JP2757660B2 - Thermal storage type air conditioner - Google Patents

Thermal storage type air conditioner

Info

Publication number
JP2757660B2
JP2757660B2 JP6332892A JP6332892A JP2757660B2 JP 2757660 B2 JP2757660 B2 JP 2757660B2 JP 6332892 A JP6332892 A JP 6332892A JP 6332892 A JP6332892 A JP 6332892A JP 2757660 B2 JP2757660 B2 JP 2757660B2
Authority
JP
Japan
Prior art keywords
refrigerant
circuit
cooling
evaporator
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP6332892A
Other languages
Japanese (ja)
Other versions
JPH05264077A (en
Inventor
武司 吉田
秀明 田頭
正美 今西
宏明 浜
守也 宮本
浩 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP6332892A priority Critical patent/JP2757660B2/en
Priority to TW081110169A priority patent/TW224512B/zh
Priority to KR1019930000449A priority patent/KR960010634B1/en
Priority to US08/018,398 priority patent/US5323618A/en
Priority to MYPI93000369A priority patent/MY110359A/en
Priority to CNB931028639A priority patent/CN100559100C/en
Priority to ITRM930163A priority patent/IT1261416B/en
Publication of JPH05264077A publication Critical patent/JPH05264077A/en
Application granted granted Critical
Publication of JP2757660B2 publication Critical patent/JP2757660B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、昼間電力の抑制と平準
化対策に係り、蓄熱媒体を内蔵する蓄熱槽を備えた蓄熱
式空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to daytime electric power suppression and leveling countermeasures and relates to a heat storage type air conditioner having a heat storage tank containing a heat storage medium.

【0002】[0002]

【従来の技術】図10は例えば特開平2−33573号
公報に示された従来の蓄熱式空気調和装置の回路構成を
示すサイクル図であり、この回路は、圧縮機1、凝縮器
2、第1の減圧機構3、蒸発器4を順次接続して成る主
冷媒回路6と、蓄熱媒体7を内蔵する蓄熱槽8と、上記
蓄熱槽8の蓄熱媒体7と冷媒との熱交換を行う蓄熱用熱
交換器9と、上記蓄熱用熱交換器9を介して上記凝縮器
2と減圧機構3間の液ライン5aとガスライン5bとの
冷媒の移動を可能にする第1のバイパス回路10と、上
記第1のバイパス回路10の液管10aに介設した第2
の減圧機構11と、上記蓄熱槽8に蓄えられた蓄熱媒体
と冷媒とを熱交換させるために冷媒を循環させる冷媒ガ
スポンプ13と、上記冷媒ガスポンプ13を含み、これ
の入出力端をいずれも上記第1のバイパス回路10のガ
ス管10bに介設した第2のバイパス回路12と、上記
第2のバイパス回路12への冷媒の回り込みを制御する
開閉装置14とから構成される。
2. Description of the Related Art FIG. 10 is a cycle diagram showing a circuit configuration of a conventional regenerative air conditioner disclosed in, for example, JP-A-2-33573. This circuit includes a compressor 1, a condenser 2, and a compressor. 1, a main refrigerant circuit 6 in which a pressure reducing mechanism 3 and an evaporator 4 are sequentially connected, a heat storage tank 8 containing a heat storage medium 7, and a heat storage for exchanging heat between the heat storage medium 7 and the refrigerant in the heat storage tank 8. A heat exchanger 9, a first bypass circuit 10 that allows the refrigerant to move through the liquid line 5 a and the gas line 5 b between the condenser 2 and the pressure reducing mechanism 3 via the heat storage heat exchanger 9, The second bypass line 10a of the first bypass circuit 10
, A refrigerant gas pump 13 that circulates a refrigerant for heat exchange between the heat storage medium stored in the heat storage tank 8 and the refrigerant, and a refrigerant gas pump 13, both of which have input / output terminals as described above. The first bypass circuit 10 includes a second bypass circuit 12 provided in the gas pipe 10 b of the first bypass circuit 10, and an opening / closing device 14 for controlling the flow of refrigerant into the second bypass circuit 12.

【0003】次に動作について説明する。上記各機器1
〜4は冷媒配管5により冷媒の流通が可能なように接続
されており、凝縮器2で室外空気との熱交換により得た
冷熱を蒸発器4で室内空気に付与する主冷媒回路6が構
成されている。一方、装置には蓄熱可能な蓄熱媒体7を
内蔵する蓄熱槽8が配置されていて、上記蓄熱槽8の内
部に冷媒と蓄熱槽8内の蓄熱媒体7との熱交換を行うた
めの蓄熱用熱交換器9が配置されている。通常の冷房運
転時(以下、一般冷房運転と称す)、上記第2の減圧機
構11が閉じた状態で運転が行われ、冷媒は主冷媒回路
6内のみを循環する。即ち、圧縮機1からの吐出冷媒ガ
スが凝縮器2で凝縮され、第1の減圧機構3で断熱膨脹
し、低温の気液二相流体となって蒸発器4に入り、ここ
で周囲より熱を奪って冷房し、自身は蒸発して圧縮機1
に戻るように循環する。また、夜間の電力負荷の小さい
時間帯を利用して上記蓄熱槽8に冷熱を蓄える蓄冷運転
時(以下、蓄冷運転と称す)には第1の減圧機構3が閉
じた状態で運転が行われる。即ち、圧縮機1からの吐出
冷媒ガスが凝縮器2で凝縮されて高温高圧の冷媒とな
り、第1のバイパス回路10に流れて、第2の減圧機構
11で断熱膨脹した後、蓄熱用熱交換器9にて蒸発する
ことより、蓄熱槽8内の蓄熱媒体7に冷熱を蓄える。蒸
発した後は開閉装置14内を通り圧縮機1に戻る。そし
て、夜間に蓄熱槽8に蓄えた冷熱を利用する蓄冷熱回収
運転(以下、放冷運転と称す)として、上記圧縮機1の
停止時に冷媒ガスポンプ13を運転させると、冷媒ガス
ポンプ13により昇圧された低温低圧のガス冷媒は、蓄
熱用熱交換器9に入り、蓄熱媒体7に熱を与え、自身は
凝縮液化し、第2の減圧機構11によって断熱膨脹し、
低温の気液二相流体となって蒸発器4に流れ込み、ここ
で周囲より熱を奪って冷房し、自身は蒸発してガス化し
て再び冷媒ガスポンプに戻る。更に、本例は圧縮機1の
運転による一般冷房運転と同時に放冷運転を行うことが
できる。即ち、圧縮機1及び冷媒ガスポンプ13がいず
れも作動した状態で運転が行われ、冷媒回路6で凝縮さ
れた冷媒が蒸発器4で蒸発する一方、バイパス回路10
の蓄熱用熱交換器9で凝縮された冷媒が主冷媒回路6の
冷媒と合流して、共に蒸発器4で蒸発するように循環す
る。
Next, the operation will be described. Each of the above devices 1
Are connected by a refrigerant pipe 5 so that refrigerant can flow therethrough, and a main refrigerant circuit 6 for applying cold heat obtained by heat exchange with outdoor air in the condenser 2 to indoor air in the evaporator 4 is configured. Have been. On the other hand, a heat storage tank 8 containing a heat storage medium 7 capable of storing heat is provided in the apparatus, and a heat storage tank 8 for performing heat exchange between the refrigerant and the heat storage medium 7 in the heat storage tank 8 inside the heat storage tank 8. A heat exchanger 9 is arranged. During normal cooling operation (hereinafter, referred to as general cooling operation), the operation is performed with the second pressure reducing mechanism 11 closed, and the refrigerant circulates only in the main refrigerant circuit 6. That is, the refrigerant gas discharged from the compressor 1 is condensed in the condenser 2, adiabatically expanded in the first decompression mechanism 3, turns into a low-temperature gas-liquid two-phase fluid, enters the evaporator 4, where heat from the surroundings is generated. To cool and cool itself,
Circulate back to. In addition, at the time of the cold storage operation in which cold heat is stored in the heat storage tank 8 using the time period during which the electric power load is small at night (hereinafter, referred to as the cold storage operation), the operation is performed with the first pressure reducing mechanism 3 closed. . That is, the refrigerant gas discharged from the compressor 1 is condensed in the condenser 2 to become a high-temperature and high-pressure refrigerant, flows into the first bypass circuit 10, adiabatically expands in the second decompression mechanism 11, and then exchanges heat for heat storage. The heat is stored in the heat storage medium 7 in the heat storage tank 8 by being evaporated in the vessel 9. After the evaporation, it returns to the compressor 1 through the opening / closing device 14. Then, when the refrigerant gas pump 13 is operated when the compressor 1 is stopped as a cold storage heat recovery operation (hereinafter, referred to as a cooling operation) using the cold stored in the heat storage tank 8 at night, the pressure is increased by the refrigerant gas pump 13. The low-temperature and low-pressure gas refrigerant enters the heat exchanger 9 for heat storage, gives heat to the heat storage medium 7, condenses and liquefies, and is adiabatically expanded by the second pressure reducing mechanism 11.
It becomes a low-temperature gas-liquid two-phase fluid and flows into the evaporator 4, where it takes heat from the surroundings to cool it, evaporates and gasifies itself, and returns to the refrigerant gas pump again. Further, in this embodiment, the cooling operation can be performed simultaneously with the general cooling operation by the operation of the compressor 1. That is, the operation is performed with both the compressor 1 and the refrigerant gas pump 13 operating, and the refrigerant condensed in the refrigerant circuit 6 evaporates in the evaporator 4 while the bypass circuit 10
The refrigerant condensed in the heat storage heat exchanger 9 merges with the refrigerant in the main refrigerant circuit 6 and circulates together to evaporate in the evaporator 4.

【0004】以上に示した圧縮機1と冷媒ガスポンプ1
3の同時運転、つまり一般冷房運転と放冷運転の混成運
転は、昼間の電力需要に対する負荷低減策として有効に
作用するものであるが、この従来例のように凝縮器2及
び蓄熱用熱交換器9で各々凝縮した冷媒を合流させ、同
一の蒸発器4で蒸発させる方法では、室内空気温度・室
外空気温度等の周囲環境条件の変動や蓄熱媒体の温度変
化による蓄熱用熱交換器側の負荷変動により、一般冷房
運転側と放冷運転側の所用冷媒量や冷凍機油量に不均衡
が生じ、その結果、運転状態の悪化による能力減少はも
とより、それぞれの回路で冷媒量の過不足による高圧上
昇や液バック、冷凍機油の枯渇による圧縮機軸受の焼付
き等、冷媒回路部品に直接損傷を与えるような危険性が
存在する。ここで、上記のような問題の解決策として、
圧縮機や冷媒ガスポンプの運転容量調節を行い、一般冷
房運転回路側の凝縮冷媒と放冷運転側(バイパス回路
側)の凝縮冷媒の流量比を調節するような方法が考えら
れるが、制御方法が複雑になり制御機器面での高コスト
化や制御回路の伝送線の増加が要求される、圧縮機や冷
媒ガスポンプの容量調節機構(例えばインバータ)の付
加が必要である、などの高コスト化が強いられるため、
あまり有効な方法であるとは言えない。また、蓄冷運転
・一般冷房運転・放冷運転の各々の運転モードに必要な
冷媒量には差があり、一般冷房運転と蓄冷運転に必要な
冷媒量が少なく、これに較べて放冷運転に必要な冷媒量
が比較的多いために、蓄冷運転時には全回路内の封入冷
媒量の大部分が余剰となり、次に放冷運転又は一般冷房
と放冷運転の混成運転モードに入るときは多量の冷媒量
を必要とすることから、回路内には一時的に冷媒を回収
・放出する機器の設置される必要が生じてくる。しか
し、従来の例ではこのような冷媒量調整を賄うことので
きる部分が存在せず、冷媒量調節の点からも実際の機器
応用は困難である。
[0004] The compressor 1 and the refrigerant gas pump 1 described above
3, the combined operation of the general cooling operation and the cooling operation effectively acts as a load reduction measure against the power demand in the daytime. However, as in the conventional example, the condenser 2 and the heat exchange for heat storage are used. In the method in which the refrigerants condensed in the heat exchanger 9 are combined and evaporated in the same evaporator 4, the temperature of the heat storage heat exchanger due to fluctuations in ambient environmental conditions such as indoor air temperature and outdoor air temperature and changes in the temperature of the heat storage medium. Due to the load fluctuation, imbalance occurs in the required refrigerant amount and refrigerating machine oil amount on the general cooling operation side and the cooling operation side, and as a result, not only the capacity decrease due to the deterioration of the operation state, but also the excess and deficiency of the refrigerant amount in each circuit There is a danger of directly damaging the refrigerant circuit parts, such as high pressure rise, liquid back, and seizure of the compressor bearing due to depletion of the refrigerating machine oil. Here, as a solution to the above problem,
A method is considered in which the operating capacity of the compressor and the refrigerant gas pump is adjusted to adjust the flow rate ratio of the condensed refrigerant on the general cooling operation circuit side to the condensed refrigerant on the cooling operation side (bypass circuit side). It is becoming more complicated and requires higher costs in terms of control equipment and an increase in the number of transmission lines for control circuits, and it is necessary to add a capacity adjustment mechanism (for example, an inverter) for compressors and refrigerant gas pumps. To be forced
This is not a very effective method. In addition, there is a difference in the amount of refrigerant required for each operation mode of the cool storage operation, the general cooling operation, and the cooling operation, and the amount of refrigerant required for the general cooling operation and the cooling operation is small. Since the required refrigerant amount is relatively large, most of the enclosed refrigerant amount in the entire circuit becomes excessive during the cold storage operation, and then a large amount is required when entering the cooling operation or the hybrid operation mode of general cooling and cooling operation. Since the amount of the refrigerant is required, it is necessary to install a device for temporarily collecting and discharging the refrigerant in the circuit. However, in the conventional example, there is no portion that can cover such adjustment of the amount of refrigerant, and it is difficult to actually apply the equipment from the viewpoint of adjusting the amount of refrigerant.

【0005】[0005]

【発明が解決しようとする課題】従来の蓄熱式空気調和
装置は以上のように構成されているので、一般用冷房回
路と放冷用回路を同時に運転させる際に、各々の回路で
過冷却、減圧された冷媒は蒸発器で合流するために、周
囲環境条件や蓄熱用熱交換器側の負荷の変動により各々
の回路間の冷媒量や油量の変動(不均衡)が生じ、各々
の回路の運転の継続に支障を来すという問題があった。
また、各運転モードの必要冷媒量の差から生じる運転モ
ード毎の冷媒量変動に対し、これを調節する対策が為さ
れていないことから、特に蓄冷運転時などでは運転に支
障が生じ、実際の機器応用が困難であるという問題があ
った。
Since the conventional regenerative air conditioner is configured as described above, when the general cooling circuit and the cooling circuit are operated at the same time, supercooling is performed in each circuit. Since the depressurized refrigerants are combined at the evaporator, fluctuations in the ambient environment conditions and fluctuations in the load on the heat storage heat exchanger cause fluctuations (imbalance) in the refrigerant amount and oil amount between the respective circuits, and each circuit has There is a problem that hinders the continuation of operation of the vehicle.
In addition, since no measures have been taken to adjust the amount of refrigerant in each operation mode caused by the difference in the required amount of refrigerant in each operation mode, operation has been hindered, especially during cold storage operation, and actual operation has occurred. There was a problem that application to equipment was difficult.

【0006】本発明は上記のような問題点を解消するた
めに為されたもので、一般冷房用回路と放冷用回路を同
時又は個別に運転させる際に、双方の回路内の冷媒の過
不足による圧縮機の損傷や冷房能力の減少といった不具
合がなく、適正な冷媒量及び冷凍機油量に調節した状態
で運転を継続させることができる冷媒回収放出制御及び
油量制御の可能な蓄熱式空気調和装置を得ることを目的
としている。
SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and when the general cooling circuit and the cooling circuit are operated simultaneously or individually, the excess refrigerant in both circuits is required. Regenerative air with refrigerant recovery / release control and oil volume control that can continue operation with proper refrigerant and refrigerating machine oil levels without problems such as compressor damage and cooling capacity reduction due to shortage The aim is to obtain a harmony device.

【0007】[0007]

【課題を解決するための手段】本発明に係る蓄熱式空気
調和装置は上記目的を達成するために、圧縮機駆動によ
る一般冷房用回路と冷媒ポンプ駆動による放冷用回路を
それぞれ独立した回路として蒸発器を個別に設け、各々
の回路の液管及びガス管同志の冷媒移動を可能にしたバ
イパス回路をそれぞれ設け、蓄冷運転時には上記各バイ
パス回路を開路し、圧縮機、凝縮器、第1の減圧機構及
び蓄冷用熱交換器より成る蓄冷用回路を形成したもので
ある。
In order to achieve the above object, a regenerative air conditioner according to the present invention comprises a general cooling circuit driven by a compressor and a cooling circuit driven by a refrigerant pump as independent circuits. Evaporators are separately provided, and bypass circuits are provided for enabling refrigerant movement between the liquid pipes and gas pipes of the respective circuits. Each of the bypass circuits is opened during the cold storage operation, and the compressor, the condenser, the first A regenerative circuit comprising a pressure reducing mechanism and a regenerative heat exchanger is formed.

【0008】また、蓄冷運転時には、逆止弁を介して第
2の減圧機構をバイパスする第3のバイパス回路と、開
閉装置を介し、放冷用回路の第2のガス管側に設けた冷
媒ガスポンプをバイパスする第4のバイパス回路と、第
1、第2の蒸発器の冷媒入口側にそれぞれ設けた開閉装
置とを備え、蒸発器入口側開閉装置をそれぞれ遮断する
と共に第1〜第4のバイパス回路を連通して蓄冷用回路
を形成する。
In the cold storage operation, a third bypass circuit for bypassing the second pressure reducing mechanism via a check valve and a refrigerant provided on the second gas pipe side of the cooling circuit via an opening / closing device. A fourth bypass circuit for bypassing the gas pump, and switching devices provided on the refrigerant inlet side of the first and second evaporators, respectively, shut off the evaporator inlet-side switching devices, and perform the first to fourth operations. A cool storage circuit is formed by connecting the bypass circuit.

【0009】また、一般冷房用回路と放冷用回路を同時
または個別に運転させる際、圧縮機または冷媒ポンプの
起動と同時に第1及び第2のバイパス回路に設けた開閉
装置のうち少くとも一方を開けて両回路間で冷媒を移動
させ、蓄冷用熱交換器の冷媒出口側或は凝縮器の冷媒出
口側の過冷却度、または第1或は第2の蒸発器の冷媒過
熱度を検知し、この過冷却度または過熱度が所定の値に
なったとき開閉装置を閉じる冷媒流量調節手段を設け
る。
When the general cooling circuit and the cooling circuit are operated simultaneously or individually, at least one of the switching devices provided in the first and second bypass circuits at the same time when the compressor or the refrigerant pump is started. Is opened to move the refrigerant between the two circuits to detect the degree of supercooling at the refrigerant outlet side of the cool storage heat exchanger or the refrigerant outlet side of the condenser, or the degree of superheating of the refrigerant at the first or second evaporator. Then, there is provided a refrigerant flow rate adjusting means for closing the opening / closing device when the degree of supercooling or the degree of superheat reaches a predetermined value.

【0010】また、凝縮器出口から分岐して第1の減圧
機構をバイパスし、途中に受液器、第3の減圧機構及び
開閉装置を順次接続して成る第5のバイパス回路を設け
る。
In addition, a fifth bypass circuit is provided which branches off from the condenser outlet and bypasses the first pressure reducing mechanism, and on the way, connects the liquid receiver, the third pressure reducing mechanism and the switchgear in order.

【0011】さらに、冷媒ガスポンプの入口側に設けた
アキュムレータ下部から開閉装置を介して、第1のバイ
パス回路と第4のバイパス回路の間のガス管にバイパス
させた第6のバイパス回路を有し、蓄熱槽に蓄冷熱を蓄
える蓄運転開始時から一定時間開閉装置を開くように
する。
Further, there is provided a sixth bypass circuit which is bypassed from a lower part of the accumulator provided on the inlet side of the refrigerant gas pump to a gas pipe between the first bypass circuit and the fourth bypass circuit via an opening / closing device. , to open a predetermined time switchgear from the time蓄cold start-storing cold storage heat in the thermal storage tank.

【0012】そして、第1及び第2の蒸発器のフィンを
共通化させ、一般冷房用回路及び放冷用回路の両回路分
の熱交換量を得ることのできる単一の熱交換器を具備し
たものである。
Further, a single heat exchanger is provided in which the fins of the first and second evaporators are shared, and a heat exchange amount for both the general cooling circuit and the cooling circuit can be obtained. It was done.

【0013】[0013]

【作用】この発明における蓄熱式空気調和装置は、圧縮
機駆動による一般冷房用回路と冷媒ポンプ駆動による放
冷用回路をそれぞれ独立した回路として蒸発器を個別に
設け、各々の回路の液管及びガス管同志を連通して両回
路間の冷媒移動を可能にしたバイパス回路を設けている
ことにより、上記バイパス回路を開いた時のみ両回路間
の冷媒移動が可能で、蓄冷運転時には上記バイパス回路
を開き、圧縮機、凝縮器、第1の減圧機構及び蓄冷用熱
交換器より成る蓄冷用回路を形成して蓄熱槽に冷熱エネ
ルギーを蓄積する。また両冷房用回路を個別又は同時に
運転させる時は上記バイパス回路は閉じて運転するため
に、両回路に適正な冷媒量が確保されている場合は冷房
能力の減少や変動がない。
According to the regenerative air conditioner of the present invention, a general cooling circuit driven by a compressor and a cooling circuit driven by a refrigerant pump are provided as independent circuits, and evaporators are individually provided. By providing a bypass circuit that communicates the gas pipes and allows the refrigerant to move between the two circuits, the refrigerant can be moved between the two circuits only when the bypass circuit is opened. To form a cool storage circuit including a compressor, a condenser, a first pressure reducing mechanism, and a cool storage heat exchanger to store cold energy in the heat storage tank. When both cooling circuits are operated individually or simultaneously, the bypass circuit is closed and operated. Therefore, if a proper amount of refrigerant is secured in both circuits, there is no decrease or fluctuation in cooling capacity.

【0014】また、一般冷房用回路と放冷用回路を同時
または個別に運転させる際、運転開始時に上記バイパス
回路を開いて回路間を冷媒移動させ、両回路内の冷媒量
を適正に調節する冷媒流量調節手段を設けているので、
例えば、一般冷房用回路に冷媒が過多になっているとき
はバイパス回路を通じて放冷側に冷媒を移動させ、放冷
用回路の過冷却度が適正になったところでバイパス回路
を遮断する。逆の場合には、一般冷房用回路の過熱度で
適正量の判断を行う。このため、両回路間に冷媒量の過
不足があった場合でも適正な量が確保されるように運転
し得る。
When the general cooling circuit and the cooling circuit are operated simultaneously or individually, the bypass circuit is opened at the start of operation to move the refrigerant between the circuits and to adjust the amount of the refrigerant in both circuits appropriately. Since the refrigerant flow control means is provided,
For example, when the refrigerant is excessive in the general cooling circuit, the refrigerant is moved to the cooling side through the bypass circuit, and the bypass circuit is cut off when the degree of supercooling of the cooling circuit becomes appropriate. In the opposite case, the appropriate amount is determined based on the degree of superheating of the general cooling circuit. For this reason, even if there is an excess or deficiency in the amount of refrigerant between the two circuits, the operation can be performed so that an appropriate amount is ensured.

【0015】ところが、蓄冷運転時には少量の冷媒量で
済むため、凝縮器出口に設けた受液器によって蓄冷運転
での所要量以外の冷媒を溜め、冷房運転時に放出するこ
とにより、各運転モード間の冷媒量の是正を行うことが
できる。
However, since only a small amount of refrigerant is required during the cold storage operation, the amount of refrigerant other than that required for the cold storage operation is collected by the receiver provided at the outlet of the condenser and discharged during the cooling operation. The amount of refrigerant can be corrected.

【0016】また、冷凍機油が放冷用回路側のアキュム
レータ下部からガス管を経て、一般冷房用回路に連通可
能なバイパス回路を設け、蓄冷運転開始時から一定時
間、油が上記バイパス回路を経て一般冷房用回路側へ移
動可能とすることにより、圧縮機及び冷媒ガスポンプ間
の油の偏りを回避することができる。
Further, a bypass circuit is provided which allows the refrigerating machine oil to communicate with the general cooling circuit through the gas pipe from the lower part of the accumulator on the cooling circuit side, and the oil passes through the bypass circuit for a fixed time from the start of the cold storage operation. By allowing movement to the general cooling circuit side, bias of oil between the compressor and the refrigerant gas pump can be avoided.

【0017】更に、一般冷房用回路と放冷用回路の独立
した各々の蒸発器のフィンを共通化させ、両回路分の熱
交換量を得ることのできる単一の熱交換器としているた
め、両回路が同時運転を行っているときは各々の所用の
伝熱効果が得られるが、双方の冷房用回路が単独で運転
する場合には運転を停止している側のフィンを利用でき
て前者の倍の伝熱面積が得られ、その結果熱交換量を高
めることができる。
Furthermore, since the fins of the evaporators independent of the general cooling circuit and the cooling circuit are shared, a single heat exchanger can obtain the heat exchange amount for both circuits. When both circuits are operating at the same time, the required heat transfer effect can be obtained.However, when both cooling circuits operate independently, the former fin can be used because the stopped fin can be used. The heat transfer area is twice as large, and as a result, the heat exchange amount can be increased.

【0018】[0018]

【実施例】【Example】

実施例1.以下、本発明の実施例1を図1〜図5に基い
て説明する。図1は本発明の請求項1、請求項2及び請
求項3の発明を適用した実施例1に係る蓄熱式空気調和
装置の全体構成を示す冷媒配管系統図である。図中、1
は圧縮機、2は凝縮器、3は第1の減圧機構、4aは第
1の蒸発器、15は第1のアキュムレータで、これらを
順次接続して一般冷房用回路17を形成しており、上記
第1の蒸発器4aを介して冷房を行う。
Embodiment 1 FIG. Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a refrigerant piping system diagram showing an overall configuration of a heat storage type air conditioner according to a first embodiment to which the inventions of claims 1, 2 and 3 of the present invention are applied. In the figure, 1
Is a compressor, 2 is a condenser, 3 is a first decompression mechanism, 4a is a first evaporator, 15 is a first accumulator, and these are sequentially connected to form a general cooling circuit 17, Cooling is performed via the first evaporator 4a.

【0019】13は冷媒ガスポンプ、9は蓄冷用熱交換
器、11は第2の減圧機構、4bは第2の蒸発器、16
は第2のアキュムレータで、これらを順次接続して放冷
用回路18を形成しており、上記第2の蒸発器4bを介
して冷房を行う。7は上記蓄熱用熱交換器9を介して蓄
冷する蓄熱媒体であり、8は上記蓄熱媒体7を内蔵する
蓄熱槽である。蓄熱媒体7は例えば水が用いられ、この
場合の蓄熱手段としては製氷により冷熱の大部分を潜熱
として蓄える。上記第1の蒸発器4a及び第2の蒸発器
4bは冷媒回路としては個々に独立しているが、熱交換
部分は同一の風路内或いは個々に独立した風路内の何れ
に設けられていても良い。
13 is a refrigerant gas pump, 9 is a heat exchanger for cold storage, 11 is a second pressure reducing mechanism, 4b is a second evaporator, 16
Is a second accumulator, which is sequentially connected to form a cooling circuit 18, and performs cooling through the second evaporator 4b. Reference numeral 7 denotes a heat storage medium for storing cold through the heat storage heat exchanger 9, and reference numeral 8 denotes a heat storage tank containing the heat storage medium 7. The heat storage medium 7 is, for example, water. In this case, the heat storage means stores most of the cold heat as latent heat by ice making. Although the first evaporator 4a and the second evaporator 4b are individually independent as refrigerant circuits, the heat exchange part is provided in the same air passage or in an individually independent air passage. May be.

【0020】19は第1のアキュムレータ15入口側の
第1のガス管17bと第2のアキュムレータ16入口側
の第2のガス管18bとの間に介在する開閉装置24の
開閉により冷媒の移動を可能にする第1のバイパス回
路、20は第1の減圧機構3と第1の蒸発器4a間の第
1の液管17aと第2の減圧機構11と第2の蒸発器4
b間の第2の液管18aとの間に介在する開閉装置25
の開閉により冷媒の移動を可能にする第2のバイパス回
路であり、これらのバイパス回路19、20は蓄冷運転
時の主回路になるとともに、一般冷房運転及び放冷運転
時の両回路間の冷媒移動用回路として使用される。
Reference numeral 19 denotes movement of the refrigerant by opening and closing a switch 24 interposed between the first gas pipe 17b on the inlet side of the first accumulator 15 and the second gas pipe 18b on the inlet side of the second accumulator 16. The first bypass circuit 20 enables the first liquid pipe 17a between the first decompression mechanism 3 and the first evaporator 4a, the second decompression mechanism 11 and the second evaporator 4
b opening and closing device 25 interposed between the second liquid pipe 18a
The bypass circuits 19 and 20 serve as a main circuit during the cold storage operation, and serve as a main circuit during the cold storage operation and the refrigerant between the two circuits during the general cooling operation and the cooling operation. Used as a moving circuit.

【0021】21は上記蓄冷用熱交換器9を介した該蓄
熱槽8への蓄冷運転時に逆止弁23を介して上記第2の
絞り装置11をバイパスする第3のバイパス回路、22
は上記冷媒ガスポンプ13出口と上記第2のアキュムレ
ータ16入口間に開閉装置26を介して設けられた第4
のバイパス回路、27、28は上記第1の蒸発器4a及
び第2の蒸発器4bの入口にそれぞれ設けられた開閉装
置である。
Reference numeral 21 denotes a third bypass circuit for bypassing the second expansion device 11 via a check valve 23 during a cold storage operation to the heat storage tank 8 via the cold storage heat exchanger 9;
The fourth is provided between the outlet of the refrigerant gas pump 13 and the inlet of the second accumulator 16 via an opening / closing device 26.
The bypass circuits 27 and 28 are opening / closing devices provided at the entrances of the first evaporator 4a and the second evaporator 4b, respectively.

【0022】図2は主として深夜電力時間帯の運転とな
る蓄運転時の動作を示す回路図であり(破線矢印が冷
媒の流れ方向を示す)、開閉装置27、28を閉じ、開
閉装置24、25、26を開き、冷媒ガスポンプ13を
停止したまま圧縮機1を運転させると、圧縮機1から吐
出する高温高圧のガス冷媒は凝縮器2で放熱、自身は凝
縮液化し、第一の減圧機構3で断熱膨張し、低温の気液
二相流体となった後第2のバイパス回路20を経て放
用回路18内の第2の液管18aに入り、第3のバイパ
ス回路21内の逆止弁23を経由して蓄熱用熱交換器8
に入り、蓄熱媒体7から熱を奪い、自身は蒸発ガス化す
る。その後、第4のバイパス回路22と第1のバイパス
回路19を経て再び一般冷房用回路17の第1のガス管
17bに戻り、第1のアキュムレータ15を経て、最後
に圧縮機1に戻る。かかる動作により蓄熱媒体7を凍結
させるなどにより低温の冷熱を蓄える。
[0022] Figure 2 (shown dashed arrows the flow direction of the refrigerant) is a circuit diagram showing the operation at the time蓄cold operation consisting mainly midnight operation of power consumption period, closing the closing device 27 and 28, opening and closing device 24 , 25 and 26 are opened and the compressor 1 is operated with the refrigerant gas pump 13 stopped, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 is radiated by the condenser 2, itself condensed and liquefied, and the first decompression is performed. adiabatic expanded in mechanism 3 enters into the second liquid pipe 18a in the second bypass circuit 20 through to release cold <br/> circuit 18 after a low-temperature gas-liquid two-phase fluid, the third bypass Heat exchanger 8 for heat storage via check valve 23 in circuit 21
, And takes heat from the heat storage medium 7 to evaporate itself. After that, the air returns to the first gas pipe 17b of the general cooling circuit 17 again through the fourth bypass circuit 22 and the first bypass circuit 19, and returns to the compressor 1 finally through the first accumulator 15. By this operation, low-temperature cold heat is stored by freezing the heat storage medium 7 or the like.

【0023】また、上記蓄運転終了の後、一般冷房運
転または蓄熱利用による放冷運転、或いは両者の同時運
転を行う時は、図3に示すように開閉装置24、25、
26を閉じ、かつ開閉装置27、28を開き、圧縮機1
と冷媒ガスポンプ13を個々又は同時に運転させる。ま
ず、一般冷房用回路17を運転する時は(実線矢印が冷
媒の流れ方向を示す)、圧縮機1からの高温高圧の吐出
冷媒ガス凝縮器2で凝縮され、第1の減圧機構3で断熱
膨張し、低温の気液二相流体となって第1の蒸発器4a
に入り、ここで周囲より熱を奪って冷房し、自身は蒸発
して第1のアキュムレータ15に入った後、圧縮機1に
戻るように循環する。次に、放冷用回路18を運転する
時は(一点鎖線矢印が冷媒の流れ方向を示す)、冷媒ガ
スポンプ13によって昇圧された低温低圧のガス冷媒
は、蓄用熱交換器9に入り、蓄熱媒体7に熱を与え、
自身は凝縮液化し、第2の減圧機構11によって断熱膨
張し、低温の気液二相流体となって第2の蒸発器4bに
流れ込み、ここで周囲より熱を奪って冷房するとともに
自身は蒸発してガス化し、第2のアキュムレータ16を
経た後、再び冷媒ガスポンプ13に戻る。上記例は冷媒
ポンプがガスポンプとして使用される場合を示したが、
ポンプを蓄用熱交換器9出口の液管に設置して冷媒液
ポンプとして用いても良い。更に、一般の、放冷の両冷
房運転を行う時は、両回路間のバイパス回路19、20
を遮断しているために各々の冷凍サイクルは互いに独立
し、両者間の冷媒或いは冷凍機油の移動はない。従っ
て、双方のサイクルに適正な冷媒量及び油量が確保され
ているときは能力の減少や変動、冷凍機油の減少による
圧縮機トラブル等がない。
Further, after the蓄cold end of operation, the general cooling operation or cooling operation using the heat storage utilization, or when performing the simultaneous operation of both opening and closing device 24, 25 as shown in FIG. 3,
26, and opening and closing devices 27 and 28,
And the refrigerant gas pumps 13 are operated individually or simultaneously. First, when the general cooling circuit 17 is operated (solid arrows indicate the flow direction of the refrigerant), the refrigerant is condensed by the high-temperature and high-pressure discharged refrigerant gas condenser 2 from the compressor 1 and is insulated by the first pressure reducing mechanism 3. The first evaporator 4a expands and becomes a low-temperature gas-liquid two-phase fluid.
, Where it cools by removing heat from the surroundings, evaporates and enters the first accumulator 15 and then circulates back to the compressor 1. Next, when driving the cool circuit 18 (indicating the flow direction of the refrigerant flows towards one point), low-temperature low-pressure gas refrigerant pressurized by the refrigerant gas pump 13 enters the蓄cold heat exchanger 9, Giving heat to the heat storage medium 7,
It is condensed and liquefied, adiabatically expanded by the second decompression mechanism 11, flows as a low-temperature gas-liquid two-phase fluid into the second evaporator 4b, where it takes heat from the surroundings to cool and evaporate itself. After passing through the second accumulator 16, the gas returns to the refrigerant gas pump 13 again. The above example shows the case where the refrigerant pump is used as a gas pump,
Pump may be used as the refrigerant fluid pump installed on the liquid pipe of the heat exchanger 9 the outlet for 蓄-cooling. Further, when performing both the cooling operation of the general cooling and the cooling operation, the bypass circuits 19 and 20 between the two circuits are used.
Refrigeration cycles are independent of each other, and there is no transfer of refrigerant or refrigeration oil between them. Therefore, when the appropriate refrigerant amount and oil amount are secured in both cycles, there is no decrease or fluctuation in capacity, and no compressor trouble due to a decrease in refrigerating machine oil.

【0024】上記のように、圧縮機駆動による一般冷房
用回路と冷媒ポンプ駆動による放冷用回路をそれぞれ独
立した回路としたことにより、従来例のような凝縮器及
び蓄熱用熱交換器で各々凝縮した冷媒を合流させて同一
の蒸発器で蒸発させる方法による一般冷房運転側と放冷
運転側の所要冷媒量や冷凍機油量の不均衡、運転状態の
悪化による能力減少、冷媒量の過不足による高圧上昇や
液バック、冷凍機油の枯渇による圧縮機軸受の焼付き、
といった問題が解消される。また、一般冷房・放冷の個
々の冷房運転を任意に行うことができる。
As described above, since the general cooling circuit driven by the compressor and the cooling circuit driven by the refrigerant pump are independent circuits, each of the condenser and the heat storage heat exchanger as in the conventional example is provided separately. The required amount of refrigerant on the general cooling operation side and the cooling operation side and the amount of refrigerating machine oil are imbalanced by the method of condensing refrigerants and evaporating in the same evaporator. Compressor bearing seizure due to high pressure rise and liquid back due to refrigerating machine oil depletion,
Such a problem is solved. In addition, individual cooling operations of general cooling and cooling can be arbitrarily performed.

【0025】図4、図5は一般冷房・放冷の冷房運転
時、各々の回路内の冷媒量に過不足が生じたときの冷媒
移動方法の一例を示す動作図である。図4は一般冷房用
回路内の冷媒が余剰、放冷用回路が不足の時の動作を示
しており(太線矢印が冷媒移動方向を示す)、第1のバ
イパス回路19内の開閉装置24と第2のバイパス回路
20内の開閉装置25を開くことによって冷媒は放冷回
路側に移動する。放冷回路側の冷媒の充足は蓄用熱交
換器9の出口側配管9aの冷媒過冷却度がある一定の値
に増加した時点或いは第2の蒸発器4bの出口側配管4
dの冷媒過熱度がある一定の値に減少した時点で判断
し、上記冷媒過冷却度又は冷媒過熱度の検知信号を判断
機構36が受けて冷媒の充足を確認した後上記開閉装置
24、25を閉とする指令により該開閉装置を閉じて冷
媒の移動を遮断する。図5は前者の逆であり、一般冷房
用回路内の冷媒が不足、放冷用回路が余剰の時の動作を
示しており(太線矢印が冷媒移動方向を示す)、第1の
バイパス回路19内の開閉装置24と第2のバイパス回
路20内の開閉装置25を開くことによって冷媒は一般
冷房用回路側に移動する。一般用回路側の冷媒の充足は
第1の蒸発器4aの出口側配管4cの冷媒過熱度がある
一定の値に減少した時点或いは凝縮器2の出口側配管2
aの冷媒過冷却度がある一定の値に増加した時点で判断
し、上記冷媒過熱度又は冷媒過冷却度の検知信号を判断
機構36が受けて冷媒の充足を確認した後上記開閉装置
24、25を閉とする指令により該開閉装置を閉じて冷
媒の移動を遮断する。かかる冷媒量調整を行うことによ
って、両回路間に冷媒量の過不足があった場合でも適正
な量が確保されるように運転し得る。冷媒量の不均衡は
周囲環境条件や蓄用熱交換器側の負荷の変動により徐
々に生じるが、この他に蓄冷運転終了後の一般冷房又は
放冷運転の立上げ時などは両回路間の冷媒量は適正から
ほど遠いと言える。このような不均衡の是正には上記の
如き調整運転が不可欠である。
FIGS. 4 and 5 are operation diagrams showing an example of a refrigerant moving method when the amount of refrigerant in each circuit becomes excessive or insufficient during the cooling operation of the general cooling and the cooling. FIG. 4 shows the operation when the refrigerant in the general cooling circuit is excessive and the cooling circuit is insufficient (the thick arrow indicates the refrigerant movement direction), and the switching device 24 in the first bypass circuit 19 and By opening the switching device 25 in the second bypass circuit 20, the refrigerant moves to the cooling circuit side. Outlet pipe of the cooling circuit side time or fulfillment of the refrigerant is increased to a constant value in the refrigerant subcooling degree at the outlet side pipe 9a of蓄cold heat exchanger 9 of the second evaporator 4b 4
The determination is made when the degree of superheat of the refrigerant d decreases to a certain value, and after the detection mechanism 36 receives the detection signal of the degree of supercooling of the refrigerant or the degree of superheating of the refrigerant and confirms the sufficiency of the refrigerant, the switching devices 24, 25 In response to a command to close the switch, the switching device is closed to shut off the movement of the refrigerant. FIG. 5 is the reverse of the former, and shows the operation when the refrigerant in the general cooling circuit is insufficient and the cooling circuit is excessive (thick arrow indicates the refrigerant movement direction). By opening the switchgear 24 in the inside and the switchgear 25 in the second bypass circuit 20, the refrigerant moves to the general cooling circuit side. The refrigerant on the general circuit side is filled when the degree of superheat of the refrigerant in the outlet pipe 4c of the first evaporator 4a is reduced to a certain value or when the outlet pipe 2 of the condenser 2 is discharged.
The judgment is made at the time when the refrigerant supercooling degree of a has increased to a certain value, and after the detection mechanism 36 receives the detection signal of the refrigerant superheating degree or the refrigerant subcooling degree and confirms that the refrigerant is full, the switching device 24, In response to a command to close 25, the opening and closing device is closed to shut off the movement of the refrigerant. By performing such refrigerant amount adjustment, operation can be performed such that an appropriate amount is ensured even if there is an excess or shortage of the refrigerant amount between the two circuits. Although imbalances amount of refrigerant gradually due to changes in the load of the ambient conditions and蓄cold heat exchanger side, when start-up of the cold-storage operation general cooling or cooling operation after completion of this addition, etc. between the two circuits Can be said to be far from proper. In order to correct such imbalance, the adjustment operation as described above is indispensable.

【0026】実施例2.以下、本発明の実施例2を図6
に基いて説明する。なお図中、従来例又は実施例1と同
一部分には同一符号を付し、説明を省略する。図6は本
発明の請求項4の発明を適用した実施例2に係る蓄熱式
空気調和装置の全体構成を示す冷媒配管系統図である。
図中、29は凝縮器2出口から分岐して第1の減圧機構
3をバイパスする第5のバイパス回路で、途中に受液器
30、第3の減圧機構31及び開閉装置32を順次接続
して構成される。
Embodiment 2 FIG. Hereinafter, Example 2 of the present invention will be described with reference to FIG.
It will be described based on FIG. In the figure, the same parts as those of the conventional example or the first embodiment are denoted by the same reference numerals, and the description is omitted. FIG. 6 is a refrigerant piping diagram showing the overall configuration of a heat storage type air conditioner according to Embodiment 2 to which the invention of claim 4 of the present invention is applied.
In the figure, reference numeral 29 denotes a fifth bypass circuit which branches off from the outlet of the condenser 2 and bypasses the first decompression mechanism 3, and sequentially connects the liquid receiver 30, the third decompression mechanism 31, and the opening / closing device 32 on the way. It is composed.

【0027】上記でも述べたように、蓄冷運転・一般冷
房運転・放冷運転の各々の運転モードにおける必要冷媒
量には多少の差がある。即ち、一般冷房運転と蓄冷運転
の必要冷媒量は少なく、これに較べて放冷運転の必要冷
媒量が比較的多いために、蓄冷運転時には全回路内の封
入冷媒量の大部分が余剰となり、次に放冷運転又は一般
冷房と放冷運転の同時運転モードに入るときは多量の冷
媒量を必要とすることから、回路内には一時的に冷媒を
回収・放出する機器の設置される必要が生じてくる。本
実施例は冷媒回収機器として凝縮液を溜める受液器を用
いた場合を示しており、上記のような要求に対処するこ
とができる。蓄冷運転時は、開閉装置32を閉じ、受液
器を満液状態にして液冷媒を第1の減圧機構3に送り込
み、断熱膨張させる。この時、全回路内の冷媒量から蓄
冷運転所要量を減じた量の冷媒を受液器30内に溜め
る。次に、一般冷房及び放運転時には、開閉装置32
を開き、受液器30を空状態にして液冷媒を第3の減圧
機構31に送り込み、断熱膨張させる。この時は両回路
内の冷媒量調節が必要になるが、上記受液器30は一般
冷房用回路の高圧側に設置されているため一般冷房回路
から放冷回路への冷媒移動は容易であり、実施例1で示
した第1及び第2のバイパス回路を使った冷媒量調節手
段により、各冷媒回路内の冷媒量を適正量に調整する。
As described above, there is a slight difference in the required amount of refrigerant in each operation mode of the cold storage operation, the general cooling operation, and the cooling operation. That is, the required amount of refrigerant for the general cooling operation and the cool storage operation is small, and the required amount of the refrigerant for the cooling operation is relatively large in comparison with this. Next, when entering the cooling operation mode or the simultaneous operation mode of general cooling and cooling operation, a large amount of refrigerant is required, so it is necessary to install equipment that temporarily collects and discharges refrigerant in the circuit. Will occur. The present embodiment shows a case where a liquid receiver for storing condensed liquid is used as a refrigerant recovery device, and can cope with the above-mentioned demand. At the time of the cold storage operation, the opening / closing device 32 is closed, the liquid receiver is filled, and the liquid refrigerant is sent to the first pressure reducing mechanism 3 for adiabatic expansion. At this time, the amount of the refrigerant obtained by subtracting the required amount of the cool storage operation from the amount of the refrigerant in the entire circuit is stored in the liquid receiver 30. Then, in general cooling and releasing the cold operation, opening and closing device 32
Is opened, the liquid receiver 30 is emptied, and the liquid refrigerant is sent to the third decompression mechanism 31 for adiabatic expansion. At this time, it is necessary to adjust the amount of refrigerant in both circuits. However, since the liquid receiver 30 is provided on the high pressure side of the general cooling circuit, the refrigerant can be easily moved from the general cooling circuit to the cooling circuit. The refrigerant amount in each refrigerant circuit is adjusted to an appropriate amount by the refrigerant amount adjusting means using the first and second bypass circuits described in the first embodiment.

【0028】実施例3. 以下、本発明の実施例3を図7に基いて説明する。なお
図中、従来例又は実施例1と同一部分には同一符号を付
し、説明を省略する。図7は本発明の請求項5の発明を
適用した実施例3に係る蓄熱式空気調和装置の全体構成
を示す冷媒配管系統図である(太線矢印は冷凍機油の流
れ方向を示す)。図中、33は第2のアキュムレータ1
6下部から開閉装置34を介して、第1のバイパス回路
19と第4のバイパス回路22の間の第2のガス管18
bにバイパスさせた第6のバイパス回路であり、蓄熱槽
8に冷熱を蓄える蓄冷運転開始時から一定時間上記開閉
装置34を開くようにしている。これは一般に蓄冷運転
時に放冷用回路側の大きな伝熱面積を有する蓄用熱交
換器9に冷凍機油が偏る傾向があるため、放冷運転中に
第2のアキュムレータ16に溜まった油を一般冷房用回
路側に返す必要があるためで、本実施例3により圧縮機
及び冷媒ガスポンプ間、特にガスポンプ側への油の偏り
を回避することができる。
Embodiment 3 FIG. Hereinafter, a third embodiment of the present invention will be described with reference to FIG. In the figure, the same parts as those of the conventional example or the first embodiment are denoted by the same reference numerals, and the description is omitted. FIG. 7 is a refrigerant piping system diagram showing the entire configuration of a regenerative air conditioner according to Embodiment 3 to which the invention of claim 5 of the present invention is applied (thick line arrows indicate the flow direction of refrigerating machine oil). In the figure, reference numeral 33 denotes the second accumulator 1
6 through the switchgear 34 from the lower part to the second gas pipe 18 between the first bypass circuit 19 and the fourth bypass circuit 22.
This is a sixth bypass circuit that is bypassed to b. The opening and closing device 34 is opened for a certain period of time from the start of the cold storage operation for storing cold heat in the heat storage tank 8. This is because there is generally a tendency that the refrigerating machine oil is biased to蓄cold heat exchanger 9 having a large heat transfer area of the cooling circuit side during cold-storage operation, the oil accumulated in the second accumulator 16 during cooling operation Since it is necessary to return to the general cooling circuit side, according to the third embodiment, bias of oil between the compressor and the refrigerant gas pump, particularly toward the gas pump side can be avoided.

【0029】実施例4.以下、本発明の実施例4を図
8、図9に基いて説明する。図8は本発明の請求項6の
発明を適用した実施例4に係る蓄熱式空気調和装置の蒸
発器の構成を示す模式図であり、35は一般冷房用回路
17と放冷用回路18の両回路について共通化したフィ
ンであり、全体は上記一般用回路17及び放冷用回路1
8の両回路分の熱交換量を得ることのできる単一の熱交
換器を示している。図9は上記実施例1で示した、個々
の回路の蒸発器が独立した熱交換器形態である。上記一
般冷房用回路17と放冷用回路18の両回路が同時運転
を行っているときはそれぞれの熱交換量に差はないが、
各々が単独運転するときは、図8のような共通フィンを
用いた場合、運転を停止している側のフィンも含めて倍
の伝熱面積が得られ、その結果、単独運転時の熱交換量
を高めることができる。
Embodiment 4 FIG. Hereinafter, a fourth embodiment of the present invention will be described with reference to FIGS. FIG. 8 is a schematic diagram showing the configuration of an evaporator of a regenerative air conditioner according to Embodiment 4 to which the invention of claim 6 of the present invention is applied. Reference numeral 35 denotes a general cooling circuit 17 and a cooling circuit 18. The fins are common to both circuits, and are entirely composed of the general circuit 17 and the cooling circuit 1.
8 shows a single heat exchanger capable of obtaining heat exchange amounts for both circuits. FIG. 9 shows a heat exchanger in which the evaporators of the individual circuits shown in the first embodiment are independent. When both the general cooling circuit 17 and the cooling circuit 18 are operating at the same time, there is no difference between the respective heat exchange amounts.
When each of them is operated independently, when the common fin as shown in FIG. 8 is used, a double heat transfer area is obtained including the fin on the side where the operation is stopped. The amount can be increased.

【0030】[0030]

【発明の効果】以上のように、本発明の蓄熱式空気調和
装置では、圧縮機駆動による一般冷房用回路と、冷媒ポ
ンプ駆動による放冷用回路をそれぞれ独立した回路とし
て蒸発器を個別に設け、各々の回路の液管及びガス管同
志の冷媒移動を可能にしたバイパス回路をそれぞれ設け
た構成としたことにより、上記一般冷房用回路及び放冷
用回路を互いに遮断した状態で個別又は同時に運転させ
る時は、両回路に適正な冷媒量が確保されている場合、
各々の冷房能力の減少や冷凍機油の偏りといった問題が
なく、安定した状態で運転を継続することができ、信頼
性の高い空気調和装置の得られる効果がある。そして、
負荷変動に応じて一般冷房用回路側と放冷回路側の冷媒
流量比を調節するための圧縮機や冷媒ポンプの容量調節
装置を設ける必要がないため、装置が安価にできる効果
がある。また、一般冷房運転側と放冷運転側のいずれか
の配管にガス洩れなどの支障が生じた場合でも、応急的
に他方の冷房回路を使った簡易冷房運転も可能であるた
め、市場における品質面での向上が見られる。
As described above, in the regenerative air conditioner of the present invention, the evaporator is provided separately as a general cooling circuit driven by the compressor and a cooling circuit driven by the refrigerant pump as independent circuits. By using a configuration in which a bypass circuit is provided to enable the refrigerant to move between the liquid pipe and the gas pipe of each circuit, the general cooling circuit and the cooling circuit are operated individually or simultaneously in a state of being cut off from each other. When the appropriate refrigerant amount is secured in both circuits,
There is no problem such as a decrease in the cooling capacity of each of the refrigerators or uneven distribution of the refrigerating machine oil, the operation can be continued in a stable state, and an effect of obtaining a highly reliable air conditioner can be obtained. And
Since there is no need to provide a compressor or a refrigerant pump capacity adjusting device for adjusting the refrigerant flow ratio between the general cooling circuit side and the cooling circuit side according to the load fluctuation, there is an effect that the device can be inexpensive. In addition, even if a gas leak or other trouble occurs in the piping on either the general cooling operation side or the cooling operation side, simple cooling operation using the other cooling circuit is also possible as soon as possible, so that the quality in the market can be improved. In terms of improvement,

【0031】また、一般冷房用回路と放冷用回路を同時
または個別に運転させる際、運転開始時に上記バイパス
回路を開いて回路間を冷媒移動させ、両回路内の冷媒量
を適正に調節する冷媒流量調節手段を用いているため、
両回路間に冷媒量の過不足があった場合でも適正な量が
確保されるように運転し得る効果がある。
When the general cooling circuit and the cooling circuit are operated simultaneously or individually, the bypass circuit is opened at the start of operation to move the refrigerant between the circuits and to adjust the amount of the refrigerant in both circuits appropriately. Because the refrigerant flow control means is used,
Even if there is an excess or deficiency in the amount of refrigerant between the two circuits, there is an effect that operation can be performed so that an appropriate amount is ensured.

【0032】また、各運転モードの必要冷媒量変化に対
応するために、一時的に冷媒を回収・放出する機器とし
て、受液器を凝縮器出口に設けている。これにより、各
運転モード間の冷媒量の是正を行うことができ、実際の
製品化において非常に有効な手段である。
In order to cope with a change in the required amount of refrigerant in each operation mode, a receiver is provided at the outlet of the condenser as a device for temporarily recovering and discharging the refrigerant. This makes it possible to correct the amount of refrigerant between the respective operation modes, which is a very effective means in actual commercialization.

【0033】冷媒回路内の油量変動対策としては、油が
放冷用回路側のアキュムレータ下部からガス管を経て、
一般冷房用回路に連通可能なバイパス回路を設け、蓄冷
運転開始時から一定時間上記バイパス回路を経て油が放
冷側から一般冷房用回路側に移動可能にしたので、圧縮
機及び冷媒ガスポンプ間の油の偏りを無くし、油の枯渇
による圧縮機軸受の焼損等のトラブルを回避することが
できる。
As a countermeasure against oil amount fluctuations in the refrigerant circuit, oil is supplied from the lower part of the accumulator on the cooling circuit side through a gas pipe.
By providing a bypass circuit that can communicate with the general cooling circuit and allowing the oil to move from the cooling side to the general cooling circuit side through the bypass circuit for a certain period of time from the start of the cold storage operation, the oil can be transferred between the compressor and the refrigerant gas pump. Oil unevenness can be eliminated, and troubles such as burnout of the compressor bearing due to oil depletion can be avoided.

【0034】更に、一般冷房用回路と放冷用回路の独立
した各々の蒸発器のフィンを共通化させたことにより、
双方の冷房用回路が単独で運転する場合にでも、運転を
停止している側のフィンを利用して熱交換量を高めるこ
とができ、利用価値の高い熱交換器の得られる効果があ
る。
Further, the fins of the independent evaporators of the general cooling circuit and the cooling circuit are commonly used, so that
Even when both cooling circuits operate independently, the amount of heat exchange can be increased by using the fin on the side of which operation is stopped, and there is an effect that a heat exchanger having a high use value can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1による蓄熱式空気調和装置の
冷媒配管系統図である。
FIG. 1 is a refrigerant piping system diagram of a regenerative air conditioner according to Embodiment 1 of the present invention.

【図2】本発明の実施例1による蓄熱式空気調和装置の
蓄冷運転時の動作を示す回路図である。
FIG. 2 is a circuit diagram showing the operation of the regenerative air-conditioning apparatus according to Embodiment 1 of the present invention during a cold storage operation.

【図3】本発明の実施例1による蓄熱式空気調和装置の
一般冷房・放冷運転時の動作を示す回路図である。
FIG. 3 is a circuit diagram showing an operation of the regenerative air conditioner according to the first embodiment of the present invention during general cooling / cooling operation.

【図4】本発明の実施例1による蓄熱式空気調和装置の
冷媒移動の方法を示す動作図である。
FIG. 4 is an operation diagram illustrating a method of moving a refrigerant in the regenerative air conditioner according to the first embodiment of the present invention.

【図5】本発明の実施例1による蓄熱式空気調和装置の
冷媒移動の方法を示す動作図である。
FIG. 5 is an operation diagram showing a method of moving refrigerant in the regenerative air conditioner according to Embodiment 1 of the present invention.

【図6】本発明の実施例2を示す蓄熱式空気調和装置の
冷媒配管系統図である。
FIG. 6 is a refrigerant piping system diagram of a regenerative air conditioner showing Embodiment 2 of the present invention.

【図7】本発明の実施例3を示す蓄熱式空気調和装置の
冷媒配管系統図である。
FIG. 7 is a refrigerant piping system diagram of a regenerative air conditioner showing Embodiment 3 of the present invention.

【図8】本発明の実施例4による蓄熱式空気調和装置の
蒸発器の構成を示す模式図である。
FIG. 8 is a schematic diagram showing a configuration of an evaporator of a heat storage type air conditioner according to Embodiment 4 of the present invention.

【図9】本発明の実施例4による蓄熱式空気調和装置の
蒸発器の構成を示す模式図である。
FIG. 9 is a schematic diagram illustrating a configuration of an evaporator of a regenerative air conditioner according to Embodiment 4 of the present invention.

【図10】従来の蓄熱式空気調和装置の冷媒配管系統図
である。
FIG. 10 is a refrigerant piping system diagram of a conventional regenerative air conditioner.

【符号の説明】[Explanation of symbols]

1 圧縮機、2 凝縮器、2a 凝縮器の冷媒出口側配
管、3 第1の減圧機構、4 蒸発器、4a 第1の蒸
発器、4b 第2の蒸発器、4c 第1の蒸発器出口側
配管、4d 第2の蒸発器出口側配管、7 蓄熱媒体、
8 蓄熱槽、9蓄用熱交換器、9a 蓄用熱交換器
の冷媒出口側配管、11 第2の減圧機構、13 冷媒
ポンプ、15 第1のアキュムレータ、16 第2のア
キュムレータ、17 一般冷房用回路、17a 第1の
液管、17b 第1のガス管、18 放冷用回路、18
a 第2の液管、18b 第2のガス管、19 第1の
バイパス回路、20 第2のバイパス回路、21 第3
のバイパス回路、22第4のバイパス回路、23 逆止
弁、24、25、26、27、28 開閉装置、29
第5のバイパス回路、30 受液器、31 第3の減圧
機構、32 開閉装置、33 第6のバイパス回路、3
4 開閉装置、35 フィン、36 判断機構。
DESCRIPTION OF SYMBOLS 1 Compressor, 2 condenser, 2a Refrigerant outlet piping of a condenser, 3 first decompression mechanism, 4 evaporator, 4a first evaporator, 4b second evaporator, 4c first evaporator outlet side Piping, 4d second evaporator outlet side piping, 7 heat storage medium,
8 storage tank, 9蓄cold heat exchanger, a refrigerant outlet pipe of 9a蓄cold heat exchanger, 11 a second pressure reducing mechanism, 13 a refrigerant pump, 15 a first accumulator 16 and the second accumulator, 17 generally Cooling circuit, 17a first liquid pipe, 17b first gas pipe, 18 cooling circuit, 18
a second liquid pipe, 18b second gas pipe, 19 first bypass circuit, 20 second bypass circuit, 21 third
Bypass circuit, 22 fourth bypass circuit, 23 check valve, 24, 25, 26, 27, 28 opening / closing device, 29
Fifth bypass circuit, 30 receiver, 31 third decompression mechanism, 32 switchgear, 33 sixth bypass circuit, 3
4 Switchgear, 35 fins, 36 judgment mechanism.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 浜 宏明 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 宮本 守也 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (72)発明者 中田 浩 和歌山市手平6丁目5番66号 三菱電機 株式会社 和歌山製作所内 (56)参考文献 特開 昭62−182538(JP,A) 特開 平3−191231(JP,A) 特開 平2−33573(JP,A) (58)調査した分野(Int.Cl.6,DB名) F24F 5/00──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hiroaki Hama 6-5-666 Tehira, Wakayama City Mitsubishi Electric Corporation Wakayama Works (72) Inventor Moriya Miyamoto 6-5-666 Teiwa Wakayama City Mitsubishi Electric In Wakayama Works, Ltd. (72) Inventor Hiroshi Nakata 6-66, Tehira, Wakayama City Mitsubishi Electric Wakayama Works, Ltd. (56) References JP-A-62-182538 (JP, A) JP-A-3-3 191231 (JP, A) JP-A-2-33573 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) F24F 5/00

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、第1の減圧機構、及び
第1の蒸発器を順次接続して成り、上記第1の蒸発器を
介して冷房を行う一般冷房用回路と、冷媒ポンプ、蓄冷
用熱交換器、第2の減圧機構、及び第2の蒸発器を順次
接続して成り、上記第2の蒸発器を介して冷房を行う放
冷用回路と、上記蓄熱用熱交換器を介して蓄冷する蓄熱
媒体を内蔵する蓄熱槽と、上記一般冷房用回路側の第1
のガス管と上記放冷用回路側の第2のガス管との間に開
閉装置を設け、該開閉装置の開閉により冷媒の移動を可
能にする第1のバイパス回路と、第1の減圧機構と第1
の蒸発器間の第1の液管と第2の減圧機構と第2の蒸発
器間の第2の液管との間に開閉装置を設け、該開閉装置
の開閉により冷媒の移動を可能にする第2のバイパス回
路とを備え、上記一般冷房用回路と上記蓄熱槽に蓄積さ
れた冷熱エネルギーを利用して冷房運転を行う上記放冷
用回路を運転させる際、上記第1及び第2のバイパス回
路に設けた開閉装置を共に遮断して個々の冷房用回路を
独立して運転させ、また上記蓄熱槽への蓄冷運転時に
は、上記第1、第2のバイパス回路の各開閉装置を開放
して、上記圧縮機、凝縮器、第1の減圧機構、及び蓄冷
用熱交換器より成る蓄冷用回路を形成したことを特徴と
する蓄熱式空気調和装置。
1. A general cooling circuit comprising a compressor, a condenser, a first decompression mechanism, and a first evaporator, which are sequentially connected to perform cooling through the first evaporator, and a refrigerant pump. A heat storage heat exchanger, a second pressure reducing mechanism, and a second evaporator, which are sequentially connected to each other, and a cooling circuit for performing cooling through the second evaporator, and the heat storage heat exchanger. A heat storage tank containing a heat storage medium for storing heat through the first cooling circuit side;
An opening / closing device provided between the gas pipe and the second gas pipe on the side of the cooling circuit, a first bypass circuit for enabling the movement of the refrigerant by opening and closing the opening / closing apparatus, and a first pressure reducing mechanism And the first
A switching device is provided between the first liquid pipe between the evaporators and the second liquid pipe between the second decompression mechanism and the second evaporator, and the opening and closing of the switching device enables the movement of the refrigerant. A second bypass circuit that performs the cooling operation by using the general cooling circuit and the cooling energy stored in the heat storage tank. The switching devices provided in the bypass circuit are both shut off to operate the individual cooling circuits independently, and at the time of the cold storage operation to the heat storage tank, the switching devices of the first and second bypass circuits are opened. A regenerative air conditioner, wherein a regenerative circuit comprising the compressor, the condenser, the first decompression mechanism, and the regenerative heat exchanger is formed.
【請求項2】 逆止弁を介して第2の減圧機構をバイパ
スする第3のバイパス回路と、開閉装置を介し、放冷用
回路の第2のガス管側に設けた冷媒ガスポンプをバイパ
スする第4のバイパス回路と、第1、第2の蒸発器の冷
媒入口側にそれぞれ設けた開閉装置とを備え、蒸発器入
口側開閉装置をそれぞれ遮断すると共に第1〜第4のバ
イパス回路を連通して蓄冷用回路を形成したことを特徴
とする請求項第1項記載の蓄式空気調和装置。
2. A third bypass circuit for bypassing the second pressure reducing mechanism via a check valve, and a refrigerant gas pump provided on a second gas pipe side of the cooling circuit via an opening / closing device. A fourth bypass circuit, and switching devices provided on the refrigerant inlet side of the first and second evaporators, respectively, shut off the evaporator inlet-side switching devices and communicate the first to fourth bypass circuits. to thermal storage type air conditioning system as in claim 1, wherein said that the formation of the cold accumulating circuit.
【請求項3】 一般冷房用回路と放冷用回路を同時また
は個別に運転させる際、圧縮機または冷媒ポンプの起動
と同時に第1及び第2のバイパス回路に設けた開閉装置
のうち少くとも一方を開けて両回路間で冷媒を移動さ
せ、蓄冷用熱交換器の冷媒出口側或は凝縮器の冷媒出口
側の過冷却度、または第1或は第2の蒸発器の冷媒過熱
度を検知し、この過冷却度または過熱度が所定の値とな
ったとき開閉装置を閉じる冷媒流量調節手段を備えたこ
とを特徴とする請求項第1項記載の蓄熱式空気調和装
置。
3. When operating the general cooling circuit and the cooling circuit simultaneously or individually, at least one of the switching devices provided in the first and second bypass circuits at the same time as the activation of the compressor or the refrigerant pump. Is opened to move the refrigerant between the two circuits to detect the degree of supercooling at the refrigerant outlet side of the cool storage heat exchanger or the refrigerant outlet side of the condenser, or the degree of superheating of the refrigerant at the first or second evaporator. 2. A regenerative air conditioner according to claim 1, further comprising a refrigerant flow rate adjusting means for closing the switching device when the degree of supercooling or the degree of superheating reaches a predetermined value.
【請求項4】 凝縮器出口から分岐して第1の減圧機構
をバイパスし、途中に受液器、第3の減圧機構及び開閉
装置を順次接続して成る第5のバイパス回路を備えたこ
とを特徴とする請求項第1項記載の蓄熱式空気調和装
置。
4. A fifth bypass circuit, which branches off from a condenser outlet and bypasses the first pressure reducing mechanism, and is provided with a liquid receiving device, a third pressure reducing mechanism, and an opening / closing device sequentially connected on the way. The regenerative air conditioner according to claim 1, characterized in that:
【請求項5】 冷媒ガスポンプの入口側に設けたアキュ
ムレータ下部から開閉装置を介して、第1のバイパス回
路と第4のバイパス回路の間のガス管にバイパスさせた
第6のバイパス回路を有し、蓄熱槽に蓄冷熱を蓄える蓄
熱運転開始時から一定時間開閉装置を開くようにしたこ
とを特徴とする請求項第2項記載の蓄熱式空気調和装
置。
5. A sixth bypass circuit which is bypassed from a lower part of an accumulator provided on an inlet side of a refrigerant gas pump to a gas pipe between a first bypass circuit and a fourth bypass circuit via an opening / closing device. 3. The regenerative air conditioner according to claim 2, wherein the switching device is opened for a predetermined time from the start of the heat storage operation for storing the cold storage heat in the heat storage tank.
【請求項6】 第1及び第2の蒸発器のフィンを共通化
させ、一般冷房用回路及び放冷用回路の両回路分の熱交
換量を得ることのできる単一の熱交換器を具備したこと
を特徴とする請求項第1項記載の蓄熱式空気調和装置。
6. A single heat exchanger that can share the fins of the first and second evaporators and can obtain the heat exchange amount for both the general cooling circuit and the cooling circuit. The regenerative air conditioner according to claim 1, characterized in that:
JP6332892A 1992-03-19 1992-03-19 Thermal storage type air conditioner Expired - Fee Related JP2757660B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP6332892A JP2757660B2 (en) 1992-03-19 1992-03-19 Thermal storage type air conditioner
TW081110169A TW224512B (en) 1992-03-19 1992-12-18
KR1019930000449A KR960010634B1 (en) 1992-03-19 1993-01-14 Heat storage type air-conditioning apparatus
US08/018,398 US5323618A (en) 1992-03-19 1993-02-17 Heat storage type air conditioning apparatus
MYPI93000369A MY110359A (en) 1992-03-19 1993-03-02 Heat storage type air conditioning apparatus
CNB931028639A CN100559100C (en) 1992-03-19 1993-03-15 The cooling storage air conditioning system device
ITRM930163A IT1261416B (en) 1992-03-19 1993-03-17 HEAT STORAGE AIR CONDITIONING SYSTEM.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6332892A JP2757660B2 (en) 1992-03-19 1992-03-19 Thermal storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH05264077A JPH05264077A (en) 1993-10-12
JP2757660B2 true JP2757660B2 (en) 1998-05-25

Family

ID=13226079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6332892A Expired - Fee Related JP2757660B2 (en) 1992-03-19 1992-03-19 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JP2757660B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8234876B2 (en) 2003-10-15 2012-08-07 Ice Energy, Inc. Utility managed virtual power plant utilizing aggregated thermal energy storage
EP1682832B1 (en) * 2003-10-15 2009-06-17 Ice Energy, Inc. Refrigeration apparatus
CN106931563A (en) * 2015-12-31 2017-07-07 青岛海尔智能技术研发有限公司 Natural cold scattering formula air-conditioning equipment
CN110657597B (en) * 2019-11-01 2023-07-25 深圳市艾特网能技术有限公司 Fluorine pump multi-connected refrigerating system and control method thereof

Also Published As

Publication number Publication date
JPH05264077A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
KR920000452B1 (en) Refrigerating cycle utilizing cold accumulation material
KR960010634B1 (en) Heat storage type air-conditioning apparatus
JP3352469B2 (en) Air conditioner
EP3995758A1 (en) Heat exchange unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
WO2000019157A1 (en) Two-refrigerant refrigerating device
JP2000088431A (en) Brine cooler
JP2757660B2 (en) Thermal storage type air conditioner
JP2000227259A (en) Cooler
JP4273470B2 (en) Refrigeration apparatus and method for increasing capacity of refrigeration apparatus
JP3814877B2 (en) Thermal storage air conditioner
JP2001033110A (en) Refrigerator
JP3370501B2 (en) Cooling system
JP2646877B2 (en) Thermal storage refrigeration cycle device
JPH06159743A (en) Heat accumulation type cooling device
JP2833339B2 (en) Thermal storage type air conditioner
JP2500979B2 (en) Thermal storage refrigeration cycle device
WO2022097680A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
JP2855954B2 (en) Thermal storage type air conditioner
EP3995760B1 (en) Thermal storage unit for a refrigeration apparatus with a thermal storage and using co2 as refrigerant
JP3164037B2 (en) Ice storage type refrigerator
EP3995761A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method forcontrolling a refrigerant circuit
JPH07174422A (en) Heat accumulation air-conditioning device
JP3020384B2 (en) Thermal storage type air conditioner
JP2001304619A (en) Ice storage type air conditioner

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees