JP3020384B2 - Thermal storage type air conditioner - Google Patents

Thermal storage type air conditioner

Info

Publication number
JP3020384B2
JP3020384B2 JP5155395A JP15539593A JP3020384B2 JP 3020384 B2 JP3020384 B2 JP 3020384B2 JP 5155395 A JP5155395 A JP 5155395A JP 15539593 A JP15539593 A JP 15539593A JP 3020384 B2 JP3020384 B2 JP 3020384B2
Authority
JP
Japan
Prior art keywords
heat exchanger
expansion device
cooling
refrigerant
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5155395A
Other languages
Japanese (ja)
Other versions
JPH0712418A (en
Inventor
守也 宮本
宏明 浜
みどり 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP5155395A priority Critical patent/JP3020384B2/en
Publication of JPH0712418A publication Critical patent/JPH0712418A/en
Application granted granted Critical
Publication of JP3020384B2 publication Critical patent/JP3020384B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、蓄熱媒体を収容する蓄
熱槽を備えた蓄熱式空気調和装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat storage type air conditioner having a heat storage tank for storing a heat storage medium.

【0002】[0002]

【従来の技術】従来、この種の蓄熱式空気調和装置は、
例えば先願の特願平5−30727号に示されているよ
うなものであった。すなわち、図10において、1は例
えば定格5馬力の圧縮機、2は圧縮機用四方切換弁で、
各々は冷媒回路101にて連結されている。3は冷房時
は凝縮器、暖房時は蒸発器として作用する室外側熱交換
器であり、圧縮機用四方切換弁2と、冷媒回路102に
て連結されている。
2. Description of the Related Art Conventionally, this type of regenerative air conditioner has been
For example, this was as shown in Japanese Patent Application No. Hei 5-30727. That is, in FIG. 10, 1 is a compressor having a rated power of, for example, 5 hp, 2 is a four-way switching valve for the compressor,
Each is connected by the refrigerant circuit 101. Reference numeral 3 denotes an outdoor heat exchanger that functions as a condenser during cooling and as an evaporator during heating, and is connected to the compressor four-way switching valve 2 via a refrigerant circuit 102.

【0003】6は第1の絞り装置で室外側熱交換器3と
冷媒回路103で連結しており、7は第1のバルブ、8
は第2のバルブで、第1の絞り装置6からの冷媒回路1
08を分岐して冷媒回路109と110を構成し、各々
を第1のバルブ7と第2のバルブ8に連結している。9
は蓄熱槽で、内部に多数本の伝熱管を互いに並列に縦に
並べ、これらを連結して形成した蓄熱用熱交換器10が
設けられ、この蓄熱用熱交換器10により、槽内に貯留
した蓄熱媒体21例えば水を、冷房時は凍結、暖房時は
貯湯できるようにしている。また、蓄熱槽9は第2のバ
ルブ8と冷媒回路111で連結されている。
[0003] Reference numeral 6 denotes a first expansion device, which is connected to the outdoor heat exchanger 3 by a refrigerant circuit 103, 7 denotes a first valve, 8
Denotes a second valve, which is a refrigerant circuit 1 from the first expansion device 6.
08 is branched to form refrigerant circuits 109 and 110, each of which is connected to a first valve 7 and a second valve 8. 9
Is a heat storage tank, in which a number of heat transfer tubes are vertically arranged in parallel with each other, and a heat storage heat exchanger 10 formed by connecting them is provided. The heat storage heat exchanger 10 stores the heat in the tank. The heat storage medium 21, for example, water that has been frozen can be stored during cooling and hot water can be stored during heating. The heat storage tank 9 is connected to the second valve 8 by a refrigerant circuit 111.

【0004】12はガス状冷媒を搬送する冷媒ポンプで
ポンプ容量は所定の運転条件にて圧縮機1の運転による
冷媒循環量と同量の循環量が得られるものを選んでい
る。11はその冷媒ポンプ12と冷媒回路114で連結
された冷媒ポンプ用四方切換弁、13は冷媒ポンプ用ア
キュムレータ、14は第3のバルブで蓄熱槽9からの冷
媒回路112を分岐して冷媒回路113と118を構成
し、各々を冷媒ポンプ用四方切換弁11と第3のバルブ
14に連結している。
Reference numeral 12 denotes a refrigerant pump for conveying a gaseous refrigerant, and the pump capacity is selected so that the same circulation amount as the refrigerant circulation amount by the operation of the compressor 1 can be obtained under predetermined operating conditions. Reference numeral 11 denotes a four-way switching valve for the refrigerant pump connected to the refrigerant pump 12 by a refrigerant circuit 114, 13 denotes an accumulator for the refrigerant pump, and 14 denotes a third valve which branches the refrigerant circuit 112 from the heat storage tank 9 to form a refrigerant circuit 113 And 118 are connected to the four-way switching valve 11 for the refrigerant pump and the third valve 14, respectively.

【0005】冷媒ポンプ用四方切換弁11と冷媒ポンプ
用アキュムレータ13は、冷媒回路116で連結されて
おり、冷媒ポンプ用アキュムレータ13は、冷媒回路1
15で冷媒ポンプ12に連結されている。117は冷媒
ポンプ用四方切換弁11と冷媒回路120に接続された
冷媒回路、119は第3のバルブ14と冷媒回路125
に連結された冷媒回路、20は冷媒回路120と125
を接続する第4のバルブであり、冷媒回路125の他端
は前述の四方切換弁2に接続されている。
The refrigerant pump four-way switching valve 11 and the refrigerant pump accumulator 13 are connected by a refrigerant circuit 116, and the refrigerant pump accumulator 13 is connected to the refrigerant circuit 1
At 15 is connected to the refrigerant pump 12. Reference numeral 117 denotes a refrigerant circuit connected to the refrigerant pump four-way switching valve 11 and the refrigerant circuit 120, and 119 denotes a third valve 14 and the refrigerant circuit 125.
The refrigerant circuit 20 is connected to the refrigerant circuits 120 and 125
And the other end of the refrigerant circuit 125 is connected to the four-way switching valve 2 described above.

【0006】121は第1のバルブ7に連結された冷媒
回路で、この回路と冷媒回路120間に複数の室内ユニ
ット用冷媒回路系a,b,cを有し、各々の回路系は、
冷媒回路122、第2の絞り装置15、冷媒回路12
3、室内側熱交換器16、冷媒回路124を順次連結し
て成る。尚、各々の数字の末尾の英記号は前述の複数の
各室内ユニット用冷媒回路系a,b,cの区別を表す。
A refrigerant circuit 121 is connected to the first valve 7 and has a plurality of indoor unit refrigerant circuit systems a, b, and c between the circuit and the refrigerant circuit 120.
Refrigerant circuit 122, second expansion device 15, refrigerant circuit 12
3. The indoor heat exchanger 16 and the refrigerant circuit 124 are sequentially connected. In addition, the alphabetic symbol at the end of each number represents the distinction among the plurality of indoor unit refrigerant circuit systems a, b, and c.

【0007】圧縮機用四方切換弁2と圧縮機用アキュム
レータ17の間、圧縮機用アキュムレータ17と圧縮機
1の間は、それぞれ冷媒回路126,127にて連結さ
れている。
[0007] The refrigerant circuits 126 and 127 are connected between the compressor four-way switching valve 2 and the compressor accumulator 17 and between the compressor accumulator 17 and the compressor 1 respectively.

【0008】次に作用について、図11から図26を用
いて説明する。図11に、例えば夜間の蓄冷運転、即ち
製氷運転を示す。図において、第1のバルブ7、第4の
バルブ20を閉じ、第2、第3のバルブ8,14を開
き、圧縮機1を運転する。このとき、圧縮機1より吐出
された冷媒は室外側熱交換器3で凝縮し第1の絞り装置
6で断熱膨張し蓄熱用熱交換器10で蒸発し、蓄熱媒体
21例えば水より熱をうばい、蓄熱用熱交換器10の表
面を凍結させるとともに気化冷媒がアキュムレータ17
を経由して圧縮機にもどる。
Next, the operation will be described with reference to FIGS. FIG. 11 shows, for example, a cold storage operation at night, that is, an ice making operation. In the figure, the first valve 7 and the fourth valve 20 are closed, the second and third valves 8 and 14 are opened, and the compressor 1 is operated. At this time, the refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 3, adiabatically expanded in the first expansion device 6, evaporated in the heat storage heat exchanger 10, and exposed to heat from the heat storage medium 21, for example, water. , The surface of the heat storage heat exchanger 10 is frozen and the vaporized refrigerant is stored in the accumulator 17.
Return to the compressor via.

【0009】この蓄冷運転時の運転状態を図12に示
す。図中数字にて表す運転点は、図11中の同一数字で
表す冷媒回路内の冷媒の状態を示しており、凝縮温度は
約40℃、蒸発温度は−3℃程度である。本システムは
かかる運転にて、例えば槽内の残水がないことを前提
に、22:00より製氷を開始、翌朝8:00に製氷を
終了する。
FIG. 12 shows an operation state during the cold storage operation. The operating points represented by the numerals in the figure indicate the state of the refrigerant in the refrigerant circuit represented by the same numerals in FIG. 11, and the condensation temperature is about 40 ° C. and the evaporation temperature is about −3 ° C. In this operation, the present system starts ice making at 22:00 and ends ice making at 8:00 the next morning, for example, on the assumption that there is no remaining water in the tank.

【0010】以下昼間の冷房運転について述べる。図1
3は蓄冷熱は利用せずに圧縮機1のみで冷房運転した場
合の、冷房運転を示す。図において第1のバルブ7、第
4のバルブ20を開き、第2、第3のバルブ8,14を
閉じて圧縮機1を運転する。図11と同様の作用にて凝
縮液化した高圧冷媒は、各室内ユニット用冷媒回路系
a,b,cに送られ、各々の第2の絞り装置15で冷媒
流量調節しながら減圧し、約6Kg/cm2 G程度の圧
力で室内側熱交換器16内に流入し蒸発する。このとき
周囲の室内空気より吸熱し、ガス化した冷媒は、圧縮機
用アキュムレータ17を経由し、圧縮機1に戻る。この
ときの圧縮機の運転容量は、各負荷検出手段130a,
130b,130cから室内機運転容量検出手段131
を経て、運転容量制御器132により制御されるが、そ
の制御容量は室内機の運転容量の総和により決定してい
る。
The cooling operation in the daytime will be described below. FIG.
Reference numeral 3 denotes a cooling operation when the cooling operation is performed only by the compressor 1 without using the cold storage heat. In the figure, the first valve 7 and the fourth valve 20 are opened, and the second and third valves 8 and 14 are closed to operate the compressor 1. The high-pressure refrigerant condensed and liquefied by the same operation as in FIG. 11 is sent to each indoor unit refrigerant circuit system a, b, c, and decompressed while adjusting the flow rate of the refrigerant in each second expansion device 15 to about 6 kg. At a pressure of about / cm 2 G, the gas flows into the indoor heat exchanger 16 and evaporates. At this time, the refrigerant that has absorbed heat from the surrounding room air and gasified returns to the compressor 1 via the compressor accumulator 17. At this time, the operating capacity of the compressor depends on the load detecting means 130a,
130b, 130c to indoor unit operating capacity detecting means 131
After that, the operation capacity is controlled by the operation capacity controller 132, and the control capacity is determined by the total sum of the operation capacity of the indoor units.

【0011】この一般冷房運転時の運転状態を図14に
示す。図中の数字は図12にて述べた通りで、凝縮温度
は約45℃、蒸発温度は約10℃である。本システムは
かかる運転にて、例えば蓄冷熱消費後の冷房を行なう。
FIG. 14 shows an operation state during the general cooling operation. The numbers in the figure are as described in FIG. 12, and the condensation temperature is about 45 ° C. and the evaporation temperature is about 10 ° C. In this operation, the present system performs cooling after consumption of cold storage heat, for example.

【0012】図15に、蓄冷熱利用による冷房、即ち放
冷運転を示す。図において第1の絞り装置6、第3のバ
ルブ14及び第4のバルブ20を閉じ、第1、第2のバ
ルブ7,8を開いて、冷媒ポンプ12を運転する。この
とき冷媒ポンプ12により送出されたガス冷媒は槽内の
氷で冷却され22〜23℃で凝縮液化し約9Kg/
cm2 Gの冷媒が各室内ユニット用冷媒回路系a,b,
cに送られ、図13と同様にして冷房する。このとき冷
媒ポンプ12の冷媒循環量は、図13のときの圧縮機1
による冷媒循環量と同等のため、室内側熱交換器16に
は同温同圧の冷媒が同量流れることになり、動力として
は差圧が約3Kg/cm2 程度の小容量にも拘らず、冷
房能力としては圧縮機1の単独運転による図13の一般
冷房運転と同等となる。このときのガスポンプの運転容
量は、一般冷房運転と同様室内機の運転容量の総和によ
り決定している。
FIG. 15 shows a cooling operation using cold storage heat, that is, a cooling operation. In the figure, the first expansion device 6, the third valve 14, and the fourth valve 20 are closed, and the first and second valves 7, 8 are opened to operate the refrigerant pump 12. At this time gas refrigerant delivered by the coolant pump 12 is cooled in ice in the bath, condensed and liquefied at 22-23 ° C., about 9Kg /
cm 2 G of the refrigerant circuit systems a, b,
c and is cooled as in FIG. At this time, the refrigerant circulation amount of the refrigerant pump 12 is the same as that of the compressor 1 in FIG.
And the same amount of refrigerant at the same temperature and the same pressure flows through the indoor heat exchanger 16, and the power is small despite the differential pressure of about 3 kg / cm 2. The cooling capacity is equivalent to the general cooling operation in FIG. The operating capacity of the gas pump at this time is determined by the total operating capacity of the indoor units as in the general cooling operation.

【0013】この放冷運転時の運転状態を図16に示
す。図中の数字は図12にて述べた通りで、凝縮温度は
22〜23℃程度、蒸発温度は約10℃である。本シス
テムはかかる運転にて、例えば軽負荷時の冷房を行な
う。
FIG. 16 shows an operation state during the cooling operation. The numbers in the figure are as described in FIG. 12, and the condensation temperature is about 22 to 23 ° C. and the evaporation temperature is about 10 ° C. In this operation, the system performs, for example, cooling at a light load.

【0014】図17に、図13の一般冷房運転と、図1
5の放冷運転を同時に作用させた、蓄冷熱併用冷房運転
を示す。図において第3のバルブ14を閉じ、第1、第
2、第4のバルブ7,8,20を開いて、圧縮機1及び
冷媒ポンプ12を運転する。このとき冷媒ポンプ12側
の蓄熱用熱交換器10で凝縮した液冷媒は、圧縮機1側
の第1の絞り装置6で減圧された冷媒と合流し、室内ユ
ニット用冷媒回路系a,b,cへは、図13の一般冷房
運転時あるいは図15の放冷運転時の約2倍の量の冷媒
が循環して、能力も2倍となる。このときの第1の絞り
装置6の開度は一定であり、上記合流部の圧力は8〜1
0Kg/cm2 程度となる。このときの運転容量は、ガ
スポンプは100%で運転し、圧縮機を容量制御運転し
て合算して決定するが、その容量制御の割合は、一般冷
房運転または放冷運転と同様室内機の運転容量の総和に
より決定している。
FIG. 17 shows the general cooling operation of FIG. 13 and FIG.
5 shows a cooling operation combined with cold storage heat in which the cooling operation of No. 5 is simultaneously applied. In the figure, the third valve 14 is closed, the first, second, and fourth valves 7, 8, and 20 are opened to operate the compressor 1 and the refrigerant pump 12. At this time, the liquid refrigerant condensed in the heat storage heat exchanger 10 on the refrigerant pump 12 side joins with the refrigerant depressurized by the first expansion device 6 on the compressor 1 side, and the indoor unit refrigerant circuit systems a, b, and b. About twice the amount of refrigerant circulates to c during the general cooling operation in FIG. 13 or the cooling operation in FIG. 15, the capacity is also doubled. At this time, the opening degree of the first expansion device 6 is constant, and the pressure at the junction is 8 to 1
It is about 0 kg / cm 2 . At this time, the operating capacity is determined by adding the gas pumps operating at 100% and controlling the capacity of the compressors, and the rate of the capacity control is the same as that of the general cooling operation or the cooling operation. It is determined by the sum of the capacities.

【0015】この蓄冷熱併用冷房運転時の運転状態を図
18に示す。図中の数字は図12にて述べた通りであ
る。蒸発温度は他の冷房運転と同様約10℃であるが、
凝縮温度は、室外側熱交換器3では約45℃、蓄熱用熱
交換器10では22〜23℃程度である。本システムは
かかる運転にて、通常の冷房負荷時の冷房を行なう。
FIG. 18 shows an operation state during the cooling operation using the cold storage heat. The numbers in the figure are as described in FIG. Evaporation temperature is about 10 ° C like other cooling operation,
The condensation temperature is about 45 ° C. in the outdoor heat exchanger 3 and about 22 to 23 ° C. in the heat storage heat exchanger 10. In this operation, the system performs cooling under normal cooling load.

【0016】以上は冷房に関する作用について説明した
が、以下は暖房に関する作用説明であり、従って特に断
らない限り圧縮機用四方切換弁2、及び冷媒ポンプ用四
方切換弁11は暖房モードに設定されている。図19
に、例えば夜間の蓄熱運転、即ち貯湯運転を示す。図1
9において、第1、第4のバルブ7,20を閉じ、第
2、第3のバルブ8,14を開き圧縮機1を運転する。
このとき圧縮機1より吐出された高温ガス冷媒は図中の
矢印の方向に流れ、蓄熱槽9の蓄熱用熱交換器10で凝
縮し、貯留水を昇温する。凝縮冷媒は第1の絞り装置6
で断熱膨張し、室外側熱交換器3で外気より吸熱して蒸
発し気化冷媒がアキュムレータ17を経由して圧縮機1
にもどる。
Although the operation relating to cooling has been described above, the operation relating to heating will be described below. Therefore, unless otherwise specified, the four-way switching valve 2 for the compressor and the four-way switching valve 11 for the refrigerant pump are set to the heating mode. I have. FIG.
3 shows, for example, a nighttime heat storage operation, that is, a hot water storage operation. FIG.
At 9, the first and fourth valves 7, 20 are closed, and the second and third valves 8, 14 are opened to operate the compressor 1.
At this time, the high-temperature gas refrigerant discharged from the compressor 1 flows in the direction of the arrow in the figure, condenses in the heat storage heat exchanger 10 of the heat storage tank 9, and raises the temperature of the stored water. The condensed refrigerant is supplied to the first throttle device 6
Adiabatic expansion in the outdoor heat exchanger 3, heat is absorbed from outside air and evaporated, and the vaporized refrigerant passes through the accumulator 17 to the compressor 1.
Go back.

【0017】この蓄熱運転時の運転状態を図20に示
す。図中の数字は図12にて述べた通りで、槽水温の沸
き上がり温度は約50℃、このときの凝縮温度は約55
℃、蒸発温度は約0℃である。本システムはかかる運転
にて、夜間電力時間帯内に貯湯し、所定の槽水温に到達
次第運転を終了する。
FIG. 20 shows an operation state during the heat storage operation. The numbers in the figure are as described in FIG. 12, and the boiling temperature of the tank water temperature is about 50 ° C., and the condensation temperature at this time is about 55
° C, the evaporation temperature is about 0 ° C. In this operation, the system stores hot water during the nighttime power period and ends the operation as soon as the temperature reaches a predetermined tank water temperature.

【0018】以下昼間の暖房運転について述べる。図2
1は蓄熱は利用せずに圧縮機1のみで暖房運転した場合
の、一般暖房運転を示す。図において第1、第4のバル
ブ7,20を開き、第2、第3のバルブ8,14を閉じ
て、圧縮機1を運転する。圧縮機1より17Kg/cm
2 G前後の圧力で吐出された高温高圧ガスは各室内ユニ
ット用冷媒回路a,b,cに送られ、各々の室内側熱交
換器16で凝縮し、室内空気を加熱する。凝縮した液冷
媒は第2の絞り装置15で若干の減圧をし、更に第1の
絞り装置6で減圧して約4Kg/cm2 Gの圧力で室外
側熱交換器3内で蒸発し、以降図19と同作用にて圧縮
機1にもどる。このときの圧縮機の運転容量は、各負荷
検出手段130a,130b,130cから室内機運転
容量検出手段131を経て、運転容量制御器132によ
り制御されるが、その制御容量は室内機の運転容量の総
和により決定している。
The daytime heating operation will be described below. FIG.
Reference numeral 1 denotes a general heating operation when the heating operation is performed only by the compressor 1 without using the heat storage. In the figure, the first and fourth valves 7, 20 are opened, and the second and third valves 8, 14 are closed, and the compressor 1 is operated. 17 kg / cm from compressor 1
The high-temperature and high-pressure gas discharged at a pressure of about 2 G is sent to each of the indoor unit refrigerant circuits a, b, and c, condensed in each of the indoor heat exchangers 16, and heats the indoor air. The condensed liquid refrigerant is slightly reduced in pressure by the second expansion device 15, further reduced in pressure by the first expansion device 6, and evaporated in the outdoor heat exchanger 3 at a pressure of about 4 kg / cm 2 G. The operation returns to the compressor 1 by the same operation as in FIG. The operating capacity of the compressor at this time is controlled by the operating capacity controller 132 from each of the load detecting means 130a, 130b, 130c through the indoor unit operating capacity detecting means 131, and the control capacity is the operating capacity of the indoor unit. Is determined by the sum of

【0019】この一般暖房運転時の運転状態を図22に
示す。図中の数字は図12にて述べた通りで、凝縮温度
は約42〜43℃程度、蒸発温度は約0℃である。本シ
ステムはかかる運転にて、蓄熱消費後の日中の軽負荷時
の暖房を行なう。
FIG. 22 shows an operation state during the general heating operation. The numbers in the figure are as described in FIG. 12, and the condensation temperature is about 42 to 43 ° C. and the evaporation temperature is about 0 ° C. In this operation, the present system performs heating at the time of light load during the day after heat storage consumption.

【0020】図23に、蓄熱利用による暖房、即ち放熱
運転を示す。図において第1の絞り装置6及び第3、第
4のバルブ14,20を閉じ、第1、第2のバルブ7,
8を開いて、冷媒ポンプ12を運転する。このとき冷媒
ポンプ12は槽内で蒸発圧力約13Kg/cm2 Gで加
熱気化されたガス冷媒を冷媒ポンプ用アキュムレータ1
3を経由して吸引する。従って約4Kg/cm2 G程度
の昇圧で17Kg/cm2 G前後の高温・高圧のガス冷
媒を各室内ユニット用冷媒回路系a,b,cに送り、以
降図21と同様の作用により室内空気の加熱を行なう。
凝縮した冷媒は第2の絞り装置15にて減圧し、約13
Kg/cm2 Gの気液二相冷媒となって蓄熱槽9に戻
る。このときのガスポンプの運転容量は、一般暖房運転
と同様室内機の運転容量の総和により決定している。
FIG. 23 shows heating using heat storage, that is, a heat radiation operation. In the figure, the first throttle device 6 and the third and fourth valves 14 and 20 are closed, and the first and second valves 7 and
8, the refrigerant pump 12 is operated. At this time, the refrigerant pump 12 supplies the gas refrigerant heated and vaporized at an evaporation pressure of about 13 kg / cm 2 G in the tank to the accumulator 1 for the refrigerant pump.
Aspirate via 3. Accordingly feed about 4 Kg / cm 2 17Kg in G about boosting / cm 2 G before and after the high-temperature high-pressure gas refrigerant to the indoor units for the refrigerant circuit system a, b, and c, the indoor air by the same operation as later Figure 21 Is heated.
The condensed refrigerant is decompressed by the second expansion device 15 to about 13
It becomes a gas-liquid two-phase refrigerant of Kg / cm 2 G and returns to the heat storage tank 9. The operating capacity of the gas pump at this time is determined by the sum of the operating capacity of the indoor units as in the general heating operation.

【0021】この放熱運転時の運転状態を図24に示
す。図中の数字は図12にて述べた通りで、凝縮温度は
42〜43℃程度、蒸発温度は35℃前後である。本シ
ステムはかかる運転にて、例えば軽負荷時の暖房を行な
う。
FIG. 24 shows an operation state during the heat dissipation operation. The numbers in the figure are as described in FIG. 12, and the condensation temperature is about 42 to 43 ° C. and the evaporation temperature is about 35 ° C. In this operation, the system performs heating at a light load, for example.

【0022】図25に、図21の一般暖房運転と、図2
3の放熱運転を同時に作用させた蓄熱併用暖房運転を示
す。図において、第3のバルブ14を閉じ、第1、第
2、第4のバルブ7,8,20を開き圧縮機1と冷媒ポ
ンプ12を運転する。このとき冷媒ポンプ12より送出
したガス冷媒は圧縮機1より吐出されたガス冷媒と合流
し、室内ユニット用冷媒回路系a,b,cへは、図21
の一般暖房運転時あるいは図23の放熱運転時の約2倍
の量の、圧力17Kg/cm2 G前後の高温・高圧冷媒
が循環して、能力も約2倍となる。第2の絞り装置15
で減圧した約13Kg/cm2 G程度の冷媒は、約1/
2が蓄熱用熱交換器10に流入し図23の放熱運転と同
様の作用をなすとともに、他の1/2の冷媒は第1の絞
り装置6にて更に減圧され、約4Kg/cm2 Gの圧力
となって室外側熱交換器3に流入し、図21の一般暖房
運転と同様の作用をなす。このときの運転容量は、ガス
ポンプは100%で運転し、圧縮機を容量制御運転して
合算して決定するが、その容量制御の割合は、一般暖房
運転または放熱運転と同様室内機の運転容量の総和によ
り決定している。
FIG. 25 shows the general heating operation of FIG. 21 and FIG.
3 shows a heat storage combined heating operation in which the heat dissipation operation of No. 3 is simultaneously applied. In the figure, the third valve 14 is closed, the first, second, and fourth valves 7, 8, and 20 are opened to operate the compressor 1 and the refrigerant pump 12. At this time, the gas refrigerant discharged from the refrigerant pump 12 merges with the gas refrigerant discharged from the compressor 1 and flows to the indoor unit refrigerant circuit systems a, b, and c in FIG.
The amount of high-temperature and high-pressure refrigerant having a pressure of about 17 kg / cm 2 G circulates about twice as much as in the general heating operation or the heat radiation operation in FIG. 23, and the capacity is also about twice. Second diaphragm device 15
About 13 kg / cm 2 G of the refrigerant decompressed at about 1 /
23 flows into the heat exchanger for heat storage 10 and performs the same operation as the heat dissipation operation of FIG. 23, and the other half of the refrigerant is further depressurized by the first expansion device 6 to about 4 kg / cm 2 G And flows into the outdoor heat exchanger 3 to perform the same operation as the general heating operation in FIG. The operating capacity at this time is determined by adding the gas pump operating at 100% and controlling the capacity of the compressor to control the capacity. The rate of the capacity control is determined by the operating capacity of the indoor unit as in the general heating operation or the heat radiation operation. Is determined by the sum of

【0023】この蓄熱併用暖房運転時の運転状態を図2
6に示す。図中の数字は図12にて述べた通りである。
凝縮温度は他の暖房運転と同様42〜43℃程度である
が、蒸発温度は、蓄熱用熱交換器10では35℃前後、
室外側熱交換器3では0℃前後である。本システムはか
かる運転にて、暖房負荷の集中する例えば朝の立上がり
時の暖房を行なう。
FIG. 2 shows the operation state during the heat storage combined heating operation.
6 is shown. The numbers in the figure are as described in FIG.
The condensation temperature is about 42 to 43 ° C. as in other heating operations, but the evaporation temperature is about 35 ° C. in the heat storage heat exchanger 10,
In the outdoor heat exchanger 3, the temperature is around 0 ° C. In this operation, the system performs heating when the heating load is concentrated, for example, at the time of rising in the morning.

【0024】[0024]

【発明が解決しようとする課題】上記のような各々の運
転を行なう従来の蓄熱式空気調和装置では、蓄冷熱併用
冷房運転時の第1の絞り装置の開度が一定であったた
め、外気温度の変動により室外側熱交換器での凝縮温度
が不安定となり、それに伴い、凝縮圧力が変動する。冷
媒ガスポンプの吐出圧力は上記凝縮圧力の影響を受ける
ため、吐出圧力が不安定となり、放冷側の能力や入力が
目標に満たなかったり、過剰になったりして運転が不安
定になるという問題があった。
In the conventional regenerative air conditioner which performs each operation as described above, the opening degree of the first expansion device during the cooling operation using the regenerative heat is constant. , The condensing temperature in the outdoor heat exchanger becomes unstable, and condensing pressure fluctuates accordingly. The discharge pressure of the refrigerant gas pump is affected by the condensation pressure
Therefore, the discharge pressure becomes unstable, or not less than the cool side of the abilities and input the target, there is a problem that the operation becomes unstable and may become excessive.

【0025】また、蓄熱併用暖房運転時、冷媒ガスポン
プの吐出圧力は室内側熱交換器の吸込み空気温度等によ
り変動し、吸入圧力は蓄熱媒体である水温の変動によっ
て変化する。よって、冷媒ガスポンプの吐出圧力と吸入
圧力の差が一定でなく、能力に過不足が生じていた。
In the heating operation combined with heat storage, the discharge pressure of the refrigerant gas pump fluctuates depending on the temperature of the intake air of the indoor heat exchanger, and the suction pressure fluctuates due to the fluctuation of the temperature of the water as the heat storage medium. Therefore, the difference between the discharge pressure and the suction pressure of the refrigerant gas pump is not constant, and the capacity is excessive or insufficient.

【0026】また、冷房もしくは暖房の運転を蓄熱分を
優先して作用するという観点から、放冷運転もしくは放
熱運転から行っていたので、蓄冷熱を優先的に使うとい
う点ではよいが、朝の立ち上がり等、蓄冷・蓄熱運転直
後の運転立ち上げ時の放冷時には、液溜に冷媒が溜まっ
た状態にあるため冷媒量の確保などの過渡的な運転がス
ムーズに行えないという問題があった。
In addition, from the viewpoint that the cooling or heating operation is performed with priority given to the heat storage component, the cooling or heating operation is performed from the cooling operation or the heat radiation operation. At the time of cooling, such as startup, immediately after the cold storage / heat storage operation, there is a problem that the transient operation such as securing the amount of the refrigerant cannot be performed smoothly because the refrigerant is in the liquid pool.

【0027】また、運転モード切り換え時に室内機の吸
込み空気温度の変化に感度よく対応することができなか
った。
Further, when the operation mode is switched, it is not possible to respond to the change in the intake air temperature of the indoor unit with high sensitivity.

【0028】[0028]

【課題を解決するための手段】この発明に係る蓄熱式空
気調和装置は、圧縮機、室外側熱交換器、第1の絞り装
置、第2の絞り装置及び室内側熱交換器を順次接続して
形成された一般冷房用回路と、上記採熱用熱交換器と直
列に接続された冷媒搬送手段を有し、一端が上記第1の
絞り装置と第2の絞り装置間に接続され、他端が上記室
内側熱交換器と上記圧縮機の吸入側との間に接続された
直列回路、上記第2の絞り装置及び上記室内側熱交換器
により形成された放冷回路とを備えたものにおいて、上
記冷媒搬送手段の吐出圧力を検出する吐出圧力検出手段
と、上記冷媒搬送手段により蓄冷熱を利用して行なう放
冷運転並びに上記圧縮機による一般冷房運転を同時に行
なう蓄冷熱併用冷房運転時、上記第1の絞り装置によっ
て上記冷媒搬送手段の吐出圧力を制御する制御手段とを
設けたものである。また、この発明に係る蓄熱式空気調
和装置は、圧縮機、室外側熱交換器、第1の絞り装置、
第2の絞り装置及び室内側熱交換器を順次接続して形成
された一般冷房用回路と、上記圧縮機、室外側熱交換
器、第1の絞り装置、一端が上記第1の絞り装置と第2
の絞り装置間に接続され、他端が上記室内側熱交換器と
上記圧縮機の吸入側との間に接続された蓄熱用熱交換器
により構成された蓄熱用回路と、上記蓄熱用熱交換器と
この熱交換器に供給された冷媒と熱交換関係に充填され
た蓄熱媒体とを収容する蓄熱槽と、上記蓄熱用熱交換器
と直列に接続された冷媒搬送手段(冷媒ガスポンプ)を
有し、一端が上記第1の絞り装置と第2の絞り装置間に
接続され、他端が上記室内側熱交換器と上記圧縮機の吸
入側との間に接続された直列回路、上記第2の絞り装置
及び上記室内側熱交換器により形成された放冷回路とを
備えたものにおいて、上記冷媒搬送手段の吐出圧力を検
出する吐出圧力検出手段と、上記冷媒搬送手段により蓄
冷熱を利用して行なう放冷運転並びに上記圧縮機による
一般冷房運転を同時に行なう蓄冷熱併用冷房運転時、上
記第1の絞り装置によって上記冷媒搬送手段の吐出圧力
を一定に制御する制御手段とを設けたものである。
A regenerative air conditioner according to the present invention comprises a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger which are sequentially connected. the general cooling circuit formed Te has a refrigerant conveying means connected to the heat heat exchanger adopts upper SL series, one end of which is connected between the first throttle device and the second throttling device, A series circuit having the other end connected between the indoor heat exchanger and the suction side of the compressor, a cooling circuit formed by the second expansion device and the indoor heat exchanger. A discharge pressure detecting means for detecting a discharge pressure of the refrigerant transfer means, a cooling operation using cold storage heat performed by the refrigerant transfer means, and a cooling operation combined with cold storage operation for simultaneously performing a general cooling operation by the compressor. At this time, the refrigerant transporter is moved by the first expansion device. It is provided with a control means for controlling the discharge pressure of the. Further, a regenerative air conditioner according to the present invention includes a compressor, an outdoor heat exchanger, a first throttle device,
A general cooling circuit formed by sequentially connecting the second expansion device and the indoor heat exchanger, the compressor, the outdoor heat exchanger, the first expansion device, and one end of the first expansion device. Second
And a heat storage circuit formed by a heat storage heat exchanger having the other end connected between the indoor heat exchanger and the suction side of the compressor. A heat storage tank containing a heat exchanger, a refrigerant supplied to the heat exchanger, and a heat storage medium filled in a heat exchange relationship, and a refrigerant transfer means (refrigerant gas pump) connected in series with the heat storage heat exchanger. A series circuit having one end connected between the first expansion device and the second expansion device and the other end connected between the indoor heat exchanger and the suction side of the compressor; A throttle device and a cooling circuit formed by the indoor heat exchanger, a discharge pressure detecting means for detecting a discharge pressure of the refrigerant conveying means, and utilizing the cold storage heat by the refrigerant conveying means. Cooling operation and general cooling operation by the compressor During cold storage heat combined cooling operation performed, is provided with a control means for controlling a constant delivery pressure of said refrigerant carrying means by said first throttle device.

【0029】また、圧縮機、室外側熱交換器、第1の絞
り装置、第2の絞り装置及び室内側熱交換器を順次接続
して形成された一般冷房用回路と、上記圧縮機、室外側
熱交換器、第1の絞り装置、一端が上記第1の絞り装置
と第2の絞り装置間に接続され、他端が上記室内側熱交
換器と上記圧縮機の吸入側との間に接続された蓄熱用熱
交換器により構成された蓄熱用回路と、上記蓄熱用熱交
換器とこの熱交換器に供給された冷媒と熱交換関係に充
填された蓄熱媒体とを収容する蓄熱槽と、上記蓄熱用熱
交換器と直列に接続された冷媒搬送手段を有し、一端が
上記第1の絞り装置と第2の絞り装置間に接続され、他
端が上記室内側熱交換器と上記圧縮機の吸入側との間に
接続された直列回路、上記第2の絞り装置及び上記室内
側熱交換器により形成された放冷回路とを備えたものに
おいて、上記冷媒搬送手段の吐出圧力を検出する吐出圧
力検出手段と、上記冷媒搬送手段の吸入圧力を検出する
吸入圧力検出手段と、上記冷媒搬送手段により蓄熱を利
用して行なう放熱運転並びに上記圧縮機による一般暖房
運転を同時に行なう蓄熱併用暖房運転時、上記冷媒搬送
手段の吐出圧力と吸入圧力の差が一定になるように上記
冷媒搬送手段の運転容量を制御する制御手段とを設けた
ものである。
A general cooling circuit formed by sequentially connecting a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger; An outer heat exchanger, a first expansion device, and one end connected between the first expansion device and the second expansion device, and the other end connected between the indoor heat exchanger and the suction side of the compressor. A heat storage circuit configured by a connected heat storage heat exchanger, and a heat storage tank that stores the heat storage heat exchanger and a heat storage medium filled in a heat exchange relationship with the refrigerant supplied to the heat exchanger. A refrigerant transfer means connected in series with the heat exchanger for heat storage, one end of which is connected between the first expansion device and the second expansion device, and the other end of which is connected to the indoor heat exchanger. A series circuit connected to the suction side of the compressor, the second expansion device, and the indoor heat exchanger. A discharge pressure detecting means for detecting a discharge pressure of the refrigerant conveying means, a suction pressure detecting means for detecting a suction pressure of the refrigerant conveying means, and a refrigerant conveying means. During the heat storage combined heating operation in which the heat dissipation operation using the heat storage and the general heating operation by the compressor are simultaneously performed, the refrigerant transfer is performed.
And control means for controlling the operation capacity of the refrigerant transport means so that the difference between the discharge pressure and the suction pressure of the means becomes constant.

【0030】また、圧縮機、室外側熱交換器、第1の絞
り装置、第2の絞り装置及び室内側熱交換器を順次接続
して形成された一般冷房用回路と、上記圧縮機、室外側
熱交換器、第1の絞り装置、一端が上記第1の絞り装置
と第2の絞り装置間に接続され、他端が上記室内側熱交
換器と上記圧縮機の吸入側との間に接続された蓄熱用熱
交換器により構成された蓄熱用回路と、上記蓄熱用熱交
換器とこの熱交換器に供給された冷媒と熱交換関係に充
填された蓄熱媒体とを収容する蓄熱槽と、上記蓄熱用熱
交換器と直列に接続された冷媒搬送手段を有し、一端が
上記第1の絞り装置と第2の絞り装置間に接続され、他
端が上記室内側熱交換器と上記圧縮機の吸入側との間に
接続された直列回路、上記第2の絞り装置及び上記室内
側熱交換器により形成された放冷回路とを備えたものに
おいて、室内機運転容量検出手段等の運転負荷検出手段
と、前記室内機運転容量検出手段等の運転負荷検出手段
の検出値によって運転モードを決定する運転モード決定
手段とを設けたものである。
A general cooling circuit formed by sequentially connecting a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger; An outer heat exchanger, a first expansion device, and one end connected between the first expansion device and the second expansion device, and the other end connected between the indoor heat exchanger and the suction side of the compressor. A heat storage circuit configured by a connected heat storage heat exchanger, and a heat storage tank that stores the heat storage heat exchanger and a heat storage medium filled in a heat exchange relationship with the refrigerant supplied to the heat exchanger. A refrigerant transfer means connected in series with the heat exchanger for heat storage, one end of which is connected between the first expansion device and the second expansion device, and the other end of which is connected to the indoor heat exchanger. A series circuit connected to the suction side of the compressor, the second expansion device, and the indoor heat exchanger. In that a made a cooling circuit, operation load detecting means such as indoor operation capacity detection unit <br/> and, driving load detecting means <br/> detection of such the indoor unit operation capacity detection means Operating mode determining means for determining the operating mode based on the value.

【0031】また、室内機運転容量検出手段等の運転負
荷検出手段の検出値が所定値以上の場合、冷房もしくは
暖房の運転を蓄冷熱併用冷房運転もしくは蓄熱併用暖房
運転から行なうものである。
In addition, the operation load of the indoor unit operation capacity detection means and the like can be reduced.
When the detected value of the load detecting means is equal to or more than a predetermined value, the cooling or heating operation is performed from the cooling / heating combined cooling operation or the heat storage combined heating operation.

【0032】また、室内機運転容量検出手段等の運転負
荷検出手段の検出値が所定値以下の場合、冷房もしくは
暖房の運転を一般冷房運転もしくは一般暖房運転から行
なうものである。
When the detected value of the operating load detecting means such as the indoor unit operating capacity detecting means is equal to or less than a predetermined value, the cooling or heating operation is performed from the general cooling operation or the general heating operation.

【0033】[0033]

【作用】以上のように構成されているので、の発明に
おいては、蓄冷熱併用冷房運転時、第1の絞り装置によ
って冷媒搬送手段の吐出圧力を制御できる。
[Action] which is configured as described above, in the invention of this, at cold storage heat combined cooling operation, Ru can control the discharge pressure of the refrigerant carrying means by the first throttle device.

【0034】た、蓄熱併用暖房運転時、冷媒搬送手段
の吐出圧力と吸入圧力の差が一定になるように冷媒搬送
手段の運転容量を制御したので、放熱側の入力をほぼ一
定にして運転することができる。
[0034] Also, when the heat storage combination heating operation, the refrigerant conveyed such that the difference of the discharge pressure and the suction pressure of the refrigerant carrying means becomes constant
Since the operation capacity of the means is controlled, the operation can be performed with the input on the heat radiation side substantially constant.

【0035】また、冷房もしくは暖房の運転起動を、室
内機運転容量検出手段等の運転負荷検出手段の検出値に
よって起動する運転モードを決定したので、いつも最適
な運転モードで起動することができる。
Further, since the operation mode for starting the cooling or heating operation is determined by the detection value of the operation load detecting means such as the indoor unit operating capacity detecting means, the operation mode can always be started in the optimum operation mode.

【0036】また、室内機運転容量検出手段等の運転負
荷検出手段の検出値が所定値以上の場合、冷房もしくは
暖房の運転起動を蓄冷熱併用冷房運転もしくは蓄熱併用
暖房運転から行うようにしたので、冷暖房の運転起動
時、放冷側と一般冷房側もしくは放熱側と一般暖房側で
各々自動的に適正冷媒量が確保されるため、運転の起動
がスムーズに行なえる。
In addition, the operation load of the indoor unit operation capacity detection means and the like can be reduced.
When the detected value of the load detecting means is equal to or more than a predetermined value, the cooling or heating operation is started from the cooling / heating combined cooling operation or the heat storage combined heating operation. Alternatively, the appropriate amount of refrigerant is automatically secured on each of the heat radiation side and the general heating side, so that the operation can be started smoothly.

【0037】また、室内機運転容量検出手段等の運転負
荷検出手段の検出値が所定値以下の場合、冷房もしくは
暖房の運転起動を上記一般冷房運転もしくは一般暖房運
転から行なうようにしたので、冷媒量不足が生じること
なく、運転起動をスムーズに行なうことができる。
In addition, the operation load of the indoor unit operation capacity detection means and the like is controlled.
When the detected value of the load detecting means is equal to or less than a predetermined value, the cooling or heating operation is started from the general cooling operation or the general heating operation. Therefore, the operation can be smoothly started without shortage of the refrigerant amount. Can be.

【0038】[0038]

【実施例】実施例1. 以下、本発明の実施例1に係わる蓄熱式空気調和装置を
図面に基づき説明する。図1は蓄熱式空気調和装置の基
本システムを示すものであり、同図において、従来例と
同一の構成要素については同一の符号を付し、その説明
を省略する。従来例と異なるのは以下の点である。すな
わち、冷媒配管114に冷媒搬送手段としての冷媒ガス
ポンプ12の吐出圧力検出手段133が設けられてお
り、吐出圧力検出手段133の吐出圧力の検出値によっ
て第1の絞り装置6の開度を調節する開度調節器134
が吐出圧力検出手段133と第1の絞り装置6に接続さ
れている。
[Embodiment 1] Hereinafter, a regenerative air conditioner according to a first embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a basic system of a regenerative air conditioner. In FIG. 1, the same components as those of the conventional example are denoted by the same reference numerals, and description thereof will be omitted. The differences from the conventional example are as follows. That is, the discharge pressure detecting means 133 of the refrigerant gas pump 12 as the refrigerant conveying means is provided in the refrigerant pipe 114, and the opening degree of the first expansion device 6 is adjusted by the detected value of the discharge pressure of the discharge pressure detecting means 133. Opening adjuster 134
Are connected to the discharge pressure detecting means 133 and the first throttle device 6.

【0039】次いで、本実施例の動作について、図1〜
図2に基づき説明する。なお、蓄冷熱併用冷房運転以外
は従来の実施例と同様の作用なので、ここでは蓄冷熱併
用冷房運転についてのみ動作を説明する。
Next, the operation of this embodiment will be described with reference to FIGS.
A description will be given based on FIG. Since the operation is the same as that of the conventional embodiment except for the cooling operation using the cold storage heat, the operation will be described here only for the cooling operation using the cold storage heat.

【0040】図において第3のバルブ14を閉じ、第
1、第2、第4のバルブ7,8,20を開いて、圧縮機
1及び冷媒ポンプ12を運転する。このとき冷媒ポンプ
12側の蓄熱用熱交換器10で凝縮した液冷媒は、圧縮
機1側の第1の絞り装置6で減圧された冷媒と合流し、
室内ユニット用冷媒回路系a,b,cへは、図13の一
般冷房運転時あるいは図15の放冷運転時の約2倍の量
の冷媒が循環して、能力も2倍となる。このときの第1
の絞り装置6の開度は、冷媒ガスポンプ12の吐出圧力
検出手段133による圧力の検出値が9Kg/cm2
と一定になるように、開度調節器134によってその開
度を調整されている。
In the figure, the third valve 14 is closed, and the first, second, and fourth valves 7, 8, and 20 are opened to operate the compressor 1 and the refrigerant pump 12. At this time, the liquid refrigerant condensed in the heat storage heat exchanger 10 on the refrigerant pump 12 side joins with the refrigerant decompressed by the first expansion device 6 on the compressor 1 side,
About twice the amount of the refrigerant circulates to the indoor unit refrigerant circuit systems a, b, and c during the general cooling operation in FIG. 13 or the cooling operation in FIG. 15, and the capacity is also doubled. The first at this time
The degree of opening of the expansion device 6 is such that the detected value of the pressure by the discharge pressure detecting means 133 of the refrigerant gas pump 12 is 9 kg / cm 2 G.
The opening is adjusted by the opening adjuster 134 so as to be constant.

【0041】この蓄冷熱併用冷房運転時の運転状態を図
2に示す。蒸発温度は他の冷房運転と同様約10℃であ
るが、凝縮温度は、室外側熱交換器3では約45℃、蓄
熱用熱交換器10では22〜23℃程度である。本シス
テムはかかる運転にて、通常の冷房負荷時の冷房を行な
う。なお、蓄熱用熱交換器10は、蓄積された冷熱を採
取して利用する観点からは、採熱用熱交換器10と称す
ることもできる。なおまた、放冷運転では、蓄熱用熱交
換器10からは冷熱を採取するだけなので、これは採熱
用熱交換器10であってよい。
FIG. 2 shows an operation state during the cooling operation using the cold storage heat. The evaporation temperature is about 10 ° C. as in other cooling operations, but the condensation temperature is about 45 ° C. in the outdoor heat exchanger 3 and about 22 to 23 ° C. in the heat storage heat exchanger 10. In this operation, the system performs cooling under normal cooling load. The heat storage heat exchanger 10 collects the accumulated cold heat.
From the viewpoint of taking and utilizing, it is referred to as heat exchanger for heat collection 10.
You can also. In the cooling operation, heat exchange for heat storage is performed.
This is only for collecting cold heat from the heat exchanger 10,
Heat exchanger 10.

【0042】実施例2. 以下、本発明の実施例2に係わる蓄熱式空気調和装置を
図3〜図4に基づき説明する。従来例と異なるのは以下
の点である。すなわち、冷媒配管114に冷媒ガスポン
プ12の吐出圧力検出手段133が設けられており、冷
媒配管115に冷媒ガスポンプ12の吸入圧力検出手段
135が設けられている。136は冷媒ガスポンプ12
の吐出圧力と吸入圧力の差圧を演算する差圧演算器であ
り、132は差圧演算器136の差圧値によって冷媒ガ
スポンプ12運転容量を決定する。
Embodiment 2 FIG. It will be described below with reference to the thermal storage type air conditioner location according to the second embodiment of the present invention to <br/> FIGS. 3 to 4. The differences from the conventional example are as follows. That is, the refrigerant pipe 114 is provided with the discharge pressure detecting means 133 of the refrigerant gas pump 12, and the refrigerant pipe 115 is provided with the suction pressure detecting means 135 of the refrigerant gas pump 12. 136 is the refrigerant gas pump 12
132 is a differential pressure calculator for calculating the differential pressure between the discharge pressure and the suction pressure of the refrigerant gas, and 132 determines the operating capacity of the refrigerant gas pump 12 based on the differential pressure value of the differential pressure calculator 136.

【0043】次いで、本実施例の動作について説明す
る。なお、蓄熱併用暖房運転以外は従来の実施例と同様
の作用なので、ここでは蓄熱併用暖房運転についてのみ
動作を説明する。
Next, the operation of this embodiment will be described. Since the operation is the same as that of the conventional embodiment except for the heat storage combined heating operation, only the operation of the heat storage combined heating operation will be described here.

【0044】図において第3のバルブ14を閉じ、第
1、第2、第4のバルブ7,8,20を開いて、圧縮機
1と冷媒ポンプ12を運転する。このとき冷媒ポンプ1
2より送出したガス冷媒は圧縮機1より吐出されたガス
冷媒と合流し、室内ユニット用冷媒回路系a,b,cへ
は、一般暖房運転あるいは放熱運転時の約2倍の量の、
圧力17Kg/cm2 G前後の高温・高圧冷媒が循環し
て、能力も約2倍となる。第2の絞り装置15で減圧し
た冷媒は、約1/2が蓄熱用熱交換器10に流入し放熱
運転と同様の作用をなすとともに、他の1/2の冷媒は
第1の絞り装置6にて更に減圧され、約4Kg/cm2
Gの圧力となって室外側熱交換器3に流入し、一般暖房
運転と同様の作用をなす。このとき、冷媒ガスポンプ1
2の吐出圧力検出手段133と冷媒ガスポンプ12の吸
入圧力検出手段135による吐出圧力と吸入圧力の差圧
を演算する差圧演算器136で計算された差圧値によっ
て冷媒ガスポンプ12の運転容量を決定する。つまり、
運転容量制御器132から冷媒ガスポンプ12に差圧値
に基づいた運転容量の指令を送り、冷媒ガスポンプ12
の運転容量を制御する。
In the figure, the third valve 14 is closed, the first, second, and fourth valves 7, 8, and 20 are opened to operate the compressor 1 and the refrigerant pump 12. At this time, the refrigerant pump 1
The gas refrigerant discharged from the compressor 2 merges with the gas refrigerant discharged from the compressor 1, and is supplied to the indoor unit refrigerant circuit systems a, b, and c in an amount about twice as large as that in the general heating operation or the heat radiation operation.
A high-temperature and high-pressure refrigerant having a pressure of about 17 kg / cm 2 G is circulated, and the capacity is also approximately doubled. About half of the refrigerant depressurized by the second expansion device 15 flows into the heat storage heat exchanger 10 and performs the same operation as the heat dissipation operation. And further reduced to about 4 kg / cm 2
The pressure becomes G and flows into the outdoor heat exchanger 3 to perform the same operation as in the general heating operation. At this time, the refrigerant gas pump 1
The operating capacity of the refrigerant gas pump 12 is determined based on the differential pressure value calculated by the differential pressure calculator 136 that calculates the differential pressure between the discharge pressure and the suction pressure by the discharge pressure detection means 133 and the suction pressure detection means 135 of the refrigerant gas pump 12. I do. That is,
An operation capacity command based on the differential pressure value is sent from the operation capacity controller 132 to the refrigerant gas pump 12 so that the refrigerant gas pump 12
The operating capacity of the vehicle.

【0045】この蓄熱併用暖房運転時の運転状態を図4
に示す。凝縮温度は他の暖房運転と同様42〜43℃程
度であるが、蒸発温度は、室外側熱交換器3では約0
℃、蓄熱用熱交換器10では35℃程度である。本シス
テムはかかる運転にて、通常の暖房負荷時の暖房を行な
う。
FIG. 4 shows the operation state during the heat storage combined heating operation.
Shown in The condensation temperature is about 42 to 43 ° C. as in other heating operations, but the evaporation temperature is about 0 in the outdoor heat exchanger 3.
℃, about 35 ℃ in the heat exchanger 10 for heat storage. In this operation, the system performs heating under a normal heating load.

【0046】以下、本発明の実施例2に係わる蓄熱式空
気調和装置の他の例を図5に基づき説明する。すなわ
ち、第2のバルブ8と並列に設けられた第1のバイパス
回路128と第1のバイパス回路128中に設けられた
第3の絞り装置18を有し、冷媒配管114に冷媒ガス
ポンプ12の吐出圧力検出手段133が、冷媒配管11
5に冷媒ガスポンプ12の吸入圧力検出手段135が設
けられている。136は冷媒ガスポンプ12の吐出圧力
と吸入圧力の差圧を演算する差圧演算器であり、134
は差圧演算器136の差圧値によって第3の絞り装置1
8の開度を調節する開度調節器である。
Hereinafter, another example of the regenerative air conditioner according to the second embodiment of the present invention will be described with reference to FIG. That is, it has a first bypass circuit 128 provided in parallel with the second valve 8 and a third expansion device 18 provided in the first bypass circuit 128. The pressure detecting means 133 is connected to the refrigerant pipe 11
5 is provided with suction pressure detecting means 135 of the refrigerant gas pump 12. 136 is a differential pressure calculator for calculating a differential pressure between the discharge pressure and the suction pressure of the refrigerant gas pump 12, and 134.
Is the third throttle device 1 based on the differential pressure value of the differential pressure calculator 136.
8 is an opening degree adjuster for adjusting the opening degree.

【0047】次いで、本実施例の動作について説明す
る。なお、蓄熱併用暖房運転以外は従来の実施例と同様
の作用なので、ここでは蓄熱併用暖房運転についてのみ
動作を説明する。
Next, the operation of this embodiment will be described. Since the operation is the same as that of the conventional embodiment except for the heat storage combined heating operation, only the operation of the heat storage combined heating operation will be described here.

【0048】図において第2、第3のバルブ8,14を
閉じ、第1、第4のバルブ7,20を開いて、圧縮機1
及び冷媒ポンプ12を運転する。このとき冷媒ポンプ1
2より送出したガス冷媒は圧縮機1より吐出されたガス
冷媒と合流し、室内ユニット用冷媒回路系a,b,cへ
は、一般暖房運転あるいは放熱運転時の約2倍の量の、
圧力17Kg/cm2 G前後の高温・高圧冷媒が循環し
て、能力も約2倍となる。第2の絞り装置15で減圧し
た冷媒は、約1/2が蓄熱用熱交換器10に流入し放熱
運転と同様の作用をなすとともに、他の1/2の冷媒は
第1の絞り装置6にて更に減圧され、約4Kg/cm2
Gの圧力となって室外側熱交換器3に流入し、一般暖房
運転と同様の作用をなす。このとき、冷媒ガスポンプ1
2の吐出圧力検出手段133と吸入圧力検出手段135
による、吐出圧力と吸入圧力の差圧を演算する差圧演算
器136で計算された差圧値によって、その差圧値が所
定の値、例えば4Kg/cm2 Gとすると、差圧が4K
g/cm2 より小さい場合は、第3の絞り装置18を開
く方向に、大きい場合は閉じる方向に制御する。この蓄
熱併用暖房運転時の運転状態は図4と同様である。
In the figure, the second and third valves 8 and 14 are closed, and the first and fourth valves 7 and 20 are opened to
And the refrigerant pump 12 is operated. At this time, the refrigerant pump 1
The gas refrigerant discharged from the compressor 2 merges with the gas refrigerant discharged from the compressor 1, and is supplied to the indoor unit refrigerant circuit systems a, b, and c in an amount about twice as large as that in the general heating operation or the heat radiation operation.
A high-temperature and high-pressure refrigerant having a pressure of about 17 kg / cm 2 G is circulated, and the capacity is also approximately doubled. About half of the refrigerant depressurized by the second expansion device 15 flows into the heat storage heat exchanger 10 and performs the same operation as the heat dissipation operation. And further reduced to about 4 kg / cm 2
The pressure becomes G and flows into the outdoor heat exchanger 3 to perform the same operation as in the general heating operation. At this time, the refrigerant gas pump 1
2 discharge pressure detecting means 133 and suction pressure detecting means 135
If the differential pressure value is a predetermined value, for example, 4 kg / cm 2 G, the differential pressure becomes 4K by the differential pressure value calculated by the differential pressure calculator 136 for calculating the differential pressure between the discharge pressure and the suction pressure.
If it is smaller than g / cm 2 , the control is performed in a direction to open the third aperture device 18, and if it is larger, the control is performed in a direction to close it. The operation state during this heat storage combined heating operation is the same as that in FIG.

【0049】実施例3. 以下、本発明の実施例3に係わる蓄熱式空気調和装置を
図6に基づき説明する。すなわち、室外側熱交換器3と
第1の絞り装置6の間に液溜19を有し、室内機運転容
量検出手段131を設けており、室内機運転容量検出手
段131より運転容量値を受信して、冷房もしくは暖房
の運転モードを決定する運転モード決定手段138を設
けている。
Embodiment 3 FIG. It will be described below with reference to the thermal storage type air conditioner location according to the third embodiment of the present invention to <br/> Figure 6. That is, the liquid storage 19 is provided between the outdoor heat exchanger 3 and the first expansion device 6, and the indoor unit operating capacity detecting means 131 is provided, and the operating capacity value is received from the indoor unit operating capacity detecting means 131. Then, an operation mode determining means 138 for determining the cooling or heating operation mode is provided.

【0050】次いで、本実施例の冷房運転時と暖房運転
時の運転モード選択に関する制御フロー内容を図7に基
づき説明する。
Next, the contents of a control flow relating to the selection of the operation mode during the cooling operation and the heating operation in this embodiment will be described with reference to FIG.

【0051】先に、起動時等の冷房運転モードの選択に
ついて説明する。まず、ステップ51にて運転を開始す
る。ステップ52では室内機運転容量検出手段131で
ステップ51における室内機の運転容量を検出する。ス
テップ53では、室内機運転容量検出手段131による
検出値によってステップ54〜56の冷房運転モードを
選択する。つまり、負荷小で蓄熱分がないときはステッ
プ54の一般冷房運転負荷小で蓄熱分があるときはス
テップ55の放冷運転、負荷大のときはステップ56の
蓄冷熱併用冷房運転とする。
First, the selection of the cooling operation mode at the time of starting or the like will be described. First, operation is started in step 51. In step 52, the indoor unit operating capacity detecting means 131 detects the operating capacity of the indoor unit in step 51. In step 53, the cooling operation mode in steps 54 to 56 is selected based on the value detected by the indoor unit operation capacity detection means 131. In other words, the general cooling operation of step 54 if there is no heat storage amount by the load is small, cooling operation of step 55 when the load is small is the heat storage amount, when the negative Nidai the cold storage heat combined cooling operation in step 56 .

【0052】起動時等の暖房運転モードの選択について
は、上記冷房運転モードの選択と同様であり、よって説
明を省略する。
The selection of the heating operation mode at the time of startup or the like is the same as the selection of the cooling operation mode, and therefore the description is omitted.

【0053】実施例4. 以下、本発明の実施例4に係わる蓄熱式空気調和装置を
図8に基づき説明する。すなわち、室内機運転容量検出
手段131を設けており、室内機運転容量検出手段13
1より運転容量値を受信して所定の容量と比較する運転
容量比較手段139と、その結果にもとづき冷房もしく
は暖房の起動運転モードを決定する運転モード決定手段
138を設けている。
Embodiment 4 FIG. It will be described below with reference to the thermal storage type air conditioner location according to the fourth embodiment of the present invention to <br/> Figure 8. That is, the indoor unit operating capacity detecting means 131 is provided, and the indoor unit operating capacity detecting means 13 is provided.
An operation capacity comparison means 139 for receiving an operation capacity value from the control unit 1 and comparing it with a predetermined capacity, and an operation mode determination means 138 for determining a cooling or heating start operation mode based on the result.

【0054】次いで、本実施例の冷房運転時と暖房運転
時の運転モード選択に関する制御フロー内容を図9に基
づき説明する。
Next, the contents of the control flow relating to the selection of the operation mode during the cooling operation and the heating operation in this embodiment will be described with reference to FIG.

【0055】先に、起動時の冷房運転モードの選択に
ついて説明する。まず、ステップ71にて運転を開始す
る。ステップ72では室内機運転容量検出手段131で
ステップ71における室内機の運転容量を検出する。ス
テップ73では、運転容量比較手段139によってステ
ップ72で検出した検出値と所定の運転容量比較値との
比較を行ない、比較結果が所定の運転容量比較値以上の
場合は、ステップ74の蓄冷熱併用冷房運転を行ない、
所定の運転容量比較値より小さい場合はステップ75の
一般冷房運転を行なう。
First, the selection of the cooling operation mode at the time of starting or the like will be described. First, operation is started in step 71. In step 72, the operating capacity of the indoor unit in step 71 is detected by the indoor unit operating capacity detecting means 131. In step 73, the detected value detected in step 72 is compared with the predetermined operation capacity comparison value by the operation capacity comparison means 139. If the comparison result is equal to or greater than the predetermined operation capacity comparison value, the combined use of cold storage heat in step 74 is performed. Perform cooling operation,
If it is smaller than the predetermined operation capacity comparison value, the general cooling operation of step 75 is performed.

【0056】起動時の暖房運転モードの選択について
は、上記冷房運転モードの選択と同様であり、よって説
明を省略する。
The selection of the heating operation mode at the time of starting or the like is the same as the selection of the cooling operation mode, and therefore the description is omitted.

【0057】[0057]

【発明の効果】この発明における蓄熱式空気調和装置
は、蓄冷熱併用冷房時に放冷運転側における冷媒搬送手
段の吐出圧力を制御できるようにしたので、放冷運転側
の能力と入力を調節できる。したがって、あらかじめ設
定した最適圧力値で制御すれば、放冷運転側の能力を高
効率で一定に安定して運転できる。
The regenerative air-conditioning apparatus according to the present invention provides a cooling medium carrier on the cooling operation side during cooling using regenerative heat.
Because the discharge pressure of the stage can be controlled, the cooling operation side
You can adjust your ability and input. Therefore,
If the control is performed at the specified optimal pressure value, the capacity of the cooling
It can operate stably with efficiency.

【0058】また、蓄熱併用暖房運転時、冷媒搬送手段
の吐出圧力を検出する吐出圧力検出手段と冷媒搬送手段
の吸入圧力を検出する吸入圧力検出手段を備え、冷媒
送手段の運転容量によって冷媒搬送手段の吐出圧力と吸
入圧力の差を制御したので、蓄熱併用運転の能力と入力
を自在に調節できる。したがって、放熱側の入力をほぼ
一定にして運転するように制御することができ、放熱に
過不足が生じない。
[0058] Further, when the heat storage combination heating operation, comprising a suction pressure detection means for detecting an intake pressure of the discharge pressure detection means and the refrigerant carrying means <br/> for detecting a delivery pressure of the refrigerant carrying means <br/>, refrigerant Carrying
Since the difference between the discharge pressure and the suction pressure of the refrigerant transfer means was controlled by the operation capacity of the sending means , the capacity and input of the heat storage combined operation were controlled.
Can be adjusted freely. Therefore, it is possible to control the operation so that the input on the heat radiation side is substantially constant, and there is no excessive or insufficient heat radiation.

【0059】更に、室内機運転容量検出手段等の運転負
荷検出手段を設け、その検出値によって運転モード決定
手段によって起動時等の運転モードを決定したので、
の時点の空調負荷の大小、蓄熱残量の有無等に応じて、
常に最適な運転モードで運転を起動できる。
Further, the operation load of the indoor unit operation capacity detection means and the like is controlled.
A load detecting means is provided, so to determine the operation mode such as during start-up operation mode determining means by the detected value, its
Depending on the size of the air conditioning load at the time of
Operation can always be started in the optimal operation mode.

【0060】また、室内機運転容量検出手段等の運転負
荷検出手段を設け、その検出値が所定の値以上の場合、
冷房もしくは暖房の運転起動を上記蓄冷熱併用冷房運転
もしくは蓄熱併用暖房から行なうようにしたので、冷暖
房の運転起動時、放冷側と一般冷房側もしくは放熱側と
一般暖房側で各々自動的に適正冷媒量が確保されるた
め、運転の起動がスムーズに行える。また、その時点の
空調負荷にすみやかに対応した能力を発揮できるため、
空調の立上がりが良い。
In addition, the operation load of the indoor unit operation capacity detection means and the like can be reduced.
Provide load detection means , if the detected value is more than a predetermined value,
Since the cooling or heating operation start is performed from the above-mentioned cooling / heating combined cooling operation or heat / storage heating, when the cooling / heating operation is started, the cooling side and the general cooling side, or the heat radiation side and the general heating side are automatically appropriate. Since the refrigerant amount is secured, the operation can be started smoothly. Also, at that time
The ability to quickly respond to the air conditioning load can be demonstrated,
Air conditioning is good.

【0061】そして、室内機運転容量検出手段等の運転
負荷検出手段を設け、その検出値が所定の値以下の場
合、冷房もしくは暖房の運転起動を上記一般冷房運転も
しくは一般暖房運転から行なうようにしたので、冷媒量
不足が生じることなく運転起動をスムーズに行なうこと
ができる。
The operation of the indoor unit operating capacity detecting means and the like
A load detecting means is provided, and when the detected value is equal to or less than a predetermined value, the cooling or heating operation is started from the general cooling operation or the general heating operation. Can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における蓄熱式空気調和装置
の冷媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a regenerative air conditioner according to Embodiment 1 of the present invention.

【図2】実施例1の蓄冷熱併用冷房運転時の運転状態図
である。
FIG. 2 is an operation state diagram during a cooling operation combined with cold storage according to the first embodiment.

【図3】実施例2における蓄熱式空気調和装置の冷媒回
路図である。
FIG. 3 is a refrigerant circuit diagram of a regenerative air conditioner according to a second embodiment.

【図4】実施例2の蓄熱併用暖房運転時の運転状態図で
ある。
FIG. 4 is an operation state diagram during a heat storage combined heating operation according to a second embodiment.

【図5】実施例2における蓄熱式空気調和装置の他の冷
媒回路図である。
FIG. 5 is another refrigerant circuit diagram of the regenerative air conditioner according to the second embodiment.

【図6】実施例3における蓄熱式空気調和装置の冷媒回
路図である。
FIG. 6 is a refrigerant circuit diagram of a heat storage type air conditioner according to a third embodiment.

【図7】実施例3の制御フローチャート図である。FIG. 7 is a control flowchart of a third embodiment.

【図8】実施例4,5における蓄熱式空気調和装置の冷
媒回路図である。
FIG. 8 is a refrigerant circuit diagram of a regenerative air conditioner according to Embodiments 4 and 5.

【図9】実施例4,5の制御フローチャート図である。FIG. 9 is a control flowchart of the fourth and fifth embodiments.

【図10】従来の実施例の冷媒回路図である。FIG. 10 is a refrigerant circuit diagram of a conventional example.

【図11】従来の実施例の蓄冷運転時の冷媒回路図であ
る。
FIG. 11 is a refrigerant circuit diagram during a cold storage operation according to a conventional example.

【図12】図11の運転状態図である。FIG. 12 is an operation state diagram of FIG.

【図13】従来の実施例の一般冷房運転時の冷媒回路図
である。
FIG. 13 is a refrigerant circuit diagram during a general cooling operation of the conventional example.

【図14】図13の運転状態図である。FIG. 14 is an operation state diagram of FIG.

【図15】従来の実施例の放冷運転時の冷媒回路図であ
る。
FIG. 15 is a refrigerant circuit diagram during a cooling operation according to a conventional example.

【図16】図15の運転状態図である。FIG. 16 is an operation state diagram of FIG.

【図17】従来の実施例の蓄冷熱併用冷房運転時の冷媒
回路図である。
FIG. 17 is a refrigerant circuit diagram during a cooling operation combined with cold storage according to a conventional example.

【図18】図17の運転状態図である。18 is an operation state diagram of FIG.

【図19】従来の実施例の蓄熱運転時の冷媒回路図であ
る。
FIG. 19 is a refrigerant circuit diagram during a heat storage operation according to a conventional example.

【図20】図19の運転状態図である。20 is an operation state diagram of FIG.

【図21】従来の実施例の一般暖房運転時の冷媒回路図
である。
FIG. 21 is a refrigerant circuit diagram during a general heating operation of a conventional example.

【図22】図21の運転状態図である。FIG. 22 is an operation state diagram of FIG.

【図23】従来の実施例の放熱運転時の冷媒回路図であ
る。
FIG. 23 is a refrigerant circuit diagram at the time of a heat dissipation operation of the conventional example.

【図24】図23の運転状態図である。24 is an operation state diagram of FIG. 23.

【図25】従来の実施例の蓄熱併用暖房運転時の冷媒回
路図である。
FIG. 25 is a refrigerant circuit diagram during a heat storage combined heating operation of a conventional example.

【図26】図25の運転状態図である。26 is an operation state diagram of FIG. 25.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 圧縮機用切換弁 3 室外側熱交換器 6 第1の絞り装置7 第1のバルブ 8 第2のバルブ 9 蓄熱槽 10 蓄熱用熱交換器あるいは採熱用熱交換器 11 冷媒ポンプ用切換弁 12 冷媒ポンプ(冷媒搬送手段) 14 第3のバルブ 15 第2の絞り装置 15a 室内ユニット(a)内の、第2の絞り装置 15b 室内ユニット(b)内の、第2の絞り装置 15c 室内ユニット(c)内の、第2の絞り装置 16 室内側熱交換器 16a 室内ユニット(a)内の、室内側熱交換器 16b 室内ユニット(b)内の、室内側熱交換器 16c 室内ユニット(c)内の、室内側熱交換器 18 第3の絞り装置 19 液溜20 第4のバルブ 128 第1のバイパス回路 130a 負荷検出手段 130b 負荷検出手段 130c 負荷検出手段 131 室内機運転容量検出手段 132 運転容量制御器 133 吐出圧力検出手段 134 開度調節器 135 吸入圧力検出手段 136 差圧演算器 137 室内機運転容量検出手段 138 運転モード決定手段 139 運転容量比較手段 DESCRIPTION OF SYMBOLS 1 Compressor 2 Compressor switching valve 3 Outdoor heat exchanger 6 1st expansion device 7 1st valve 8 2nd valve 9 Heat storage tank 10 Heat exchanger for heat storage or heat exchanger for heat collection 11 Refrigerant pump Switching valve 12 refrigerant pump (refrigerant conveying means) 14 third valve 15 second throttle device 15a second throttle device in indoor unit (a) 15b second throttle device in indoor unit (b) 15c The second expansion device in the indoor unit (c) 16 The indoor heat exchanger 16a The indoor heat exchanger 16b in the indoor unit (a) 16b The indoor heat exchanger 16c in the indoor unit (b) Indoor heat exchanger 18 in unit (c) 18 Third throttle device 19 Liquid reservoir 20 Fourth valve 128 First bypass circuit 130a Load detecting means 130b Load detecting means 130c Load detecting means 131 Indoor Unit operating capacity detecting means 132 Operating capacity controller 133 Discharge pressure detecting means 134 Opening degree controller 135 Suction pressure detecting means 136 Differential pressure calculator 137 Indoor unit operating capacity detecting means 138 Operating mode determining means 139 Operating capacity comparing means

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−191260(JP,A) (58)調査した分野(Int.Cl.7,DB名) F25D 13/00 351 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-3-191260 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) F25D 13/00 351

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、室外側熱交換器、第1の絞り装
置、第2の絞り装置及び室内側熱交換器を順次接続して
形成された一般冷房用回路と、 採熱用熱交換器とこの採熱用熱交換器に直列に接続され
た冷媒搬送手段を有し、一端が上記第1の絞り装置と第
2の絞り装置間に接続され、他端が上記室内側熱交換器
と上記圧縮機の吸入側との間に接続された直列回路、上
記第2の絞り装置、上記室内側熱交換器により形成され
た放冷用回路と、 上記採熱用熱交換器と熱交換関係にある蓄熱媒体と、 上記蓄熱媒体を内蔵する蓄熱槽とを備えたものにおい
て、 上記冷媒搬送手段の吐出圧力を検出する吐出圧力検出手
段と、 上記冷媒搬送手段により蓄冷熱を利用して行なう放冷運
転並びに上記圧縮機による一般冷房運転を同時に行なう
蓄冷熱併用冷房運転時、上記第1の絞り装置によって上
記冷媒搬送手段の吐出圧力を制御する制御手段とを設け
たことを特徴とする蓄熱式空気調和装置。
1. A general cooling circuit formed by sequentially connecting a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger, and heat exchange for heat collection. And a refrigerant conveying means connected in series to the heat exchanger for heat collection. One end is connected between the first expansion device and the second expansion device, and the other end is the indoor heat exchanger. A series circuit connected between the compressor and the suction side of the compressor, the second expansion device, a cooling circuit formed by the indoor heat exchanger, and heat exchange with the heat collection heat exchanger. A heat storage medium having a heat storage medium and a heat storage tank containing the heat storage medium, wherein the discharge pressure detection means detects the discharge pressure of the refrigerant transfer means, and the cooling medium is used by the refrigerant transfer means. Cooling / cooling combined cooling for simultaneous cooling and general cooling by the compressor Rolling up, the first throttle device regenerative air conditioner which is characterized in that a control means for controlling the discharge pressure of the refrigerant carrying means by.
【請求項2】 圧縮機、室外側熱交換器、第1の絞り装
置、第2の絞り装置及び室内側熱交換器を順次接続して
形成された一般冷房用回路と、 上記圧縮機、室外側熱交換器、第1の絞り装置、一端が
上記第1の絞り装置と第2の絞り装置間に接続され、他
端が上記室内側熱交換器と上記圧縮機の吸入側との間に
接続された蓄熱用熱交換器により構成された蓄熱用回路
と、 上記蓄熱用熱交換器とこの熱交換器に供給された冷媒と
熱交換関係に充填された蓄熱媒体とを収容する蓄熱槽
と、 上記蓄熱用熱交換器と直列に接続された冷媒搬送手段を
有し、一端が上記第1の絞り装置と第2の絞り装置間に
接続され、他端が上記室内側熱交換器と上記圧縮機の吸
入側との間に接続された直列回路、上記第2の絞り装置
及び上記室内側熱交換器により形成された放冷回路とを
備えたものにおいて、 上記冷媒搬送手段の吐出圧力を検出する吐出圧力検出手
段と、 上記冷媒搬送手段により蓄冷熱を利用して行なう放冷運
転並びに上記圧縮機による一般冷房運転を同時に行なう
蓄冷熱併用冷房運転時、上記第1の絞り装置によって上
記冷媒搬送手段の吐出圧力を制御する制御手段とを設け
たことを特徴とする蓄熱式空気調和装置。
2. A general cooling circuit formed by sequentially connecting a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger; An outer heat exchanger, a first expansion device, and one end connected between the first expansion device and the second expansion device, and the other end connected between the indoor heat exchanger and the suction side of the compressor. A heat storage circuit configured by a connected heat storage heat exchanger, and a heat storage tank that stores the heat storage heat exchanger and a heat storage medium filled in a heat exchange relationship with the refrigerant supplied to the heat exchanger. A refrigerant conveying means connected in series with the heat storage heat exchanger, one end of which is connected between the first expansion device and the second expansion device, and the other end of which is connected to the indoor heat exchanger. Formed by a series circuit connected to the suction side of the compressor, the second expansion device, and the indoor heat exchanger A discharge pressure detecting means for detecting a discharge pressure of the refrigerant conveying means, a cooling operation performed by utilizing the cold storage heat by the refrigerant conveying means, and a general cooling by the compressor. A regenerative air conditioner, comprising: a control means for controlling the discharge pressure of the refrigerant conveying means by the first expansion device during a regenerative cooling combined cooling operation in which the operation is performed simultaneously.
【請求項3】 圧縮機、室外側熱交換器、第1の絞り装
置、第2の絞り装置及び室内側熱交換器を順次接続して
形成された一般冷房用回路と、 上記圧縮機、室外側熱交換器、第1の絞り装置、一端が
上記第1の絞り装置と第2の絞り装置間に接続され、他
端が上記室内側熱交換器と上記圧縮機の吸入側との間に
接続された蓄熱用熱交換器により構成された蓄熱用回路
と、 上記蓄熱用熱交換器とこの熱交換器に供給された冷媒と
熱交換関係に充填された蓄熱媒体とを収容する蓄熱槽
と、 上記蓄熱用熱交換器と直列に接続された冷媒搬送手段を
有し、一端が上記第1の絞り装置と第2の絞り装置間に
接続され、他端が上記室内側熱交換器と上記圧縮機の吸
入側との間に接続された直列回路、上記第2の絞り装置
及び上記室内側熱交換器により形成された放冷回路とを
備えたものにおいて、 上記冷媒搬送手段の吐出圧力を検出する吐出圧力検出手
段と、 上記冷媒搬送手段の吸入圧力を検出する吸入圧力検出手
段と、 上記冷媒搬送手段により蓄冷熱を利用して行なう放熱運
転並びに上記圧縮機による一般暖房運転を同時に行なう
蓄熱併用暖房運転時、上記冷媒搬送手段の吐出圧力と吸
入圧力の差が一定になるように上記冷媒搬送手段運転容
量を制御する制御手段とを設けたことを特徴とする蓄熱
式空気調和装置。
3. A general cooling circuit formed by sequentially connecting a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger; An outer heat exchanger, a first expansion device, and one end connected between the first expansion device and the second expansion device, and the other end connected between the indoor heat exchanger and the suction side of the compressor. A heat storage circuit configured by a connected heat storage heat exchanger, and a heat storage tank that stores the heat storage heat exchanger and a heat storage medium filled in a heat exchange relationship with the refrigerant supplied to the heat exchanger. A refrigerant conveying means connected in series with the heat storage heat exchanger, one end of which is connected between the first expansion device and the second expansion device, and the other end of which is connected to the indoor heat exchanger. Formed by a series circuit connected to the suction side of the compressor, the second expansion device, and the indoor heat exchanger A discharge pressure detecting means for detecting a discharge pressure of the refrigerant conveying means, a suction pressure detecting means for detecting a suction pressure of the refrigerant conveying means, and a cool storage by the refrigerant conveying means. when simultaneously heat storage combination heating operation the general heating operation by radiating operation and the compressor is performed by using heat, the refrigerant carrying means operating capacity as a difference of the discharge pressure and the suction pressure of the refrigerant carrying means becomes constant A regenerative air conditioner characterized by comprising control means for controlling.
【請求項4】 圧縮機、室外側熱交換器、第1の絞り装
置、第2の絞り装置及び室内側熱交換器を順次接続して
形成された一般冷房用回路と、 上記圧縮機、室外側熱交換器、第1の絞り装置、一端が
上記第1の絞り装置と第2の絞り装置間に接続され、他
端が上記室内側熱交換器と上記圧縮機の吸入側との間に
接続された蓄熱用熱交換器により構成された蓄熱用回路
と、 上記蓄熱用熱交換器とこの熱交換器に供給された冷媒と
熱交換関係に充填された蓄熱媒体とを収容する蓄熱槽
と、 上記蓄熱用熱交換器と直列に接続された冷媒搬送手段を
有し、一端が上記第1の絞り装置と第2の絞り装置間に
接続され、他端が上記室内側熱交換器と上記圧縮機の吸
入側との間に接続された直列回路、上記第2の絞り装置
及び上記室内側熱交換器により形成された放冷回路とを
備えたものにおいて、 室内機運転容量検出手段と、前記室内機運転容量検出手
段の検出値によって運転モードを決定する運転モード決
定手段とを設けたことを特徴とする蓄熱式空気調和装
置。
4. A general cooling circuit formed by sequentially connecting a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger; An outer heat exchanger, a first expansion device, and one end connected between the first expansion device and the second expansion device, and the other end connected between the indoor heat exchanger and the suction side of the compressor. A heat storage circuit configured by a connected heat storage heat exchanger, and a heat storage tank that stores the heat storage heat exchanger and a heat storage medium filled in a heat exchange relationship with the refrigerant supplied to the heat exchanger. A refrigerant conveying means connected in series with the heat storage heat exchanger, one end of which is connected between the first expansion device and the second expansion device, and the other end of which is connected to the indoor heat exchanger. Formed by a series circuit connected to the suction side of the compressor, the second expansion device, and the indoor heat exchanger Heat storage characterized by comprising: an indoor unit operating capacity detecting means; and an operating mode determining means for determining an operating mode based on a detection value of the indoor unit operating capacity detecting means. Type air conditioner.
【請求項5】 室内機運転容量検出手段の検出値が所定
値以上の場合、冷房もしくは暖房の運転を蓄冷熱併用冷
房運転もしくは蓄熱併用暖房運転から行なうことを特徴
とする請求項4記載の蓄熱式空気調和装置。
5. The heat storage device according to claim 4, wherein when the detected value of the indoor unit operation capacity detection means is equal to or more than a predetermined value, the cooling or heating operation is performed from the cooling operation combined with cooling and heating operation or the combined heating and heating operation. Type air conditioner.
【請求項6】 室内機運転容量検出手段の検出値が所定
値以下の場合、冷房もしくは暖房の運転を一般冷房運転
もしくは一般暖房運転から行なうことを特徴とする請求
項4記載の蓄熱式空気調和装置。
6. The regenerative air conditioner according to claim 4, wherein when the detection value of the indoor unit operation capacity detection means is equal to or less than a predetermined value, the cooling or heating operation is performed from the general cooling operation or the general heating operation. apparatus.
【請求項7】 圧縮機、室外側熱交換器、第1の絞り装
置、第2の絞り装置及び室内側熱交換器を順次接続して
形成された一般冷房用回路と、 上記圧縮機、室外側熱交換器、第1の絞り装置、一端が
上記第1の絞り装置と第2の絞り装置間に接続され、他
端が上記室内側熱交換器と上記圧縮機の吸入側との間に
接続された蓄熱用熱交換器により構成された蓄熱用回路
と、 上記蓄熱用熱交換器とこの熱交換器に供給された冷媒と
熱交換関係に充填された蓄熱媒体とを収容する蓄熱槽
と、 上記蓄熱用熱交換器と直列に接続された冷媒搬送手段を
有し、一端が上記第1の絞り装置と第2の絞り装置間に
接続され、他端が上記室内側熱交換器と上記圧縮機の吸
入側との間に接続された直列回路、上記第2の絞り装置
及び上記室内側熱交換器により形成された放冷回路とを
備えたものにおいて、 運転負荷検出手段と、前記運転負荷検出手段の検出値に
よって運転モードを決定する運転モード決定手段とを設
けたことを特徴とする蓄熱式空気調和装置。
7. A general cooling circuit formed by sequentially connecting a compressor, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger; An outer heat exchanger, a first expansion device, and one end connected between the first expansion device and the second expansion device, and the other end connected between the indoor heat exchanger and the suction side of the compressor. A heat storage circuit configured by a connected heat storage heat exchanger, and a heat storage tank that stores the heat storage heat exchanger and a heat storage medium filled in a heat exchange relationship with the refrigerant supplied to the heat exchanger. A refrigerant conveying means connected in series with the heat storage heat exchanger, one end of which is connected between the first expansion device and the second expansion device, and the other end of which is connected to the indoor heat exchanger. Formed by a series circuit connected to the suction side of the compressor, the second expansion device, and the indoor heat exchanger A regenerative air conditioner, comprising: an operating load detecting means; and an operating mode determining means for determining an operating mode based on a value detected by the operating load detecting means. .
【請求項8】 運転負荷検出手段の検出値が所定値以上
の場合、冷房もしくは暖房の運転を蓄冷熱併用冷房運転
もしくは蓄熱併用暖房運転から行なうことを特徴とする
請求項7記載の蓄熱式空気調和装置。
8. The regenerative air system according to claim 7, wherein when the detected value of the operation load detecting means is equal to or more than a predetermined value, the cooling or heating operation is performed from the cooling / heating / cooling operation or the heating / cooling / heating operation. Harmony equipment.
【請求項9】 運転負荷検出手段の検出値が所定値以下
の場合、冷房もしくは暖房の運転を一般冷房運転もしく
は一般暖房運転から行なうことを特徴とする請求項7記
載の蓄熱式空気調和装置。
9. The regenerative air conditioner according to claim 7, wherein when the detected value of the operation load detecting means is equal to or less than a predetermined value, the cooling or heating operation is performed from the general cooling operation or the general heating operation.
JP5155395A 1993-06-25 1993-06-25 Thermal storage type air conditioner Expired - Lifetime JP3020384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5155395A JP3020384B2 (en) 1993-06-25 1993-06-25 Thermal storage type air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5155395A JP3020384B2 (en) 1993-06-25 1993-06-25 Thermal storage type air conditioner

Publications (2)

Publication Number Publication Date
JPH0712418A JPH0712418A (en) 1995-01-17
JP3020384B2 true JP3020384B2 (en) 2000-03-15

Family

ID=15605024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5155395A Expired - Lifetime JP3020384B2 (en) 1993-06-25 1993-06-25 Thermal storage type air conditioner

Country Status (1)

Country Link
JP (1) JP3020384B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4523709B2 (en) 2000-09-05 2010-08-11 ジャパンゴアテックス株式会社 Luminescent composite fabric and clothing

Also Published As

Publication number Publication date
JPH0712418A (en) 1995-01-17

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
US20020033024A1 (en) Utilization of harvest and/or melt water from an ice machine for a refrigerant subcool/precool system and method therefor
JP3352469B2 (en) Air conditioner
US11162723B2 (en) Methods and systems for controlling working fluid in HVACR systems
JP3020384B2 (en) Thermal storage type air conditioner
JP3071328B2 (en) Heat storage type cooling device
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP2757660B2 (en) Thermal storage type air conditioner
JP3370501B2 (en) Cooling system
JP3814877B2 (en) Thermal storage air conditioner
JPH11182948A (en) Air conditioner
JP2000240980A (en) Refrigerator/air conditioner
JP3015560B2 (en) Heat storage type cooling device
JPH06159743A (en) Heat accumulation type cooling device
JP3903292B2 (en) Thermal storage air conditioner
JPH07848Y2 (en) Heat pump type air conditioner
JP2500979B2 (en) Thermal storage refrigeration cycle device
JP2870392B2 (en) Thermal storage type air conditioner
JP2855954B2 (en) Thermal storage type air conditioner
JP2833339B2 (en) Thermal storage type air conditioner
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
JP3660120B2 (en) Control method of air conditioner
JPH0794927B2 (en) Air conditioner
JP3197107B2 (en) Thermal storage type air conditioner
JP2710883B2 (en) Operation control method in regenerative refrigerating cycle device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080114

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120114

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130114

Year of fee payment: 13

EXPY Cancellation because of completion of term