JP2010107143A - Refrigerating air conditioner - Google Patents

Refrigerating air conditioner Download PDF

Info

Publication number
JP2010107143A
JP2010107143A JP2008281252A JP2008281252A JP2010107143A JP 2010107143 A JP2010107143 A JP 2010107143A JP 2008281252 A JP2008281252 A JP 2008281252A JP 2008281252 A JP2008281252 A JP 2008281252A JP 2010107143 A JP2010107143 A JP 2010107143A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigerant
valve
compressor
electromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008281252A
Other languages
Japanese (ja)
Other versions
JP5195302B2 (en
Inventor
Kumar Dotto Oshitto
クマール ドット オシット
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2008281252A priority Critical patent/JP5195302B2/en
Publication of JP2010107143A publication Critical patent/JP2010107143A/en
Application granted granted Critical
Publication of JP5195302B2 publication Critical patent/JP5195302B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerating air conditioner enabling smooth air conditioning operation by appropriately adjusting a flow passage and a flow rate within a refrigerant circuit without fluctuating the temperature of a refrigerating compartment and a freezer. <P>SOLUTION: A multistage compressor 1, an outdoor heat exchanger 2, a first electronic expansion valve 3a and a freezer heat exchanger 5 are interconnected annularly, and the discharge side of the multistage compressor 1 is connected to the downstream side of the outdoor heat exchanger 2 by a first bypass passage 8 including an air conditioning heat exchanger 4a. A second bypass passage 9 including a vegetable compartment heat exchanger 4b is connected to a connection pipe 1e, and a third bypass passage 10 including a refrigerant compartment indoor heat exchanger 4c is connected to a connection pipe 1b for interconnecting a first compressor 1a and a second compressor 1b. A fourth bypass passage 11 including a fourth solenoid on-off valve 6d is provided between the air conditioning heat exchanger 4a and a third solenoid on-off valve 6c and between a seventh solenoid on-off valve 6g and a third accumulator 5c. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、冷凍空調装置に関わり、より詳細には、多様な運転を可能とするとともに、
冷蔵室及び冷凍庫の室温を適切に維持できる構成に関する。
The present invention relates to a refrigeration air conditioner, and more specifically, enables various operations,
It is related with the structure which can maintain the room temperature of a refrigerator compartment and a freezer appropriately.

冷暖房等の空調運転と、冷蔵、冷凍運転とを同時に行える冷凍空調装置として、例えば図6で示すように、並列に配置された一対の圧縮機40a及び40bと、冷暖房運転の切換を行う四方弁41と、熱源側熱交換器42と、主膨張弁43と、レシーバ44と、副膨張弁46aを備えた空調用熱交換器46と、副膨張弁47aを備えた冷蔵用熱交換器47と、副膨張弁48aを備えた冷凍用熱交換器48とを接続するとともに、冷凍用圧縮機45とで冷媒回路を構成している。   As a refrigerating and air-conditioning apparatus capable of performing air-conditioning operation such as air-conditioning and the like, and refrigerating and freezing operations at the same time, for example, as shown in FIG. 41, a heat source side heat exchanger 42, a main expansion valve 43, a receiver 44, an air conditioning heat exchanger 46 including a sub expansion valve 46a, and a refrigeration heat exchanger 47 including a sub expansion valve 47a. The refrigerating heat exchanger 48 provided with the sub-expansion valve 48a is connected, and the refrigerating compressor 45 constitutes a refrigerant circuit.

空調用熱交換器46で冷房運転を行うとともに、冷蔵、冷凍運転を行う際、並列に配置された一対の圧縮機40a及び40bから吐出された高温高圧の冷媒は合流した後、四方弁41を介して熱源側熱交換器42に流入し凝縮する。凝縮した冷媒はレシーバ44を介して三方に分岐し、分岐した一方の流れは副膨張弁46aにより減圧され、空調用熱交換器46で蒸発して冷房運転を行うようになっている。また、分岐した他方の冷媒は、副膨張弁47aと副膨張弁48aとで減圧され、冷蔵用熱交換器47と、冷凍用熱交換器48とに流入し蒸発して、夫々、冷蔵運転と冷凍運転とを行うようになっている。また、冷凍用熱交換器48で蒸発した冷媒は極低温低圧となるため、冷凍用圧縮機45で圧縮されて中間圧となった後、冷蔵用熱交換器47から流出した冷媒と合流し、圧縮機40a及び40bとに流入して更に圧縮され高温高圧の冷媒となって再び吐出されるようになっている。   When the air conditioning heat exchanger 46 performs the cooling operation and the refrigeration and freezing operations, the high-temperature and high-pressure refrigerant discharged from the pair of compressors 40a and 40b arranged in parallel merges, and then the four-way valve 41 is Then, it flows into the heat source side heat exchanger 42 and condenses. The condensed refrigerant branches into three directions via the receiver 44, and one of the branched flows is depressurized by the sub-expansion valve 46a and evaporated by the air conditioning heat exchanger 46 to perform the cooling operation. The other branched refrigerant is depressurized by the sub-expansion valve 47a and the sub-expansion valve 48a, flows into the refrigeration heat exchanger 47 and the refrigeration heat exchanger 48, and evaporates. The refrigeration operation is performed. In addition, since the refrigerant evaporated in the refrigeration heat exchanger 48 has a cryogenic pressure and low pressure, it is compressed by the refrigeration compressor 45 and becomes an intermediate pressure, and then merged with the refrigerant that flows out of the refrigeration heat exchanger 47, The refrigerant flows into the compressors 40a and 40b, is further compressed, becomes a high-temperature and high-pressure refrigerant, and is discharged again.

また、四方弁41を切換え、圧縮機40a及び40bで圧縮された冷媒を空調用熱交換器46に流入させて凝縮させることにより暖房運転を行い、また、同空調用熱交換器46から流出した冷媒を、冷蔵用熱交換器47と冷凍用熱交換器48に流入させて冷蔵運転及び冷凍運転を行うことにより、所謂、熱回収運転も行うこともできるようになっている。   In addition, the four-way valve 41 is switched, and the refrigerant compressed by the compressors 40a and 40b is allowed to flow into the air-conditioning heat exchanger 46 to condense, and the heating operation is performed, and the refrigerant flows out of the air-conditioning heat exchanger 46. A so-called heat recovery operation can also be performed by causing the refrigerant to flow into the refrigeration heat exchanger 47 and the refrigeration heat exchanger 48 to perform the refrigeration operation and the refrigeration operation.

図6(B)は、上記冷房運転の際のサイクル線図である。冷凍用熱交換器48で蒸発した低温の冷媒は圧力PL2で冷凍用圧縮機45に流入し、圧縮されて中間圧PL1まで上昇する。中間圧PL1まで圧力が上昇した冷媒は、空調用熱交換器46と冷蔵用熱交換器47とから流出した冷媒と合流してエンタルピーが低下した後、圧縮機40a及び40bに流入し、再度圧縮されて圧力がPHまでΔP上昇し高温高圧となって吐出されるようになっている。   FIG. 6B is a cycle diagram in the cooling operation. The low-temperature refrigerant evaporated in the refrigeration heat exchanger 48 flows into the refrigeration compressor 45 at the pressure PL2, is compressed, and rises to the intermediate pressure PL1. The refrigerant whose pressure has increased to the intermediate pressure PL1 merges with the refrigerant flowing out of the air-conditioning heat exchanger 46 and the refrigeration heat exchanger 47 and decreases the enthalpy, and then flows into the compressors 40a and 40b and is compressed again. As a result, the pressure rises by ΔP to PH and is discharged at a high temperature and pressure.

圧縮機40a及び40bにおいて、冷媒圧力を中間圧PL1から高圧PHまで一度に上昇させることは圧縮効率の低下を招くとともに、COP(成績係数)低下の要因となり、また、吐出温度の上昇を招いて運転が停止される虞があった。また、空調用熱交換器46に流入する冷媒量あるいは冷媒温度を変化させて店内あるいは室内の温度調整を行うと、この影響を受けて冷蔵用熱交換器47と冷凍用熱交換器48に流入する冷媒量あるいは冷媒温度が変動し、一定温度に保つ必要がある冷蔵室及び冷凍庫の室温が変動してしまう。
国際公開番号 WO2002/046663(5頁、図1)
In the compressors 40a and 40b, increasing the refrigerant pressure from the intermediate pressure PL1 to the high pressure PH at a time causes a reduction in compression efficiency, causes a decrease in COP (coefficient of performance), and increases a discharge temperature. There was a possibility that the operation was stopped. In addition, if the amount of refrigerant flowing into the air conditioning heat exchanger 46 or the temperature of the refrigerant is changed to adjust the temperature in the store or indoors, the refrigerant flows into the refrigeration heat exchanger 47 and the refrigeration heat exchanger 48 due to this effect. The refrigerant amount or refrigerant temperature to be changed fluctuates, and the room temperature of the refrigerator compartment and the freezer that needs to be maintained at a constant temperature fluctuates.
International Publication Number WO2002 / 046663 (5 pages, FIG. 1)

本発明は、上記問題点に鑑み、冷凍サイクルのCOPを向上させ、また、店内あるいは室内の温度調整を行なっても、冷蔵室及び冷凍庫の室温を一定に保つことができる冷凍空調装置を提供することを目的とする。   In view of the above problems, the present invention provides a refrigeration air conditioner that can improve the COP of the refrigeration cycle and can keep the room temperature of the refrigerator compartment and the freezer constant even if the temperature in the store or the room is adjusted. For the purpose.

本発明は、上記課題を解決するため、第一圧縮手段、第二圧縮手段及び第三圧縮手段とからなる圧縮機構と、熱源側熱交換器と、主減圧手段と、低温用熱交換器とを環状に接続するとともに、前記圧縮機構の吐出側と、前記熱源側熱交換器と主減圧手段の間とを、第一副減圧手段と第一利用側熱交換器を備えた第一バイパス路により接続し、前記第二圧縮手段と前記第三圧縮手段の間と、前記熱源側熱交換器と主減圧手段の間とを第二副減圧手段と第二利用側熱交換器を備えた第二バイパス路により接続し、前記第一圧縮手段と前記第二圧縮手段の間と、前記熱源側熱交換器と主減圧手段の間とを第三副減圧手段と第三利用側熱交換器を備えた第三バイパス路により接続した構成となっている。   In order to solve the above problems, the present invention provides a compression mechanism comprising a first compression means, a second compression means, and a third compression means, a heat source side heat exchanger, a main decompression means, a low temperature heat exchanger, A first bypass passage having a first sub decompression means and a first use side heat exchanger between the discharge side of the compression mechanism and between the heat source side heat exchanger and the main decompression means Connected between the second compression means and the third compression means, and between the heat source side heat exchanger and the main pressure reduction means, provided with a second sub pressure reduction means and a second use side heat exchanger. Two bypass passages are connected, and the third sub decompression means and the third use side heat exchanger are connected between the first compression means and the second compression means, and between the heat source side heat exchanger and the main decompression means. It becomes the structure connected by the provided 3rd bypass path.

また、前記圧縮機構と前記第一利用側熱交換器の間と、前記圧縮機構と前記低温用熱交換器の間とに、開閉手段を備えた第四バイパス路を設けた構成となっている。   Moreover, it has the structure which provided the 4th bypass path provided with the opening-and-closing means between the said compression mechanism and the said 1st utilization side heat exchanger, and between the said compression mechanism and the said low temperature heat exchanger. .

また、前記第三利用側熱交換器及び前記低温用熱交換器を設置した設置室の室温は所定温度範囲に維持される一方、前記第二利用側熱交換器を備えた設置室の室温は前記第三利用側熱交換器及び前記低温用熱交換器を設置した設置室よりも広い温度範囲で可変させる構成となっている。   Further, the room temperature of the installation room provided with the third use side heat exchanger and the low temperature heat exchanger is maintained in a predetermined temperature range, while the room temperature of the installation room provided with the second use side heat exchanger is The third usage side heat exchanger and the low temperature heat exchanger are configured to be variable in a wider temperature range than the installation room in which the third usage side heat exchanger and the low temperature heat exchanger are installed.

また、前記圧縮機構と前記第一利用側熱交換器の間と、前記圧縮機構と前記低温用熱交換器の間とに、開閉手段を備えた第四バイパス路を設けた構成となっている。   Moreover, it has the structure which provided the 4th bypass path provided with the opening-and-closing means between the said compression mechanism and the said 1st utilization side heat exchanger, and between the said compression mechanism and the said low temperature heat exchanger. .

請求項1記載の発明によれば、第一圧縮手段及び第二圧縮手段において圧縮負荷が低減されCOP(成績係数)が改善されるようになっている。また、第一利用側熱交換器が設置された設置室とは温度帯の異なる新たな設置室を設けることができるようになっている。   According to the first aspect of the invention, the compression load is reduced and the COP (coefficient of performance) is improved in the first compression means and the second compression means. In addition, a new installation room having a temperature range different from that of the installation room in which the first use side heat exchanger is installed can be provided.

請求項2記載の発明によれば、第四バイパス路を開放することにより、第一利用側熱交換器において冷房運転をすることができるようになっている。   According to the second aspect of the present invention, the cooling operation can be performed in the first use side heat exchanger by opening the fourth bypass passage.

請求項3記載の発明によれば、第一利用側熱交換器に循環する冷媒循環量あるいは冷媒温度を変化させても、第三利用側熱交換器及び低温用熱交換器を設置した設置室の室温に変動を与えないようになっている。   According to invention of Claim 3, even if it changes the refrigerant | coolant circulation amount or refrigerant | coolant temperature circulated to the 1st utilization side heat exchanger, the installation room which installed the 3rd utilization side heat exchanger and the low temperature heat exchanger The room temperature is not changed.

請求項4記載の発明によれば、熱源側熱交換器と第一利用側熱交換器のみを用いた空調運転が可能である。   According to the fourth aspect of the invention, an air conditioning operation using only the heat source side heat exchanger and the first usage side heat exchanger is possible.

以下、本発明の実施の形態を、添付図面に基づいた実施例として詳細に説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail as examples based on the attached drawings.

図1は本発明による冷凍空調装置の第一実施例を示す冷媒回路図であり、図2は第一実施例での冷媒の流れの変化を示す冷媒回路図である。また、図3は第二実施例を示す冷媒回路図であり、図4は第一実施例でのP−H線図である。また、図5は第三実施例を示す冷媒回路図である。   FIG. 1 is a refrigerant circuit diagram showing a first embodiment of a refrigerating and air-conditioning apparatus according to the present invention, and FIG. 2 is a refrigerant circuit diagram showing a change in refrigerant flow in the first embodiment. FIG. 3 is a refrigerant circuit diagram showing the second embodiment, and FIG. 4 is a PH diagram in the first embodiment. FIG. 5 is a refrigerant circuit diagram showing a third embodiment.

本発明による冷凍空調装置は、例えばコンビニエンスストア等で利用されるようになっており、店内の冷暖房を行う空調運転とともに、野菜を貯蔵した野菜室の冷却運転と、種々の食品を貯蔵した貯蔵室の冷蔵運転と、ショーケース等での冷凍運転を同時に行うことができるようになっている。   The refrigerating and air-conditioning apparatus according to the present invention is adapted to be used in, for example, a convenience store. The air-conditioning operation for cooling and heating the store, the cooling operation for the vegetable room storing vegetables, and the storage room for storing various foods Refrigeration operation and freezing operation in a showcase or the like can be performed simultaneously.

本発明の第一実施例は、図1で示すように、圧縮手段としての第一圧縮機1aと第二圧縮機1bと第三圧縮機1cとを直列に連結した圧縮機構としての多段圧縮機1と、第一電磁開閉弁6aと第二電磁開閉弁6bとを前後に配置した熱源側熱交換器としての室外熱交換器2と、主減圧手段としての第一膨張弁3aと、低温用熱交換器としての冷凍庫用熱交換器5と、第七電磁開閉弁6gと、第三アキュームレータ5cとを配管7により環状に接続している。   As shown in FIG. 1, the first embodiment of the present invention is a multistage compressor as a compression mechanism in which a first compressor 1a, a second compressor 1b and a third compressor 1c as compression means are connected in series. 1, an outdoor heat exchanger 2 as a heat source side heat exchanger in which a first electromagnetic on-off valve 6 a and a second electromagnetic on-off valve 6 b are arranged in front and back, a first expansion valve 3 a as a main pressure reducing means, A freezer heat exchanger 5 as a heat exchanger, a seventh electromagnetic on-off valve 6g, and a third accumulator 5c are connected in a ring shape by a pipe 7.

圧縮機構としての多段圧縮機1は、圧縮手段としての第一圧縮機1aと第二圧縮機1bと第三圧縮機1cとを直列に連結して構成され、第一圧縮機1aの吐出側と第二圧縮機1bの吸込側は連結管1dにより連結され、第二圧縮機1bの吐出側と第三圧縮機1cの吸込側は連結管1eにより夫々連結されている。第一圧縮機1aで圧縮された冷媒を連結管1dにより第二圧縮機1bに流入させて圧縮し、更に連結管1eにより第三圧縮機1cに流入させて、より高圧となるよう圧縮することにより、圧縮差圧の大きい単段圧縮機を用いることなく、必要な圧縮差圧を得ることができるようになっており、これにより、広い外気温度範囲に対応して運転を行うことができるようになっている。   A multistage compressor 1 as a compression mechanism is configured by connecting a first compressor 1a, a second compressor 1b, and a third compressor 1c as compression means in series, and a discharge side of the first compressor 1a. The suction side of the second compressor 1b is connected by a connecting pipe 1d, and the discharge side of the second compressor 1b and the suction side of the third compressor 1c are connected by a connecting pipe 1e, respectively. The refrigerant compressed by the first compressor 1a is caused to flow into the second compressor 1b through the connecting pipe 1d and compressed, and further through the connecting pipe 1e into the third compressor 1c to be compressed to a higher pressure. Therefore, it is possible to obtain the necessary compression differential pressure without using a single-stage compressor having a large compression differential pressure, so that the operation can be performed corresponding to a wide outside air temperature range. It has become.

多段圧縮機1の吐出側と、室外熱交換器2の下流側とは第一バイパス路8により接続され、同第一バイパス路8には、第一副電子膨張弁3bと、第一利用側熱交換器としての空調用熱交換器4aと、第三電磁開閉弁6cとが設けられている。また、第二圧縮機1bと第三圧縮機1cとを繋ぐ連結管1eには、配管7から第二バイパス路9が接続され、同第二バイパス路9には第二副電子膨張弁3cと、第二利用側熱交換器としての野菜室用熱交換器4bと、第一アキュームレータ5aと、第五電磁開閉弁6eとが設けられている。また、第一圧縮機1aと第二圧縮機1bとを繋ぐ連結管1dには、配管7から第三バイパス路10が接続され、同第三バイパス路10には第三副電子膨張弁3dと、第三利用側熱交換器としての冷蔵室用熱交換器4cと、第二アキュームレータ5bと、第六電磁開閉弁6fとが設けられている。   The discharge side of the multistage compressor 1 and the downstream side of the outdoor heat exchanger 2 are connected by a first bypass path 8, and the first bypass path 8 includes a first sub electronic expansion valve 3 b and a first usage side. An air conditioner heat exchanger 4a as a heat exchanger and a third electromagnetic on-off valve 6c are provided. The connecting pipe 1e connecting the second compressor 1b and the third compressor 1c is connected to the second bypass path 9 from the pipe 7, and the second bypass path 9 is connected to the second sub electronic expansion valve 3c. The vegetable room heat exchanger 4b as a second use side heat exchanger, a first accumulator 5a, and a fifth electromagnetic on-off valve 6e are provided. The connecting pipe 1d connecting the first compressor 1a and the second compressor 1b is connected to the third bypass passage 10 from the pipe 7, and the third bypass passage 10 is connected to the third sub electronic expansion valve 3d. The refrigerator compartment heat exchanger 4c as a third usage side heat exchanger, a second accumulator 5b, and a sixth electromagnetic opening / closing valve 6f are provided.

第一バイパス路8に配置された空調用熱交換器4aと第三電磁開閉弁6cの間と、配管7の第七電磁開閉弁6gと第三アキュームレータ5cとの間には、第四電磁開閉弁6dを備えた第四バイパス路11が設けられており、また、第二バイパス路9、第三バイパス路10、連結管1d、連結管1eにはバイパス路冷媒圧力及び圧縮機吐出圧力を検出する圧力計が夫々設けられている。   Between the heat exchanger 4a for air conditioning arranged in the first bypass path 8 and the third electromagnetic on-off valve 6c, and between the seventh electromagnetic on-off valve 6g and the third accumulator 5c of the pipe 7, the fourth electromagnetic on-off. A fourth bypass passage 11 having a valve 6d is provided, and the bypass passage refrigerant pressure and the compressor discharge pressure are detected in the second bypass passage 9, the third bypass passage 10, the connecting pipe 1d, and the connecting pipe 1e. Each pressure gauge is provided.

次に、冷媒の流れについて説明する。空調用熱交換器4aで冷房を行う場合、図1(B)で示すように、第一電磁開閉弁6a、第二電磁開閉弁6b、第四電磁開閉弁6dは開放されるが、第三電磁開閉弁6cは閉鎖されるようになっている。   Next, the flow of the refrigerant will be described. When the air conditioner heat exchanger 4a performs cooling, the first electromagnetic on-off valve 6a, the second electromagnetic on-off valve 6b, and the fourth electromagnetic on-off valve 6d are opened as shown in FIG. The electromagnetic on-off valve 6c is closed.

多段圧縮機1で圧縮された高温高圧の冷媒は、第三電磁開閉弁6cが閉鎖されていることにより第一電磁開閉弁6aを介して室外熱交換器2に流入し、周囲を流れる空気と熱交換して凝縮する。凝縮した冷媒は第一バイパス路8に流入して第一副電子膨張弁3bにより減圧されて低温低圧となり、続いて空調用熱交換器4aに流入して周囲を流れる空気と熱交換して熱を吸収しながら蒸発することにより店内あるいは室内の冷房運転を行なうようになっている。蒸発した冷媒は、第四電磁開閉弁6dが開放されていることにより第四バイパス路11を介して多段圧縮機1に還流するようになっている。   The high-temperature and high-pressure refrigerant compressed by the multistage compressor 1 flows into the outdoor heat exchanger 2 via the first electromagnetic on-off valve 6a due to the third electromagnetic on-off valve 6c being closed, Heat exchanges and condenses. The condensed refrigerant flows into the first bypass passage 8 and is depressurized by the first sub-electronic expansion valve 3b to become a low temperature and a low pressure, and then flows into the air conditioner heat exchanger 4a and exchanges heat with the air flowing around it to generate heat. By evaporating while absorbing water, the inside or the room is cooled. The evaporated refrigerant is refluxed to the multistage compressor 1 through the fourth bypass passage 11 by opening the fourth electromagnetic on-off valve 6d.

また、配管7を介して第二バイパス路9に流入した冷媒は、第二副電子膨張弁3cで減圧された後、野菜室用熱交換器4bで周囲を流れる空気と熱交換して熱を吸収し蒸発することにより、野菜室での冷却運転を行なうようになっている。蒸発した冷媒は第一アキュームレータ5aを介して第二圧縮機1bと第三圧縮機1cとを繋ぐ連結管1eに還流するようになっている。同様に、第三バイパス路10に流入した冷媒は、第三副電子膨張弁3dで減圧された後、冷蔵室用熱交換器4cで周囲を流れる空気と熱交換し熱を吸収して蒸発することにより、種々の食品が貯蔵された冷蔵室での冷蔵運転を行い、第二アキュームレータ5bを介して第一圧縮機1aと第二圧縮機1bとを繋ぐ連結管1dに還流するようになっている。また、第一膨張弁3aを介して冷凍庫用熱交換器5に流入した冷媒は、周囲の熱を吸収してショーケース等の冷凍庫内を冷却し多段圧縮機1に還流するようになっている。   The refrigerant flowing into the second bypass passage 9 through the pipe 7 is depressurized by the second sub-electronic expansion valve 3c, and then exchanges heat with the air flowing in the vegetable room heat exchanger 4b to generate heat. By absorbing and evaporating, the cooling operation in the vegetable room is performed. The evaporated refrigerant is refluxed to the connecting pipe 1e that connects the second compressor 1b and the third compressor 1c via the first accumulator 5a. Similarly, after the refrigerant flowing into the third bypass passage 10 is decompressed by the third sub-electronic expansion valve 3d, the refrigerant exchanges heat with the air flowing in the refrigerating room heat exchanger 4c to absorb the heat and evaporate. As a result, a refrigeration operation is performed in a refrigerating room in which various foods are stored, and the refrigerant flows back to the connecting pipe 1d connecting the first compressor 1a and the second compressor 1b via the second accumulator 5b. Yes. The refrigerant flowing into the freezer heat exchanger 5 through the first expansion valve 3a absorbs ambient heat, cools the inside of the freezer such as a showcase, and is returned to the multistage compressor 1. .

また、冷蔵室用熱交換器4cを流出した冷媒が連結管1dに供給され、第一圧縮機1aで圧縮された冷媒と混合して、これを冷却するとともに、野菜室用熱交換器4bを流出した冷媒が連結管1eに供給され、第二圧縮機1bで圧縮された冷媒と混合して、これを冷却することにより、第三圧縮機1cから吐出される吐出冷媒の温度上昇を防止するようになっている。   In addition, the refrigerant flowing out of the refrigerating room heat exchanger 4c is supplied to the connecting pipe 1d, mixed with the refrigerant compressed by the first compressor 1a, cooled, and the vegetable room heat exchanger 4b is The refrigerant that has flowed out is supplied to the connecting pipe 1e, mixed with the refrigerant compressed by the second compressor 1b, and cooled to prevent an increase in the temperature of the refrigerant discharged from the third compressor 1c. It is like that.

上記運転での冷媒の流れを図4のP−h線図を用いて説明する。P−h線図の横軸は比エンタルピであり、縦軸は圧力である。尚、後述する、『G→H→E』の流れと、『G→I→C』の流れと、『G→J→A』の流れは、夫々独立した流れとなっている。   The flow of the refrigerant in the above operation will be described with reference to the Ph diagram of FIG. The horizontal axis of the Ph diagram is specific enthalpy and the vertical axis is pressure. Note that the flow of “G → H → E”, the flow of “G → I → C”, and the flow of “G → J → A”, which will be described later, are independent flows.

冷凍庫用熱交換器5から流出し第一圧縮機1aに流入した低温低圧のガス冷媒は、状態Aから状態Bまで圧縮された後、冷蔵室用熱交換器4cから流出され第三バイパス路10から連結管1dに還流する冷媒と混合され、温度が低下し状態Cになる。温度が低下した冷媒は、第二圧縮機1bにより更に圧縮され状態Dに移行した後、野菜室用熱交換器4bから流出され第二バイパス路9から連結管1eに還流する冷媒と混合され、温度が低下し状態Eになる。状態Eとなった冷媒は第三圧縮機1cに吸入され、更に圧縮されて状態Fに移行するようになっている。   The low-temperature and low-pressure gas refrigerant flowing out from the freezer heat exchanger 5 and flowing into the first compressor 1a is compressed from the state A to the state B, and then flows out from the refrigerating room heat exchanger 4c and flows into the third bypass 10. Is mixed with the refrigerant flowing back to the connecting pipe 1d, and the temperature is lowered to the state C. The refrigerant whose temperature has been lowered is further compressed by the second compressor 1b and transferred to the state D, and then mixed with the refrigerant flowing out from the vegetable room heat exchanger 4b and returning to the connecting pipe 1e from the second bypass passage 9, The temperature drops to state E. The refrigerant in the state E is sucked into the third compressor 1c, further compressed, and shifted to the state F.

状態Fとなった高温高圧の冷媒は室外熱交換器2に流入し、周囲に熱を放出して凝縮することにより圧力一定でエンタルピーが減少し、液相冷媒の状態Gに移行するようになっている。状態Gに移行した液相冷媒は配管7を介して第一膨張弁3aに流入し減圧されて低温低圧の状態Jに移行し、続いて冷凍庫用熱交換器5で周囲の熱を吸収して蒸発しガス冷媒となり状態Aで、第一圧縮機1aに還流するようになっている。   The high-temperature and high-pressure refrigerant in the state F flows into the outdoor heat exchanger 2, releases heat to the surroundings, and condenses to reduce the enthalpy at a constant pressure and shift to the liquid-phase refrigerant state G. ing. The liquid-phase refrigerant that has shifted to the state G flows into the first expansion valve 3a via the pipe 7 and is depressurized to shift to the low-temperature and low-pressure state J. Subsequently, the freezer heat exchanger 5 absorbs ambient heat. It evaporates to become a gas refrigerant, and is returned to the first compressor 1a in the state A.

配管7から第三バイパス路10に流入した冷媒は、第三副電子膨張弁3dで減圧されることにより状態Gから状態Iに移行し、続いて冷蔵室用熱交換器4cに流入し、実線I→Cで示すように周囲を流れる空気と熱交換して蒸発し、第一圧縮機1aで圧縮された状態Bの冷媒と合流するようになっている。また、配管7から第二バイパス路9に流入した冷媒は、第二副電子膨張弁3cで減圧されることにより状態Gから状態Hに移行し、続いて野菜室用熱交換器4bに流入し、実線H→Eで示すように周囲を流れる空気と熱交換して蒸発し、第二圧縮機1bで圧縮された状態Dの冷媒と合流するようになっている。   The refrigerant that has flowed from the pipe 7 into the third bypass passage 10 is depressurized by the third sub-electronic expansion valve 3d to shift from the state G to the state I, and subsequently flows into the refrigerating room heat exchanger 4c, where As indicated by I → C, heat is exchanged with the air flowing in the surroundings to evaporate and merge with the refrigerant in the state B compressed by the first compressor 1a. Moreover, the refrigerant | coolant which flowed into the 2nd bypass path 9 from the piping 7 transfers to the state H from the state G by being pressure-reduced with the 2nd subelectronic expansion valve 3c, and flows into the heat exchanger 4b for vegetable rooms subsequently. As shown by the solid line H → E, heat is exchanged with the air flowing in the surroundings to evaporate and merge with the refrigerant in the state D compressed by the second compressor 1b.

多段圧縮機1を、第一圧縮機1a、第二圧縮機1b、第三圧縮機1cとを直列に連結して構成することにより、夫々の圧縮機への負荷が低減され、また、第一圧縮機1aと第二圧縮機1bとの間に冷蔵室用熱交換器4cからの冷媒が供給され、第二圧縮機1bと第三圧縮機1cとの間に野菜室用熱交換器4bからの冷媒が供給されることにより、第一圧縮機1aの吸込温度を低下させるとともに、多段圧縮機1からの吐出温度を低下させるようになっている。   By configuring the multistage compressor 1 by connecting the first compressor 1a, the second compressor 1b, and the third compressor 1c in series, the load on each compressor is reduced. The refrigerant from the refrigerator heat exchanger 4c is supplied between the compressor 1a and the second compressor 1b, and from the vegetable room heat exchanger 4b between the second compressor 1b and the third compressor 1c. As the refrigerant is supplied, the suction temperature of the first compressor 1a is lowered, and the discharge temperature from the multistage compressor 1 is lowered.

また、空調用熱交換器4aを備えた第一バイパス路8とともに、野菜室用熱交換器4bを備えた第二バイパス路9を設け、同第二バイパス路9を、第二圧縮機1bと第三圧縮機1cとを繋ぐ連結管1eに接続することにより、空調用熱交換器4aを設置した店内あるいは室内とは温度帯の異なる、野菜室用熱交換器4bを用いた被空調室を設置することができるようになっている。   Moreover, the 2nd bypass path 9 provided with the heat exchanger 4b for vegetable rooms is provided with the 1st bypass path 8 provided with the heat exchanger 4a for an air conditioning, The 2nd bypass path 9 is provided with the 2nd compressor 1b. By connecting to the connecting pipe 1e that connects the third compressor 1c, the air-conditioned room using the vegetable room heat exchanger 4b, which has a different temperature range from the inside or the room where the air-conditioning heat exchanger 4a is installed, is provided. It can be installed.

次に、空調用熱交換器4aで暖房運転を行う場合の冷媒の流れについて説明する。図2(B)で示すように、第一電磁開閉弁6a、第二電磁開閉弁6b、第三電磁開閉弁6c及び第七電磁開閉弁6gは開放されるが第四電磁開閉弁6dは閉鎖されるようになっている。   Next, the flow of the refrigerant when performing the heating operation with the air conditioner heat exchanger 4a will be described. As shown in FIG. 2B, the first electromagnetic on-off valve 6a, the second electromagnetic on-off valve 6b, the third electromagnetic on-off valve 6c, and the seventh electromagnetic on-off valve 6g are opened, but the fourth electromagnetic on-off valve 6d is closed. It has come to be.

多段圧縮機1で圧縮された高温高圧の冷媒は、第一電磁開閉弁6a及び第三電磁開閉弁6cが開放されていることにより、室外熱交換器2と空調用熱交換器4aに流入し、熱を放出して凝縮する。凝縮した冷媒は、第二バイパス路9、第三バイパス路10に流入し、野菜室用熱交換器4b、冷蔵室用熱交換器4cで周囲を流れる空気と熱交換して熱を吸収し蒸発して連結管1e及び連結管1dに還流するようになっている。また、第一膨張弁3aを介して冷凍庫用熱交換器5に流入した冷媒は、周囲の熱を吸収して冷凍庫内を冷却し多段圧縮機1に還流するようになっている。   The high-temperature and high-pressure refrigerant compressed by the multistage compressor 1 flows into the outdoor heat exchanger 2 and the air-conditioning heat exchanger 4a by opening the first electromagnetic on-off valve 6a and the third electromagnetic on-off valve 6c. , Release heat and condense. The condensed refrigerant flows into the second bypass passage 9 and the third bypass passage 10 and exchanges heat with the air flowing in the vegetable room heat exchanger 4b and the refrigeration room heat exchanger 4c to absorb heat and evaporate. Thus, the refrigerant flows back to the connecting pipe 1e and the connecting pipe 1d. The refrigerant that has flowed into the freezer heat exchanger 5 through the first expansion valve 3 a absorbs ambient heat, cools the inside of the freezer, and returns to the multistage compressor 1.

暖房運転においても、冷蔵室用熱交換器4cで熱を吸収して蒸発した低温低圧の冷媒が連結管1dに供給されて第一圧縮機1aで圧縮された冷媒と合流し、野菜室用熱交換器4bで熱を吸収して蒸発した低温低圧の冷媒が連結管1eに供給されて、第二圧縮機1bで圧縮された冷媒と合流することにより、第三圧縮機1cから吐出される冷媒の吐出温度の上昇を防止できるようになっている。   Even in the heating operation, the low-temperature and low-pressure refrigerant evaporated and absorbed by the heat exchanger 4c for the refrigerator compartment is supplied to the connecting pipe 1d and merged with the refrigerant compressed by the first compressor 1a, so that the heat for the vegetable compartment The low-temperature and low-pressure refrigerant evaporated by absorbing heat in the exchanger 4b is supplied to the connecting pipe 1e and merged with the refrigerant compressed in the second compressor 1b, whereby the refrigerant discharged from the third compressor 1c. The discharge temperature can be prevented from rising.

また、室外熱交換器2及び冷蔵室用熱交換器4cで凝縮した冷媒を、野菜室用熱交換器4b、冷蔵室用熱交換器4c、冷凍庫用熱交換器5に供給することにより、これらでの冷媒蒸発量を増加させることができ、冷蔵能力及び冷凍能力を向上させることができるようになっている。   Further, by supplying the refrigerant condensed in the outdoor heat exchanger 2 and the refrigerating room heat exchanger 4c to the vegetable room heat exchanger 4b, the refrigerating room heat exchanger 4c, and the freezer heat exchanger 5, It is possible to increase the amount of refrigerant evaporating and improve the refrigeration capacity and the freezing capacity.

また、凝縮器として空調用熱交換器4aを単独で使用する場合は、第一電磁開閉弁6a及び第二電磁開閉弁6bを閉鎖するようになっている。これにより室外熱交換器2に冷媒が流入することなく、空調用熱交換器4aを単独で使用できエネルギ効率を重視した運転を行えるようになっている。   When the air conditioner heat exchanger 4a is used alone as a condenser, the first electromagnetic on-off valve 6a and the second electromagnetic on-off valve 6b are closed. As a result, the refrigerant does not flow into the outdoor heat exchanger 2, and the air conditioner heat exchanger 4 a can be used independently, and an operation that emphasizes energy efficiency can be performed.

冷凍庫用熱交換器5を備え、冷凍食品等を保存する冷凍庫は、−45°Cから−20°Cの設定可能温度範囲内で、予め定められた使用温度範囲内に常時保つ必要があり、例えば、設定使用温度を−30°Cに設定すると、使用温度範囲は−30±1°Cの−29°Cから−31°Cに保たれるようになっている。また、冷蔵室用熱交換器4cを備え、通常の食品等を冷蔵保存する冷蔵室は、−5°Cから−20°Cの設定可能温度範囲内で、使用温度範囲内に常時保つ必要があり、例えば、設定使用温度を−10°Cに設定すると、使用温度範囲は−10±1°Cの−9°Cから−11°Cに保たれるようになっている。このため、冷凍庫用熱交換器5が接続された配管7の第一膨張弁3a下流側には、極低温の冷媒を常時、一定量循環させる必要があり、第三バイパス路10は、これに接続された冷蔵室を、ある使用温度範囲内に保つように低温の冷媒を常時循環させる必要がある。   The freezer that is equipped with the freezer heat exchanger 5 and stores frozen foods, etc. must always be kept within a predetermined temperature range within a settable temperature range of −45 ° C. to −20 ° C., For example, when the set use temperature is set to −30 ° C., the use temperature range is maintained from −29 ° C. of −30 ± 1 ° C. to −31 ° C. Moreover, the refrigerator compartment provided with the heat exchanger 4c for refrigerator compartments which preserve | saves and preserves normal food etc. needs to be always kept within the use temperature range within the settable temperature range of -5 ° C to -20 ° C. For example, when the set use temperature is set to −10 ° C., the use temperature range is maintained from −9 ° C. to −11 ° C. of −10 ± 1 ° C. For this reason, it is necessary to always circulate a certain amount of cryogenic refrigerant downstream of the first expansion valve 3a of the pipe 7 to which the heat exchanger 5 for the freezer is connected. It is necessary to constantly circulate a low-temperature refrigerant so that the connected refrigerator compartment is kept within a certain operating temperature range.

第一バイパス路8に接続された空調用熱交換器4aに循環する冷媒循環量あるいは冷媒温度を調節して、空調用熱交換器4aが備えられた店内あるいは室内の温度を調整すると、これに伴って冷凍庫用熱交換器5及び冷蔵室用熱交換器4cに流入する冷媒量及び冷媒温度が変化し、冷凍室及び冷蔵室の温度が大きく変動してしまう虞があるが、これを防止するため、同第二バイパス路9に接続された野菜室用熱交換器4bは、ダミ−熱交換器としての機能も併せもっている。同野菜室用熱交換器4bが設置された野菜室の室温は、例えば、設定使用温度は4°Cとなっているが、使用温度範囲は4°±5°Cであり、室温が−1°C〜9°Cまで温度変動が許容されるようになっている。つまり、冷蔵室及び冷凍庫は、設定可能温度範囲内で使用温度範囲が設定されるが、これら冷蔵室及び冷凍庫は
使用温度範囲を大きく変動させることはできない。しかし、野菜室用熱交換器4bを備えた野菜室は使用温度範囲を大きく変動させることができるようになっている。
By adjusting the refrigerant circulation amount or refrigerant temperature circulating to the air conditioning heat exchanger 4a connected to the first bypass path 8 to adjust the temperature in the store or the room provided with the air conditioning heat exchanger 4a, Along with this, the amount of refrigerant and the temperature of the refrigerant flowing into the freezer heat exchanger 5 and the cold room heat exchanger 4c change, and the temperatures of the freezer room and the cold room may fluctuate greatly, but this is prevented. Therefore, the vegetable room heat exchanger 4b connected to the second bypass passage 9 also has a function as a dummy heat exchanger. The room temperature of the vegetable room in which the vegetable room heat exchanger 4b is installed is, for example, a set use temperature of 4 ° C., but the use temperature range is 4 ° ± 5 ° C., and the room temperature is −1. Temperature variation is allowed from ° C to 9 ° C. That is, the use temperature range is set within the settable temperature range for the refrigerator compartment and the freezer, but the refrigerator temperature and the freezer cannot greatly change the use temperature range. However, the vegetable room provided with the heat exchanger 4b for vegetable rooms can change the operating temperature range greatly.

店内あるいは室内の温度を調整するために空調用熱交換器4aに循環する冷媒循環量を変化させた場合は、これに伴い野菜室用熱交換器4bに循環する冷媒循環量を変化させるようになっている。第二膨張弁3bの絞りを調整して空調用熱交換器4aに循環する冷媒循環量を変化させ、店内あるいは室内温度を低下させた場合は、第二副電子膨張弁3cの絞りを調整して野菜室用熱交換器4bに流入する冷媒循環量を変化させ野菜室の温度を上昇させることにより、空調用熱交換器4aでの熱交換量の変動分を、野菜室用熱交換器4bでの熱交換量の変動分で吸収して、冷蔵室用熱交換器4c及び冷凍庫用熱交換器5に流入する冷媒の状態を極力一定に保つようになっている。これにより、空調温度を調整しても冷蔵室及び冷凍室の室温に大きな変動を与えることを防止できるようになっている。   When the amount of refrigerant circulating to the air conditioning heat exchanger 4a is changed to adjust the temperature in the store or the room, the amount of refrigerant circulating to the vegetable room heat exchanger 4b is changed accordingly. It has become. When the throttle of the second expansion valve 3b is adjusted to change the amount of refrigerant circulating to the heat exchanger 4a for air conditioning, and the temperature in the store or the room is lowered, the throttle of the second secondary electronic expansion valve 3c is adjusted. By changing the amount of circulating refrigerant flowing into the vegetable room heat exchanger 4b and increasing the temperature of the vegetable room, the amount of change in the heat exchange amount in the air conditioner heat exchanger 4a can be reduced to the vegetable room heat exchanger 4b. Therefore, the state of the refrigerant that is absorbed by the fluctuation of the amount of heat exchange in the refrigerator and flows into the heat exchanger 4c for the refrigerator compartment and the heat exchanger 5 for the freezer is kept as constant as possible. Thereby, even if it adjusts air-conditioning temperature, it can prevent giving the big fluctuation | variation to the room temperature of a refrigerator compartment and a freezer compartment.

次に、第二実施例について説明する。第二実施例は図3で示すように、第一実施例での冷媒回路に対し、第一電磁開閉弁6aと室外熱交換器2の間と、第七電磁開閉弁6gと第三アキュームレータ5cとの間に、第八電磁開閉弁6hを備えた第五バイパス路12を設けている。   Next, a second embodiment will be described. In the second embodiment, as shown in FIG. 3, the first electromagnetic on-off valve 6a and the outdoor heat exchanger 2, the seventh electromagnetic on-off valve 6g, and the third accumulator 5c are compared with the refrigerant circuit in the first embodiment. Is provided with a fifth bypass passage 12 having an eighth electromagnetic on-off valve 6h.

第五バイパス路12を設けたことにより、空調用熱交換器4aと室外熱交換器2のみを使用した空調運転が可能となっている。暖房運転を行う際、図3(B)で示すように、第二電磁開閉弁6b、第三電磁開閉弁6c及び第八電磁開閉弁6hは開放されるが、第一電磁開閉弁6a及び第四電磁開閉弁6dは閉鎖されるようになっている。   By providing the fifth bypass passage 12, an air conditioning operation using only the air conditioner heat exchanger 4a and the outdoor heat exchanger 2 is possible. When performing the heating operation, as shown in FIG. 3B, the second electromagnetic on-off valve 6b, the third electromagnetic on-off valve 6c, and the eighth electromagnetic on-off valve 6h are opened, but the first electromagnetic on-off valve 6a and the first electromagnetic on-off valve 6a The four electromagnetic on-off valves 6d are closed.

多段圧縮機1で圧縮された高温高圧の冷媒は、第一電磁開閉弁6aが閉鎖される一方、第三電磁開閉弁6cが開放されていることにより、空調用熱交換器4aに流入し、周囲を流れる空気に熱を放出して凝縮する。凝縮した冷媒は第二電磁開閉弁6bが開放されていることにより室外熱交換器2に流入し、同室外熱交換器2で周囲を流れる空気から熱を吸収して蒸発する。蒸発した冷媒は第八電磁開閉弁6hが開放されていることにより、第五バイパス路12を介して多段圧縮機1に還流するようになっている。また、この際、第五電磁開閉弁6e、第六電磁開閉弁6f及び第七電磁開閉弁6gを開放すれば、野菜室用熱交換器4b、冷蔵室用熱交換器4cで冷房運転を、冷凍庫用熱交換器5で冷凍運転を行えるようになっている。   The high-temperature and high-pressure refrigerant compressed by the multistage compressor 1 flows into the air-conditioning heat exchanger 4a by closing the first electromagnetic on-off valve 6a and opening the third electromagnetic on-off valve 6c. It releases heat to the surrounding air and condenses. The condensed refrigerant flows into the outdoor heat exchanger 2 by opening the second electromagnetic on-off valve 6b, and evaporates by absorbing heat from the air flowing in the outdoor heat exchanger 2. The evaporated refrigerant is recirculated to the multistage compressor 1 through the fifth bypass passage 12 by opening the eighth electromagnetic on-off valve 6h. At this time, if the fifth electromagnetic on-off valve 6e, the sixth electromagnetic on-off valve 6f, and the seventh electromagnetic on-off valve 6g are opened, the vegetable room heat exchanger 4b and the refrigeration room heat exchanger 4c perform the cooling operation. The freezing operation can be performed by the freezer heat exchanger 5.

空調用熱交換器4aで冷房運転を行う場合は、第一電磁開閉弁6a、第二電磁開閉弁6b、第四電磁開閉弁6dは開放されるが、第三電磁開閉弁6c及び第八電磁開閉弁6hは閉鎖されるようになっている。多段圧縮機1で圧縮された高温高圧の冷媒は、第三電磁開閉弁6cが閉鎖されていることにより室外熱交換器2に流入して凝縮する。凝縮した冷媒は第一バイパス路8に流入して第一副電子膨張弁3bにより減圧された後、空調用熱交換器4aで蒸発する。蒸発した冷媒は、第四電磁開閉弁6dが開放されていることにより第四バイパス路11を介して多段圧縮機1に還流するようになっている。尚、この際も、第五電磁開閉弁6e、第六電磁開閉弁6f及び第七電磁開閉弁6gを開放すれば、野菜室用熱交換器4b、冷蔵室用熱交換器4cで冷房運転を、冷凍庫用熱交換器5で冷凍運転を行えるようになっている。   When the air conditioning heat exchanger 4a performs a cooling operation, the first electromagnetic on-off valve 6a, the second electromagnetic on-off valve 6b, and the fourth electromagnetic on-off valve 6d are opened, but the third electromagnetic on-off valve 6c and the eighth electromagnetic on-off valve are opened. The on-off valve 6h is closed. The high-temperature and high-pressure refrigerant compressed by the multistage compressor 1 flows into the outdoor heat exchanger 2 and condenses because the third electromagnetic on-off valve 6c is closed. The condensed refrigerant flows into the first bypass 8 and is depressurized by the first sub-electronic expansion valve 3b, and then evaporates in the air conditioner heat exchanger 4a. The evaporated refrigerant is refluxed to the multistage compressor 1 through the fourth bypass passage 11 by opening the fourth electromagnetic on-off valve 6d. Even in this case, if the fifth electromagnetic on / off valve 6e, the sixth electromagnetic on / off valve 6f, and the seventh electromagnetic on / off valve 6g are opened, the vegetable room heat exchanger 4b and the refrigeration room heat exchanger 4c perform the cooling operation. The freezing operation can be performed by the freezer heat exchanger 5.

次に、第三実施例について説明する。第三実施例は図5で示すように、多段圧縮機1と、第一電磁開閉弁6aと第二電磁開閉弁6bとを前後に配置した室外熱交換器2と、第五電子膨張弁3eと、第一レシーバタンク13と、第六電子膨張弁3fと、第二レシーバタンク15と、第一膨張弁3aと、冷凍庫用熱交換器5と、第七電磁開閉弁6gと、第三アキュームレータ5cとを配管7により環状に接続している。   Next, a third embodiment will be described. In the third embodiment, as shown in FIG. 5, the multistage compressor 1, the outdoor heat exchanger 2 in which the first electromagnetic on-off valve 6a and the second electromagnetic on-off valve 6b are arranged at the front and rear, and the fifth electronic expansion valve 3e. A first receiver tank 13, a sixth electronic expansion valve 3f, a second receiver tank 15, a first expansion valve 3a, a freezer heat exchanger 5, a seventh electromagnetic on-off valve 6g, and a third accumulator. 5c is connected in an annular shape by a pipe 7.

多段圧縮機1の吐出側と、第二電磁開閉弁6bと第五電子膨張弁3eとの間は、第一バイパス路8により接続され、同第一バイパス路8には室外熱交換器2の下流側から、第一副電子膨張弁3bと空調用熱交換器4aと、第三電磁開閉弁6cとが設けられている。また、第二圧縮機1bと第三圧縮機1cとを繋ぐ連結管1eと、第一レシーバタンク13と第六電子膨張弁3fとの間には第二バイパス路9が接続され、同第二バイパス路9には第二副電子膨張弁3cと、野菜室用熱交換器4bと、第一アキュームレータ5aと、第五電磁開閉弁6eとが設けられている。また、第一圧縮機1aと第二圧縮機1bとを繋ぐ連結管1dと、第一レシーバタンク13と第六電子膨張弁3fとの間には第三バイパス路10が接続され、同第三バイパス路10には第三副電子膨張弁3dと、冷蔵室用熱交換器4cと、第二アキュームレータ5bと、第六電磁開閉弁6fとが設けられている。   The discharge side of the multistage compressor 1 and the second electromagnetic on-off valve 6b and the fifth electronic expansion valve 3e are connected by a first bypass path 8, and the first bypass path 8 has an outdoor heat exchanger 2 connected thereto. From the downstream side, a first sub electronic expansion valve 3b, a heat exchanger 4a for air conditioning, and a third electromagnetic on-off valve 6c are provided. A second bypass 9 is connected between the connecting pipe 1e that connects the second compressor 1b and the third compressor 1c, the first receiver tank 13, and the sixth electronic expansion valve 3f. The bypass passage 9 is provided with a second sub electronic expansion valve 3c, a vegetable room heat exchanger 4b, a first accumulator 5a, and a fifth electromagnetic on-off valve 6e. A third bypass 10 is connected between the connecting pipe 1d connecting the first compressor 1a and the second compressor 1b, the first receiver tank 13, and the sixth electronic expansion valve 3f. The bypass passage 10 is provided with a third sub electronic expansion valve 3d, a refrigerating chamber heat exchanger 4c, a second accumulator 5b, and a sixth electromagnetic opening / closing valve 6f.

また、第一レシーバタンク13からはガス管14が導出され、同ガス管14は、第九電磁開閉弁6jを備えたガス管14aと、第十電磁開閉弁6kを備えたガス管14bとに分岐し、分岐した一方のガス管14aは第一アキュームレータ5aに接続され、分岐した他方のガス管14bは第二アキュームレータ5bに接続されている。同様に、第二レシーバタンク15からも、第十一電磁開閉弁6mを備えたガス管16が導出され、同ガス管16は冷凍庫用熱交換器5と第七電磁開閉弁6gとの間に接続されている。   A gas pipe 14 is led out from the first receiver tank 13, and the gas pipe 14 is divided into a gas pipe 14a having a ninth electromagnetic on-off valve 6j and a gas pipe 14b having a tenth electromagnetic on-off valve 6k. One of the branched gas pipes 14a is connected to the first accumulator 5a, and the other branched gas pipe 14b is connected to the second accumulator 5b. Similarly, the gas pipe 16 provided with the eleventh electromagnetic opening / closing valve 6m is led out from the second receiver tank 15, and the gas pipe 16 is provided between the freezer heat exchanger 5 and the seventh electromagnetic opening / closing valve 6g. It is connected.

次に、冷媒の流れについて説明する。尚、第一電磁開閉弁6aと第三電磁開閉弁6cとを開放して室外熱交換器2と空調用熱交換器4aとを利用する場合と、空調用熱交換器4aを単独で使用する場合は、第一副電子膨張弁3bは全開状態となり絞り動作は行わないようになっている。   Next, the flow of the refrigerant will be described. The first electromagnetic on-off valve 6a and the third electromagnetic on-off valve 6c are opened to use the outdoor heat exchanger 2 and the air conditioning heat exchanger 4a, and the air conditioning heat exchanger 4a is used alone. In this case, the first sub electronic expansion valve 3b is in a fully opened state so that the throttling operation is not performed.

第一電磁開閉弁6aと第三電磁開閉弁6cとを開放した際、多段圧縮機1から吐出された高温高圧の冷媒は室外熱交換器2と空調用熱交換器4aとに流入して、周囲を流れる空気に熱を放出しながら凝縮する。凝縮した冷媒は、第五電子膨張弁3eにより減圧されて低温低圧の状態となり、第一レシーバタンク13に流入して液冷媒とガス冷媒とに分離されるようになっている。   When the first electromagnetic on-off valve 6a and the third electromagnetic on-off valve 6c are opened, the high-temperature and high-pressure refrigerant discharged from the multistage compressor 1 flows into the outdoor heat exchanger 2 and the air-conditioning heat exchanger 4a, It condenses while releasing heat into the surrounding air. The condensed refrigerant is decompressed by the fifth electronic expansion valve 3e to be in a low temperature and low pressure state, flows into the first receiver tank 13, and is separated into liquid refrigerant and gas refrigerant.

第一レシーバタンク13で分離した液冷媒は、第二バイパス路9と第三バイパス路10とに流入し、第二バイパス路9に流入した液冷媒は第二副電子膨張弁3cにより減圧されて更に低温低圧となり、野菜室用熱交換器4bに流入して周囲を流れる空気から吸熱して蒸発した後、連結管1eに還流するようになっている。同様に、第三バイパス路10に流入した液冷媒は第三副電子膨張弁3dにより減圧されて更に低温低圧となり、冷蔵室用熱交換器4cに流入して蒸発した後、連結管1dに還流するようになっている。このように、第一レシーバタンク13で分離した液冷媒を野菜室用熱交換器4b及び冷蔵室用熱交換器4cで蒸発させることにより、蒸発潜熱が増大し、冷房能力を向上させるようになっている。また、第一レシーバタンク13で分離したガス冷媒は、ガス管14aとガス管14bにより第一アキュームレータ5aと第二アキュームレータ5bに送出されることにより冷媒流量バランスを保つようになっている。   The liquid refrigerant separated in the first receiver tank 13 flows into the second bypass path 9 and the third bypass path 10, and the liquid refrigerant flowing into the second bypass path 9 is decompressed by the second sub electronic expansion valve 3c. Further, the temperature becomes low temperature and low pressure, and after flowing into the vegetable room heat exchanger 4b and absorbing and evaporating from the air flowing therearound, it is refluxed to the connecting pipe 1e. Similarly, the liquid refrigerant flowing into the third bypass passage 10 is depressurized by the third sub-electronic expansion valve 3d to become a low temperature and low pressure, flows into the refrigerating room heat exchanger 4c and evaporates, and then returns to the connecting pipe 1d. It is supposed to be. In this way, by evaporating the liquid refrigerant separated in the first receiver tank 13 in the vegetable room heat exchanger 4b and the refrigeration room heat exchanger 4c, the latent heat of vaporization increases and the cooling capacity is improved. ing. The gas refrigerant separated in the first receiver tank 13 is sent to the first accumulator 5a and the second accumulator 5b through the gas pipe 14a and the gas pipe 14b, thereby maintaining the refrigerant flow rate balance.

第一レシーバタンク13で分離した液冷媒は、第六電子膨張弁3fで更に減圧され第二レシーバタンク15で再度、液冷媒とガス冷媒に分離されるようになっている。分離された液冷媒は第一膨張弁3aで減圧されて過冷却の状態となり冷凍庫用熱交換器5で蒸発し、熱交換した後、多段圧縮機1に還流するようになっている。過冷却状態の冷媒を蒸発させることにより、冷凍庫用熱交換器5での冷却能力を向上させることができるようになっており、また、第二レシーバタンク15で分離したガス冷媒をガス管16で冷凍庫用熱交換器5の下流側に戻すことにより冷媒流量バランスを保つようになっている。   The liquid refrigerant separated in the first receiver tank 13 is further depressurized by the sixth electronic expansion valve 3f, and again separated into liquid refrigerant and gas refrigerant by the second receiver tank 15. The separated liquid refrigerant is depressurized by the first expansion valve 3a, becomes supercooled, evaporates in the freezer heat exchanger 5, heat-exchanges, and then returns to the multistage compressor 1. By evaporating the supercooled refrigerant, the cooling capacity of the freezer heat exchanger 5 can be improved, and the gas refrigerant separated in the second receiver tank 15 is separated by the gas pipe 16. The refrigerant flow rate balance is maintained by returning to the downstream side of the freezer heat exchanger 5.

本発明による冷凍空調装置の第一実施例を示す冷媒回路図である。1 is a refrigerant circuit diagram showing a first embodiment of a refrigerating and air-conditioning apparatus according to the present invention. 第一実施例での冷媒の流れの変化を示す冷媒回路図である。It is a refrigerant circuit figure which shows the change of the flow of the refrigerant | coolant in a 1st Example. 本発明による冷凍空調装置の第二実施例を示す冷媒回路図である。It is a refrigerant circuit figure which shows the 2nd Example of the refrigerating air conditioning apparatus by this invention. 第一実施例におけるP−h線図である。It is a Ph diagram in the first embodiment. 本発明による冷凍空調装置の第三実施例を示す冷媒回路図である。It is a refrigerant circuit figure which shows the 3rd Example of the refrigerating air conditioner by this invention. 従来例による冷凍空調装置を示す冷媒回路図である。It is a refrigerant circuit diagram which shows the refrigerating and air-conditioning apparatus by a prior art example.

符号の説明Explanation of symbols

1 多段圧縮機
1a 第一圧縮機
1b 第二圧縮機
1c 第三圧縮機
1d 連結管
1e 連結管
2 室外熱交換器
3a 第一電子膨張弁
3b 第一副電子膨張弁
3c 第二副電子膨張弁
3d 第三副電子膨張弁
3e 第五電子膨張弁
3f 第六電子膨張弁
4a 空調用熱交換器
4b 野菜室用熱交換器
4c 冷蔵室用熱交換器
5 冷凍庫用熱交換器
5a 第一アキュームレータ
5b 第二アキュームレータ
5c 第三アキュームレータ
6a 第一電磁開閉弁
6b 第二電磁開閉弁
6c 第三電磁開閉弁
6d 第四電磁開閉弁
6e 第五電磁開閉弁
6f 第六電磁開閉弁
6g 第七電磁開閉弁
6h 第八電磁開閉弁
6j 第九電磁開閉弁
6k 第十電磁開閉弁
6m 第十一電磁開閉弁
7 配管
8 第一バイパス路
9 第二バイパス路
10 第三バイパス路
11 第四バイパス路
12 第五バイパス路
13 第一レシーバタンク
14 ガス管
15 第二レシーバタンク
16 ガス管
DESCRIPTION OF SYMBOLS 1 Multistage compressor 1a 1st compressor 1b 2nd compressor 1c 3rd compressor 1d Connection pipe 1e Connection pipe 2 Outdoor heat exchanger 3a 1st electronic expansion valve 3b 1st secondary electronic expansion valve 3c 2nd secondary electronic expansion valve 3d Third sub-electronic expansion valve 3e Fifth electronic expansion valve 3f Sixth electronic expansion valve 4a Heat exchanger for air conditioning 4b Heat exchanger for vegetable room 4c Heat exchanger for refrigerator room 5 Heat exchanger for freezer 5a First accumulator 5b 2nd accumulator 5c 3rd accumulator 6a 1st electromagnetic on-off valve 6b 2nd electromagnetic on-off valve 6c 3rd electromagnetic on-off valve 6d 4th electromagnetic on-off valve 6e 5th electromagnetic on-off valve 6f 6th electromagnetic on-off valve 6g 7th electromagnetic on-off valve 6h Eighth electromagnetic on-off valve 6j Ninth electromagnetic on-off valve 6k Tenth electromagnetic on-off valve 6m Eleventh electromagnetic on-off valve 7 Piping 8 First bypass path 9 Second bypass path 10 Third bypass path 11 Fourth bypasser Road 12 fifth bypass passage 13 first receiver tank 14 gas pipe 15 the second receiver tank 16 Gas pipe

Claims (4)

第一圧縮手段、第二圧縮手段及び第三圧縮手段とからなる圧縮機構と、熱源側熱交換器と、主減圧手段と、低温用熱交換器とを環状に接続するとともに、前記圧縮機構の吐出側と、前記熱源側熱交換器と主減圧手段の間とを、第一副減圧手段と第一利用側熱交換器を備えた第一バイパス路により接続し、前記第二圧縮手段と前記第三圧縮手段の間と、前記熱源側熱交換器と主減圧手段の間とを第二副減圧手段と第二利用側熱交換器を備えた第二バイパス路により接続し、前記第一圧縮手段と前記第二圧縮手段の間と、前記熱源側熱交換器と主減圧手段の間とを第三副減圧手段と第三利用側熱交換器を備えた第三バイパス路により接続したことを特徴とする冷凍空調装置。   The compression mechanism including the first compression means, the second compression means, and the third compression means, the heat source side heat exchanger, the main decompression means, and the low temperature heat exchanger are connected in an annular shape, and the compression mechanism The discharge side and the heat source side heat exchanger and the main pressure reducing means are connected by a first bypass passage having a first sub pressure reducing means and a first use side heat exchanger, and the second compression means and the The third compression means and the heat source side heat exchanger and the main pressure reduction means are connected by a second bypass passage having a second sub pressure reduction means and a second usage side heat exchanger, and the first compression And the second compression means, and the heat source side heat exchanger and the main decompression means are connected by a third bypass passage having a third sub decompression means and a third utilization side heat exchanger. Refrigeration air conditioner characterized. 前記圧縮機構と前記第一利用側熱交換器の間と、前記圧縮機構と前記低温用熱交換器の間とに、開閉手段を備えた第四バイパス路を設けたことを特徴とする請求項1に記載の冷凍空調装置。   The fourth bypass passage having an opening / closing means is provided between the compression mechanism and the first use side heat exchanger and between the compression mechanism and the low temperature heat exchanger. The refrigeration air conditioner according to 1. 前記第三利用側熱交換器及び前記低温用熱交換器を設置した設置室の室温は所定温度範囲に維持される一方、前記第二利用側熱交換器を備えた設置室の室温は前記第三利用側熱交換器及び前記低温用熱交換器を設置した設置室よりも広い温度範囲で可変させることを特徴とする請求項1に記載の冷凍空調装置。   The room temperature of the installation room in which the third usage side heat exchanger and the low temperature heat exchanger are installed is maintained in a predetermined temperature range, while the room temperature of the installation room in which the second usage side heat exchanger is installed is the first room temperature. The refrigerating and air-conditioning apparatus according to claim 1, wherein the refrigerating and air-conditioning apparatus is variable in a temperature range wider than an installation room in which the three use side heat exchangers and the low-temperature heat exchanger are installed. 前記圧縮機構と前記熱源側熱交換器の間と、前記圧縮機構と前記低温用熱交換器の間とに、開閉手段を備えた第五バイパス路を設けたことを特徴とする請求項1に記載の冷凍空調装置。   The fifth bypass passage having an opening / closing means is provided between the compression mechanism and the heat source side heat exchanger and between the compression mechanism and the low temperature heat exchanger. Refrigeration air conditioner of description.
JP2008281252A 2008-10-31 2008-10-31 Refrigeration air conditioner Active JP5195302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008281252A JP5195302B2 (en) 2008-10-31 2008-10-31 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008281252A JP5195302B2 (en) 2008-10-31 2008-10-31 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2010107143A true JP2010107143A (en) 2010-05-13
JP5195302B2 JP5195302B2 (en) 2013-05-08

Family

ID=42296764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008281252A Active JP5195302B2 (en) 2008-10-31 2008-10-31 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP5195302B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043992A (en) * 2012-08-27 2014-03-13 Mitsubishi Heavy Ind Ltd Air conditioner
JP2015059719A (en) * 2013-09-19 2015-03-30 ダイキン工業株式会社 Refrigerating device
CN106352587A (en) * 2016-10-31 2017-01-25 广东美芝制冷设备有限公司 Refrigerating system
CN111735263A (en) * 2020-07-23 2020-10-02 珠海格力电器股份有限公司 Refrigeration system, storage room and temperature adjusting method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195072U (en) * 1981-06-05 1982-12-10
JPH04281161A (en) * 1991-02-08 1992-10-06 Mitsubishi Electric Corp Refrigerating plant
JP2000240980A (en) * 1999-02-23 2000-09-08 Fuji Electric Co Ltd Refrigerator/air conditioner
WO2002046663A1 (en) * 2000-12-08 2002-06-13 Daikin Industries, Ltd. Refrigerator
JP2002174478A (en) * 2000-09-28 2002-06-21 Matsushita Refrig Co Ltd Cooling and heating apparatus, and automatic vending machine using this cooling and heating apparatus
JP2002188865A (en) * 2000-10-13 2002-07-05 Mitsubishi Heavy Ind Ltd Multiple stage compression type refrigerating machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57195072U (en) * 1981-06-05 1982-12-10
JPH04281161A (en) * 1991-02-08 1992-10-06 Mitsubishi Electric Corp Refrigerating plant
JP2000240980A (en) * 1999-02-23 2000-09-08 Fuji Electric Co Ltd Refrigerator/air conditioner
JP2002174478A (en) * 2000-09-28 2002-06-21 Matsushita Refrig Co Ltd Cooling and heating apparatus, and automatic vending machine using this cooling and heating apparatus
JP2002188865A (en) * 2000-10-13 2002-07-05 Mitsubishi Heavy Ind Ltd Multiple stage compression type refrigerating machine
WO2002046663A1 (en) * 2000-12-08 2002-06-13 Daikin Industries, Ltd. Refrigerator

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014043992A (en) * 2012-08-27 2014-03-13 Mitsubishi Heavy Ind Ltd Air conditioner
JP2015059719A (en) * 2013-09-19 2015-03-30 ダイキン工業株式会社 Refrigerating device
CN106352587A (en) * 2016-10-31 2017-01-25 广东美芝制冷设备有限公司 Refrigerating system
CN106352587B (en) * 2016-10-31 2019-05-24 广东美芝制冷设备有限公司 Refrigeration system
CN111735263A (en) * 2020-07-23 2020-10-02 珠海格力电器股份有限公司 Refrigeration system, storage room and temperature adjusting method thereof
CN111735263B (en) * 2020-07-23 2024-02-13 珠海格力电器股份有限公司 Refrigerating system, storage and temperature adjusting method thereof

Also Published As

Publication number Publication date
JP5195302B2 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP6053826B2 (en) Air conditioner
JP6033297B2 (en) Air conditioner
JP6715929B2 (en) Refrigeration cycle device and air conditioner including the same
JP6727422B2 (en) Dual freezer
JP6888068B2 (en) Refrigeration cycle device and air conditioner equipped with it
JP2008249219A (en) Refrigerating air conditioner
US10180269B2 (en) Refrigeration device
JP2015148406A (en) Refrigeration device
JP5195302B2 (en) Refrigeration air conditioner
JP2010078164A (en) Refrigeration and air conditioning device
JP6253370B2 (en) Refrigeration cycle equipment
JPWO2014038059A1 (en) Air conditioner
JP2010078165A (en) Refrigeration and air conditioning device
JP2007051788A (en) Refrigerating device
JP2007100987A (en) Refrigerating system
JP2015102541A (en) Environmental test device and cooling system
JP4660334B2 (en) Refrigeration system
JP2007240040A (en) Refrigerating system and its control method
WO2010041453A1 (en) Refrigeration device
JP2009115336A (en) Refrigeration system
JP2013092342A (en) Refrigerating device
JP2013113499A (en) Air conditioner
US20230392829A1 (en) Refrigerant circuit for a refrigeration apparatus with a thermal storage and method for controlling a refrigerant circuit
JP2008057974A (en) Cooling apparatus
JP6593483B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120501

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5195302

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350