JP2001280719A - Refrigerating system - Google Patents

Refrigerating system

Info

Publication number
JP2001280719A
JP2001280719A JP2000097093A JP2000097093A JP2001280719A JP 2001280719 A JP2001280719 A JP 2001280719A JP 2000097093 A JP2000097093 A JP 2000097093A JP 2000097093 A JP2000097093 A JP 2000097093A JP 2001280719 A JP2001280719 A JP 2001280719A
Authority
JP
Japan
Prior art keywords
oil
compressors
refrigerating machine
compressor
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000097093A
Other languages
Japanese (ja)
Inventor
Takeo Ueno
武夫 植野
Kenji Tanimoto
憲治 谷本
Kazuhide Nomura
和秀 野村
Masaaki Takegami
雅章 竹上
Akitoshi Ueno
明敏 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2000097093A priority Critical patent/JP2001280719A/en
Priority to PCT/JP2000/004836 priority patent/WO2001006181A1/en
Priority to EP00946397A priority patent/EP1120611A4/en
Priority to CNB008014485A priority patent/CN100453920C/en
Priority to AU60200/00A priority patent/AU749518B2/en
Publication of JP2001280719A publication Critical patent/JP2001280719A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a refrigerating system mounting high pressure doom type compressors of different capacity in which refrigerating machine oil can be returned surely back to respective compressors. SOLUTION: In a refrigerating system comprising a pair of high pressure doom type compressors 1A, 1B of different capacity connected in parallel, delivery piping 47 of the compressors 1A, 1B is provided with an oil separator 36 for separating refrigerating machine oil in delivery gas refrigerant. Separated refrigerating machine oil is returned back to the suction side of the compressors 1A, 1B through an oil return passage 37 provided with an on/off valve 39 being closed when operation of both compressors 1A, 1B is stopped. When both compressors 1A, 1B are operating, refrigerating machine oil separated by the oil separator 36 and refrigerating machine oil in suction gas refrigerant are returned back to the compressors 1A, 1B, respectively, through the oil return passage 37.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本願発明は、冷凍装置におけ
る圧縮機への返油構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure for returning oil to a compressor in a refrigeration system.

【0002】[0002]

【従来の技術】2台の高圧ドーム型圧縮機を並列に接続
した冷凍装置において、それぞれの圧縮機の容量が相異
している場合、全台運転時に、それぞれの圧縮機におけ
るドーム内圧に差が生じることがあり、ドーム内底部の
冷凍機油は均圧管を通じて内圧の高い圧縮機から内圧の
低い圧縮機へ輸送されることとなる。この状態での運転
が継続されると、ドーム内圧の高い圧縮機の冷凍機油
は、ドーム内圧の低い圧縮機側への移動を続けることと
なって、いずれはなくなってしまうおそれがある。
2. Description of the Related Art In a refrigeration system in which two high-pressure dome-type compressors are connected in parallel, if the capacities of the respective compressors are different, the difference in the dome internal pressure of each of the compressors during the operation of all the units is high. Refrigeration oil at the bottom of the dome is transported from the compressor having a high internal pressure to the compressor having a low internal pressure through a pressure equalizing pipe. If the operation in this state is continued, the refrigerating machine oil of the compressor having a high dome internal pressure continues to move toward the compressor having a low dome internal pressure, and may eventually disappear.

【0003】また、高圧ドーム型圧縮機の場合、運転中
の圧縮機の内圧が高くなるため、運転休止中の圧縮機内
に冷凍機油がしだいに溜まり込み、運転中の圧縮機の冷
凍機油が不足してしまうという不具合が生ずる。
[0003] In the case of a high-pressure dome type compressor, the internal pressure of the compressor during operation increases, so that the refrigerating machine oil gradually accumulates in the compressor during operation stoppage, and the running compressor oil becomes insufficient. This causes a problem that the operation is performed.

【0004】上記のような不具合を解消する方法として
は、一定時間毎に圧縮機の交互運転を行って、それぞれ
の圧縮機における冷凍機油量を確保する方法(即ち、均
油運転制御)がある。
[0004] As a method of solving the above-mentioned problems, there is a method of alternately operating the compressors at regular time intervals to secure a refrigerating machine oil amount in each compressor (ie, oil leveling operation control). .

【0005】[0005]

【発明が解決しようとする課題】ところが、上記した均
油運転制御を行うと、全台運転を一定時間行うことがで
きないこととなり、冷凍装置の必要容量が得られないこ
とがあるという不具合が生ずる。
However, when the oil equalizing operation control described above is performed, all the units cannot be operated for a certain period of time, and the required capacity of the refrigeration system may not be obtained. .

【0006】本願発明は、上記の点に鑑みてなされたも
ので、容量が相異する高圧ドーム型の圧縮機を搭載した
冷凍装置において、それぞれの圧縮機への冷凍機油の返
油を確実に行い得るようにすることを目的とするもので
ある。
The present invention has been made in view of the above points, and in a refrigeration system equipped with high-pressure dome type compressors having different capacities, it is ensured that the refrigerating machine oil is returned to each compressor. It is intended to be able to do so.

【0007】[0007]

【課題を解決するための手段】請求項1の発明では、上
記課題を解決するための手段として、互いに並列に接続
され、それぞれの容量が相異する一対の高圧ドーム型の
圧縮機1A,1B、四路切換弁2、熱源側熱交換器3、
減圧機構4および利用側熱交換器5を冷媒配管を介して
順次接続してなる冷媒回路Aを備え、前記圧縮機1A,
1Bを均油管48を介して互いに連通させてなる冷凍装
置において、前記圧縮機1A,1Bの吐出配管47に、
吐出ガス冷媒中の冷凍機油を分離する油分離器36を配
設するとともに、該油分離器36において分離された冷
凍機油を前記圧縮機1A,1Bの吸入側に戻す油戻し通
路37を付設し且つ該油戻し通路37に、前記圧縮機1
A,1Bが共に運転停止されている時に閉作動される開
閉弁39を介設している。
According to the first aspect of the present invention, as a means for solving the above problems, a pair of high pressure dome type compressors 1A and 1B connected in parallel with each other and having different capacities are provided. , Four-way switching valve 2, heat source side heat exchanger 3,
A refrigerant circuit A in which a pressure reducing mechanism 4 and a use-side heat exchanger 5 are sequentially connected via a refrigerant pipe;
In a refrigeration system in which the compressors 1B communicate with each other via an oil equalizing pipe 48, discharge pipes 47 of the compressors 1A and 1B
An oil separator 36 for separating the refrigerating machine oil in the discharged gas refrigerant is provided, and an oil return passage 37 for returning the refrigerating machine oil separated in the oil separator 36 to the suction sides of the compressors 1A and 1B is provided. The oil return passage 37 has the compressor 1
An on-off valve 39 which is closed when both A and 1B are stopped is provided.

【0008】上記のように構成したことにより、圧縮機
1A,1Bが共に運転されている時には、油分離器36
で分離された冷凍機油および吸入ガス冷媒中の冷凍機油
が、油戻し通路37を介して圧縮機1A,1Bにそれぞ
れ戻されることとなる。その際、容量の大きい方の圧縮
機に多くの冷凍機油が返油されることとなるが、容量の
大きい方の圧縮機の内圧の方が高くなるため、容量の小
さい方の圧縮機へ均油管48を介して冷凍機油が移動す
ることとなり、両圧縮機1A,1Bに確実に返油される
こととなる。従って、従来のように圧縮機を交互運転す
る均油運転制御を行わなくとも、圧縮機1A,1Bの冷
凍機油を確保することができる。しかも、圧縮機1A,
1Bが共に運転停止されている時には、開閉弁39が閉
作動されて、油戻し通路37が非連通状態となるため、
運転停止時に油分離器36から吸入側へ冷媒が流れるこ
とがなくなる。
With the above-described structure, when both of the compressors 1A and 1B are operating, the oil separator 36
The refrigerating machine oil and the refrigerating machine oil in the suction gas refrigerant separated by the above are returned to the compressors 1A and 1B via the oil return passage 37, respectively. At that time, a large amount of refrigerating machine oil is returned to the compressor with the larger capacity, but since the internal pressure of the compressor with the larger capacity is higher, it is evenly distributed to the compressor with the smaller capacity. The refrigerating machine oil moves through the oil pipe 48, so that the oil is reliably returned to both the compressors 1A and 1B. Therefore, the refrigerating machine oil of the compressors 1A and 1B can be secured without performing the oil equalizing operation control for alternately operating the compressors as in the related art. Moreover, the compressor 1A,
When both 1B are stopped, the on-off valve 39 is closed and the oil return passage 37 is in a non-communication state.
When the operation is stopped, the refrigerant does not flow from the oil separator 36 to the suction side.

【0009】請求項2の発明では、上記課題を解決する
ための手段として、互いに並列に接続され、それぞれの
容量が相異する一対の高圧ドーム型の圧縮機1A,1
B、四路切換弁2、熱源側熱交換器3、減圧機構4およ
び利用側熱交換器5を冷媒配管を介して順次接続してな
る冷媒回路Aを備え、前記圧縮機1A,1Bを均油管4
8を介して互いに連通させてなる冷凍装置において、前
記圧縮機1A,1Bの吐出配管47に、吐出ガス冷媒中
の冷凍機油を分離する油分離器36を配設するととも
に、該油分離器36において分離された冷凍機油を前記
圧縮機1A,1Bのそれぞれの吸入側に戻す油戻し通路
37A,37Bを付設し且つ該油戻し通路37A,37
Bに、前記圧縮機1A,1Bが共に運転停止されている
時に閉作動される開閉弁39A,39Bをそれぞれ介設
している。
According to a second aspect of the present invention, as a means for solving the above-mentioned problems, a pair of high pressure dome type compressors 1A, 1 connected in parallel with each other and having different capacities are provided.
B, a four-way switching valve 2, a heat source side heat exchanger 3, a pressure reducing mechanism 4, and a use side heat exchanger 5 are sequentially connected via a refrigerant pipe to a refrigerant circuit A, and the compressors 1A and 1B are equalized. Oil pipe 4
In the refrigeration system, which is connected to each other via the compressor 8, an oil separator 36 for separating refrigeration oil in the discharge gas refrigerant is provided in the discharge pipe 47 of the compressors 1 </ b> A and 1 </ b> B. The oil return passages 37A, 37B for returning the refrigerating machine oil separated in the above to the respective suction sides of the compressors 1A, 1B are provided, and the oil return passages 37A, 37B are provided.
B is provided with on-off valves 39A and 39B which are closed when the compressors 1A and 1B are both stopped.

【0010】上記のように構成したことにより、圧縮機
1A,1Bが共に運転されている時には、油分離器36
で分離された冷凍機油および吸入ガス冷媒中の冷凍機油
が、油戻し通路37A,37Bを介して圧縮機1A,1
Bにそれぞれ戻されることとなる。その際、容量の大き
い方の圧縮機に多くの冷凍機油が返油されることとなる
が、容量の大きい方の圧縮機の内圧の方が高くなるた
め、容量の小さい方の圧縮機へ均油管48を介して冷凍
機油が移動することとなり、両圧縮機1A,1Bに確実
に返油されることとなる。従って、従来のように圧縮機
を交互運転する均油運転制御を行わなくとも、圧縮機1
A,1Bの冷凍機油を確保することができる。しかも、
圧縮機1A,1Bが共に運転停止されている時には、開
閉弁39A,39Bが閉作動されて、油戻し通路37
A,39Bが非連通状態となるため、運転停止時に油分
離器36から吸入側へ冷媒が流れることがなくなる。
With the above configuration, when both the compressors 1A and 1B are operating, the oil separator 36
The refrigerating machine oil and the refrigerating machine oil in the suction gas refrigerant separated by the compressors 1A and 1B are passed through oil return passages 37A and 37B.
B. At that time, a large amount of refrigerating machine oil is returned to the compressor with the larger capacity, but since the internal pressure of the compressor with the larger capacity is higher, it is evenly distributed to the compressor with the smaller capacity. The refrigerating machine oil moves through the oil pipe 48, so that the oil is reliably returned to both the compressors 1A and 1B. Therefore, the compressor 1 does not need to perform the oil equalizing operation control for alternately operating the compressor as in the related art.
A, 1B refrigerating machine oil can be secured. Moreover,
When both the compressors 1A and 1B are stopped, the on-off valves 39A and 39B are closed and the oil return passage 37 is closed.
Since A and 39B are in a non-communication state, the refrigerant does not flow from the oil separator 36 to the suction side when the operation is stopped.

【0011】請求項3の発明におけるように、請求項1
および2のいずれか一項記載の冷凍装置において、前記
均油管48に、前記圧縮機1A,1Bのうちのいずれか
一方の運転停止時に閉作動される開閉弁49を介設した
場合、圧縮機1A,1Bのうちのいずれか一方が運転停
止されている時には、開閉弁49が閉作動されて均油管
48を介しての冷凍機油の移動ができなくなるため、運
転中の圧縮機から運転休止中の圧縮機への冷凍機油の移
動が禁止されることとなり、運転中の圧縮機における冷
凍機油が不足することがなくなる。
[0011] As in the invention of claim 3, claim 1
3. In the refrigerating apparatus according to any one of (1) and (2), when an on-off valve 49 that is closed when the operation of one of the compressors 1A and 1B is stopped is provided in the oil equalizing pipe 48, When either one of 1A and 1B is stopped, the on-off valve 49 is closed and the refrigerating machine oil cannot move through the oil equalizing pipe 48, so that the operation is stopped from the operating compressor. The movement of the refrigerating machine oil to the compressor is prohibited, so that the running compressor oil does not run short.

【0012】請求項4の発明では、上記課題を解決する
ための手段として、互いに並列に接続され、それぞれの
容量が相異する一対の高圧ドーム型の圧縮機1A,1
B、四路切換弁2、熱源側熱交換器3、減圧機構4およ
び利用側熱交換器5を冷媒配管を介して順次接続してな
る冷媒回路Aを備え、前記圧縮機1A,1Bを均油管4
8を介して互いに連通させてなる冷凍装置において、前
記圧縮機1A,1Bの吐出配管47に、吐出ガス冷媒中
の冷凍機油を分離する油分離器36を配設するととも
に、該油分離器36において分離された冷凍機油を前記
圧縮機1A,1Bの吸入側に戻す油戻し通路37を付設
し且つ前記均油管48に、前記圧縮機1A,1Bのうち
のいずれか一方の運転停止時に閉作動される開閉弁49
を介設している。
According to a fourth aspect of the present invention, as a means for solving the above-mentioned problems, a pair of high pressure dome type compressors 1A, 1 connected in parallel to each other and having different capacities are provided.
B, a four-way switching valve 2, a heat source side heat exchanger 3, a pressure reducing mechanism 4, and a use side heat exchanger 5 are sequentially connected via a refrigerant pipe to a refrigerant circuit A, and the compressors 1A and 1B are equalized. Oil pipe 4
In the refrigeration system, which is connected to each other via the compressor 8, an oil separator 36 for separating refrigeration oil in the discharge gas refrigerant is provided in the discharge pipe 47 of the compressors 1 </ b> A and 1 </ b> B. The oil return passage 37 for returning the refrigerating machine oil separated in the above to the suction side of the compressors 1A, 1B is provided, and the oil equalizing pipe 48 is closed when one of the compressors 1A, 1B is stopped. Open / close valve 49
Is interposed.

【0013】上記のように構成したことにより、圧縮機
1A,1Bが共に運転されている時には、油分離器36
で分離された冷凍機油および吸入ガス冷媒中の冷凍機油
が、油戻し通路37を介して圧縮機1A,1Bにそれぞ
れ戻されることとなる。その際、容量の大きい方の圧縮
機に多くの冷凍機油が返油されることとなるが、容量の
大きい方の圧縮機の内圧の方が高くなるため、容量の小
さい方の圧縮機へ均油管48を介して冷凍機油が移動す
ることとなり、両圧縮機1A,1Bに確実に返油される
こととなる。従って、従来のように圧縮機を交互運転す
る均油運転制御を行わなくとも、圧縮機1A,1Bの冷
凍機油を確保することができる。そして、圧縮機1A,
1Bのうちのいずれか一方が運転停止されている時に
は、開閉弁49が閉作動されて均油管48を介しての冷
凍機油の移動ができなくなるため、運転中の圧縮機から
運転休止中の圧縮機への冷凍機油の移動が禁止されるこ
ととなり、運転中の圧縮機における冷凍機油が不足する
ことがなくなる。
With the above configuration, when both the compressors 1A and 1B are operating, the oil separator 36
The refrigerating machine oil and the refrigerating machine oil in the suction gas refrigerant separated by the above are returned to the compressors 1A and 1B via the oil return passage 37, respectively. At that time, a large amount of refrigerating machine oil is returned to the compressor with the larger capacity, but since the internal pressure of the compressor with the larger capacity is higher, it is evenly distributed to the compressor with the smaller capacity. The refrigerating machine oil moves through the oil pipe 48, so that the oil is reliably returned to both the compressors 1A and 1B. Therefore, the refrigerating machine oil of the compressors 1A and 1B can be secured without performing the oil equalizing operation control for alternately operating the compressors as in the related art. And the compressor 1A,
When one of the compressors 1B is stopped, the on-off valve 49 is closed and the refrigerating machine oil cannot move through the oil equalizing pipe 48. The transfer of the refrigerating machine oil to the machine is prohibited, and the running compressor does not run out of the refrigerating machine oil.

【0014】請求項5の発明におけるように、請求項
1、2、3および4のいずれか一項記載の冷凍装置にお
いて、前記圧縮機1A,1Bへの吸入管38を、圧縮機
1A,1Bの吸入口50A,50Bより下方に位置させ
た場合、容量の大きい圧縮機が運転休止され且つ容量の
小さい圧縮機が運転されている時に、吸入管38を介し
て容量の大きい方の圧縮機に冷凍機油が流れ込むのを防
止することができる。
As in the invention of claim 5, in the refrigerating apparatus according to any one of claims 1, 2, 3, and 4, the suction pipe 38 to the compressors 1A, 1B is connected to the compressors 1A, 1B. Are located below the suction ports 50A and 50B of the compressor, the large-capacity compressor is shut down and the small-capacity compressor is in operation. It is possible to prevent the refrigerating machine oil from flowing.

【0015】[0015]

【発明の実施の形態】以下、添付の図面を参照して、本
願発明の幾つかの好適な実施の形態について詳述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Some preferred embodiments of the present invention will be described below in detail with reference to the accompanying drawings.

【0016】第1の実施の形態 図1および図2には、本願発明の第1の実施の形態にか
かる冷凍装置の冷媒配管系統が示されている。
First Embodiment FIGS. 1 and 2 show a refrigerant piping system of a refrigeration apparatus according to a first embodiment of the present invention.

【0017】この冷凍装置は、図1に示すように、並列
に接続されたそれぞれの容量が相異する一対の圧縮機1
A,1B、四路切換弁2、室外ファン11を付設した熱
源側熱交換器3、減圧機構として作用する膨張弁4およ
び利用側熱交換器5を冷媒配管を介して順次接続して構
成されたヒートポンプ式空調用冷媒回路Aと、該ヒート
ポンプ式空調用冷媒回路Aにおける前記膨張弁4の下流
側から分岐し、冷蔵用の蒸発器6を介して前記圧縮機1
A,1Bの吸入側に接続される冷蔵用冷媒回路(換言す
れば、熱回収回路)Bとを備えている。2台の圧縮機1
A,1B、熱源側熱交換器として作用する空冷凝縮器
2、減圧機構として作用する膨張弁3および並列に接続
され、利用側熱交換器として作用する一対の蒸発器4,
4を冷媒配管を介して順次接続して構成された冷媒回路
Aを備えている。ここで、圧縮機1Aは5HPの容量と
され、圧縮機1Bは4HPの容量とされており、圧縮機
1Aの油溜部と圧縮機1Bの油溜部とは均油管48によ
り接続されている。
As shown in FIG. 1, the refrigerating apparatus comprises a pair of compressors 1 connected in parallel and having different capacities.
A, 1B, a four-way switching valve 2, a heat source side heat exchanger 3 provided with an outdoor fan 11, an expansion valve 4 acting as a pressure reducing mechanism, and a use side heat exchanger 5 are sequentially connected via a refrigerant pipe. And the compressor 1 branches off from the downstream side of the expansion valve 4 in the heat pump air conditioning refrigerant circuit A and passes through the evaporator 6 for refrigeration.
A and a cooling refrigerant circuit (in other words, a heat recovery circuit) B connected to the suction side of 1B. Two compressors 1
A and 1B, an air-cooled condenser 2 acting as a heat source side heat exchanger, an expansion valve 3 acting as a pressure reducing mechanism, and a pair of evaporators 4 connected in parallel and acting as a use side heat exchanger.
4 is provided with a refrigerant circuit A constituted by sequentially connecting the refrigerant circuits 4 via refrigerant pipes. Here, the compressor 1A has a capacity of 5HP, the compressor 1B has a capacity of 4HP, and the oil sump of the compressor 1A and the oil sump of the compressor 1B are connected by an oil equalizing pipe 48. .

【0018】前記熱源側熱交換器3と膨張弁4との間に
は、冷房運転時において前記熱源側熱交換器3の出口側
となる部分に接続されたレシーバ7と、該レシーバ7の
液相部からの液冷媒を外部熱媒体(例えば、室外空気)
により過冷却する空冷の第1の過冷却熱交換器8と、該
第1の過冷却熱交換器8からの過冷却液冷媒を該過冷却
液冷媒の一部を感温膨張弁9により減圧して得られる気
液混合冷媒の蒸発潜熱によりさらに過冷却する三重管式
の第2の過冷却熱交換器9とが設けられている。該第2
の過冷却熱交換器9において蒸発気化したガス冷媒は、
低圧ガス配管12を介して圧縮機1A,1Bの吸入側に
供給されることとなっている。また、前記感温膨張弁1
0の感温筒10aは、前記低圧ガス配管12に付設され
ている。符号13は第2の過冷却熱交換器9へ液冷媒の
一部を供給するときにのみ開作動される電磁開閉弁であ
る。なお、本実施の形態においては、前記室外ファン1
1は、利用側熱交換器3と第1の過冷却熱交換器8とに
共用されている。
Between the heat source side heat exchanger 3 and the expansion valve 4, a receiver 7 connected to an outlet side of the heat source side heat exchanger 3 during a cooling operation, and a liquid of the receiver 7. Liquid refrigerant from the phase section is transferred to an external heat medium (for example, outdoor air)
The air-cooled first supercooling heat exchanger 8 which is supercooled by the pressure reducing part of the supercooling liquid refrigerant from the first supercooling heat exchanger 8 is reduced by the temperature-sensitive expansion valve 9. And a second triple cooling type supercooling heat exchanger 9 for further supercooling by the latent heat of vaporization of the gas-liquid mixed refrigerant obtained as described above. The second
The gas refrigerant evaporated and vaporized in the supercooling heat exchanger 9 of
It is supplied to the suction side of the compressors 1A and 1B via the low-pressure gas pipe 12. The temperature-sensitive expansion valve 1
The zero-temperature cylinder 10a is attached to the low-pressure gas pipe 12. Reference numeral 13 denotes an electromagnetic on-off valve that is opened only when a part of the liquid refrigerant is supplied to the second subcooling heat exchanger 9. In the present embodiment, the outdoor fan 1
1 is shared by the use side heat exchanger 3 and the first subcooling heat exchanger 8.

【0019】前記レシーバ7の入口側には、4個の逆止
弁14a〜14dを備えたブリッジ回路14が設けられ
ている。該ブリッジ回路14は、冷房運転時には熱源側
熱交換器3からの液冷媒をレシーバ7へ導くとともにレ
シーバ7からの液冷媒を膨張弁4を経由した後利用側熱
交換器5に導き、暖房運転時には利用側熱交換器5から
の液冷媒をレシーバ7へ導くとともにレシーバ7からの
液冷媒を膨張弁4を経由した後熱源側熱交換器3へ導く
流路切換機構として作用する。符号15は冷房運転時の
み熱源側熱交換器3からレシーバ7への液冷媒の流通を
許容する逆止弁、16は暖房運転時には開作動して膨張
弁4から利用側熱交換器3への冷媒流通を許容し、暖房
熱回収運転時に閉作動して膨張弁4から冷蔵用蒸発器6
へのみ冷媒流通を許容する電磁開閉弁である。
On the inlet side of the receiver 7, a bridge circuit 14 having four check valves 14a to 14d is provided. During the cooling operation, the bridge circuit 14 guides the liquid refrigerant from the heat source side heat exchanger 3 to the receiver 7 and guides the liquid refrigerant from the receiver 7 to the use side heat exchanger 5 after passing through the expansion valve 4 to perform the heating operation. At times, it functions as a flow path switching mechanism that guides the liquid refrigerant from the use side heat exchanger 5 to the receiver 7 and guides the liquid refrigerant from the receiver 7 to the heat source side heat exchanger 3 after passing through the expansion valve 4. Reference numeral 15 denotes a check valve that permits the flow of the liquid refrigerant from the heat source side heat exchanger 3 to the receiver 7 only during the cooling operation, and 16 denotes an open valve that operates during the heating operation to connect the expansion valve 4 to the use side heat exchanger 3. The refrigerant is allowed to flow, and is closed during the heating heat recovery operation, and is closed from the expansion valve 4 to the refrigeration evaporator 6.
This is an electromagnetic on-off valve that allows refrigerant to flow only to the solenoid valve.

【0020】前記冷蔵用冷媒回路Bにおける冷蔵用蒸発
器6の上流側液管17には、後述する冷凍用冷媒回路C
における冷凍用圧縮機18の吐出ガス冷媒との熱交換を
行うプレート熱交換器19が介設されている。
The upstream liquid pipe 17 of the refrigeration evaporator 6 in the refrigeration refrigerant circuit B has a refrigeration refrigerant circuit C to be described later.
A plate heat exchanger 19 for exchanging heat with the refrigerant gas discharged from the refrigerating compressor 18 is provided.

【0021】前記冷凍用冷媒回路Cは、前記冷凍用圧縮
機18、前記プレート熱交換器19、感温膨張弁20、
冷凍用蒸発器21およびアキュームレータ22を冷媒配
管を介して順次接続して構成されている。
The refrigerating refrigerant circuit C includes the refrigerating compressor 18, the plate heat exchanger 19, the temperature-sensitive expansion valve 20,
The refrigeration evaporator 21 and the accumulator 22 are sequentially connected via a refrigerant pipe.

【0022】前記利用側熱交換器5と前記ブリッジ回路
14との間には、電磁開閉弁24と冷房運転時にのみ冷
媒流通を許容する逆止弁25との直列回路23aと、電
磁開閉弁26と暖房運転時にのみ冷媒流通を許容する逆
止弁27との直列回路23bとからなる可逆流通機構2
3が介設されている。符号28は電磁開閉弁26をバイ
パスする液逃がし用のキャピラリチューブである。
Between the utilization side heat exchanger 5 and the bridge circuit 14, a series circuit 23a of an electromagnetic on-off valve 24 and a check valve 25 permitting refrigerant flow only during the cooling operation, and an electromagnetic on-off valve 26 Reversible flow mechanism 2 including a series circuit 23b of a check valve 27 and a check valve 27 permitting refrigerant flow only during the heating operation.
3 are interposed. Reference numeral 28 denotes a liquid escape capillary tube that bypasses the electromagnetic on-off valve 26.

【0023】前記冷蔵用冷媒回路Bには、前記冷蔵用蒸
発器6をバイパスするバイパス回路29が設けられ、該
バイパス回路29には、冷蔵用蒸発器6の運転停止時に
のみ開作動する電磁開閉弁30が介設されている。符号
31は冷蔵用蒸発器6の運転停止時にのみ閉作動される
電磁開閉弁、32は冷凍用蒸発器21の運転停止時にの
み閉作動される電磁開閉弁、33は利用側熱交換器5に
付設された室内ファン、34は冷蔵用蒸発器6に付設さ
れた冷蔵用ファン、35は冷凍用蒸発器21に付設され
た冷凍用ファンである。
The refrigeration refrigerant circuit B is provided with a bypass circuit 29 for bypassing the refrigeration evaporator 6. The bypass circuit 29 has an electromagnetic opening / closing operation which is opened only when the operation of the refrigeration evaporator 6 is stopped. A valve 30 is provided. Reference numeral 31 denotes an electromagnetic on / off valve that is closed only when the operation of the refrigerating evaporator 6 is stopped, 32 denotes an electromagnetic on / off valve that is closed only when the operation of the refrigerating evaporator 21 is stopped, and 33 denotes a use side heat exchanger 5. The attached indoor fan, 34 is a refrigeration fan attached to the refrigeration evaporator 6, and 35 is a refrigeration fan attached to the refrigeration evaporator 21.

【0024】前記圧縮機1A,1Bの吐出管47には、
ガス冷媒中に含まれる潤滑油を分離する油分離器36が
設けられており、該油分離器36で分離された潤滑油
は、油戻し管37を介して圧縮機1A,1Bの吸入管3
8に戻されるようになっている。符号39は油戻し時に
開作動される電磁開閉弁である。
The discharge pipes 47 of the compressors 1A and 1B have:
An oil separator 36 for separating the lubricating oil contained in the gas refrigerant is provided. The lubricating oil separated by the oil separator 36 is supplied to the suction pipe 3 of the compressors 1A and 1B via an oil return pipe 37.
8 is returned. Reference numeral 39 denotes an electromagnetic on-off valve that is opened when the oil is returned.

【0025】図面中、符号40は圧縮機1A,1Bの吐
出圧力である高圧圧力を検出する高圧圧力検出手段とし
て作用する圧力センサー、41は室内空気温度を検出す
る室温センサー、42は吐出ガス冷媒の温度を検出する
吐出温度センサー、43は吸入ガス冷媒の圧力を検出す
る圧力センサー、44は外気温度を検出する外気温セン
サー、45,46は閉鎖弁である。
In the drawing, reference numeral 40 denotes a pressure sensor which functions as a high pressure detecting means for detecting a high pressure which is a discharge pressure of the compressors 1A and 1B, 41 denotes a room temperature sensor which detects indoor air temperature, and 42 denotes a discharged gas refrigerant. Is a pressure sensor that detects the pressure of the suction gas refrigerant, 44 is an outside air temperature sensor that detects the outside air temperature, and 45 and 46 are closing valves.

【0026】上記のように構成された冷凍装置において
は、次のような作用効果が得られる。 (I) 冷房運転 この時、四路切換弁2は実線図示のように切り換えら
れ、電磁開閉弁13は開作動され、電磁開閉弁16は閉
作動され、電磁開閉弁24は開作動され、電磁開閉弁2
6は閉作動され、電磁開閉弁30は閉作動され、電磁開
閉弁31,32は開作動され、電磁開閉弁39は開作動
されており、空調用冷媒回路Aにおいては、圧縮機1
A,1Bから吐出されたガス冷媒が、凝縮器として作用
している熱源側熱交換器3において凝縮液化された後、
逆止弁15およびブリッジ回路14を経てレシーバ7へ
送られ、該レシーバ7の液相部からの液冷媒は、第1の
過冷却熱交換器8において室外空気との熱交換により過
冷却され、さらなる過冷却が必要な場合(即ち、電磁開
閉弁13が開作動されている場合)には、前記第1の過
冷却熱交換器8からの過冷却液冷媒が、第2の過冷却熱
交換器9において該過冷却液冷媒の一部であって感温膨
張弁10によって減圧された気液混合冷媒の蒸発潜熱に
よりさらに過冷却され、膨張弁4で減圧されて利用側熱
交換器5に供給されて蒸発し、得られた蒸発潜熱が冷房
用冷熱源として利用され、その後圧縮機1A,1Bへ還
流される。
In the refrigeration apparatus configured as described above, the following operation and effect can be obtained. (I) Cooling operation At this time, the four-way switching valve 2 is switched as shown by the solid line, the electromagnetic switching valve 13 is opened, the electromagnetic switching valve 16 is closed, the electromagnetic switching valve 24 is opened, and the electromagnetic switching valve 24 is opened. On-off valve 2
6, the electromagnetic on / off valve 30 is closed, the electromagnetic on / off valves 31, 32 are opened, and the electromagnetic on / off valve 39 is opened. In the air conditioning refrigerant circuit A, the compressor 1
After the gas refrigerant discharged from A and 1B is condensed and liquefied in the heat source side heat exchanger 3 acting as a condenser,
The liquid refrigerant is sent to the receiver 7 via the check valve 15 and the bridge circuit 14, and the liquid refrigerant from the liquid phase portion of the receiver 7 is supercooled by heat exchange with outdoor air in the first supercooling heat exchanger 8, When further supercooling is required (that is, when the electromagnetic on-off valve 13 is opened), the supercooled liquid refrigerant from the first supercooled heat exchanger 8 is used for the second supercooled heat exchange. The supercooled liquid refrigerant, which is a part of the supercooled liquid refrigerant, is further supercooled by the latent heat of vaporization of the gas-liquid mixed refrigerant decompressed by the temperature-sensitive expansion valve 10, and decompressed by the expansion valve 4 to the use side heat exchanger 5. It is supplied and evaporated, and the obtained latent heat of evaporation is used as a cooling heat source, and then returned to the compressors 1A and 1B.

【0027】また、冷蔵用冷媒回路Bにおいては、前記
膨張弁4で減圧された冷媒が、前記空調用冷媒回路Aか
ら分岐してプレート熱交換器19を経て冷蔵用蒸発器6
に供給されて蒸発し、得られた蒸発潜熱が冷蔵用冷熱源
として利用され、その後圧縮機1A,1Bへ還流され
る。
In the refrigeration circuit B, the refrigerant decompressed by the expansion valve 4 branches off from the air conditioning refrigerant circuit A and passes through the plate heat exchanger 19 to the refrigeration evaporator 6.
And evaporates, and the obtained latent heat of evaporation is used as a cold heat source for refrigeration, and then returned to the compressors 1A and 1B.

【0028】さらに、冷凍用冷媒回路Cにおいては、冷
凍用圧縮機18から吐出されたガス冷媒が、凝縮器とし
て作用しているプレート熱交換器19において冷蔵用冷
媒回路Bにおける液管17を流通する液冷媒との熱交換
により凝縮液化された後、膨張弁20で減圧されて冷凍
用蒸発器21に供給されて蒸発し、得られた蒸発潜熱が
冷凍用冷熱源として利用され、その後アキュームレータ
22を経て圧縮機18へ還流される。
Further, in the refrigeration circuit C, the gas refrigerant discharged from the refrigeration compressor 18 flows through the liquid pipe 17 in the refrigeration circuit B in the plate heat exchanger 19 acting as a condenser. After being condensed and liquefied by heat exchange with the liquid refrigerant, the pressure is reduced by the expansion valve 20 and supplied to the refrigerating evaporator 21 to evaporate. The obtained latent heat of evaporation is used as a refrigerating cold heat source. Is returned to the compressor 18 through the compressor.

【0029】ところで、冷蔵・冷凍の庫内温度が高い場
合には、冷蔵・冷凍のドラフト防止のために、室内ファ
ン33を低速運転とするのが望ましい。 (II) 暖房運転 この時、四路切換弁2は実線図示のように切り換えら
れ、電磁開閉弁13は開作動され、電磁開閉弁16は閉
作動され、電磁開閉弁24は閉作動され、電磁開閉弁2
6は開作動され、電磁開閉弁30は閉作動され、電磁開
閉弁31,32は開作動され、電磁開閉弁39は開作動
されており、空調用冷媒回路Aにおいては、圧縮機1
A,1Bから吐出されたガス冷媒が、凝縮器として作用
している利用側熱交換器5において凝縮液化され、得ら
れた凝縮潜熱が暖房熱源として利用された後、逆止弁1
5およびブリッジ回路14を経てレシーバ7へ送られ、
該レシーバ7の液相部からの液冷媒は、第1の過冷却熱
交換器8において室外空気との熱交換により過冷却さ
れ、さらなる過冷却が必要な場合(即ち、電磁開閉弁1
3が開作動されている場合)には、前記第1の過冷却熱
交換器8からの過冷却液冷媒が、第2の過冷却熱交換器
9において該過冷却液冷媒の一部であって感温膨張弁1
0によって減圧された気液混合冷媒の蒸発潜熱によりさ
らに過冷却され、膨張弁4で減圧されて冷蔵用冷媒回路
Bにおけるプレート熱交換器19を経て蒸発器6に供給
されて蒸発し、得られた蒸発潜熱が冷蔵用冷熱源として
利用され、その後圧縮機1A,1Bへ還流される。
When the temperature inside the refrigerator / freezer is high, it is desirable to operate the indoor fan 33 at a low speed in order to prevent drafts in the refrigerator / freezer. (II) Heating operation At this time, the four-way switching valve 2 is switched as shown by the solid line, the electromagnetic switching valve 13 is opened, the electromagnetic switching valve 16 is closed, the electromagnetic switching valve 24 is closed, and the electromagnetic switching valve 24 is closed. On-off valve 2
6 is opened, the electromagnetic on-off valve 30 is closed, the electromagnetic on-off valves 31 and 32 are opened, and the electromagnetic on-off valve 39 is opened. In the air conditioning refrigerant circuit A, the compressor 1
The gas refrigerant discharged from A, 1B is condensed and liquefied in the use side heat exchanger 5 acting as a condenser, and the obtained condensation latent heat is used as a heating heat source.
5 and to the receiver 7 via the bridge circuit 14,
The liquid refrigerant from the liquid phase portion of the receiver 7 is subcooled in the first subcooling heat exchanger 8 by heat exchange with outdoor air, and when further subcooling is required (that is, the electromagnetic on-off valve 1
3 is opened), the supercooled liquid refrigerant from the first subcooled heat exchanger 8 is a part of the supercooled liquid refrigerant in the second subcooled heat exchanger 9. Temperature expansion valve 1
The refrigerant is further supercooled by the latent heat of vaporization of the gas-liquid mixed refrigerant decompressed by 0, decompressed by the expansion valve 4, supplied to the evaporator 6 via the plate heat exchanger 19 in the refrigeration refrigerant circuit B, and evaporated. The latent heat of evaporation is used as a cold heat source for refrigeration, and then returned to the compressors 1A and 1B.

【0030】また、冷凍用冷媒回路Cにおいては、冷凍
用圧縮機18から吐出されたガス冷媒が、凝縮器として
作用しているプレート熱交換器19において冷蔵用冷媒
回路Bにおける液管17を流通する液冷媒との熱交換に
より凝縮液化された後、膨張弁20で減圧されて冷凍用
蒸発器21に供給されて蒸発し、得られた蒸発潜熱が冷
凍用冷熱源として利用され、その後アキュームレータ2
2を経て圧縮機18へ還流される。
In the refrigeration circuit C, gas refrigerant discharged from the refrigeration compressor 18 flows through the liquid pipe 17 in the refrigeration circuit B in the plate heat exchanger 19 acting as a condenser. After being condensed and liquefied by heat exchange with the liquid refrigerant, the pressure is reduced by the expansion valve 20 and supplied to the refrigerating evaporator 21 to evaporate. The obtained latent heat of evaporation is used as a refrigerating cold heat source.
The refrigerant is returned to the compressor 18 through the line 2.

【0031】上記したように、本実施の形態において
は、暖房運転時には冷蔵用冷媒回路Bにおける蒸発器6
で冷蔵用冷熱源として使用された廃熱が、利用側熱交換
器5において暖房熱源として回収されることとなる。こ
の時、圧縮機1A,1Bのうち1台は運転停止されてい
る(換言すれば、圧縮機の能力がダウンされている)。
As described above, in the present embodiment, the evaporator 6 in the refrigeration refrigerant circuit B during the heating operation is used.
Thus, the waste heat used as the cold heat source for refrigeration is recovered in the use-side heat exchanger 5 as the heating heat source. At this time, one of the compressors 1A and 1B has been stopped (in other words, the capacity of the compressor has been reduced).

【0032】ところで、暖房負荷が小さい(即ち、設定
温度と室温との差が小さい)場合には、蒸発器6におけ
る冷蔵用熱源が不足ぎみとなるので、四路切換弁2を冷
房運転側に切り換えて冷房サイクルとするとともに電磁
開閉弁16を開作動させ、熱源側熱交換器3を凝縮器と
して作用させるとよい。なお、この冷房サイクルでの運
転中において、暖房負荷が大きくなると(即ち、設定温
度と室温との差が大きくなると)、四路切換弁2を暖房
運転側に切り換えて暖房サイクルとするとともに電磁開
閉弁16を閉作動させ、利用側熱交換器5を凝縮器とし
て作用させる暖房熱回収運転に復帰させるとよい。
When the heating load is small (ie, the difference between the set temperature and the room temperature is small), the heat source for refrigeration in the evaporator 6 becomes insufficient, and the four-way switching valve 2 is moved to the cooling operation side. It is preferable to switch to the cooling cycle and open the electromagnetic on-off valve 16 so that the heat source side heat exchanger 3 acts as a condenser. During the operation in the cooling cycle, when the heating load increases (that is, when the difference between the set temperature and the room temperature increases), the four-way switching valve 2 is switched to the heating operation side to perform the heating cycle and perform the electromagnetic switching. The valve 16 may be closed to return to the heating heat recovery operation in which the use side heat exchanger 5 acts as a condenser.

【0033】また、暖房運転中において冷蔵・冷凍負荷
が小さくなった(換言すれば、圧縮機1A,1Bの吸入
圧力である低圧圧力が低くなった)場合には、室内ファ
ン33の風量を自動で低下させると、利用側熱交換器5
と蒸発器6との能力バランスをとることができる。
When the refrigeration / refrigeration load is reduced during the heating operation (in other words, when the low pressure which is the suction pressure of the compressors 1A and 1B is reduced), the air volume of the indoor fan 33 is automatically adjusted. And the use side heat exchanger 5
And the evaporator 6 can be balanced.

【0034】さらに、暖房運転中において冷蔵・冷凍負
荷が小さくなった(換言すれば、圧縮機1A,1Bの吸
入圧力である低圧圧力が低くなった)場合には、利用側
熱交換器5における暖房熱源が不足ぎみとなるので、電
磁開閉弁16を開作動させ、熱源側熱交換器3を蒸発器
として作用させれるとよい。
Further, when the refrigeration / refrigeration load is reduced during the heating operation (in other words, the low pressure which is the suction pressure of the compressors 1A and 1B is reduced), the use-side heat exchanger 5 Since the heating heat source becomes insufficient, it is preferable that the electromagnetic on-off valve 16 be opened to operate the heat source side heat exchanger 3 as an evaporator.

【0035】さらにまた、室内ファン33が駆動停止し
た場合(即ち、利用側熱交換器5が運転停止されている
場合)でも、室温が一定以下ならば、四路切換弁2を暖
房運転側に切り換え且つ電磁開閉弁16を閉作動させ
て、自動的に暖房熱回収運転を行うようにしてもよい。
Further, even when the driving of the indoor fan 33 is stopped (ie, when the operation of the use-side heat exchanger 5 is stopped), if the room temperature is equal to or lower than a predetermined value, the four-way switching valve 2 is moved to the heating operation side. The heating and heat recovery operation may be automatically performed by switching the operation and closing the electromagnetic on-off valve 16.

【0036】ところで、本実施の形態においては、図2
に示すように、前記吸入管38は、前記圧縮機1A,1
Bの吸入口50A,50Bより下方に位置せしめられて
おり、前記油戻し通路37は、前記吸入管38において
前記圧縮機1A(即ち、容量の大きい方の圧縮機)の吸
入口50Aの近くに接続されている。また、前記均油管
48には、前記圧縮機1A,1Bのうちのいずれか一方
の運転停止時に閉作動される電磁開閉弁49が介設され
ている。符号51はフィルターである。
By the way, in the present embodiment, FIG.
As shown in the figure, the suction pipe 38 is connected to the compressor 1A, 1A.
B, and is located below the suction ports 50A and 50B of B. The oil return passage 37 is located near the suction port 50A of the compressor 1A (that is, the compressor with the larger capacity) in the suction pipe 38. It is connected. The oil equalizing pipe 48 is provided with an electromagnetic opening / closing valve 49 that is closed when one of the compressors 1A and 1B is stopped. Reference numeral 51 denotes a filter.

【0037】上記圧縮機1A,1B、電磁開閉弁39,
49は、図3に示すようにON/OFFされることとな
っている。図3において○は開を、×は閉を示す。
The compressors 1A and 1B, the solenoid on-off valve 39,
49 is to be turned ON / OFF as shown in FIG. In FIG. 3, ○ indicates open, and × indicates closed.

【0038】上記のように構成したことにより、圧縮機
1A,1Bが共に運転されている時には、電磁開閉弁3
9,49が共に開作動されており、油分離器36で分離
された冷凍機油Fは、油戻し通路37を介して吸入管3
8に戻され、吸入ガス冷媒中の冷凍機油Fとともに吸入
圧力にしたがって圧縮機1A,1Bにそれぞれ戻される
こととなる。その際、容量の大きい方の圧縮機に多くの
冷凍機油Fが返油されることとなるが、容量の大きい方
の圧縮機の内圧の方が高くなるため、容量の小さい方の
圧縮機へ均油管48を介して冷凍機油Fが移動すること
となり、両圧縮機1A,1Bに確実に返油されることと
なる。従って、従来のように圧縮機を交互運転する均油
運転制御を行わなくとも、圧縮機1A,1Bの冷凍機油
Fを確保することができる。
With the above configuration, when both of the compressors 1A and 1B are operating, the solenoid on-off valve 3
9 and 49 are both opened, and the refrigerating machine oil F separated by the oil separator 36 is supplied through the oil return passage 37 to the suction pipe 3.
8 together with the refrigerating machine oil F in the suction gas refrigerant, and is returned to the compressors 1A and 1B in accordance with the suction pressure. At that time, a large amount of the refrigerating machine oil F is returned to the compressor having the larger capacity. However, since the internal pressure of the compressor having the larger capacity is higher, the compressor F having the smaller capacity is returned to the compressor having the smaller capacity. The refrigerating machine oil F moves through the oil equalizing pipe 48, and the oil is reliably returned to both the compressors 1A and 1B. Therefore, the refrigerating machine oil F of the compressors 1A and 1B can be secured without performing the oil equalizing operation control for alternately operating the compressor as in the related art.

【0039】しかも、圧縮機1A,1Bが共に運転停止
されている時には、開閉弁39が閉作動されて、油戻し
通路37が非連通状態となるため、運転停止時に油分離
器36から吸入側へ冷媒が流れることがなくなる。
In addition, when both the compressors 1A and 1B are stopped, the on-off valve 39 is closed and the oil return passage 37 is not in communication. The refrigerant does not flow to

【0040】さらに、圧縮機1A,1Bのうちのいずれ
か一方が運転停止されている時には、開閉弁49が閉作
動されて均油管48を介しての冷凍機油Fの移動ができ
なくなるため、運転中の圧縮機から運転休止中の圧縮機
への冷凍機油Fの移動が禁止されることとなり、運転中
の圧縮機における冷凍機油Fが不足することがなくな
る。
Further, when one of the compressors 1A and 1B is stopped, the on-off valve 49 is closed and the refrigerating machine oil F cannot be moved through the oil equalizing pipe 48. The movement of the refrigerating machine oil F from the compressor in operation to the compressor in suspension of operation is prohibited, and the compressor oil F in the operating compressor does not run short.

【0041】さらにまた、圧縮機1A,1Bへの吸入管
38を、圧縮機1A,1Bの吸入口50A,50Bより
下方に位置させているので、容量の大きい圧縮機が運転
休止され且つ容量の小さい圧縮機が運転されている時
に、吸入管38を介して容量の大きい方の圧縮機に冷凍
機油Fが流れ込むのを防止することができる。
Furthermore, since the suction pipes 38 to the compressors 1A and 1B are located below the suction ports 50A and 50B of the compressors 1A and 1B, the operation of the compressor having a large capacity is stopped and the capacity of the compressor is reduced. When the small compressor is operating, it is possible to prevent the refrigerating machine oil F from flowing into the larger compressor through the suction pipe 38.

【0042】第2の実施の形態 図4には、本願発明の第2の実施の形態にかかる冷凍装
置における吸入管部分が示されている。
Second Embodiment FIG. 4 shows a suction pipe portion in a refrigeration apparatus according to a second embodiment of the present invention.

【0043】この場合、油分離器36において分離され
た冷凍機油Fを、圧縮機1A,1Bの吸入口50A,5
0Bに確実に戻すように油戻し通路37A,37Bを吸
入口50A,50Bの近くに接続している。また、該油
戻し通路37A,37Bには、圧縮機1A,1Bが共に
運転停止されている時に閉作動される開閉弁39A,3
9Bがそれぞれ介設されている。このようにすると、圧
縮機1A,1Bが共に運転されている時には、油分離器
36で分離された冷凍機油および吸入ガス冷媒中の冷凍
機油が、油戻し通路37A,37Bを介して圧縮機1
A,1Bにそれぞれ戻されることとなり、より確実な返
油が得られることとなる。その他の構成および作用効果
は、第1の実施の形態におけると同様なので説明を省略
する。
In this case, the refrigerating machine oil F separated in the oil separator 36 is supplied to the suction ports 50A, 50A of the compressors 1A, 1B.
The oil return passages 37A and 37B are connected near the suction ports 50A and 50B so as to surely return the oil return to 0B. The oil return passages 37A, 37B have opening / closing valves 39A, 3 which are closed when the compressors 1A, 1B are both stopped.
9B are interposed. In this way, when both the compressors 1A and 1B are operating, the refrigerating machine oil separated by the oil separator 36 and the refrigerating machine oil in the suction gas refrigerant are supplied to the compressor 1 via the oil return passages 37A and 37B.
A and 1B are returned respectively, and more reliable oil return is obtained. The other configuration and operation and effect are the same as those in the first embodiment, and thus the description is omitted.

【0044】[0044]

【発明の効果】請求項1の発明によれば、互いに並列に
接続され、それぞれの容量が相異する一対の高圧ドーム
型の圧縮機1A,1B、四路切換弁2、熱源側熱交換器
3、減圧機構4および利用側熱交換器5を冷媒配管を介
して順次接続してなる冷媒回路Aを備え、前記圧縮機1
A,1Bを均油管48を介して互いに連通させてなる冷
凍装置において、前記圧縮機1A,1Bの吐出配管47
に、吐出ガス冷媒中の冷凍機油を分離する油分離器36
を配設するとともに、該油分離器36において分離され
た冷凍機油を前記圧縮機1A,1Bの吸入側に戻す油戻
し通路37を付設し且つ該油戻し通路37に、前記圧縮
機1A,1Bが共に運転停止されている時に閉作動され
る開閉弁39を介設して、圧縮機1A,1Bが共に運転
されている時には、油分離器36で分離された冷凍機油
および吸入ガス冷媒中の冷凍機油が、油戻し通路37を
介して圧縮機1A,1Bにそれぞれ戻されるようにした
ので、容量の大きい方の圧縮機に多くの冷凍機油が返油
されることとなるが、容量の大きい方の圧縮機の内圧の
方が高くなるため、容量の小さい方の圧縮機へ均油管4
8を介して冷凍機油が移動することとなって、両圧縮機
1A,1Bに確実に返油されることとなり、従来のよう
に圧縮機を交互運転する均油運転制御を行わなくとも、
圧縮機1A,1Bの冷凍機油を確保することができると
いう効果がある。しかも、圧縮機1A,1Bが共に運転
停止されている時には、開閉弁39が閉作動されて、油
戻し通路37が非連通状態となるため、運転停止時に油
分離器36から吸入側へ冷媒が流れることがなくなると
いう効果もある。
According to the first aspect of the present invention, a pair of high pressure dome type compressors 1A and 1B, four-way switching valves 2, and heat source side heat exchangers connected in parallel and having different capacities are provided. 3, a refrigerant circuit A in which a pressure reducing mechanism 4 and a use-side heat exchanger 5 are sequentially connected via a refrigerant pipe;
A and 1B are connected to each other through an oil equalizing pipe 48. In the refrigerating apparatus, a discharge pipe 47 of the compressors 1A and 1B is used.
And an oil separator 36 for separating refrigeration oil in the discharged gas refrigerant.
And an oil return passage 37 for returning the refrigerating machine oil separated in the oil separator 36 to the suction side of the compressors 1A and 1B is provided, and the oil return passage 37 is provided with the compressors 1A and 1B. When the compressors 1A and 1B are operated together, the refrigerating machine oil and the suction gas refrigerant separated by the oil separator 36 are provided via an on-off valve 39 which is closed when both are stopped. Since the refrigerating machine oil is returned to the compressors 1A and 1B via the oil return passage 37, a large amount of refrigerating machine oil is returned to the larger capacity compressor, but the larger capacity is used. Since the internal pressure of the compressor is higher, the oil equalizing pipe 4 is connected to the compressor of smaller capacity.
8, the refrigerating machine oil moves, and the oil is reliably returned to both compressors 1A and 1B. Thus, even if the oil equalizing operation control for alternately operating the compressors is not performed as in the related art,
There is an effect that refrigerating machine oil for the compressors 1A and 1B can be secured. In addition, when both the compressors 1A and 1B are stopped, the on-off valve 39 is closed and the oil return passage 37 is in a non-communication state. Therefore, when the operation is stopped, the refrigerant flows from the oil separator 36 to the suction side. There is also an effect that it stops flowing.

【0045】請求項2の発明では、上記課題を解決する
ための手段として、互いに並列に接続され、それぞれの
容量が相異する一対の高圧ドーム型の圧縮機1A,1
B、四路切換弁2、熱源側熱交換器3、減圧機構4およ
び利用側熱交換器5を冷媒配管を介して順次接続してな
る冷媒回路Aを備え、前記圧縮機1A,1Bを均油管4
8を介して互いに連通させてなる冷凍装置において、前
記圧縮機1A,1Bの吐出配管47に、吐出ガス冷媒中
の冷凍機油を分離する油分離器36を配設するととも
に、該油分離器36において分離された冷凍機油を前記
圧縮機1A,1Bのそれぞれの吸入側に戻す油戻し通路
37A,37Bを付設し且つ該油戻し通路37A,37
Bに、前記圧縮機1A,1Bが共に運転停止されている
時に閉作動される開閉弁39A,39Bをそれぞれ介設
して、圧縮機1A,1Bが共に運転されている時には、
油分離器36で分離された冷凍機油および吸入ガス冷媒
中の冷凍機油が、油戻し通路37A,37Bを介して圧
縮機1A,1Bにそれぞれ戻されるようにしたので、容
量の大きい方の圧縮機に多くの冷凍機油が返油されるこ
ととなるが、容量の大きい方の圧縮機の内圧の方が高く
なるため、容量の小さい方の圧縮機へ均油管48を介し
て冷凍機油が移動することとなって、両圧縮機1A,1
Bに確実に返油されることとなり、従来のように圧縮機
を交互運転する均油運転制御を行わなくとも、圧縮機1
A,1Bの冷凍機油を確保することができるという効果
がある。しかも、圧縮機1A,1Bが共に運転停止され
ている時には、開閉弁39A,39Bが閉作動されて、
油戻し通路37A,39Bが非連通状態となるため、運
転停止時に油分離器36から吸入側へ冷媒が流れること
がなくなるという効果もある。
According to the second aspect of the present invention, as a means for solving the above problems, a pair of high pressure dome type compressors 1A, 1A connected in parallel and having different capacities are provided.
B, a four-way switching valve 2, a heat source side heat exchanger 3, a pressure reducing mechanism 4, and a use side heat exchanger 5 are sequentially connected via a refrigerant pipe to a refrigerant circuit A, and the compressors 1A and 1B are equalized. Oil pipe 4
In the refrigeration system, which is connected to each other via the compressor 8, an oil separator 36 for separating refrigeration oil in the discharge gas refrigerant is provided in the discharge pipe 47 of the compressors 1 </ b> A and 1 </ b> B. The oil return passages 37A, 37B for returning the refrigerating machine oil separated in the above to the respective suction sides of the compressors 1A, 1B are provided, and the oil return passages 37A, 37B are provided.
B is provided with on-off valves 39A and 39B that are closed when the compressors 1A and 1B are both stopped, and when the compressors 1A and 1B are both operated,
Since the refrigerating machine oil separated by the oil separator 36 and the refrigerating machine oil in the suction gas refrigerant are returned to the compressors 1A and 1B via the oil return passages 37A and 37B, respectively, the larger capacity compressor is used. A large amount of refrigerating machine oil is returned to the compressor, but since the internal pressure of the larger capacity compressor is higher, the refrigerating machine oil moves to the smaller capacity compressor via the oil equalizing pipe 48. This means that both compressors 1A, 1
B can be reliably returned to the compressor 1 without performing the oil leveling operation control for alternately operating the compressor as in the related art.
There is an effect that the refrigerating machine oil of A and 1B can be secured. Moreover, when both the compressors 1A and 1B are stopped, the on-off valves 39A and 39B are closed, and
Since the oil return passages 37A and 39B are in a non-communication state, there is also an effect that the refrigerant does not flow from the oil separator 36 to the suction side when the operation is stopped.

【0046】請求項3の発明におけるように、請求項1
および2のいずれか一項記載の冷凍装置において、前記
均油管48に、前記圧縮機1A,1Bのうちのいずれか
一方の運転停止時に閉作動される開閉弁49を介設した
場合、圧縮機1A,1Bのうちのいずれか一方が運転停
止されている時には、開閉弁49が閉作動されて均油管
48を介しての冷凍機油の移動ができなくなるため、運
転中の圧縮機から運転休止中の圧縮機への冷凍機油の移
動が禁止されることとなり、運転中の圧縮機における冷
凍機油が不足することがなくなる。
As in the invention of claim 3, claim 1
3. In the refrigerating apparatus according to any one of (1) and (2), when an on-off valve 49 that is closed when the operation of one of the compressors 1A and 1B is stopped is provided in the oil equalizing pipe 48, When either one of 1A and 1B is stopped, the on-off valve 49 is closed and the refrigerating machine oil cannot move through the oil equalizing pipe 48, so that the operation is stopped from the operating compressor. The movement of the refrigerating machine oil to the compressor is prohibited, so that the running compressor oil does not run short.

【0047】請求項4の発明によれば、互いに並列に接
続され、それぞれの容量が相異する一対の高圧ドーム型
の圧縮機1A,1B、四路切換弁2、熱源側熱交換器
3、減圧機構4および利用側熱交換器5を冷媒配管を介
して順次接続してなる冷媒回路Aを備え、前記圧縮機1
A,1Bを均油管48を介して互いに連通させてなる冷
凍装置において、前記圧縮機1A,1Bの吐出配管47
に、吐出ガス冷媒中の冷凍機油を分離する油分離器36
を配設するとともに、該油分離器36において分離され
た冷凍機油を前記圧縮機1A,1Bの吸入側に戻す油戻
し通路37を付設し且つ前記均油管48に、前記圧縮機
1A,1Bのうちのいずれか一方の運転停止時に閉作動
される開閉弁49を介設して、圧縮機1A,1Bが共に
運転されている時には、油分離器36で分離された冷凍
機油および吸入ガス冷媒中の冷凍機油が、油戻し通路3
7を介して圧縮機1A,1Bにそれぞれ戻されるように
したので、容量の大きい方の圧縮機に多くの冷凍機油が
返油されることとなるが、容量の大きい方の圧縮機の内
圧の方が高くなるため、容量の小さい方の圧縮機へ均油
管48を介して冷凍機油が移動することとなって、両圧
縮機1A,1Bに確実に返油されることとなり、従来の
ように圧縮機を交互運転する均油運転制御を行わなくと
も、圧縮機1A,1Bの冷凍機油を確保することができ
るという効果がある。しかも、圧縮機1A,1Bのうち
のいずれか一方が運転停止されている時には、開閉弁4
9が閉作動されて均油管48を介しての冷凍機油の移動
ができなくなるため、運転中の圧縮機から運転休止中の
圧縮機への冷凍機油の移動が禁止されることとなり、運
転中の圧縮機における冷凍機油が不足することがなくな
るという効果もある。
According to the fourth aspect of the present invention, a pair of high pressure dome type compressors 1A, 1B, four-way switching valve 2, heat source side heat exchanger 3, The compressor 1 includes a refrigerant circuit A in which a pressure reducing mechanism 4 and a use-side heat exchanger 5 are sequentially connected through a refrigerant pipe.
A and 1B are connected to each other through an oil equalizing pipe 48. In the refrigerating apparatus, a discharge pipe 47 of the compressors 1A and 1B is used.
And an oil separator 36 for separating refrigeration oil in the discharged gas refrigerant.
And an oil return passage 37 for returning the refrigerating machine oil separated in the oil separator 36 to the suction side of the compressors 1A and 1B is provided, and the oil equalizing pipe 48 is provided with the compressors 1A and 1B. When both of the compressors 1A and 1B are operating, an on-off valve 49 that is closed when one of the operation is stopped is interposed. Oil in the oil return passage 3
7, a large amount of the refrigerating machine oil is returned to the compressor having the larger capacity, but the internal pressure of the compressor having the larger capacity is reduced. Therefore, the refrigerating machine oil moves to the compressor having the smaller capacity via the oil equalizing pipe 48, so that the oil is reliably returned to both the compressors 1A and 1B. There is an effect that the refrigerating machine oil of the compressors 1A and 1B can be secured without performing the oil equalizing operation control for alternately operating the compressors. Moreover, when one of the compressors 1A and 1B is stopped, the on-off valve 4
9 is closed and the refrigerating machine oil cannot be moved through the oil equalizing pipe 48, so that the movement of the refrigerating machine oil from the compressor in operation to the compressor in non-operation is prohibited. There is also an effect that a shortage of refrigerating machine oil in the compressor does not occur.

【0048】請求項5の発明におけるように、請求項
1、2および3のいずれか一項記載の冷凍装置におい
て、前記圧縮機1A,1Bへの吸入管38を、圧縮機1
A,1Bの吸入口50A,50Bより下方に位置させた
場合、容量の大きい圧縮機が運転休止され且つ容量の小
さい圧縮機が運転されている時に、吸入管38を介して
容量の大きい方の圧縮機に冷凍機油が流れ込むのを防止
することができる。
As in the invention of claim 5, in the refrigerating apparatus according to any one of claims 1, 2 and 3, the suction pipe 38 to the compressors 1A and 1B is connected to the compressor 1
When the compressor with the larger capacity is shut down and the compressor with the smaller capacity is operated when the compressor with the larger capacity is located below the suction ports 50A and 50B of A and 1B, the larger capacity is set via the suction pipe 38. Refrigeration oil can be prevented from flowing into the compressor.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本願発明の第1の実施の形態にかかる冷凍装置
の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a refrigeration apparatus according to a first embodiment of the present invention.

【図2】本願発明の第1の実施の形態にかかる冷凍装置
における吸入管部分の構造を示す配管系統図である。
FIG. 2 is a piping system diagram showing a structure of a suction pipe portion in the refrigeration apparatus according to the first embodiment of the present invention.

【図3】本願発明の第1の実施の形態にかかる冷凍装置
における圧縮機および電磁開閉弁の動作状態を説明する
テーブルである。
FIG. 3 is a table illustrating operation states of a compressor and an electromagnetic on-off valve in the refrigeration apparatus according to the first embodiment of the present invention.

【図4】本願発明の第2の実施の形態にかかる冷凍装置
における吸入管部分の構造を示す配管系統図である。
FIG. 4 is a piping diagram showing a structure of a suction pipe part in a refrigeration apparatus according to a second embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1A,1Bは圧縮機、2は四路切換弁、3は熱源側熱交
換器、4は減圧機構(膨張弁)、5は利用側熱交換器、
36は油分離器、37,37A,37Bは油戻し通路、
38は吸入管、39,39A,39Bは開閉弁(電磁開
閉弁)、48は均油管、49は開閉弁(電磁開閉弁)、
50A,50Bは吸入口。
1A and 1B are compressors, 2 is a four-way switching valve, 3 is a heat source side heat exchanger, 4 is a pressure reducing mechanism (expansion valve), 5 is a use side heat exchanger,
36 is an oil separator, 37, 37A and 37B are oil return passages,
38 is a suction pipe, 39, 39A and 39B are on-off valves (electromagnetic on-off valves), 48 is an oil equalizing pipe, 49 is an on-off valve (electromagnetic on-off valve),
50A and 50B are suction ports.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 野村 和秀 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 竹上 雅章 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 (72)発明者 上野 明敏 大阪府堺市金岡町1304番地 ダイキン工業 株式会社堺製作所金岡工場内 ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kazuhide Nomura 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries Inside Kanaoka Plant of Sakai Seisakusho Co., Ltd. (72) Masaaki Takegami 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries Inside the Sakai Seisakusho Kanaoka Plant (72) Inventor Akitoshi Ueno 1304 Kanaokacho, Sakai-shi, Osaka Daikin Industries Sakai Seisakusho Kanaoka Plant

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 互いに並列に接続され、それぞれの容量
が相異する一対の高圧ドーム型の圧縮機(1A),(1
B)、四路切換弁(2)、熱源側熱交換器(3)、減圧
機構(4)および利用側熱交換器(5)を冷媒配管を介
して順次接続してなる冷媒回路(A)を備え、前記圧縮
機(1A),(1B)を均油管(48)を介して互いに
連通させてなる冷凍装置であって、前記圧縮機(1
A),(1B)の吐出配管(47)には、吐出ガス冷媒
中の冷凍機油を分離する油分離器(36)を配設すると
ともに、該油分離器(36)において分離された冷凍機
油を前記圧縮機(1A),(1B)の吸入側に戻す油戻
し通路(37)を付設し且つ該油戻し通路(37)に
は、前記圧縮機(1A),(1B)が共に運転停止され
ている時に閉作動される開閉弁(39)を介設したこと
を特徴とする冷凍装置。
1. A pair of high pressure dome type compressors (1A), (1) connected in parallel with each other and having different capacities.
B), a refrigerant circuit (A) in which the four-way switching valve (2), the heat source side heat exchanger (3), the pressure reducing mechanism (4), and the use side heat exchanger (5) are sequentially connected via a refrigerant pipe. A refrigerating apparatus comprising the compressors (1A) and (1B) communicating with each other via an oil equalizing pipe (48).
An oil separator (36) for separating the refrigerating machine oil in the discharged gas refrigerant is disposed in the discharge pipe (47) of (A), (1B), and the refrigerating machine oil separated in the oil separator (36) is provided. An oil return passage (37) for returning the oil to the suction side of the compressors (1A) and (1B) is provided, and both the compressors (1A) and (1B) stop operating in the oil return passage (37). A refrigeration system characterized by interposing an on-off valve (39) that is closed when the operation is performed.
【請求項2】 互いに並列に接続され、それぞれの容量
が相異する一対の高圧ドーム型の圧縮機(1A),(1
B)、四路切換弁(2)、熱源側熱交換器(3)、減圧
機構(4)および利用側熱交換器(5)を冷媒配管を介
して順次接続してなる冷媒回路(A)を備え、前記圧縮
機(1A),(1B)を均油管(48)を介して互いに
連通させてなる冷凍装置であって、前記圧縮機(1
A),(1B)の吐出配管(47)には、吐出ガス冷媒
中の冷凍機油を分離する油分離器(36)を配設すると
ともに、該油分離器(36)において分離された冷凍機
油を前記圧縮機(1A),(1B)のそれぞれの吸入側
に戻す油戻し通路(37A),(37B)を付設し且つ
該油戻し通路(37A),(37B)には、前記圧縮機
(1A),(1B)が共に運転停止されている時に閉作
動される開閉弁(39A),(39B)をそれぞれ介設
したことを特徴とする冷凍装置。
2. A pair of high pressure dome type compressors (1A), (1) connected in parallel with each other and having different capacities.
B), a refrigerant circuit (A) in which the four-way switching valve (2), the heat source side heat exchanger (3), the pressure reducing mechanism (4), and the use side heat exchanger (5) are sequentially connected via a refrigerant pipe. A refrigerating apparatus comprising the compressors (1A) and (1B) communicating with each other via an oil equalizing pipe (48).
An oil separator (36) for separating the refrigerating machine oil in the discharged gas refrigerant is disposed in the discharge pipe (47) of (A), (1B), and the refrigerating machine oil separated in the oil separator (36) is provided. Oil return passages (37A) and (37B) for returning the oil to the respective suction sides of the compressors (1A) and (1B), and the oil return passages (37A) and (37B) are provided with the compressor ( A refrigerating apparatus characterized in that on-off valves (39A) and (39B) that are closed when both of 1A) and (1B) are stopped are provided.
【請求項3】 前記均油管(48)には、前記圧縮機
(1A),(1B)のうちのいずれか一方の運転停止時
に閉作動される開閉弁(49)を介設したことを特徴と
する前記請求項1および2のいずれか一項記載の冷凍装
置。
3. The oil equalizing pipe (48) is provided with an on-off valve (49) that is closed when the operation of one of the compressors (1A) and (1B) is stopped. The refrigeration apparatus according to any one of claims 1 and 2, wherein
【請求項4】 互いに並列に接続され、それぞれの容量
が相異する一対の高圧ドーム型の圧縮機(1A),(1
B)、四路切換弁(2)、熱源側熱交換器(3)、減圧
機構(4)および利用側熱交換器(5)を冷媒配管を介
して順次接続してなる冷媒回路(A)を備え、前記圧縮
機(1A),(1B)を均油管(48)を介して互いに
連通させてなる冷凍装置であって、前記圧縮機(1
A),(1B)の吐出配管(47)には、吐出ガス冷媒
中の冷凍機油を分離する油分離器(36)を配設すると
ともに、該油分離器(36)において分離された冷凍機
油を前記圧縮機(1A),(1B)の吸入側に戻す油戻
し通路(37)を付設するとともに、前記均油管(4
8)には、前記圧縮機(1A),(1B)のうちのいず
れか一方の運転停止時に閉作動される開閉弁(49)を
介設したことを特徴とする冷凍装置。
4. A pair of high pressure dome type compressors (1A), (1A) connected in parallel with each other and having different capacities.
B), a refrigerant circuit (A) in which the four-way switching valve (2), the heat source side heat exchanger (3), the pressure reducing mechanism (4), and the use side heat exchanger (5) are sequentially connected via a refrigerant pipe. A refrigerating apparatus comprising the compressors (1A) and (1B) communicating with each other via an oil equalizing pipe (48).
An oil separator (36) for separating the refrigerating machine oil in the discharged gas refrigerant is disposed in the discharge pipe (47) of (A), (1B), and the refrigerating machine oil separated in the oil separator (36) is provided. Oil return passage (37) for returning the oil to the suction side of the compressors (1A) and (1B), and the oil equalizing pipe (4
8) A refrigerating apparatus characterized in that an on-off valve (49) that is closed when one of the compressors (1A) and (1B) is stopped is provided.
【請求項5】 前記圧縮機(1A),(1B)への吸入
管(38)を、圧縮機(1A),(1B)の吸入口(5
0A),(50B)より下方に位置させたことを特徴と
する前記請求項1、2,3および4のいずれか一項記載
の冷凍装置。
5. A suction pipe (38) for the compressors (1A) and (1B) is connected to a suction port (5) of the compressors (1A) and (1B).
The refrigeration apparatus according to any one of claims 1, 2, 3 and 4, wherein the refrigeration apparatus is located below the first and second parts (0A) and (50B).
JP2000097093A 1999-07-21 2000-03-31 Refrigerating system Pending JP2001280719A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2000097093A JP2001280719A (en) 2000-03-31 2000-03-31 Refrigerating system
PCT/JP2000/004836 WO2001006181A1 (en) 1999-07-21 2000-07-19 Refrigerating device
EP00946397A EP1120611A4 (en) 1999-07-21 2000-07-19 Refrigerating device
CNB008014485A CN100453920C (en) 1999-07-21 2000-07-19 Refrigerating device
AU60200/00A AU749518B2 (en) 1999-07-21 2000-07-19 Refrigerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000097093A JP2001280719A (en) 2000-03-31 2000-03-31 Refrigerating system

Publications (1)

Publication Number Publication Date
JP2001280719A true JP2001280719A (en) 2001-10-10

Family

ID=18611763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000097093A Pending JP2001280719A (en) 1999-07-21 2000-03-31 Refrigerating system

Country Status (1)

Country Link
JP (1) JP2001280719A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496321A1 (en) * 2002-03-29 2005-01-12 Daikin Industries, Ltd. Refrigerating equipment
US6986259B2 (en) 2002-04-08 2006-01-17 Daikin Industries, Ltd. Refrigerator
JP2012127608A (en) * 2010-12-17 2012-07-05 Yanmar Co Ltd Air conditioner
KR101259620B1 (en) * 2010-11-17 2013-04-29 엘지전자 주식회사 Air conditioner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496321A1 (en) * 2002-03-29 2005-01-12 Daikin Industries, Ltd. Refrigerating equipment
EP1496321A4 (en) * 2002-03-29 2007-07-18 Daikin Ind Ltd Refrigerating equipment
US6986259B2 (en) 2002-04-08 2006-01-17 Daikin Industries, Ltd. Refrigerator
KR101259620B1 (en) * 2010-11-17 2013-04-29 엘지전자 주식회사 Air conditioner
JP2012127608A (en) * 2010-12-17 2012-07-05 Yanmar Co Ltd Air conditioner

Similar Documents

Publication Publication Date Title
AU749518B2 (en) Refrigerating device
EP1788325B1 (en) Freezing apparatus
EP1762796B1 (en) Air conditioner
US7607317B2 (en) Air conditioner with oil recovery function
US20070245768A1 (en) Refrigeration System
KR20070007771A (en) Freezing apparatus
JP2008249219A (en) Refrigerating air conditioner
KR20050037731A (en) Apparatus and method for liquid refrigerant temperature preventing accumulation of air conditioner
AU2003220985A1 (en) Heat source unit of air conditioner and air conditioner
KR101151529B1 (en) Refrigerant system
CN108088008B (en) Multi-split air conditioner and heat recovery system thereof
JP2007127369A (en) Gas heat pump type air conditioner
JP2001280749A (en) Refrigerating device
JP2001280719A (en) Refrigerating system
JP2001280729A (en) Refrigerating device
JP2003314909A (en) Refrigerating machine
JP2009115336A (en) Refrigeration system
JP2757660B2 (en) Thermal storage type air conditioner
CN216924512U (en) Air conditioning apparatus
JP2001280768A (en) Refrigerator
US20240068715A1 (en) Heat pump system and control method thereof
JP4658395B2 (en) Multi-type gas heat pump type air conditioner
JPH10267428A (en) Air-conditioning device
JP2002340424A (en) Freezing apparatus
KR100510850B1 (en) Pipe Laying Structure Of Outdoor Unit At Multi-Air Conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041012