JP2000240980A - Refrigerator/air conditioner - Google Patents

Refrigerator/air conditioner

Info

Publication number
JP2000240980A
JP2000240980A JP11045024A JP4502499A JP2000240980A JP 2000240980 A JP2000240980 A JP 2000240980A JP 11045024 A JP11045024 A JP 11045024A JP 4502499 A JP4502499 A JP 4502499A JP 2000240980 A JP2000240980 A JP 2000240980A
Authority
JP
Japan
Prior art keywords
heat
air
refrigeration
air conditioner
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11045024A
Other languages
Japanese (ja)
Inventor
Yuuji Fujimoto
裕地 藤本
Osamu Ishiyama
修 石山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP11045024A priority Critical patent/JP2000240980A/en
Publication of JP2000240980A publication Critical patent/JP2000240980A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/22Refrigeration systems for supermarkets

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

PROBLEM TO BE SOLVED: To enhance refrigeration efficiency of a refrigerator/air conditioner having loads on both cooling/heating operation and refrigerating/freezing load. SOLUTION: In a convenience store, for example, a single compressor is shared by an indoor unit 7 for air conditioning and a showcase body 10. When a heating load and a refrigerating/freezing load are generated simultaneously in winter season, for example, air in the showcase is employed as a hot heat source for heating and indoor air is employed as a cold heat source for refrigeration/freezing. Since conventionally exhausted waste heat is utilized mutually and simultaneously, energy can be saved.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、スーパー、コン
ビニエンスストアなどの店舗や食品工場など、室内空調
負荷と食品の冷蔵冷凍保存とが同時または別々に発生す
る施設において使用される冷凍空調装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration / air-conditioning apparatus used in a facility where indoor air-conditioning load and refrigeration / freezing and preservation of food occur simultaneously or separately, such as a store such as a supermarket or a convenience store or a food factory.

【0002】[0002]

【従来の技術】上記施設において使用される従来の冷凍
空調装置は、空調機とショーケースとでそれぞれ独立し
た冷媒回路及び制御回路を構成し、各々に圧縮機、凝縮
器、絞り装置及び蒸発器を有し、冷媒配管などの工事も
独立して行われている。図18は、そのような従来装置
を示すものである。図18において、(A)は空調機を
示し、その1aは圧縮機、2aは四方向切換弁(以下、
四方弁などという。)、3aは室外熱交換器、4aは室
外器、5は冷房用絞り装置、6は室内熱交換器、7は空
調室内器、11は暖房用絞り装置である。絞り装置11に
は二方弁301が直列に接続され、またそれらと並列に
逆止弁204が接続されている。同様に、絞り装置5に
ついても、二方弁302及び逆止弁201が設けられて
いる。一方、(B)はショーケースを示し、その1bは
圧縮機、3bは室外熱交換器、4bは室外器、8は絞り
装置、9は室内熱交換器、10はショーケース本体であ
る。
2. Description of the Related Art A conventional refrigeration / air-conditioning system used in the above-mentioned facilities comprises a refrigerant circuit and a control circuit which are independent of an air conditioner and a showcase, and each of which has a compressor, a condenser, a throttle device and an evaporator. The construction of refrigerant piping and the like is also performed independently. FIG. 18 shows such a conventional apparatus. In FIG. 18, (A) shows an air conditioner, in which 1a is a compressor, 2a is a four-way switching valve (hereinafter, referred to as a four-way switching valve)
It is called a four-way valve. ), 3a is an outdoor heat exchanger, 4a is an outdoor unit, 5 is a cooling throttle device, 6 is an indoor heat exchanger, 7 is an air conditioning indoor unit, and 11 is a heating throttle device. A two-way valve 301 is connected in series to the expansion device 11, and a check valve 204 is connected in parallel with the two-way valve 301. Similarly, the throttle device 5 is also provided with a two-way valve 302 and a check valve 201. On the other hand, (B) shows a showcase, in which 1b is a compressor, 3b is an outdoor heat exchanger, 4b is an outdoor unit, 8 is a throttle device, 9 is an indoor heat exchanger, and 10 is a showcase body.

【0003】図18において、例えば冬季に暖房負荷と
冷蔵冷凍負荷とが同時に発生した場合に、図19に示す
ように(A)の空調機では、冷媒が四方弁2aの切換に
より太線で示した回路を矢印の方向に移動、循環する。
すなわち、圧縮機1aで高温高圧となった冷媒は、室内
交換器6に送られて室内空気と熱交換して放熱し、室内
空気の暖房を行う。凝縮器6で凝縮した冷媒は絞り装置
11により低温低圧にされ、室外熱交換器3aにおいて
室外空気と熱交換して蒸発した後、圧縮機1aに戻され
る。一方(B)のショーケースでは、冷媒が太線の回路
を矢印の方向に移動、循環する。すなわち、圧縮機1b
により高温高圧となった冷媒は室外熱交換器3bに送ら
れ、低温の室外空気と熱交換して放熱することにより凝
縮する。次いで、絞り装置8により低温低圧にされ、庫
内熱交換器9により庫内空気と熱交換して吸熱、蒸発し
て庫内を冷却した後、圧縮機1bに戻される。
In FIG. 18, for example, when a heating load and a refrigeration load are simultaneously generated in winter, in the air conditioner shown in FIG. 19A, the refrigerant is indicated by a bold line by switching the four-way valve 2a. Move and circulate the circuit in the direction of the arrow.
That is, the refrigerant that has become high temperature and high pressure in the compressor 1a is sent to the indoor exchanger 6, exchanges heat with the indoor air, radiates heat, and heats the indoor air. The refrigerant condensed in the condenser 6 is made low-temperature and low-pressure by the expansion device 11, and exchanges heat with outdoor air in the outdoor heat exchanger 3a, evaporates, and then returns to the compressor 1a. On the other hand, in the showcase (B), the refrigerant moves and circulates in the bold line circuit in the direction of the arrow. That is, the compressor 1b
The high-temperature and high-pressure refrigerant is sent to the outdoor heat exchanger 3b, and exchanges heat with low-temperature outdoor air to radiate heat and condense. Next, the temperature is reduced to a low temperature and low pressure by the expansion device 8, the heat is exchanged with the air in the refrigerator by the heat exchanger 9 in the refrigerator, heat is absorbed and evaporated to cool the refrigerator, and then returned to the compressor 1b.

【0004】また、図20に示すように、夏季には空調
機の冷媒は四方弁2aの切換により、太線の回路を矢印
の方向に移動、循環する。すなわち、圧縮機1aにより
高温高圧となった冷媒は室外熱交換器3aに送られ、低
温の室外空気と熱交換して放熱することにより凝縮す
る。次いで、絞り装置5により低温低圧にされた後、室
内熱交換器6において室内空気と熱交換して蒸発し、室
内空気を冷房して圧縮機1aに戻される。空調機とショ
ーケースの以上の運転は同時に行われる。
As shown in FIG. 20, in summer, the refrigerant of the air conditioner moves and circulates in the bold line circuit in the direction of the arrow by switching the four-way valve 2a. That is, the refrigerant which has become high temperature and high pressure by the compressor 1a is sent to the outdoor heat exchanger 3a, and exchanges heat with low temperature outdoor air to radiate heat and condense. Next, after the pressure is reduced to a low temperature and low pressure by the expansion device 5, the indoor heat exchanger 6 exchanges heat with the indoor air to evaporate, cools the indoor air, and returns to the compressor 1a. The above operations of the air conditioner and the showcase are performed simultaneously.

【0005】[0005]

【発明が解決しようとする課題】上記した従来の冷凍空
調装置においては、空調機とショーケースとで各々独立
した冷媒回路及び制御回路を構成し、それぞれに圧縮
機、凝縮器、絞り装置及び蒸発器を有しているため、冬
期には空調機側では室内を加熱して室外を冷却し、同時
にショーケース側では庫内を冷却して室外空気を加熱し
ている。すなわち、暖房負荷(冷熱源)と冷蔵冷凍負荷
(温熱源)とが同一空間で同時又は別々に発生している
にもかかわらず、空調機側の温熱源とショーケース側の
冷熱源とを互いに独立して室外空気から得ているため
に、非効率的で電力エネルギを浪費する結果となってい
た。
In the above-mentioned conventional refrigeration and air-conditioning system, the air conditioner and the showcase constitute independent refrigerant circuits and control circuits, respectively, and have a compressor, a condenser, a throttle device, and an evaporator, respectively. In the winter, the air conditioner heats the room and cools the outside, and the showcase heats the room to heat the outdoor air in the winter. That is, although the heating load (cold heat source) and the refrigeration load (warm heat source) are generated simultaneously or separately in the same space, the heat source on the air conditioner side and the cold heat source on the showcase side are mutually connected. Independently obtained from outdoor air has resulted in inefficiency and wasted power energy.

【0006】また、夏期においては、昼間の冷房・冷却
負荷が増大する一方で、夜間の室外空気温度の低下によ
り昼夜間の電力負荷の格差が増大し、特に夜間閉店する
スーパーなどではその格差がますます増大するという問
題が生じていた。更に、運転制御面では、空調機及びシ
ョーケースの各圧縮機をそれぞれの室内温度及び庫内温
度に応じて個別に運転・停止を繰り返し,あるいはイン
バータモータの回転数制御を行っているため、運転効率
の向上や熱損失の低減は圧縮機ごとに個別に考えなけれ
ばならず、結果として非効率となっていた。更に又、各
圧縮機別に冷却の能力の安全率をみなければならないた
め、全体として設備容量が過大になる傾向にあった。こ
の発明は、上記した問題に鑑みてなされたもので、空調
機とショーケースとを含む冷凍空調装置の省エネルギー
及び設備費の低減を図ることを課題とするものである。
In summer, the cooling / cooling load in the daytime increases, while the difference in power load between the daytime and nighttime increases due to a decrease in the outdoor air temperature at night, and the difference particularly occurs in supermarkets closed at night. A problem of increasing numbers has arisen. Furthermore, in terms of operation control, the compressors of the air conditioner and the showcase are individually operated and stopped repeatedly according to the room temperature and the internal temperature, or the rotation speed of the inverter motor is controlled. Improving efficiency and reducing heat loss had to be considered individually for each compressor, resulting in inefficiency. Furthermore, since the safety factor of the cooling capacity must be checked for each compressor, the installed capacity tends to be excessive as a whole. The present invention has been made in view of the above-described problems, and has as its object to save energy and reduce equipment costs of a refrigeration air conditioner including an air conditioner and a showcase.

【0007】[0007]

【課題を解決するための手段】この発明は、冷凍サイク
ルにより室内の冷暖房を行うヒートポンプ式の空調機
と、同じく食品の冷蔵冷凍保存を行うショーケースとか
らなる冷凍空調装置において、前記空調機及びショーケ
ースに対して1台の圧縮機を共通に設け、この圧縮機に
より室内の冷暖房及び食品保存の両方を行わせることに
より、上記課題を解決するものである(請求項1)。そ
の場合、前記空調機の室内熱交換器の出口には蒸発圧力
調整弁を挿入するのがよい(請求項2)。これにより、
ショーケースに比べて高い空調機の蒸発圧力をショーケ
ースの影響を受けることなく適正に維持することができ
る。また、上記冷凍空調装置の冷媒回路には蓄熱装置を
接続するのがよい(請求項3)。
SUMMARY OF THE INVENTION The present invention relates to a refrigeration air conditioner comprising a heat pump type air conditioner for cooling and heating a room by a refrigeration cycle and a showcase for refrigerated storage of foods. The present invention solves the above-mentioned problem by providing one compressor in common for a showcase and performing both indoor cooling and heating and food preservation by the compressor (claim 1). In that case, it is preferable to insert an evaporation pressure regulating valve at the outlet of the indoor heat exchanger of the air conditioner (claim 2). This allows
The evaporating pressure of the air conditioner, which is higher than that of the showcase, can be properly maintained without being affected by the showcase. Further, it is preferable to connect a heat storage device to the refrigerant circuit of the refrigeration air conditioner (claim 3).

【0008】上記したこの発明によれば、例えば冬期に
おいて、暖房負荷及び冷蔵冷凍負荷が同時に発生した場
合、暖房の温熱源としてショーケースの庫内空気を用
い、冷蔵冷凍の冷熱源として室内空気を用いることによ
り、従来排熱として室外に捨てられていた熱を相互に同
時利用し、省エネルギー、ランニングコストの低減を図
ることができる。また、暖房負荷及び冷蔵冷凍負荷が別
々に発生した場合には、室外熱交換器により暖房は室外
空気から吸熱し、冷蔵冷凍は室外空気に放熱させるよう
に運転する。その場合、冷媒回路に蓄熱装置を接続する
ことにより、暖房負荷時には、夜間電力を利用してある
いはショーケースの凝縮排熱により蓄熱剤に蓄熱させた
温熱から蒸発熱を吸熱させるようにして、暖房効率を向
上させ、また冷蔵冷凍負荷時には、凝縮排熱を蓄熱剤に
放熱して蓄熱することにより排熱を有効利用することが
できる。
According to the above-described invention, for example, when a heating load and a refrigeration load are simultaneously generated in winter, the air inside the showcase is used as a heat source for heating, and the indoor air is used as a cold heat source for refrigeration. By using the heat, the heat that has been conventionally discarded outside as exhaust heat can be simultaneously used, thereby saving energy and reducing running costs. Further, when the heating load and the refrigeration load are generated separately, the outdoor heat exchanger operates so that the heat is absorbed from the outdoor air and the refrigeration is radiated to the outdoor air. In that case, by connecting a heat storage device to the refrigerant circuit, at the time of a heating load, the evaporative heat is absorbed from the heat stored in the heat storage agent by using nighttime electric power or by condensing and discharging heat of the showcase, thereby heating the room. Efficiency can be improved, and at the time of a refrigeration load, the exhaust heat can be effectively used by dissipating the condensed exhaust heat to the heat storage agent and storing the heat.

【0009】一方、例えば夏期において、圧縮機は冷房
又は冷蔵冷凍の一方の要求でも運転されるため、運転率
が上昇して運転効率の向上、熱損失の低減が図れ、設備
容量の削減が可能になる。また、その場合にも蓄熱装置
を接続すれば、夜間、室外空気温度の低下により冷房・
冷蔵冷凍負荷が低下し、圧縮機の運転率が低下した際
に、夜間電力を利用して圧縮機の余剰冷凍能力により蓄
熱剤に蓄冷し、冷房・冷蔵冷凍負荷が大きい昼間に凝縮
熱を蓄熱剤に放熱することにより、冷凍効率を向上させ
ることが可能になる。更に、配管構成が従来に比べてに
簡素化され、工事費が大幅に低減する。
On the other hand, in the summer, for example, the compressor is operated in response to either a request for cooling or refrigeration and freezing, so that the operation rate is increased, the operation efficiency is improved, the heat loss is reduced, and the installed capacity can be reduced. become. Also, in this case, if a heat storage device is connected, cooling /
When the refrigeration load is reduced and the operating rate of the compressor is reduced, the electric power is stored in the heat storage agent by the extra refrigeration capacity of the compressor using nighttime electric power, and the heat of condensation is stored during the day when the cooling / refrigeration load is large. By releasing heat to the agent, the refrigeration efficiency can be improved. Further, the piping configuration is simplified as compared with the conventional case, and the construction cost is greatly reduced.

【0010】[0010]

【実施の形態】以下、図1〜図17に基づいて、この発
明の実施の形態について説明する。なお、従来例と対応
する部分には同一の符号を用いるものとする。まず、図
1は基本的な実施の形態を示すものである。図1におい
て、図18の従来例と相違するのは、空調機及びショー
ケースに対して圧縮機1が共通に1台設けられ、四方弁
2及び三方弁108を介して接続された共通の室外器4
から、三方弁101〜107を介して空調室内器7及び
ショーケース本体10に冷媒が供給され、室内熱交換器
6の出口側に蒸発圧力調整弁12が挿入されている点で
ある。又、三方弁107と三方弁との間には、バイパス
管路が設けられている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. Note that the same reference numerals are used for the portions corresponding to the conventional example. First, FIG. 1 shows a basic embodiment. 1 is different from the conventional example of FIG. 18 in that one compressor 1 is provided in common for the air conditioner and the showcase, and the common outdoor is connected via a four-way valve 2 and a three-way valve 108. Vessel 4
Thus, the refrigerant is supplied to the air-conditioning indoor unit 7 and the showcase body 10 via the three-way valves 101 to 107, and the evaporation pressure adjusting valve 12 is inserted at the outlet side of the indoor heat exchanger 6. Further, a bypass pipe is provided between the three-way valve 107 and the three-way valve.

【0011】次に、図2は図1の冷媒回路に蓄熱装置1
6を接続した実施の形態を示すものである。図2におい
て、蓄熱装置16は例えば水からなる蓄熱剤14と接触
する熱交換器15を有し、その一端は絞り装置13及び
三方弁109を介して三方弁107,108に接続さ
れ、他端は三方弁110を介して圧縮機1の吸込み側及
び三方弁107と三方弁102との間に接続されてい
る。
Next, FIG. 2 shows a heat storage device 1 in the refrigerant circuit of FIG.
6 shows an embodiment in which 6 is connected. In FIG. 2, a heat storage device 16 has a heat exchanger 15 in contact with a heat storage agent 14 made of, for example, water, and one end thereof is connected to three-way valves 107 and 108 via a throttle device 13 and a three-way valve 109, and the other end. Is connected via a three-way valve 110 to the suction side of the compressor 1 and between the three-way valve 107 and the three-way valve 102.

【0012】図3〜図7は、図1の装置の各弁の切り換
えによる各種の運転モードを示すもので、冷媒は太線及
び矢印で示す方向に移動、循環する。図3は空調機の冷
房モードを示し、圧縮機1により高温高圧にされた冷媒
は室外熱交換器3で凝縮して液体となり、次いで空調室
内器7の例えばキャピラリーチューブからなる絞り装置
5により減圧されて低温低圧となる。この液冷媒は室内
熱交換器6で室内空気と熱交換して室内空気を冷却す
る。蒸発して気体となった冷媒は、蒸発圧力調整弁12
を通って圧縮機1に戻る。
FIGS. 3 to 7 show various operation modes by switching each valve of the apparatus shown in FIG. 1, and the refrigerant moves and circulates in the directions shown by thick lines and arrows. FIG. 3 shows a cooling mode of the air conditioner, in which the refrigerant heated to a high temperature and a high pressure by the compressor 1 is condensed by the outdoor heat exchanger 3 to become a liquid, and then decompressed by the expansion device 5 of the air conditioner indoor unit 7, which is composed of, for example, a capillary tube. The pressure is low and low. The liquid refrigerant exchanges heat with the indoor air in the indoor heat exchanger 6 to cool the indoor air. The vaporized refrigerant is evaporated by the evaporation pressure regulating valve 12.
And returns to the compressor 1.

【0013】図4はショーケースの冷蔵冷凍モードを示
し、室外熱交換器3からの液冷媒は、三方弁103の切
り換えによりショーケース本体10に移動し,例えば温
度式膨張弁からなる絞り装置8により減圧されて低温低
圧となる。この液冷媒は庫内熱交換器9で庫内空気と熱
交換し、蒸発して庫内空気を冷却する。気体となったな
った冷媒は、三方弁105,106を経て圧縮機1に戻
る。
FIG. 4 shows the refrigeration / freezing mode of the showcase. The liquid refrigerant from the outdoor heat exchanger 3 moves to the showcase main body 10 by switching the three-way valve 103, and the expansion device 8 includes, for example, a temperature type expansion valve. To reduce the pressure to a low temperature and low pressure. The liquid refrigerant exchanges heat with the inside air in the inside heat exchanger 9 and evaporates to cool the inside air. The gasified refrigerant returns to the compressor 1 via the three-way valves 105 and 106.

【0014】図5に冷房及び冷蔵冷凍の同時運転モード
を示す。室外熱交換器3からの液冷媒は、三方弁103
で分岐して空調室内器7及びショーケース本体10にそ
れぞれ移動し、図3及び図4で述べたようにそれぞれ冷
房及び冷却した後、三方弁106で合流し,圧縮機1に
戻る。
FIG. 5 shows a simultaneous operation mode of cooling and refrigeration. The liquid refrigerant from the outdoor heat exchanger 3 is supplied to the three-way valve 103
And move to the air-conditioning indoor unit 7 and the showcase main body 10, respectively. After cooling and cooling, respectively, as described in FIGS. 3 and 4, they are merged by the three-way valve 106 and return to the compressor 1.

【0015】図6は、空調機の暖房モードを示すもので
ある。図6において、圧縮機1からの高温高圧の冷媒
は、四方弁2の切り換えにより逆止弁204を通って空
調室内器7に入り、室内熱交換器6で室内空気と熱交換
し、凝縮して室内空気を加熱暖房する。液体となった冷
媒は逆止弁201を通り、例えばキャピラリーチューブ
からなる絞り装置11により減圧されて低温低圧とな
る。次いで、室外熱交換器3で室外空気と熱交換して気
体となり、圧縮機1に戻る。
FIG. 6 shows a heating mode of the air conditioner. In FIG. 6, the high-temperature and high-pressure refrigerant from the compressor 1 enters the air-conditioning indoor unit 7 through the check valve 204 by switching the four-way valve 2, exchanges heat with the indoor air in the indoor heat exchanger 6, and condenses. Heating and heating the indoor air. The refrigerant that has become liquid passes through the check valve 201 and is decompressed by the expansion device 11 composed of, for example, a capillary tube, and becomes low temperature and low pressure. Next, the heat is exchanged with the outdoor air in the outdoor heat exchanger 3 to form a gas, and the gas returns to the compressor 1.

【0016】図7に暖房及び冷蔵冷凍の同時運転モード
を示す。図6で述べたように、空調室内器7により室内
空気を暖房して液化とした冷媒は、三方弁103の切り
換えによりショーケース本体10に移動し、庫内空気を
冷却して蒸発した後、三方弁105,102及び四方弁
2を経て圧縮機1に戻る。このように、ショーケース庫
内空気の冷熱源として室内空気を利用することにより、
省エネルギが可能になる。
FIG. 7 shows a simultaneous operation mode of heating and refrigeration. As described in FIG. 6, the refrigerant liquefied by heating the indoor air by the air-conditioning indoor unit 7 moves to the showcase body 10 by switching the three-way valve 103, and cools and evaporates the air in the refrigerator. The flow returns to the compressor 1 via the three-way valves 105 and 102 and the four-way valve 2. In this way, by using indoor air as a cold source of air in the showcase storage,
Energy saving becomes possible.

【0017】図8〜図17は、図2の装置の各種運転モ
ードを示し、まず図8は蓄冷モードを示すものである。
図8において、例えば夏期に夜間電力を利用して、圧縮
機1により高温高圧にされた冷媒は、四方弁2から室外
器4に移動し、室外熱交換器3で室外空気と熱交換して
凝縮する。この液冷媒は三方弁101,107,109を
経て、例えば温度式膨張弁からなる絞り装置13により
減圧されて低温低圧となり、蓄熱装置16に入って熱交
換器15で蓄熱剤14と熱交換し、蒸発して蓄熱剤に蓄
冷した後、三方弁110を経て圧縮機1に戻る。この蓄
冷モードは,夜間電力が適用される22:00〜翌日
8:00の間に行われ、蓄熱剤14に所定の蓄冷量が確
保されると完了する。
FIGS. 8 to 17 show various operation modes of the apparatus shown in FIG. 2, and FIG. 8 shows a cold storage mode.
In FIG. 8, for example, using the nighttime power in the summer, the refrigerant that has been made high-temperature and high-pressure by the compressor 1 moves from the four-way valve 2 to the outdoor unit 4 and exchanges heat with the outdoor air in the outdoor heat exchanger 3. Condense. This liquid refrigerant passes through three-way valves 101, 107 and 109 and is reduced in pressure by a throttle device 13 composed of, for example, a temperature-type expansion valve to a low temperature and low pressure, enters a heat storage device 16 and exchanges heat with a heat storage agent 14 in a heat exchanger 15. After evaporating and storing the heat in the heat storage agent, the flow returns to the compressor 1 via the three-way valve 110. This cool storage mode is performed between 22:00 when the nighttime power is applied and 8:00 the next day, and is completed when a predetermined amount of cool storage in the heat storage agent 14 is secured.

【0018】図9に、冷房及び蓄冷の同時運転モードを
示す。これは図8に示した蓄冷モード時に冷房負荷が発
生した場合のモードで、室外熱交換器3からの液冷媒は
三方弁107で分岐し、空調室内器7及び蓄熱装置16
に移動して、それぞれ室内空気の冷房及び蓄冷を行う。
FIG. 9 shows a simultaneous operation mode of cooling and cold storage. This is a mode when a cooling load occurs in the cold storage mode shown in FIG. 8, in which the liquid refrigerant from the outdoor heat exchanger 3 branches off at the three-way valve 107, and the air conditioner indoor unit 7 and the heat storage device 16
To cool and cool the indoor air, respectively.

【0019】図10に、冷蔵冷凍及び蓄冷の同時運転モ
ードを示す。これは図8に示した蓄冷モード時に冷蔵冷
凍負荷が発生した場合のモードで、室外熱交換器3から
の液冷媒は三方弁107で分岐し、一部は蓄熱装置16
に移動し、残りは三方弁103を経てショーケース本体
10に移動し、庫内空気を冷却した後、三方弁106を
経て圧縮機1に戻る。
FIG. 10 shows a simultaneous operation mode of refrigeration and freezing. This is a mode in which a refrigeration load occurs in the cold storage mode shown in FIG. 8, in which the liquid refrigerant from the outdoor heat exchanger 3 branches off at the three-way valve 107, and a part thereof
The rest moves to the showcase body 10 via the three-way valve 103, cools the air in the refrigerator, and returns to the compressor 1 via the three-way valve 106.

【0020】図11に冷房、冷蔵冷凍及び蓄冷の同時運
転モードを示す。これは図8に示した蓄冷モード時に冷
房及び冷蔵冷凍負荷が発生した場合のモードで、室外熱
交換器3からの液冷媒は三方弁107で分岐し、一部は
蓄熱装置16に移動し、残りは更に三方弁103で分岐
し、空調室内器7及びショーケース本体10に移動しそ
れぞれ室内空気の冷房及び庫内空気の冷却を行った後、
三方弁106で合流して圧縮機1に戻る。
FIG. 11 shows a simultaneous operation mode of cooling, refrigeration and freezing. This is a mode in which a cooling and refrigeration load occurs in the cold storage mode shown in FIG. 8, in which the liquid refrigerant from the outdoor heat exchanger 3 branches off at the three-way valve 107, and a part moves to the heat storage device 16, The remainder is further branched by a three-way valve 103, moved to the air-conditioning indoor unit 7 and the showcase main body 10, and cooled the indoor air and the air in the refrigerator, respectively.
Merge at the three-way valve 106 and return to the compressor 1.

【0021】図12に、放冷・冷房モードを示す。例え
ば夜間に蓄熱剤14に蓄冷された冷熱を用いて、昼間の
冷房モード時に冷媒を過冷却することにより、冷凍効率
の向上を図るものである。図12において、室外熱交換
器3で凝縮した液冷媒は三方弁108の切り換えにより
蓄熱装置16に移動する。この液冷媒は、三方弁109
を経て絞り装置13により減圧され、次いで熱交換器1
5で蓄熱剤14との熱交換により過冷却された後、三方
弁102,103を経て空調室内器7に移動して冷房を
行う。
FIG. 12 shows the cooling / cooling mode. For example, the refrigeration efficiency is improved by supercooling the refrigerant in the daytime cooling mode using the cold stored in the heat storage agent 14 at night. In FIG. 12, the liquid refrigerant condensed in the outdoor heat exchanger 3 moves to the heat storage device 16 by switching the three-way valve 108. This liquid refrigerant is supplied to the three-way valve 109.
The pressure is reduced by the expansion device 13 through the
After being supercooled by heat exchange with the heat storage agent 14 in 5, it moves to the air-conditioning indoor unit 7 via the three-way valves 102 and 103 to perform cooling.

【0022】図13に、放冷・冷蔵冷凍モードを示す。
図12で述べたように過冷却された液冷媒は、三方弁1
02,103を経てショーケース本体10に移動し、庫
内空気を冷却した後、三方弁106を経て圧縮機1に戻
る。
FIG. 13 shows a cooling / refrigerating freezing mode.
The liquid refrigerant supercooled as described in FIG.
After moving to the showcase main body 10 through 02 and 103 and cooling the air in the refrigerator, the air returns to the compressor 1 through the three-way valve 106.

【0023】図14は,放冷・冷房及び放冷・冷蔵冷凍
の同時運転モードを示す。蓄熱装置16での熱交換によ
り過冷却された冷媒は、三方弁110,102を経て三
方弁103で分岐し、空調室内器7及びショーケース本
体10に移動する。そして、室内空気の冷房及び庫内空
気の冷却を行った後、三方弁106で合流して圧縮機1
に戻る。
FIG. 14 shows a simultaneous operation mode of cooling / cooling and cooling / refrigeration freezing. The refrigerant supercooled by the heat exchange in the heat storage device 16 branches off at the three-way valve 103 via the three-way valves 110 and 102 and moves to the air-conditioning indoor unit 7 and the showcase body 10. After cooling the room air and cooling the air in the refrigerator, the three-way valve 106 joins the compressor 1
Return to

【0024】図15は蓄温モードを示すものである。例
えば冬期において、夜間電力を利用して圧縮機1により
高温高圧にされた冷媒は、四方弁2の切り換えにより、
三方弁106,105,102,110を経て蓄熱装置
16に移動する。そして、熱交換器15で蓄熱剤14と
熱交換して凝縮し,蓄熱剤14に蓄温した後、三方弁1
09,107,101を経て、絞り装置13により減圧
されて低温低圧となり、室外熱交換器3で室外空気と熱
交換して蒸発し、圧縮機1に戻る。この蓄温モードは,
夜間電力が適用される22:00〜翌日8:00の間に
行われ,蓄熱剤14に所定の蓄温量が確保されると完了
する。もっとも一般的には、暖房負荷は夜間に大きくな
るので、蓄温エネルギの利用は夜間こそ必要になる。そ
こで、通常は次に説明するように、冷蔵冷凍時の温排熱
を一日を通じて逐次蓄温する。
FIG. 15 shows the temperature storage mode. For example, in the winter season, the refrigerant which has been made high-temperature and high-pressure by the compressor 1 using the nighttime electric power, by switching the four-way valve 2,
It moves to the heat storage device 16 via the three-way valves 106, 105, 102, 110. Then, the heat exchanger 15 exchanges heat with the heat storage agent 14 to condense and store the heat in the heat storage agent 14.
After passing through 09, 107, and 101, the pressure is reduced by the expansion device 13 to a low temperature and a low pressure, and the outdoor heat exchanger 3 exchanges heat with outdoor air to evaporate, and returns to the compressor 1. This thermal storage mode
The operation is performed between 22:00 when the nighttime power is applied and 8:00 the next day, and is completed when a predetermined amount of heat storage is secured in the heat storage agent 14. Most generally, however, the heating load increases at night, so that the use of stored energy is required only at night. Therefore, normally, as described below, the warm exhaust heat during refrigeration and freezing is sequentially stored throughout the day.

【0025】図16に、冷蔵冷凍及び排熱蓄温の同時運
転モードを示す。これは例えば冬期において、図4に示
す通常の冷蔵冷凍モードにおいては、圧縮機1で高温高
圧とされた冷媒は室外熱交換器3での室外空気との熱交
換により排熱させていたが、図16においては、この熱
を蓄熱剤14に放熱、つまり蓄温して凝縮させる。この
冷媒は、三方弁110,102,103を経てショーケ
ース本体10に移動し、庫内空気を冷却して圧縮機1に
戻る。冷蔵冷凍負荷は、24時間のコンビニエンススト
アなどでは一日を通じて比較的安定しているので、温排
熱は安定して蓄温が可能であり、これを暖房モード時に
温熱源として利用することにより、安定的に効率向上を
図ることができる。
FIG. 16 shows a simultaneous operation mode of refrigeration and freezing and exhaust heat storage. This is, for example, in winter, in the normal refrigeration mode shown in FIG. 4, the refrigerant which has been made high-temperature and high-pressure in the compressor 1 is exhausted by heat exchange with outdoor air in the outdoor heat exchanger 3. In FIG. 16, this heat is radiated to the heat storage agent 14, that is, the heat is stored and condensed. This refrigerant moves to the showcase body 10 via the three-way valves 110, 102, and 103, cools the air in the refrigerator, and returns to the compressor 1. Since the refrigeration and freezing load is relatively stable throughout the day in a 24-hour convenience store or the like, the warm exhaust heat can be stably stored, and by using this as a heat source in the heating mode, The efficiency can be stably improved.

【0026】図17に、放熱・暖房モードを示す。これ
は図20の暖房モードでは、室内空気を暖房して凝縮し
た冷媒を室外熱交換器3aで室外空気と熱交換させて蒸
発させていたが、図17では空調室内器7で凝縮した冷
媒を三方弁107,109を経て絞り装置13で減圧し
た後、蓄熱剤14に蓄温された温熱と熱交換させること
により蒸発させ、三方弁110を経て圧縮機1に戻す。
これにより蒸発温度を上昇させ、効率向上を図ることが
できる。
FIG. 17 shows the heat radiation / heating mode. In the heating mode in FIG. 20, the refrigerant condensed by heating the indoor air is exchanged with the outdoor air in the outdoor heat exchanger 3a to evaporate. In FIG. 17, the refrigerant condensed in the air-conditioned indoor unit 7 is removed. After the pressure is reduced by the expansion device 13 through the three-way valves 107 and 109, the heat is exchanged with the heat stored in the heat storage agent 14 to evaporate, and then returned to the compressor 1 through the three-way valve 110.
As a result, the evaporation temperature can be increased, and the efficiency can be improved.

【0027】[0027]

【発明の効果】以上の通り、この発明によれば、ヒート
ポンプ式空調機の圧縮機と冷蔵冷凍ショーケースの圧縮
機とを統合して、一台の圧縮機で冷暖房と冷蔵冷凍とを
行わせるようにすることにより、冬期において、暖房の
温熱源としてショーケースの庫内空気を用い、冷蔵冷凍
の冷熱源として室内空気を用いて、従来排熱として室外
に捨てられていた熱を相互に有効利用して、省エネル
ギ、ランニングコストの低減を図ることができる。ま
た、夏期においては運転率の上昇に伴う運転効率の向
上、熱損失の低減が図れ、設備容量の削減が可能にな
る。更に、冷媒回路に蓄熱装置を接続することにより、
排熱の一層の有効利用が可能になり、かつ夏期の昼夜間
の電力負荷の平準化が可能になる。
As described above, according to the present invention, the compressor of the heat pump type air conditioner and the compressor of the refrigeration freezer showcase are integrated to perform the cooling, heating and refrigeration with one compressor. In this way, in the winter season, the air inside the showcase is used as the heat source for heating, the room air is used as the cold heat source for refrigeration and freezing, and the heat that was previously discarded outside as the exhaust heat is mutually effective. Utilization can save energy and reduce running costs. Further, in the summer, the operation efficiency can be improved and the heat loss can be reduced with an increase in the operation rate, and the installed capacity can be reduced. Furthermore, by connecting a heat storage device to the refrigerant circuit,
The waste heat can be more effectively used, and the power load can be leveled during the daytime and nighttime in summer.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の実施の形態を示す冷凍空調装置の冷
媒回路図である。
FIG. 1 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus showing an embodiment of the present invention.

【図2】この発明の異なる実施の形態を示す冷凍空調装
置の冷媒回路図である。
FIG. 2 is a refrigerant circuit diagram of a refrigeration / air-conditioning apparatus showing a different embodiment of the present invention.

【図3】図1の装置の冷房モードを示す冷媒回路図であ
る。
FIG. 3 is a refrigerant circuit diagram illustrating a cooling mode of the apparatus of FIG. 1;

【図4】図1の装置の冷蔵冷凍モードを示す冷媒回路図
である。
FIG. 4 is a refrigerant circuit diagram illustrating a refrigeration mode of the apparatus of FIG. 1;

【図5】図1の装置の冷房及び冷蔵冷凍の同時モードを
示す冷媒回路図である。
FIG. 5 is a refrigerant circuit diagram showing simultaneous cooling and refrigeration modes of the apparatus of FIG. 1;

【図6】図1の装置の暖房モードを示す冷媒回路図であ
る。
FIG. 6 is a refrigerant circuit diagram illustrating a heating mode of the apparatus of FIG. 1;

【図7】図1の装置の暖房及び冷蔵冷凍の同時モードを
示す冷媒回路図である。
FIG. 7 is a refrigerant circuit diagram illustrating a simultaneous mode of heating and refrigeration of the apparatus of FIG. 1;

【図8】図2の装置の蓄冷モードを示す冷媒回路図であ
FIG. 8 is a refrigerant circuit diagram showing a cool storage mode of the apparatus of FIG. 2;

【図9】図2の装置の冷房及び蓄冷の同時モードを示す
冷媒回路図である。
FIG. 9 is a refrigerant circuit diagram showing a simultaneous mode of cooling and cold storage of the apparatus of FIG. 2;

【図10】図2の装置の冷蔵冷凍及び蓄冷の同時モードを
示す冷媒回路図である。
FIG. 10 is a refrigerant circuit diagram showing a simultaneous mode of refrigeration and freezing and cold storage of the apparatus of FIG. 2;

【図11】図1の装置の冷房、冷蔵冷凍及び蓄冷の同時モ
ードを示す冷媒回路図である。
11 is a refrigerant circuit diagram showing a simultaneous mode of cooling, refrigeration, and cold storage of the apparatus of FIG. 1.

【図12】図2の装置の放冷・冷房モードを示す冷媒回路
図である。
FIG. 12 is a refrigerant circuit diagram illustrating a cooling / cooling mode of the apparatus of FIG. 2;

【図13】図2の装置の放冷・冷蔵冷凍モードを示す冷媒
回路図である。
13 is a refrigerant circuit diagram illustrating a cooling / refrigerating freezing mode of the apparatus of FIG. 2;

【図14】図2の装置の放冷・冷房及び放冷・冷蔵冷凍の
同時モードを示す冷媒回路図である。
FIG. 14 is a refrigerant circuit diagram showing simultaneous cooling / cooling and cooling / refrigeration freezing modes of the apparatus of FIG. 2;

【図15】図2の装置の蓄温モードを示す冷媒回路図であ
る。
FIG. 15 is a refrigerant circuit diagram illustrating a temperature storage mode of the device in FIG. 2;

【図16】図2の装置の冷蔵冷凍及び排熱蓄温の同時モー
ドを示す冷媒回路図である。
FIG. 16 is a refrigerant circuit diagram showing a simultaneous mode of refrigeration and freezing and storage of exhaust heat of the apparatus of FIG. 2;

【図17】図2の装置の放熱・暖房モードを示す冷媒回路
図である。
FIG. 17 is a refrigerant circuit diagram illustrating a heat radiation / heating mode of the device in FIG. 2;

【図18】従来装置の冷媒回路図を示し、(A)はヒート
ポンプ式空調機、(B)はショーケースを示す。
FIG. 18 shows a refrigerant circuit diagram of a conventional device, in which (A) shows a heat pump air conditioner and (B) shows a showcase.

【図19】図18の装置の運転モードを示す冷媒回路図で、
(A)は暖房モード、(B)は冷蔵冷凍モードである。
FIG. 19 is a refrigerant circuit diagram showing an operation mode of the device of FIG. 18;
(A) is a heating mode, (B) is a refrigeration mode.

【図20】図18(A)の装置の冷房モードを示す冷媒回路
図である。
FIG. 20 is a refrigerant circuit diagram illustrating a cooling mode of the device of FIG. 18 (A).

【符号の説明】[Explanation of symbols]

1 圧縮機 2 四方弁 3 室外熱交換器 4 室外器 5 空調機絞り装置 6 空調機熱交換器 7 空調室内器 8 ショーケース絞り装置 9 ショーケース熱交換器 10 ショーケース本体 11 室外器用絞り装置 12 蒸発圧力調整弁 13 蓄熱装置用絞り装置 14 蓄熱剤 15 蓄熱装置熱交換器 16 蓄熱装置 REFERENCE SIGNS LIST 1 compressor 2 four-way valve 3 outdoor heat exchanger 4 outdoor unit 5 air conditioner throttle device 6 air conditioner heat exchanger 7 air conditioner indoor unit 8 showcase throttle device 9 showcase heat exchanger 10 showcase body 11 outdoor device throttle device 12 Evaporation pressure regulating valve 13 Throttle device for heat storage device 14 Heat storage agent 15 Heat storage device heat exchanger 16 Heat storage device

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】冷凍サイクルにより室内の冷暖房を行うヒ
ートポンプ式の空調機と、同じく食品の冷蔵冷凍保存を
行うショーケースとからなる冷凍空調装置において、 前記空調機及びショーケースに対して1台の圧縮機を共
通に設け、この圧縮機により室内の冷暖房及び食品保存
の両方を行わせるようにしたことを特徴とする冷凍空調
装置。
1. A refrigeration air conditioner comprising a heat pump type air conditioner for cooling and heating the interior of a room by a refrigeration cycle and a showcase for refrigerated freezing and preservation of food, wherein one unit is provided for the air conditioner and the showcase. A refrigerating and air-conditioning apparatus, wherein a compressor is provided in common, and the compressor performs both indoor cooling and heating and food preservation.
【請求項2】前記空調機の室内熱交換器の出口に蒸発圧
力調整弁を挿入したことを特徴とする請求項1記載の冷
凍空調装置。
2. The refrigeration air conditioner according to claim 1, wherein an evaporation pressure regulating valve is inserted at an outlet of the indoor heat exchanger of the air conditioner.
【請求項3】冷媒回路に蓄熱装置を接続したことを特徴
とする請求項1又は請求項2記載の冷凍空調装置。
3. The refrigeration / air-conditioning apparatus according to claim 1, wherein a heat storage device is connected to the refrigerant circuit.
JP11045024A 1999-02-23 1999-02-23 Refrigerator/air conditioner Pending JP2000240980A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11045024A JP2000240980A (en) 1999-02-23 1999-02-23 Refrigerator/air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11045024A JP2000240980A (en) 1999-02-23 1999-02-23 Refrigerator/air conditioner

Publications (1)

Publication Number Publication Date
JP2000240980A true JP2000240980A (en) 2000-09-08

Family

ID=12707776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11045024A Pending JP2000240980A (en) 1999-02-23 1999-02-23 Refrigerator/air conditioner

Country Status (1)

Country Link
JP (1) JP2000240980A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181406A (en) * 2000-12-08 2002-06-26 Daikin Ind Ltd Refrigerating equipment and heat source unit for refrigerating equipment
JP2010107143A (en) * 2008-10-31 2010-05-13 Fujitsu General Ltd Refrigerating air conditioner
JP2010107141A (en) * 2008-10-31 2010-05-13 Daikin Ind Ltd Refrigerating device
JP2012163302A (en) * 2011-02-09 2012-08-30 Daikin Industries Ltd Refrigeration apparatus
KR101977048B1 (en) * 2018-06-19 2019-05-10 한국가스공사 Integrated Cooling and Heating Control Method and System
CN109764510A (en) * 2019-01-09 2019-05-17 青岛海尔空调器有限总公司 A kind of control method of energy resource system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183769A (en) * 1987-12-23 1990-07-18 Mitsubishi Electric Corp Refrigerater or heater integral type air conditioner and power supply circuit therefor
JPH05231758A (en) * 1992-02-24 1993-09-07 Toshiba Corp System device for shop and freezing cycle device for shop
JPH07269983A (en) * 1994-03-30 1995-10-20 Sanyo Electric Co Ltd Air conditioner for shop

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183769A (en) * 1987-12-23 1990-07-18 Mitsubishi Electric Corp Refrigerater or heater integral type air conditioner and power supply circuit therefor
JPH05231758A (en) * 1992-02-24 1993-09-07 Toshiba Corp System device for shop and freezing cycle device for shop
JPH07269983A (en) * 1994-03-30 1995-10-20 Sanyo Electric Co Ltd Air conditioner for shop

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002181406A (en) * 2000-12-08 2002-06-26 Daikin Ind Ltd Refrigerating equipment and heat source unit for refrigerating equipment
JP2010107143A (en) * 2008-10-31 2010-05-13 Fujitsu General Ltd Refrigerating air conditioner
JP2010107141A (en) * 2008-10-31 2010-05-13 Daikin Ind Ltd Refrigerating device
JP2012163302A (en) * 2011-02-09 2012-08-30 Daikin Industries Ltd Refrigeration apparatus
KR101977048B1 (en) * 2018-06-19 2019-05-10 한국가스공사 Integrated Cooling and Heating Control Method and System
CN109764510A (en) * 2019-01-09 2019-05-17 青岛海尔空调器有限总公司 A kind of control method of energy resource system

Similar Documents

Publication Publication Date Title
KR0153546B1 (en) Heat storage type airconditioner and defrosting method
JP4221780B2 (en) Refrigeration equipment
JP3882056B2 (en) Refrigeration air conditioner
JP2005299935A (en) Air conditioner
KR101890473B1 (en) A system for combining refrigerator and air conditioner, and control method thereof
JP4258363B2 (en) Refrigeration air conditioner, operation method of refrigeration air conditioner
JPH116665A (en) Heat-storing-type air-conditioner
JP2005221194A (en) Air conditioning, refrigerating and freezing facility
JP2000240980A (en) Refrigerator/air conditioner
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP4270803B2 (en) Cold generation system
JPH10311614A (en) Heat storage type cooling device
JP2001116423A (en) Deep freezing air conditioner
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
KR100500954B1 (en) Ice thermal storage heat pump unit
JP3750287B2 (en) Heat storage device
JPS6157985B2 (en)
JPH11173689A (en) Heat storage type cooling device
JPH1026377A (en) Heat storage type air conditioner
JP3614626B2 (en) Air conditioner and method of operating air conditioner
JPH01174834A (en) Air conditioning system for building
JPH1194395A (en) Multi-room air conditioner
JPH04103931A (en) Air-handling unit and its operation
JP3197107B2 (en) Thermal storage type air conditioner
JP2877278B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20031209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051124

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20051222