant gas pipe, and a plurality of indoor units having a heat exchanger and a blower are connected. An indoor refrigerant chamber is provided between the refrigerant liquid pipe and the indoor heat exchanger to constitute a refrigeration cycle, and one indoor unit detects the temperature of the heat exchanger of another indoor unit. When a heat exchanger temperature detection device is installed and the other room is operating in the cooling or dehumidification operation when cooling or dehumidifying operation is started, if the value of the other-room indoor heat exchanger temperature detection device is higher than the predetermined temperature value, the predetermined temperature is restored. The expansion valve is operated slightly opened or closed until it falls below the value.

この構成をなすことにより、圧縮機などの機器を保護しながら快適性を損わない空気調和装置の運転が可能となる。   With this configuration, it is possible to operate an air conditioner that protects equipment such as a compressor and does not impair comfort.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.

(実施の形態1)
図1は、本発明にかかる多室型空気調和装置の冷凍サイクル図の一例であり、1台の室外機1に複数台(例えば2台)の室内機10a 10bを接続した場合を示している。
図1において、室外機1にはインバータ駆動の容量(周波数)可変形圧縮機2(以下単に圧縮機と称す)と、室外熱交換器3と室外送風機4と、冷媒液側主管5と、冷媒ガス側主管6と、冷暖房切換用の四方弁7とが設けられる。
(Embodiment 1)
FIG. 1 is an example of a refrigeration cycle diagram of a multi-room air conditioner according to the present invention, and shows a case where a plurality of (for example, two) indoor units 10a and 10b are connected to one outdoor unit 1. .
In FIG. 1, an outdoor unit 1 includes an inverter-driven capacity (frequency) variable compressor 2 (hereinafter simply referred to as a compressor), an outdoor heat exchanger 3, an outdoor blower 4, a refrigerant liquid side main pipe 5, and a refrigerant. A gas side main pipe 6 and a four-way valve 7 for switching between heating and cooling are provided.

一方、室内機10a,10bには室内送風機12a、12bと、室内熱交換器11a,11bがそれぞれ設けられていて、室外機1と室内機10a、10bは冷媒液側主管5より分岐した液側分岐管17a,17b,及び冷媒ガス側主管6より分岐したガス側分岐管18a,18bとで接続されており、液側分岐管17a,17bと室内熱交換器11a,11bの間には、例えばステッピングモータ等により弁開度をパルス制御可能な電動膨張弁13a,13bがそれぞれ介装されている。   On the other hand, the indoor units 10a and 10b are provided with indoor fans 12a and 12b and indoor heat exchangers 11a and 11b, respectively. The outdoor unit 1 and the indoor units 10a and 10b are branched from the refrigerant liquid side main pipe 5. The branch pipes 17a and 17b and the gas side branch pipes 18a and 18b branched from the refrigerant gas side main pipe 6 are connected. Between the liquid side branch pipes 17a and 17b and the indoor heat exchangers 11a and 11b, for example, Electric expansion valves 13a and 13b capable of pulse-controlling the valve opening by a stepping motor or the like are interposed.

また、室内機10a,10bには部屋の室温を検出する室内吸込み温度検知装置14a,14b、室内機10a,10bの熱交換器の温度を検知する室内熱交換器温度検知装置15a、15b居住者が希望する運転モード(冷房または暖房)と室温と運転あるいは停止を設定できる運転設定装置16a,16bが設けられている。   The indoor units 10a and 10b include indoor suction temperature detectors 14a and 14b that detect the room temperature of the room, and indoor heat exchanger temperature detectors 15a and 15b that detect the temperature of the heat exchanger of the indoor units 10a and 10b. Are provided with operation setting devices 16a and 16b that can set the operation mode (cooling or heating), room temperature, and operation or stop desired.

また、室外機1の圧縮機2の吸入管8には吸入圧力を検知する吸入圧力検知装置9が設けられている。   The suction pipe 8 of the compressor 2 of the outdoor unit 1 is provided with a suction pressure detection device 9 that detects the suction pressure.

上記構成の冷凍サイクルにおいて、冷房あるいは除湿運転時、圧縮機2から吐出された冷媒は四方弁7を介して室外熱交換器3へと流れ、室外送風機4の駆動により室外熱交換器3で室外空気と熱交換して凝縮液化し、次に冷媒液側主管5を通り液側分岐管17a,17bにて冷媒分配させ電動膨張弁13a,13bで複数の室内機に分配された冷媒を流量制御して室内熱交換機11a,11bで蒸発した後に、ガス側分岐から冷媒ガス側主管6に合流して四方弁7を介して再び圧縮機2に吸入される。   In the refrigeration cycle configured as described above, during cooling or dehumidifying operation, the refrigerant discharged from the compressor 2 flows to the outdoor heat exchanger 3 through the four-way valve 7, and the outdoor heat exchanger 3 drives the outdoor heat exchanger 3 to drive the outdoor heat exchanger 3. Heat is exchanged with air to condense and liquefy, and then flow through the refrigerant liquid main pipe 5 to distribute the refrigerant in the liquid side branch pipes 17a and 17b, and control the flow rate of the refrigerant distributed to the plurality of indoor units by the electric expansion valves 13a and 13b. Then, after evaporating in the indoor heat exchangers 11a and 11b, it joins from the gas side branch to the refrigerant gas side main pipe 6 and is sucked into the compressor 2 again through the four-way valve 7.

この電動配膨張弁13a,13bは室内の負荷に見合った開度となるようにステッピングモータ等によりパルス制御されるため、冷媒も室内負荷に応じた流量で制御される。   Since the electric expansion valves 13a and 13b are pulse-controlled by a stepping motor or the like so as to have an opening corresponding to the indoor load, the refrigerant is also controlled at a flow rate corresponding to the indoor load.

次に、本発明の制御の流れについて図2,3を用いて説明する。   Next, the control flow of the present invention will be described with reference to FIGS.

図2は複数の室内機から温度と運転設定との関係から差温、室内負荷レベル信号を送信して圧縮機周波数及び電動膨張弁の制御行う流れを示すブロック図で、図3はフローチャート図である。   FIG. 2 is a block diagram showing a flow of controlling a compressor frequency and an electric expansion valve by transmitting a differential temperature and an indoor load level signal from a relationship between temperature and operation setting from a plurality of indoor units, and FIG. 3 is a flowchart diagram. is there.

まず図2で各信号の流れについて説明を行う、室内機10aにおいて、室内吸込み温度検知装置14a出力を差温算出装置17aに送出する一方、運転設定装置16aからの信号を信号受信装置18aで受けて運転設定装置16aで設定された温度設定を室内温度設
定記憶装置19aで記憶されその温度設定を差温算出装置17aに送出し、ここで差温ΔT(=Tr−Ts)を算出し、差温信号とする。
First, the flow of each signal will be described with reference to FIG. 2. In the indoor unit 10a, the output of the indoor suction temperature detecting device 14a is sent to the differential temperature calculating device 17a, while the signal from the operation setting device 16a is received by the signal receiving device 18a. The temperature setting set by the operation setting device 16a is stored in the indoor temperature setting storage device 19a, and the temperature setting is sent to the differential temperature calculation device 17a, where the differential temperature ΔT (= Tr−Ts) is calculated, The temperature signal.

この運転設定装置16aでは、温度設定の他に運転停止信号、冷房・除湿・暖房等の運転モード、風量設定、風量自動、風向設定、風向自動が設定できるものである。   In the operation setting device 16a, in addition to temperature setting, an operation stop signal, operation modes such as cooling / dehumidification / heating, etc., air volume setting, air volume automatic, air direction setting, and wind direction automatic can be set.

また、運転停止記憶装置20aにて、運転設定装置16aで設定された信号を信号受信装置18aで受信し室内機10aの運転(ON)あるいは停止(OFF)を記憶する
また、風量設定記憶装置21aにて、運転設定装置16aで設定された信号を信号受信装置18で受信し室内機の設定風量を記憶する。
Further, the operation stop storage device 20a receives the signal set by the operation setting device 16a by the signal receiving device 18a and stores the operation (ON) or stop (OFF) of the indoor unit 10a. Also, the air volume setting storage device 21a Then, the signal set by the operation setting device 16a is received by the signal receiving device 18, and the set air volume of the indoor unit is stored.

また、室内熱交換器温度検知装置15aの出力を室内熱交換器温度の信号として出力する。また、運転モード記憶装置22aにて、運転設定装置16aで設定された信号を信号受信装置18aで受信し室内機10aの冷房・除湿・暖房等どれかの運転モードを記憶する。   Moreover, the output of the indoor heat exchanger temperature detection device 15a is output as a signal of the indoor heat exchanger temperature. In the operation mode storage device 22a, the signal set by the operation setting device 16a is received by the signal receiving device 18a, and any operation mode such as cooling, dehumidification, and heating of the indoor unit 10a is stored.

そして、差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号を信号送出装置より25送風機風量設定装置23a、膨張弁開度設定装置24a及び室外機1の信号受信装置26へ送出する。   Then, a differential temperature signal, an operation mode signal, an operation stop signal, a set air volume signal, and a heat exchanger temperature signal are sent from a signal sending device to a 25 blower air volume setting device 23a, an expansion valve opening setting device 24a, and a signal receiving device for the outdoor unit 1. 26.

また運転モード信号、運転停止信号、室内熱交換器温度信号は他室内機10bに送出され、他室運転モード記憶装置27bで記憶され、室内機は各々他室内機の運転状況を把握できるようになっている。   Further, the operation mode signal, the operation stop signal, and the indoor heat exchanger temperature signal are sent to the other indoor unit 10b and stored in the other room operation mode storage device 27b so that each indoor unit can grasp the operation status of each other indoor unit. It has become.

室内機10a、10bにおいて差温信号、運転モード信号、運転停止信号、室内熱交換器温度信号、設定風量信号に基づいて膨張弁開度設定装置24aにて弁初期開度テーブル28aから所定の演算を行うことにより電動膨張弁13aの開度を決定し、風量設定装置23aにて室内風量を決定し室内機の運転を行う。   In the indoor units 10a and 10b, a predetermined calculation is performed from the valve initial opening degree table 28a by the expansion valve opening degree setting device 24a based on the differential temperature signal, the operation mode signal, the operation stop signal, the indoor heat exchanger temperature signal, and the set air volume signal. Is performed to determine the opening degree of the electric expansion valve 13a, the indoor air volume is determined by the air volume setting device 23a, and the indoor unit is operated.

一方、室外機1において圧縮機周波数演算装置28にて、室内機10a,10bから受信した差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号に基づいて、運転周波数を算出し、圧縮機周波数が設定された後、圧縮機周波数の制御を行う。   On the other hand, in the outdoor unit 1, the operation frequency based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the heat exchanger temperature signal received from the indoor units 10 a and 10 b by the compressor frequency calculation device 28. After the compressor frequency is set, the compressor frequency is controlled.

以後、所定周期毎に、差温信号、運転モード信号、運転停止信号、設定風量信号及び室内熱交換器温度信号に基づいて電動膨張弁13aの弁開度、及び圧縮機2の周波数を算出し制御が行われる。   Thereafter, the valve opening degree of the electric expansion valve 13a and the frequency of the compressor 2 are calculated based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the indoor heat exchanger temperature signal at predetermined intervals. Control is performed.

ここで、室内側は運転開始と同時に差温信号、運転モード信号、運転停止信号、設定風量信号及び室内熱交換器温度信号に基づいて膨張弁開度設定装置24aにて弁初期開度テーブル28aから所定の演算を行うことにより電動膨張弁13aの開度を決定し、風量設定装置23aにて室内風量を決定し室内機の運転を行うが、室外側は所定周期(制御インターバル時間)毎に、室内側から送られる差温信号、運転モード信号、運転停止信号、設定風量信号及び室内熱交換器温度信号に基づいて圧縮機2の周波数を算出し制御が行われるために、室内外で時間差を生じ、室内側が動き出してから最大で所定周期(制御インターバル時間)分、圧縮機周波数の上昇までの時間のずれを生じる。   Here, on the indoor side, the valve initial opening degree table 28a is set in the expansion valve opening degree setting device 24a based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the indoor heat exchanger temperature signal at the same time as the operation is started. The opening of the electric expansion valve 13a is determined by performing a predetermined calculation from the above, the indoor air volume is determined by the air volume setting device 23a, and the indoor unit is operated. However, the outdoor side is operated every predetermined period (control interval time). Because the frequency of the compressor 2 is calculated and controlled based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal and the indoor heat exchanger temperature signal sent from the indoor side, the time difference between the indoor and outdoor This causes a time lag until the compressor frequency rises by a predetermined period (control interval time) at the maximum after the indoor side starts to move.

次に図3のフロチャート図で具体的に本発明の制御の流れについて説明を行う。居住者が運転設定装置16a(たとえばa室)で冷房あるいは除湿を選択すると(STEP0)、差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号に基づい
て室内風量及び膨張弁初期開度Pex(ここでは例えばPex0パルス)(STEP2)を設定し、運転選択と同時に設定室内風量及び膨張弁初期開度で運転を開始すると共に信号送出装置25aを通して室外機1の信号受信装置26へ送出するが、室内機が他室(例えばb室)が冷房あるいは除湿運転していると判断した場合(STEP1)膨張弁初期開度(ここでは例えばPex0パルス)ではなくOパルス(閉)から(STEP3)所定時間(Tint)毎に(STEP6)徐々にPexaパルスづつ(STEP4)、初期設定パルスPex0に達するまで(STEP5)徐々に開く様に制御を行う。この初期設定パルスPex0に達する時間は室外側の圧縮機周波数演算装置28の制御インターバルより若干大きな同じ時間が与えられており、圧縮機2の周波数が上昇してから室内機の負荷にあった冷媒が供給される様に制御されている。
Next, the flow of control of the present invention will be specifically described with reference to the flowchart of FIG. When the resident selects cooling or dehumidification with the operation setting device 16a (for example, room a) (STEP 0), the indoor air volume and the heat exchanger temperature signal are changed based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the heat exchanger temperature signal. The expansion valve initial opening Pex (in this case, for example, Pex0 pulse) (STEP 2) is set, and simultaneously with the operation selection, the operation is started at the set indoor air volume and the expansion valve initial opening and the signal is received from the outdoor unit 1 through the signal sending device 25a. When the indoor unit determines that the other room (for example, room b) is in cooling or dehumidifying operation (STEP 1), it is not an expansion valve initial opening (for example, Pex0 pulse in this case) but an O pulse (closed). ) To (STEP 3) every predetermined time (Tint) (STEP 6) gradually Pexa pulse (STEP 4) until the initial setting pulse Pex0 is reached (STEP 5) Control it like this. The time to reach the initial setting pulse Pex0 is given the same time that is slightly larger than the control interval of the compressor frequency arithmetic unit 28 on the outdoor side, and the refrigerant that has been in the load on the indoor unit after the frequency of the compressor 2 has increased. Is controlled to be supplied.

そしてこの構成のよれば、圧縮機周波数上昇前に、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。   And according to this configuration, before the compressor frequency rises, it is possible to avoid a sudden rise in evaporation pressure due to a sudden increase in indoor heat exchange capacity, avoid a compressor breakdown due to a rise in compressor suction pressure, and improve the reliability of equipment and The reliability of the compressor is improved.

よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる
なお、暖房運転については、本発明の主眼ではないので、その説明は省略する。
Therefore, it is possible to operate the air conditioner effectively while protecting the equipment such as the compressor and without impairing the comfort. Note that the heating operation is not the main point of the present invention, and the description thereof is omitted.

(実施の形態2)
図1は、本発明の実施の形態2における空気調和装置の冷凍サイクル図の一例であり、図2は制御ブロック図、図4はフローチャートである。
(Embodiment 2)
1 is an example of a refrigeration cycle diagram of an air-conditioning apparatus according to Embodiment 2 of the present invention, FIG. 2 is a control block diagram, and FIG. 4 is a flowchart.

冷凍サイクルの動き及び各信号の流れは実施の形態1と同様なので説明は省略する。
次に図4のフロチャートで具体的に本発明の制御の流れについて説明を行う。
Since the movement of the refrigeration cycle and the flow of each signal are the same as those in the first embodiment, the description thereof is omitted.
Next, the flow of control of the present invention will be specifically described with reference to the flowchart of FIG.

居住者が運転設定装置16a(たとえばa室)で冷房あるいは除湿を選択すると(STEP0)、差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号に基づいて室内風量及び膨張弁初期開度Pex(ここでは例えばPex0パルス)を設定し、運転選択と同時に設定室内風量及び膨張弁初期開度で運転を開始すると共に信号送出装置25aを通して室外機1の信号受信装置26へ送出するが、室内機が他室(例えばb室)が冷房あるいは除湿運転していると判断した場合(STEP1)、吸入圧力検知装置9の値(LPs)がある設定値LPaより大きい場合(STEP2)、運転開始からある決められた時間(Titv)(STEP4)室内機の風量を設定風量ではなく、最低風量(あるいは送風停止)で運転を行うように制御を行う(STEP3)。   When the resident selects cooling or dehumidification with the operation setting device 16a (for example, room a) (STEP 0), the indoor air volume and the heat exchanger temperature signal are changed based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the heat exchanger temperature signal. The expansion valve initial opening Pex (for example, Pex0 pulse in this case) is set, and the operation is started at the set indoor air volume and the expansion valve initial opening simultaneously with the operation selection, and to the signal receiving device 26 of the outdoor unit 1 through the signal sending device 25a. When the indoor unit determines that the other room (for example, room b) is in cooling or dehumidifying operation (STEP 1), or when the value (LPs) of the suction pressure detection device 9 is greater than a certain set value LPa (STEP 2) ), A predetermined time (Titv) (STEP 4) from the start of operation, so that the air volume of the indoor unit is operated not with the set air volume but with the minimum air volume (or air blowing stop). Control is carried out (STEP3).

このある決められた時間(Titv)は室外機1の圧縮機周波数演算装置28の制御インターバルより若干大きな同じ時間が与えられているので、圧縮機2の周波数が上昇してから冷媒が室内側と負荷にあった熱交換がされるように(送風風量微風あるいは停止によりほとんど熱交換されていない)制御されている。   This predetermined time (Titv) is given the same time that is slightly larger than the control interval of the compressor frequency calculation device 28 of the outdoor unit 1, so that after the frequency of the compressor 2 increases, It is controlled so that heat exchange that matches the load is performed (almost no heat is exchanged due to a slight air flow or stoppage).

そしてこの構成のよれば、圧縮機周波数上昇前に、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。   And according to this configuration, before the compressor frequency rises, it is possible to avoid a sudden rise in evaporation pressure due to a sudden increase in indoor heat exchange capacity, avoid a compressor breakdown due to a rise in compressor suction pressure, and improve the reliability of equipment and The reliability of the compressor is improved.

よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる。   Therefore, it is possible to operate the air conditioner effectively while protecting equipment such as the compressor and without impairing comfort.

(実施の形態3)
図1は、本発明の実施の形態2における空気調和装置の冷凍サイクル図の一例であり、
図2は制御ブロック図、図5はフローチャートである。
(Embodiment 3)
FIG. 1 is an example of a refrigeration cycle diagram of an air-conditioning apparatus according to Embodiment 2 of the present invention.
FIG. 2 is a control block diagram, and FIG. 5 is a flowchart.

冷凍サイクルの動き及び各信号の流れは実施の形態1と同様なので説明は省略する。   Since the movement of the refrigeration cycle and the flow of each signal are the same as those in the first embodiment, the description thereof is omitted.

次に図5のフロチャート図で具体的に本発明の制御の流れについて説明を行う。居住者が運転設定装置16a(たとえばa室)で冷房あるいは除湿を選択すると(STEP0)、差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号に基づいて室内風量及び膨張弁初期開度Pex(ここでは例えばPex0パルス)を設定し、運転選択と同時に設定室内風量及び膨張弁初期開度で運転を開始すると共に信号送出装置25aを通して室外機1の信号受信装置26へ送出するが、室内機が他室(例えばb室)が冷房あるいは除湿運転していると判断した場合(STEP1)、吸入圧力検知装置9の値(LPs)がある設定値LPaより大きい場合(STEP2)、運転開始からある決められた時間(Titv)(STEP6)室内機の風量を設定風量ではなく、最低風量(あるいは送風停止)で運転を行うように制御を行い(STEP3)、吸入圧力検知装置9の値(LPs)がある設定値LPb(ここではLPb=LPa-1kg/cm2Gに設定されている)を下回ると(STEP4)、圧縮機2が周波数アップを開始したと判断し風量を設定風量で運転を開始する(STEP5)様に制御されている。   Next, the flow of control of the present invention will be specifically described with reference to the flowchart of FIG. When the resident selects cooling or dehumidification with the operation setting device 16a (for example, room a) (STEP 0), the indoor air volume and the heat exchanger temperature signal are changed based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the heat exchanger temperature signal. The expansion valve initial opening degree Pex (here, for example, Pex0 pulse) is set, the operation is started at the set indoor air volume and the expansion valve initial opening degree simultaneously with the selection of the operation, and the signal receiving device 26 of the outdoor unit 1 is passed through the signal sending device 25a. When the indoor unit determines that the other room (for example, room b) is in cooling or dehumidifying operation (STEP 1), or when the value (LPs) of the suction pressure detection device 9 is greater than a certain set value LPa (STEP 2) ), A predetermined time from the start of operation (Titv) (STEP 6) The air volume of the indoor unit is not the set air volume but the minimum air volume (or the air supply is stopped). When the control is performed (STEP 3) and the value (LPs) of the suction pressure detection device 9 falls below a set value LPb (here, LPb = LPa-1 kg / cm 2 G is set) (STEP 4), the compressor 2 has a frequency It is determined that the up is started, and the operation is controlled so that the operation is started with the set air volume (STEP 5).

そしてこの構成のよれば、圧縮機周波数上昇前に、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。又、圧縮機周波数上昇と同時に室内設定風量で運転を開始するので快適性が著しく向上する。よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる。   And according to this configuration, before the compressor frequency rises, it is possible to avoid a sudden rise in evaporation pressure due to a sudden increase in indoor heat exchange capacity, avoid a compressor breakdown due to a rise in compressor suction pressure, and improve the reliability of equipment and The reliability of the compressor is improved. Further, since the operation is started with the indoor set air volume at the same time when the compressor frequency is increased, the comfort is remarkably improved. Therefore, it is possible to operate the air conditioner effectively while protecting equipment such as the compressor and without impairing comfort.

(実施の形態4)
図1は、本発明の実施の形態4における空気調和装置の冷凍サイクル図の一例であり、図2は制御ブロック図、図6はフローチャートである。冷凍サイクルの動き及び各信号の流れは実施の形態1と同様なので説明は省略する。
(Embodiment 4)
1 is an example of a refrigeration cycle diagram of an air-conditioning apparatus according to Embodiment 4 of the present invention, FIG. 2 is a control block diagram, and FIG. 6 is a flowchart. Since the operation of the refrigeration cycle and the flow of each signal are the same as in the first embodiment, description thereof is omitted.

次に図6のフロチャートで具体的に本発明の制御の流れについて説明を行う。居住者が運転設定装置16a(たとえばa室)で冷房あるいは除湿を選択すると(STEP0)、差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号に基づいて室内風量及び膨張弁初期開度Pex(ここでは例えばPex0パルス)を設定し、運転選択と同時に設定室内風量及び膨張弁初期開度で運転を開始すると共に信号送出装置25aを通して室外機1の信号受信装置26へ送出するが、室内機が他室(例えばb室)が冷房あるいは除湿運転していると判断した場合(STEP1)、吸入圧力検知装置9の値(LPs)がある設定値LPaより大きい場合(STEP2)、運転開始からある決められた時間(Titv)(STEP6)、吸入圧力検知装置9の値(LPs)がある膨張弁初期開度(ここでは例えばPex0パルス)ではなく所定の微開パルスPexmin(あるいは全閉のまま)で運転を行うように制御されている(STEP3)。このある決められた時間(Titv)は室外側1の圧縮機周波数演算装置28の制御インターバルより若干大きな同じ時間が与えられているので、圧縮機2の周波数が上昇してから室内機の負荷にあった冷媒が供給される様に制御されている。そしてこの構成のよれば、圧縮機周波数上昇前に、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる。   Next, the flow of control of the present invention will be specifically described with reference to the flowchart of FIG. When the resident selects cooling or dehumidification with the operation setting device 16a (for example, room a) (STEP 0), the indoor air volume and the heat exchanger temperature signal are changed based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the heat exchanger temperature signal. The expansion valve initial opening degree Pex (here, for example, Pex0 pulse) is set, the operation is started at the set indoor air volume and the expansion valve initial opening degree simultaneously with the selection of the operation, and the signal receiving device 26 of the outdoor unit 1 is passed through the signal sending device 25a. When the indoor unit determines that the other room (for example, room b) is in cooling or dehumidifying operation (STEP 1), or when the value (LPs) of the suction pressure detection device 9 is greater than a certain set value LPa (STEP 2) ), A predetermined time (Titv) (STEP 6) from the start of operation, and the initial opening degree of the expansion valve having a value (LPs) of the suction pressure detection device 9 (here, for example, Pex0 Control is performed so that the operation is performed with a predetermined fine opening pulse Pexmin (or with the valve fully closed) (STEP 3). Since this predetermined time (Titv) is given the same time slightly larger than the control interval of the compressor frequency calculation device 28 in the outdoor side 1, the frequency of the compressor 2 is increased before the load on the indoor unit is increased. It is controlled to supply the appropriate refrigerant. And according to this configuration, before the compressor frequency rises, it is possible to avoid a sudden rise in evaporation pressure due to a sudden increase in indoor heat exchange capacity, avoid a compressor breakdown due to a rise in compressor suction pressure, and improve the reliability of equipment and The reliability of the compressor is improved. Therefore, it is possible to operate the air conditioner effectively while protecting equipment such as the compressor and without impairing comfort.

(実施の形態5)
図1は、本発明の実施の形態5における空気調和装置の冷凍サイクル図の1例であり、図
2は制御ブロック図、図7はフローチャート図である。
冷凍サイクルの動き及び各信号の流れは実施の形態1と同様なので説明は省略する。
次に図7のフロチャート図で具体的に本発明の制御の流れについて説明を行う。居住者が運転設定装置16a(たとえばa室)で冷房あるいは除湿を選択すると(STEP0)、差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号に基づいて室内風量及び膨張弁初期開度Pex(ここでは例えばPex0パルス)を設定し、運転選択と同時に設定室内風量及び膨張弁初期開度で運転を開始すると共に信号送出装置25aを通して室外機1の信号受信装置26へ送出するが、室内機が他室(例えばb室)が冷房あるいは除湿運転していると判断した場合(STEP1)、吸入圧力検知装置9の値(LPs)がある設定値LPaより大きい場合(STEP2)、運転開始からある決められた時間(Titv)(STEP6)、吸入圧力検知装置9の値(LPs)がある膨張弁初期開度(ここでは例えばPex0パルス)ではなく所定の微開パルスPexmin(あるいは全閉のまま)で運転を行うように制御されているが(STEP3)、吸入圧力検知装置9の値(LPs)がある設定値LPb(ここではLPb=LPa−1kg/cm2Gに設定されている)を下回ると(STEP4)、圧縮機2が周波数アップを開始したと判断し、膨張弁初期開度Pex(ここでは例えばPex0パルス)で運転を開始する(STEP5)様に制御されている。よって、圧縮機2の周波数が上昇してから室内機の負荷にあった冷媒が供給される様に制御されている。
(Embodiment 5)
1 is an example of a refrigeration cycle diagram of an air-conditioning apparatus according to Embodiment 5 of the present invention, FIG. 2 is a control block diagram, and FIG. 7 is a flowchart.
Since the operation of the refrigeration cycle and the flow of each signal are the same as in the first embodiment, description thereof is omitted.
Next, the flow of control of the present invention will be specifically described with reference to the flowchart of FIG. When the resident selects cooling or dehumidification with the operation setting device 16a (for example, room a) (STEP 0), the indoor air volume and the heat exchanger temperature signal are changed based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the heat exchanger temperature signal. The expansion valve initial opening degree Pex (here, for example, Pex0 pulse) is set, the operation is started at the set indoor air volume and the expansion valve initial opening degree simultaneously with the selection of the operation, and the signal receiving device 26 of the outdoor unit 1 is passed through the signal sending device 25a. When the indoor unit determines that the other room (for example, room b) is in cooling or dehumidifying operation (STEP 1), or when the value (LPs) of the suction pressure detection device 9 is greater than a certain set value LPa (STEP 2) ), A predetermined time (Titv) (STEP 6) from the start of operation, and the initial opening degree of the expansion valve having a value (LPs) of the suction pressure detection device 9 (here, for example, Pex0 It is controlled to operate with a predetermined fine opening pulse Pexmin (or fully closed) instead of (Lus) (STEP 3), but the value (LPs) of the suction pressure detection device 9 has a set value LPb (here, If it falls below (LPb = LPa-1kg / cm2G) (STEP 4), it is determined that the compressor 2 has started to increase the frequency, and the operation is started at the expansion valve initial opening Pex (here, for example, Pex0 pulse). (STEP 5). Therefore, control is performed so that the refrigerant suitable for the load of the indoor unit is supplied after the frequency of the compressor 2 increases.

そしてこの構成のよれば、圧縮機周波数上昇前に、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。   And according to this configuration, before the compressor frequency rises, it is possible to avoid a sudden rise in evaporation pressure due to a sudden increase in indoor heat exchange capacity, avoid a compressor breakdown due to a rise in compressor suction pressure, and improve the reliability of equipment and The reliability of the compressor is improved.

又、圧縮機周波数上昇と同時に室内側に冷媒が供給されるので快適性が著しく向上する(制御インターバル時間待つことなく、周波数が上がればすばやく冷媒を供給し室内に冷風を送り込むことができる)。よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる
(実施の形態6)
図1は、本発明の実施の形態6における空気調和装置の冷凍サイクル図の1例であり、図2は制御ブロック図、図8はフローチャート図である。冷凍サイクルの動き及び各信号の流れは実施の形態1と同様なので説明は省略する。
Also, since the refrigerant is supplied indoors at the same time as the compressor frequency rises, the comfort is significantly improved (without waiting for the control interval time, the refrigerant can be supplied quickly and cool air can be sent into the room as the frequency increases). Therefore, it is possible to operate the air conditioner effectively while protecting the equipment such as the compressor and without impairing comfort (Embodiment 6).
1 is an example of a refrigeration cycle diagram of an air-conditioning apparatus according to Embodiment 6 of the present invention, FIG. 2 is a control block diagram, and FIG. 8 is a flowchart diagram. Since the operation of the refrigeration cycle and the flow of each signal are the same as in the first embodiment, description thereof is omitted.

次に図8のフロチャート図で具体的に本発明の制御の流れについて説明を行う。居住者が運転設定装置16a(たとえばa室)で冷房あるいは除湿を選択すると(STEP0)、差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号に基づいて室内風量及び膨張弁初期開度Pex(ここでは例えばPex0パルス)を設定し、運転選択と同時に設定室内風量及び膨張弁初期開度で運転を開始すると共に信号送出装置25aを通して室外機1の信号受信装置26へ送出するが、室内機が他室(例えばb室)が冷房あるいは除湿運転していると判断した場合(STEP1)、その他室の熱交換器温度(Tevab)がある設定値Tev1より大きい場合(STEP2)、運転開始からある決められた時間(Titv)(STEP6)室内機の風量を設定風量ではなく、最低風量(あるいは送風停止)で運転を行うように制御を行うが(STEP3)、他室の熱交換器温度(Tevab)がある設定値Tev2(ここでは例えばTev2=Tev1−2℃に設定されている)を下回ると(STEP4)、圧縮機2が周波数アップを開始したと判断し風量を設定風量で運転を開始する(STEP5)様に制御されている。   Next, the flow of control of the present invention will be specifically described with reference to the flowchart of FIG. When the resident selects cooling or dehumidification with the operation setting device 16a (for example, room a) (STEP 0), the indoor air volume and the heat exchanger temperature signal are changed based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the heat exchanger temperature signal. The expansion valve initial opening degree Pex (here, for example, Pex0 pulse) is set, the operation is started at the set indoor air volume and the expansion valve initial opening degree simultaneously with the selection of the operation, and the signal receiving device 26 of the outdoor unit 1 is passed through the signal sending device 25a. When the indoor unit determines that the other room (for example, room b) is in cooling or dehumidifying operation (STEP 1), the heat exchanger temperature (Tevab) of the other room is larger than a set value Tev1 (STEP 2). ), A certain time from the start of operation (Titv) (STEP 6) The air flow of the indoor unit is not the set air volume, but the minimum air volume (or air blowing is stopped). (STEP 3), when the temperature of the heat exchanger (Tevab) in the other chamber falls below a certain set value Tev2 (here, for example, Tev2 = Tev1-2 ° C.) (STEP 4), the compressor 2 is determined to start the frequency increase, and the operation is controlled so as to start the operation with the set air volume (STEP 5).

そしてこの構成のよれば、圧縮機周波数上昇前に、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。又、圧縮機周波数上昇と同時に室内設定風量で運転を開始するので快適性が著しく向上する。よって、圧縮機などの機器を保護しながら
かつ快適性を損なわず効果的に空気調和装置の運転が可能となる。
And according to this configuration, before the compressor frequency rises, it is possible to avoid a sudden rise in evaporation pressure due to a sudden increase in indoor heat exchange capacity, avoid a compressor breakdown due to a rise in compressor suction pressure, and improve the reliability of equipment and The reliability of the compressor is improved. Further, since the operation is started with the indoor set air volume at the same time when the compressor frequency is increased, the comfort is remarkably improved. Therefore, it is possible to operate the air conditioner effectively while protecting equipment such as the compressor and without impairing comfort.

(実施の形態7)
図1は、本発明の実施の形態7における空気調和装置の冷凍サイクル図の一例であり、図2は制御ブロック図、図9はフローチャートである。冷凍サイクルの動き及び各信号の流れは実施の形態1と同様なので説明は省略する。
(Embodiment 7)
1 is an example of a refrigeration cycle diagram of an air-conditioning apparatus according to Embodiment 7 of the present invention, FIG. 2 is a control block diagram, and FIG. 9 is a flowchart. Since the movement of the refrigeration cycle and the flow of each signal are the same as those in the first embodiment, the description thereof is omitted.

次に図9のフロチャートで具体的に本発明の制御の流れについて説明を行う。居住者が運転設定装置16a(たとえばa室)で冷房あるいは除湿を選択すると(STEP0)、差温信号、運転モード信号、運転停止信号、設定風量信号及び熱交換器温度信号に基づいて室内風量及び膨張弁初期開度Pex(ここでは例えばPex0パルス)を設定し、運転選択と同時に設定室内風量及び膨張弁初期開度で運転を開始すると共に信号送出装置25aを通して室外機1の信号受信装置26へ送出するが、室内機が他室(例えばb室)が冷房あるいは除湿運転していると判断した場合(STEP1)、その他室の熱交換器温度(Tevab)がある設定値Tev1より大きい場合(STEP2)、運転開始からある決められた時間(Titv)(STEP6)、ある膨張弁初期開度(ここでは例えばPex0パルス)ではなく所定の微開パルスPexmin(あるいは全閉のまま)で運転を行うように制御されているが(STEP3)、他室の熱交換器温度(Tevab)がある設定値Tev2(ここでは例えばTev2=Tev1−2℃に設定されている)を下回ると(STEP4)、圧縮機2が周波数アップを開始したと判断し膨張弁初期開度Pex(ここでは例えばPex0パルス)で運転を開始する(STEP5)様に制御されている。よって、圧縮機2の周波数が上昇してから室内機の負荷にあった冷媒が供給される様に制御されている。   Next, the flow of control of the present invention will be specifically described with reference to the flowchart of FIG. When the resident selects cooling or dehumidification with the operation setting device 16a (for example, room a) (STEP 0), the indoor air volume and the heat exchanger temperature signal are changed based on the differential temperature signal, the operation mode signal, the operation stop signal, the set air volume signal, and the heat exchanger temperature signal. The expansion valve initial opening degree Pex (here, for example, Pex0 pulse) is set, the operation is started at the set indoor air volume and the expansion valve initial opening degree simultaneously with the selection of the operation, and the signal receiving device 26 of the outdoor unit 1 is passed through the signal sending device 25a. When the indoor unit determines that the other room (for example, room b) is in cooling or dehumidifying operation (STEP 1), the heat exchanger temperature (Tevab) of the other room is larger than a set value Tev1 (STEP 2). ), A predetermined time (Titv) (STEP 6) from the start of operation, not a certain initial opening of the expansion valve (here, for example, Pex0 pulse), but a predetermined slight opening Although it is controlled so that the operation is performed with the pulse Pexmin (or in a fully closed state) (STEP 3), the heat exchanger temperature (Tevab) of the other chamber has a certain set value Tev2 (here, for example, Tev2 = Tev1-2 ° C.) (STEP 4), it is determined that the compressor 2 has started to increase the frequency, and the operation is started (STEP 5) so that the operation is started at the expansion valve initial opening Pex (in this case, for example, Pex0 pulse). Yes. Therefore, control is performed so that the refrigerant suitable for the load of the indoor unit is supplied after the frequency of the compressor 2 increases.

そしてこの構成のよれば、圧縮機周波数上昇前に、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上する。   And according to this configuration, before the compressor frequency rises, it is possible to avoid a sudden rise in evaporation pressure due to a sudden increase in indoor heat exchange capacity, avoid a compressor breakdown due to a rise in compressor suction pressure, and improve the reliability of equipment and The reliability of the compressor is improved.

又、圧縮機周波数上昇と同時に圧縮機周波数上昇と同時に室内側に冷媒が供給されるので快適性が著しく向上する(制御インターバル時間待つことなく、周波数が上がればすばやく冷媒を供給し室内に冷風を送り込むことができる)。   Also, since the refrigerant is supplied into the room at the same time as the compressor frequency is increased, the comfort is remarkably improved (without waiting for the control interval time, the refrigerant is supplied quickly and cool air is supplied to the room as the frequency increases). Can be sent in).

よって、圧縮機などの機器を保護しながらかつ快適性を損なわず効果的に空気調和装置の運転が可能となる。   Therefore, it is possible to operate the air conditioner effectively while protecting equipment such as the compressor and without impairing comfort.

以上のように、本発明に係る空気調和装置は、室内熱交換能力の急激な増大による蒸発圧力の急上昇を回避でき、圧縮機吸入圧力の上昇による圧縮機破壊を回避でき、機器の信頼性及び圧縮機の信頼性が向上するので、多室型空気調和装置に限らず、一室型の空気調和装置において風量を急激に変化させる場合にも応用できる。   As described above, the air conditioner according to the present invention can avoid a sudden increase in evaporation pressure due to a sudden increase in indoor heat exchange capacity, can avoid a compressor breakdown due to an increase in compressor suction pressure, Since the reliability of the compressor is improved, the present invention can be applied not only to the multi-chamber type air conditioner but also to a case where the air volume is rapidly changed in the single-chamber type air conditioner.

本発明の冷凍サイクル図Refrigeration cycle diagram of the present invention 本発明の制御ブロック図Control block diagram of the present invention 本発明の第1の実施の形態のフローチャートFlowchart of the first embodiment of the present invention 本発明の第2の実施の形態のフローチャートFlowchart of the second embodiment of the present invention 本発明の第3の実施の形態のフローチャートFlowchart of the third embodiment of the present invention 本発明の第4の実施の形態のフローチャートFlowchart of the fourth embodiment of the present invention 本発明の第5の実施の形態のフローチャートFlowchart of the fifth embodiment of the present invention 本発明の第6の実施の形態のフローチャートFlowchart of the sixth embodiment of the present invention 本発明の第7の実施の形態のフローチャートFlowchart of the seventh embodiment of the present invention

符号の説明Explanation of symbols

1 室外機
2 圧縮機
3 室外熱交換器
4 室外送風機
5 冷媒液管
6 冷媒ガス管
7 四方弁
8 冷媒吸入管
9 吸入圧力検知装置
10 室内機
11 室内熱交換器
12 室内送風機
13 電動膨張弁
14 室内吸込み温度検知装置
15 室内熱交換器温度検知装置
16 運転設定装置
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Compressor 3 Outdoor heat exchanger 4 Outdoor blower 5 Refrigerant liquid pipe 6 Refrigerant gas pipe 7 Four-way valve 8 Refrigerant suction pipe 9 Suction pressure detection apparatus 10 Indoor unit 11 Indoor heat exchanger 12 Indoor blower 13 Electric expansion valve 14 Indoor suction temperature detection device 15 Indoor heat exchanger temperature detection device 16 Operation setting device

Claims (7)

可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、前記室内機の冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、一の室内機が冷房あるいは除湿運転開始時、他の室内機が冷房あるいは除湿で運転中の場合、前記膨張弁を閉から徐々に開く制御装置を設けたことを特徴とする空気調和装置。 A plurality of outdoor units having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, a refrigerant gas pipe, and an indoor unit having a heat exchanger and a blower are connected, and the refrigerant liquid pipe of the indoor unit and the An electric refrigerant expansion valve is interposed between the indoor heat exchangers to form a refrigeration cycle.When one indoor unit starts cooling or dehumidifying operation and the other indoor unit is operating by cooling or dehumidifying, the expansion An air conditioning apparatus comprising a control device that gradually opens a valve from a closed state. 可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、少なくとも前記室外機の冷媒吸入管に吸入圧力検知装置を設け、冷房あるいは除湿運転開始時、前記吸入圧力検知装置の信号と他室運転状況により前記送風機の風量を制御する制御装置を設けた空気調和装置において、一の室内機が冷房あるいは除湿運転開始時に他の室内機が冷房あるいは除湿で運転中の場合、前記吸入圧力検知装置の値が所定の圧力値より高い場合、所定時間前記室内送風機を最低風量で運転するか、あるいは停止することを特徴とする空気調和装置。 A plurality of outdoor units having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, a refrigerant gas pipe, and an indoor unit having a heat exchanger and a blower are connected, and the refrigerant liquid pipe and the indoor heat exchanger are connected. An refrigeration cycle is configured by interposing an electric refrigerant expansion valve between them, and at least a suction pressure detection device is provided in the refrigerant suction pipe of the outdoor unit, and when the cooling or dehumidifying operation starts, the signal of the suction pressure detection device and others In the air conditioner provided with a control device for controlling the air volume of the blower according to the room operation status, when one indoor unit is in cooling or dehumidifying operation and the other indoor unit is operating in cooling or dehumidifying, the suction pressure detection When the value of the apparatus is higher than a predetermined pressure value, the air conditioner is characterized in that the indoor blower is operated at a minimum air volume for a predetermined time or stopped. 冷房あるいは除湿運転開始時、吸入圧力検知装置の値が第1の所定圧力値より高い場合、第2の所定圧力復帰値を下回るまで前記室内送風機を最低風量で運転するか、あるいは停止することを特徴とする、請求項2に記載の空気調和装置。 At the start of cooling or dehumidifying operation, if the value of the suction pressure detection device is higher than the first predetermined pressure value, the indoor blower is operated at the minimum air volume until it falls below the second predetermined pressure return value, or is stopped. The air conditioner according to claim 2, wherein the air conditioner is characterized. 少なくとも室外機の冷媒吸入管に吸入圧力検知装置を設け、一の室内機が冷房あるいは除湿運転開始時開始時、他の室内機が冷房あるいは除湿で運転中の場合、前記吸入圧力検知装置の値が所定圧力値より高い場合、所定時間前記膨張弁を微開あるいは閉で運転することを特徴とする、請求項2記載の空気調和装置。 If the suction pressure detection device is provided at least in the refrigerant suction pipe of the outdoor unit and one indoor unit is started at the start of cooling or dehumidifying operation, and the other indoor unit is operating in cooling or dehumidifying operation, the value of the suction pressure detecting device 3. The air conditioner according to claim 2, wherein when the pressure is higher than a predetermined pressure value, the expansion valve is operated for a predetermined time by slightly opening or closing. 冷房あるいは除湿運転開始時、吸入圧力検知装置の値が所定圧力値より高い場合、設定圧力復帰値を下回るまで前記膨張弁を微開あるいは閉で運転することを特徴とする、請求項第4項に記載の空気調和装置。 5. When the cooling or dehumidifying operation is started, if the value of the suction pressure detection device is higher than a predetermined pressure value, the expansion valve is operated by being slightly opened or closed until it falls below a set pressure return value. The air conditioning apparatus described in 1. 熱交換器の温度を検知する他室内熱交換器温度検知装置を設け、一の室内機が冷房あるいは除湿運転開始時、前記他室内熱交換器温度検知装置の値が所定温度値より高い場合、所定温度復帰値を下回るまで前記室内送風機を最低風量あるいは停止で運転することを特徴とする、請求項3に記載の空気調和装置。 When another indoor heat exchanger temperature detection device that detects the temperature of the heat exchanger is provided and one indoor unit starts cooling or dehumidifying operation, when the value of the other indoor heat exchanger temperature detection device is higher than a predetermined temperature value, The air conditioner according to claim 3, wherein the indoor blower is operated with a minimum air volume or stopped until the temperature falls below a predetermined temperature return value. 可変容量圧縮機、室外熱交換器、送風機、冷媒液管、冷媒ガス管とを有する室外機と、熱交換器及び送風機を有する室内機を複数台接続し、前記室内機の冷媒液管と前記室内熱交換器の間に電動冷媒膨張弁を介装して冷凍サイクルを構成し、一の室内機には他の室内機の熱交換器の温度を検知する他室室内熱交換器温度検知装置を設け、冷房あるいは除湿運転開始時他室が冷房あるいは除湿で運転中の場合、前記他室室内熱交換器温度検知装置の値が所定温度値より高い場合、所定温度復帰値を下回るまで膨張弁を微開あるいは閉で運転することを特徴とする空気調和装置。 A plurality of outdoor units having a variable capacity compressor, an outdoor heat exchanger, a blower, a refrigerant liquid pipe, a refrigerant gas pipe, and an indoor unit having a heat exchanger and a blower are connected, and the refrigerant liquid pipe of the indoor unit and the Another room indoor heat exchanger temperature detection device that configures a refrigeration cycle by interposing an electric refrigerant expansion valve between indoor heat exchangers, and detects the temperature of the heat exchanger of the other indoor unit in one indoor unit When the other chamber is operating with cooling or dehumidification at the start of cooling or dehumidifying operation, if the value of the other-room indoor heat exchanger temperature detection device is higher than a predetermined temperature value, the expansion valve until it falls below the predetermined temperature return value Is an air conditioner that is operated by being slightly opened or closed.
JP2003367088A 2003-10-28 2003-10-28 Air-conditioner Pending JP2005133970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003367088A JP2005133970A (en) 2003-10-28 2003-10-28 Air-conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003367088A JP2005133970A (en) 2003-10-28 2003-10-28 Air-conditioner

Publications (1)

Publication Number Publication Date
JP2005133970A true JP2005133970A (en) 2005-05-26

Family

ID=34645193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003367088A Pending JP2005133970A (en) 2003-10-28 2003-10-28 Air-conditioner

Country Status (1)

Country Link
JP (1) JP2005133970A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160031362A (en) * 2014-09-12 2016-03-22 엘지전자 주식회사 Control method of dehumidifier
JP2016526651A (en) * 2013-09-10 2016-09-05 三菱電機株式会社 Branch controller, system for temperature and humidity control, and method for controlling temperature and humidity
CN107120784A (en) * 2017-04-07 2017-09-01 广东美的暖通设备有限公司 Air-conditioning system and its control method of outdoor fan, device
CN115164345A (en) * 2022-06-13 2022-10-11 青岛海尔空调电子有限公司 Method and device for controlling inter-row air conditioner, inter-row air conditioner and storage medium

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016526651A (en) * 2013-09-10 2016-09-05 三菱電機株式会社 Branch controller, system for temperature and humidity control, and method for controlling temperature and humidity
KR20160031362A (en) * 2014-09-12 2016-03-22 엘지전자 주식회사 Control method of dehumidifier
KR102243384B1 (en) 2014-09-12 2021-04-22 엘지전자 주식회사 Control method of dehumidifier
CN107120784A (en) * 2017-04-07 2017-09-01 广东美的暖通设备有限公司 Air-conditioning system and its control method of outdoor fan, device
CN107120784B (en) * 2017-04-07 2019-12-03 广东美的暖通设备有限公司 Air-conditioning system and its control method of outdoor fan, device
CN115164345A (en) * 2022-06-13 2022-10-11 青岛海尔空调电子有限公司 Method and device for controlling inter-row air conditioner, inter-row air conditioner and storage medium
CN115164345B (en) * 2022-06-13 2023-11-24 青岛海尔空调电子有限公司 Method and device for controlling inter-column air conditioner, inter-column air conditioner and storage medium

Similar Documents

Publication Publication Date Title
JP6338761B2 (en) Air conditioning system
WO2009119023A1 (en) Freezing apparatus
JP2018071886A (en) air conditioner
US10371407B2 (en) Air conditioning apparatus
US11262108B2 (en) Refrigeration cycle apparatus
JP2015021656A (en) Air conditioner
JP2014190600A (en) Air conditioner
WO2019163346A1 (en) Air conditioner
US11927358B2 (en) HVAC unit fan control systems and methods
JP2014169802A (en) Air conditioning device
JP5695861B2 (en) Outside air processing air conditioner and multi air conditioning system using the same
WO2016016918A1 (en) Air conditioning device
JP2008215734A (en) Multiple air conditioner
JP2006170528A (en) Air conditioner
JP2012013365A (en) Air conditioner
JP5900463B2 (en) Air conditioning system
KR20060124960A (en) Cool mode control method of air conditioner
JP2011257097A (en) Multi-room type air conditioning apparatus
JP2005147541A (en) Multi-chamber type air conditioner
JP2005133970A (en) Air-conditioner
JP2005055053A (en) Air conditioner
JP2005016884A (en) Air conditioner
JP6448658B2 (en) Air conditioning system
JP2007057191A (en) Air conditioner
JP3789620B2 (en) Air conditioner