JP2015102541A - Environmental test device and cooling system - Google Patents

Environmental test device and cooling system Download PDF

Info

Publication number
JP2015102541A
JP2015102541A JP2013246082A JP2013246082A JP2015102541A JP 2015102541 A JP2015102541 A JP 2015102541A JP 2013246082 A JP2013246082 A JP 2013246082A JP 2013246082 A JP2013246082 A JP 2013246082A JP 2015102541 A JP2015102541 A JP 2015102541A
Authority
JP
Japan
Prior art keywords
temperature side
cooling
tank
refrigerant
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013246082A
Other languages
Japanese (ja)
Other versions
JP5995326B2 (en
Inventor
宗昭 園部
Muneaki Sonobe
宗昭 園部
嶋田 哲也
Tetsuya Shimada
哲也 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2013246082A priority Critical patent/JP5995326B2/en
Publication of JP2015102541A publication Critical patent/JP2015102541A/en
Application granted granted Critical
Publication of JP5995326B2 publication Critical patent/JP5995326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an environmental test device which is a cooling system enabling switching between one way operation and two way operation and hardly reducing a cooling capacity in switching with less change gradient in temperature as compared to the prior art.SOLUTION: A cooling system 7 includes: a low temperature side freezing circuit 20; and a high temperature side freezing circuit 21. The cooling system 7 can switch between one way operation and two way operation. When switching from one way operation to two way operation, a transition operation is temporarily executed, which makes a refrigerant pass through both of an evaporation part 33 for cooling an interior of a tank and an evaporation part 35 for cooling a capacitor. The transition operation makes the refrigerant pass through both of a main circuit 50 and an auxiliary circuit 51 of the higher temperature side freezing circuit 21, and in this state, the refrigerant is also circulated in the low temperature side freeing circuit 20. The transition operation is performed stepwise, and flow passages passing through five capillary tubes 41, 42, 43, 44, and 45 which constitute an expansion passage 36 for cooling the interior of the tank are completely opened at the beginning, and these passages are closed one by one as time elapses.

Description

本発明は環境試験装置に関するものであり、さらに詳しくは、圧縮機、凝縮器、膨張手段、蒸発器によって構成される冷凍回路を複数有し、1つの冷凍回路だけを使用して運転する一元運転と、2以上の冷凍回路を連結的に運転する二元運転の切り換えが可能な冷却装置を備えた環境試験装置に関するものである。
また本発明は、一元運転と二元運転の切り換えが可能な冷却装置に関するものである。
The present invention relates to an environmental test apparatus. More specifically, the present invention has a plurality of refrigeration circuits including a compressor, a condenser, expansion means, and an evaporator, and operates in a single unit using only one refrigeration circuit. And an environmental test apparatus including a cooling device capable of switching between two-way operation in which two or more refrigeration circuits are connected.
The present invention also relates to a cooling device capable of switching between one-way operation and two-way operation.

一般に環境試験装置には、冷却装置が搭載されている。冷却装置は、圧縮機、凝縮器、膨張手段、蒸発器によって構成され、内部に相変化する冷媒が循環する冷凍回路を有している。冷凍回路内において冷媒は圧縮機によって圧縮され、凝縮器によって凝縮し、膨張手段で膨張した後に、蒸発器で蒸発し、再び圧縮機に戻る。そして冷媒は、蒸発器で蒸発する際に周囲から熱を奪う。   Generally, a cooling device is mounted on an environmental test apparatus. The cooling device includes a compressor, a condenser, expansion means, and an evaporator, and has a refrigeration circuit in which a phase-change refrigerant circulates. In the refrigeration circuit, the refrigerant is compressed by the compressor, condensed by the condenser, expanded by the expansion means, evaporated by the evaporator, and returned to the compressor again. And when a refrigerant evaporates with an evaporator, it takes heat from the circumference.

環境試験装置に採用される冷却装置は、一組の圧縮機、凝縮器、膨張手段、蒸発器によって構成されて冷凍回路によって冷却を行う構造のものが多い。
より低い温度が要求される場合には、2以上の冷凍回路をカスケードコンデンサで熱的に連結して二元運転を行う冷却装置が用いられる。
二元運転を行う冷却装置は、複数の冷凍回路を有している。二元運転を行う冷却装置は、高温側冷凍回路と低温側冷凍回路を有し、高温側冷凍回路の蒸発器と低温側冷凍回路の凝縮器が一体化されてカスケードコンデンサを構成している。
二元運転を行う冷却装置によると、低温側冷凍回路の凝縮器がより冷却され、極低温を作り出すことができる。
Many of the cooling devices employed in the environmental test apparatus are structured by a set of a compressor, a condenser, an expansion means, and an evaporator and are cooled by a refrigeration circuit.
When a lower temperature is required, a cooling device that performs two-way operation by thermally connecting two or more refrigeration circuits with a cascade condenser is used.
The cooling device that performs the dual operation has a plurality of refrigeration circuits. A cooling device that performs dual operation has a high-temperature side refrigeration circuit and a low-temperature side refrigeration circuit, and an evaporator of the high-temperature side refrigeration circuit and a condenser of the low-temperature side refrigeration circuit are integrated to form a cascade capacitor.
According to the cooling device that performs dual operation, the condenser of the low-temperature side refrigeration circuit is further cooled, and a cryogenic temperature can be created.

ところで二元運転で冷却を行うと、低温での冷却能力は高まるものの、複数の冷凍回路を運転することになるので電力消費量が多い。従って極低温が要求されない場合、即ち中程度の低温環境を作りたい場合には、一組の冷凍回路だけを使用して冷却装置を運転することが望ましい。即ち中程度の低温環境を作りたい場合には、一元運転で冷却装置を運転することが望ましい。   By the way, if cooling is performed in a two-way operation, the cooling capacity at a low temperature is increased, but a plurality of refrigeration circuits are operated, so that power consumption is large. Therefore, when a very low temperature is not required, that is, when it is desired to create a moderately low temperature environment, it is desirable to operate the cooling device using only one set of refrigeration circuits. That is, when it is desired to create a moderate low temperature environment, it is desirable to operate the cooling device in a single operation.

特許文献1には、一元運転と二元運転との切り換えを行うことが可能な冷却装置が開示されている。   Patent Document 1 discloses a cooling device capable of switching between a one-way operation and a two-way operation.

特開2001−174381号公報Japanese Patent Laid-Open No. 2001-174381

環境試験装置は、各種の試験を実施するものであり、被試験物を一定の温度環境にさらす場合や、高温環境から低温環境に変化させて被試験物の性能を試験する様な場合がある。後者の高温環境から低温環境に変化させて試験する場合は、温度の変化勾配が一定であることが望ましい。
ここで、一元運転と二元運転との切り換えを行うことが可能な冷却装置を使用して、例えば槽内を摂氏150度から摂氏マイナス40度という様な低温に変化させる場合は、一元運転で運転を開始し、途中で二元運転に切り換えることとなる。即ち槽内の温度が高い時期には冷却装置を一元運転で運転し、槽内の温度がある程度低下すると、運転モードを二元運転に切り換え、最終的に摂氏マイナス40度に至らせる。
The environmental test equipment is used to perform various types of tests. In some cases, the DUT is exposed to a certain temperature environment, or the performance of the DUT is tested by changing from a high temperature environment to a low temperature environment. . In the case of testing by changing from the latter high temperature environment to the low temperature environment, it is desirable that the temperature change gradient is constant.
Here, when using a cooling device capable of switching between one-way operation and two-way operation, for example, when changing the inside of the tank to a low temperature such as 150 degrees Celsius to minus 40 degrees Celsius, The operation is started, and the operation is switched to the dual operation on the way. That is, when the temperature in the tank is high, the cooling device is operated in a unitary operation, and when the temperature in the tank is lowered to some extent, the operation mode is switched to a dual operation and finally reaches minus 40 degrees Celsius.

しかしながら、槽内の温度を低下させる過程で運転モードを切り換えると、切り換え直後に槽内の温度が一時的に上昇してしまう場合がある。   However, if the operation mode is switched in the process of lowering the temperature in the tank, the temperature in the tank may temporarily rise immediately after switching.

この理由は、冷却装置を二元運転に切り換えた直後は、低温側冷凍回路の凝縮器の温度が高く、低温側冷凍回路が十分に機能しないためである。
即ち二元運転を行う場合、高温側蒸発器によって低温側冷凍回路の凝縮器が冷却されなければ低温側冷凍回路が機能しない。そのため、運転モードを一元運転から二元運転へ切り替えた直後には、一時的に冷却装置の冷却能力が低下してしまい、二元運転で運転を行っているにもかかわらず、槽内温度の降下速度が遅くなったり、槽内温度が上昇したりするのであった。
This is because immediately after switching the cooling device to the two-way operation, the temperature of the condenser of the low temperature side refrigeration circuit is high, and the low temperature side refrigeration circuit does not function sufficiently.
That is, when performing dual operation, the low temperature side refrigeration circuit will not function unless the condenser of the low temperature side refrigeration circuit is cooled by the high temperature side evaporator. Therefore, immediately after switching the operation mode from the one-way operation to the two-way operation, the cooling capacity of the cooling device is temporarily reduced, and the temperature inside the tank is reduced despite the operation in the two-way operation. The descent speed slows down and the temperature inside the tank rises.

そこで、本発明は、一元運転と二元運転との切替が可能な冷却装置であり、切り替えの際に冷却能力が低下しにくく、従来に比べて温度の変化勾配の変化が少ない環境試験装置を提供することを課題とする。   Therefore, the present invention is a cooling device capable of switching between one-way operation and two-way operation, and an environmental test device in which the cooling capacity is less likely to be reduced at the time of switching and the change in temperature change gradient is less than that in the past. The issue is to provide.

そして、上記した目的を達成するための請求項1に記載の発明は、冷却装置によって槽内を冷却する機能を備えた環境試験装置において、前記冷却装置は、低温側圧縮部、低温側凝縮部、低温側膨張部及び低温側蒸発部を有し冷媒が循環する低温側冷凍回路と、高温側圧縮部、高温側凝縮部、高温側膨張部、槽内冷却用蒸発部及び凝縮器冷却用蒸発部を有し、冷媒が循環する高温側冷凍回路とが設けられ、凝縮器冷却用蒸発部によって低温側凝縮部を冷却可能であり、高温側冷凍回路の高温側圧縮部、高温側凝縮部、高温側膨張部、槽内冷却用蒸発部に冷媒を通過させて槽内を冷却する一元運転と、高温側冷凍回路の高温側圧縮部、高温側凝縮部、高温側膨張部、凝縮器冷却用蒸発部に冷媒を通過させて低温側凝縮部を冷却すると共に低温側冷凍回路に冷媒を通過させて槽内を冷却する二元運転とを行うことが可能であり、一元運転から二元運転に切り換える際に、一時的に槽内冷却用蒸発部と凝縮器冷却用蒸発部の双方に冷媒を通過させる移行運転が実施され、前記高温側膨張部は、槽内冷却用蒸発部に冷媒を供給する槽内冷却用膨張経路と、凝縮器冷却用蒸発部に冷媒を供給する凝縮器用膨張経路を有し、前記槽内冷却用膨張経路は冷媒の通過面積を変更可能であり、凝縮器用膨張経路は冷媒の通過経路を開閉可能であり、前記移行運転においては、凝縮器用膨張経路が開かれると共に槽内冷却用膨張経路の冷媒の通過面積が絞られることを特徴とする環境試験装置である。   The invention described in claim 1 for achieving the above object is an environmental test apparatus having a function of cooling the inside of a tank by a cooling device, wherein the cooling device includes a low temperature side compression unit, a low temperature side condensation unit. A low-temperature side refrigeration circuit having a low-temperature side expansion unit and a low-temperature side evaporation unit, in which refrigerant circulates, a high-temperature side compression unit, a high-temperature side condensing unit, a high-temperature side expansion unit, a tank cooling evaporation unit, and a condenser cooling evaporation A high-temperature side refrigeration circuit through which the refrigerant circulates, and the condenser-cooling evaporation unit can cool the low-temperature side condensation unit, and the high-temperature side refrigeration circuit has a high-temperature side compression unit, a high-temperature side condensation unit, High-temperature side expansion unit, single-unit operation for passing the refrigerant through the tank cooling evaporator and cooling the inside of the tank, high-temperature side refrigeration circuit high-temperature side compression unit, high-temperature side condensing unit, high-temperature side expansion unit, for condenser cooling The refrigerant is passed through the evaporation section to cool the low temperature side condensation section and at the low temperature side. It is possible to perform two-way operation in which the refrigerant is passed through the refrigeration circuit and cools the inside of the tank. When switching from one-way operation to two-way operation, the tank cooling evaporator and the condenser cooling temporarily A transition operation for allowing the refrigerant to pass through both of the evaporation sections is performed, and the high temperature side expansion section supplies the refrigerant to the tank cooling expansion path for supplying the refrigerant to the tank cooling evaporation section, and the condenser cooling evaporation section. An expansion path for the condenser to be supplied; the expansion path for cooling the inside of the tank can change a passage area of the refrigerant; the expansion path for the condenser can open and close the passage path of the refrigerant; The environmental test apparatus is characterized in that the expansion path for the vessel is opened and the passage area of the refrigerant in the expansion path for cooling in the tank is reduced.

本発明の環境試験装置では、一元運転から二元運転に切り換える際に、一時的に槽内冷却用蒸発部と凝縮器冷却用蒸発部の双方に冷媒を通過させる移行運転が実施される。そのため二元運転が開始された直後は、高温側の槽内冷却用蒸発部にも冷媒が供給され続け、高温側の槽内冷却用蒸発部もある程度の冷却機能を維持している。そのため槽内温度が上昇する現象が発生しにくい。
また本発明の環境試験装置では、移行運転時に槽内冷却用膨張経路の冷媒の通過面積が絞られる。そのため凝縮器用膨張経路を流れる冷媒の量と、槽内冷却用膨張経路を流れる冷媒の量とのバランスをとることができる。
In the environmental test apparatus according to the present invention, when switching from the one-way operation to the two-way operation, a transition operation is performed in which the refrigerant is temporarily passed through both the tank cooling evaporator and the condenser cooling evaporator. Therefore, immediately after the two-way operation is started, the refrigerant continues to be supplied to the high-temperature tank cooling evaporation section, and the high-temperature tank cooling evaporation section maintains a certain level of cooling function. For this reason, the phenomenon that the temperature in the tank rises hardly occurs.
Moreover, in the environmental test apparatus of this invention, the passage area of the refrigerant | coolant of the expansion path for tank cooling is restrict | squeezed at the time of transfer operation. Therefore, it is possible to balance the amount of refrigerant flowing through the expansion path for condenser and the amount of refrigerant flowing through the expansion path for cooling inside the tank.

請求項2に記載の発明は、移行運転においては、槽内冷却用膨張経路の冷媒の通過面積が序々に絞られ、一定時間経過後には槽内冷却用膨張経路が全閉されることを特徴とする請求項1に記載の環境試験装置である。   The invention according to claim 2 is characterized in that, in the transition operation, the passage area of the refrigerant in the expansion path for cooling the tank is gradually reduced, and the expansion path for cooling the tank is fully closed after a lapse of a certain time. The environmental test apparatus according to claim 1.

本発明によると、冷却能力の急激な変化が抑制されるので、温度の変化勾配の急変が減少する。   According to the present invention, since the rapid change of the cooling capacity is suppressed, the rapid change of the temperature change gradient is reduced.

請求項3に記載の発明は、外気温度を検知する外気温度検知手段を有し、一元運転から二元運転に切り換える際の外気温度が一定温度以上である場合には、外気温度が一定未満である場合に比べて槽内冷却用膨張経路の冷媒の通過面積が絞られることを特徴とする請求項1又は2に記載の環境試験装置である。   The invention according to claim 3 has an outside air temperature detecting means for detecting the outside air temperature, and when the outside air temperature when switching from the one-way operation to the two-way operation is equal to or higher than a certain temperature, the outside air temperature is less than a certain temperature. 3. The environmental test apparatus according to claim 1, wherein a passage area of the refrigerant in the expansion path for cooling the inside of the tank is reduced as compared with a certain case.

本発明は、環境試験装置の小型化に寄与することができる発明であり、特に高温側凝縮部の小型化を図ることができる発明である。
本発明の基本構成(請求項1)として、一元運転から二元運転に切り換える際に移行運転が実施され、一時的に槽内冷却用蒸発部と凝縮器冷却用蒸発部の双方に冷媒が流される。
ここで、一元運転を行っている際における槽内冷却用蒸発部に対する冷媒供給量を維持した状態で、凝縮器冷却用蒸発部にも冷媒を流すと、高圧側冷凍回路を循環する冷媒量が増加することとなり、高温側凝縮部に掛かる負荷が増大する。その結果、高温側凝縮部を含む高温側の冷媒圧力が上昇し、高温側凝縮部を含む高温側の圧力が設計圧力を超え、高圧側回路の損傷の恐れがあり、また、圧縮機の仕様を外れる場合は圧縮機の故障の原因ともなり得る。
この問題に対する解決手段として、凝縮器を大きくし、移行運転時における凝縮負荷に耐えさせる方策(以下、凝縮器の大型化)が考えられる。
またもう一つの方策として、移行運転時においては、槽内冷却用膨張経路の通過面積を極端に絞り、高圧側冷凍回路を循環する冷媒量を減らす方策(以下、冷媒循環量の低下)が考えられる。
しかしながら、前者の「凝縮器の大型化」による対策は、環境試験装置自体の大型化を招き、好ましくない。
また後者の「冷媒循環量の低下」による対策は、冷却装置自体の冷却量を減らすこととなり、望ましくない。即ち冷却装置は、可能な限りフルパワーで運転して槽内の冷却に寄与させるべきであるが、後者の「冷媒循環量の低下」による対策は、冷却装置が持つ能力の一部をだけを使用することとなり、持っている冷凍能力を有効に活用できない。
請求項3に記載の発明は、これらの問題を解消するために開発された発明である。
本発明の環境試験装置では、外気温度に応じて槽内冷却用膨張経路の冷媒の通過面積を変化させ、高温側凝縮部内の圧力が設計圧力を超えることを防いでいる。
即ち、高温側凝縮部内の圧力は、冷媒循環量だけでなく、外気温度とも相関関係があり、外気温度が高いと高温側凝縮部内の圧力が高くなり、外気温度が低いと高温側凝縮部内の圧力が低くなる傾向となる。
そこで本発明は、一元運転から二元運転に切り換える際の外気温度が一定温度以上である場合には、外気温度が一定未満である場合に比べて槽内冷却用膨張経路の冷媒の通過面積を絞ることとし、高温側凝縮部内の圧力が過度に上昇することを防いだ。
本発明によると、大型の凝縮器を搭載する必要が無いから、環境試験装置を小型化することができる。
The present invention is an invention that can contribute to miniaturization of an environmental test apparatus, and in particular, an invention that can achieve miniaturization of a high-temperature side condensing part.
As a basic configuration of the present invention (Claim 1), a transition operation is performed when switching from a one-way operation to a two-way operation, and the refrigerant is temporarily passed through both the tank cooling evaporator and the condenser cooling evaporator. It is.
Here, when the refrigerant is supplied to the evaporator for cooling the condenser while maintaining the amount of refrigerant supplied to the evaporator for cooling the tank during the unitary operation, the amount of refrigerant circulating in the high-pressure side refrigeration circuit is reduced. As a result, the load applied to the high temperature side condensing part increases. As a result, the refrigerant pressure on the high temperature side including the high temperature side condensing part rises, the pressure on the high temperature side including the high temperature side condensing part exceeds the design pressure, and the high pressure side circuit may be damaged. Otherwise, it may cause a compressor failure.
As a means for solving this problem, a method of enlarging the condenser to withstand the condensing load during the transition operation (hereinafter, increasing the size of the condenser) can be considered.
As another measure, during the transition operation, a measure to reduce the amount of refrigerant circulating in the high-pressure side refrigeration circuit by reducing the passage area of the expansion path for cooling the tank (hereinafter referred to as “reducing refrigerant circulation amount”) is considered. It is done.
However, the former measure by “enlarging the condenser” is not preferable because the environmental test apparatus itself is increased in size.
Further, the latter countermeasure by “decrease in the amount of circulating refrigerant” is not desirable because it reduces the cooling amount of the cooling device itself. In other words, the cooling device should be operated at full power as much as possible to contribute to the cooling of the tank, but the latter countermeasures by “decreasing the circulation rate of the refrigerant” are limited to a part of the capacity of the cooling device. It will be used and the refrigeration capacity it has cannot be used effectively.
The invention according to claim 3 is an invention developed to solve these problems.
In the environmental test apparatus of the present invention, the passage area of the refrigerant in the expansion path for cooling in the tank is changed according to the outside air temperature, thereby preventing the pressure in the high temperature side condensing part from exceeding the design pressure.
That is, the pressure in the high-temperature side condensing part has a correlation with not only the refrigerant circulation amount but also the outside air temperature. When the outside air temperature is high, the pressure inside the high-temperature side condensing part becomes high, and when the outside air temperature is low, the pressure inside the high-temperature side condensing part is high. The pressure tends to decrease.
Accordingly, the present invention provides a refrigerant passage area in the expansion path for cooling in the tank when the outside air temperature when switching from the one-way operation to the two-way operation is equal to or higher than a certain temperature, compared to when the outside air temperature is less than a certain temperature. The pressure in the condensing part on the high temperature side was prevented from rising excessively.
According to the present invention, since it is not necessary to mount a large condenser, the environmental test apparatus can be miniaturized.

請求項4に記載の発明は、槽内の温度を検知する槽内温度検知手段を有し、一元運転から二元運転に切り換える際の槽内温度が一定温度未満である場合には、槽内温度が一定以上である場合に比べて槽内冷却用膨張経路の冷媒の通過面積が絞られることを特徴とする請求項1乃至3のいずれかに記載の環境試験装置である。   The invention according to claim 4 has a tank temperature detection means for detecting the temperature in the tank, and when the tank temperature when switching from the one-way operation to the two-way operation is less than a certain temperature, The environmental test apparatus according to any one of claims 1 to 3, wherein a passage area of the refrigerant in the expansion path for cooling the tank is reduced as compared with a case where the temperature is equal to or higher than a certain level.

前記した様に、冷却装置は、可能な限りフルパワーで運転して槽内の冷却に寄与させるべきであるから、一元運転から二元運転に切り換える際には、槽内冷却用膨張経路にできるだけ大量の冷媒を流すことが望ましい。そのためには、槽内冷却用膨張経路の冷媒通過面積を最大にすることが望ましい。
しかしながら、槽内冷却用膨張経路の冷媒通過面積を多くすると、冷媒の蒸発圧力が上昇し、冷媒の蒸発温度が上昇する。即ち、槽内冷却用膨張経路の冷媒通過面積を多くすると、冷媒の通過量が増大し、冷媒の蒸発量が増大するので、冷媒が奪う総熱量は多くなるが、冷媒の蒸発温度は高くなる。
一方、一元運転から二元運転に切り換える際や、二元運転が開始される際には、すでに槽内の温度が低い場合がある。そのため槽内冷却用膨張経路の冷媒通過面積を最大にすると、冷媒の蒸発温度が槽内温度と近くなり、温度差が取れないため、槽内冷却用蒸発部での冷媒が蒸発しなくなってしまう。
そこで本発明では、一元運転から二元運転に切り換える際、又は二元運転が開始される際の槽内温度が一定温度未満である場合には、槽内温度が一定以上である場合に比べて槽内冷却用膨張経路の冷媒の通過面積を絞ることとし、冷媒の蒸発温度を下げて槽内冷却用蒸発部での熱交換を促進することとした。
As described above, the cooling device should be operated at full power as much as possible to contribute to the cooling of the tank. Therefore, when switching from the single operation to the dual operation, the cooling device can be used as an expansion path for cooling the tank. It is desirable to flow a large amount of refrigerant. For that purpose, it is desirable to maximize the refrigerant passage area of the expansion path for cooling in the tank.
However, when the refrigerant passage area of the expansion path for cooling in the tank is increased, the evaporation pressure of the refrigerant rises and the evaporation temperature of the refrigerant rises. That is, if the refrigerant passage area of the expansion path for cooling in the tank is increased, the refrigerant passage amount increases and the refrigerant evaporation amount increases, so that the total amount of heat taken by the refrigerant increases, but the refrigerant evaporation temperature increases. .
On the other hand, when switching from the one-way operation to the two-way operation or when the two-way operation is started, the temperature in the tank may already be low. Therefore, when the refrigerant passage area of the expansion path for cooling the tank is maximized, the evaporation temperature of the refrigerant becomes close to the temperature in the tank, and the temperature difference cannot be taken, so the refrigerant in the evaporation section for cooling in the tank will not evaporate. .
Therefore, in the present invention, when the temperature in the tank at the time of switching from the one-way operation to the two-way operation or when the two-way operation is started is lower than a certain temperature, compared to the case where the temperature in the tank is equal to or higher than a certain temperature. The passage area of the refrigerant in the expansion path for cooling the tank is reduced, and the evaporation temperature of the refrigerant is lowered to promote heat exchange in the evaporation section for cooling the tank.

槽内冷却用膨張経路は、複数のキャピラリーチューブが並列に配管されたものであり、一又は複数のキャピラリーチューブに対して直列に開閉弁が設けられていることが望ましい(請求項5)。   The expansion path for cooling in the tank is formed by connecting a plurality of capillary tubes in parallel, and it is desirable that an on-off valve is provided in series with respect to one or a plurality of capillary tubes.

また同様の課題を解決する冷却装置の発明は、断熱材で覆われた槽内を冷却する冷却装置において、低温側圧縮部、低温側凝縮部、低温側膨張部及び低温側蒸発部を有し冷媒が循環する低温側冷凍回路と、高温側圧縮部、高温側凝縮部、高温側膨張部、槽内冷却用蒸発部及び凝縮器冷却用蒸発部を有し、冷媒が循環する高温側冷凍回路とが設けられ、凝縮器冷却用蒸発部によって低温側凝縮部を冷却可能であり、高温側冷凍回路の高温側圧縮部、高温側凝縮部、高温側膨張部、槽内冷却用蒸発部に冷媒を通過させて槽内を冷却する一元運転と、高温側冷凍回路の高温側圧縮部、高温側凝縮部、高温側膨張部、凝縮器冷却用蒸発部に冷媒を通過させて低温側凝縮部を冷却すると共に低温側冷凍回路に冷媒を通過させて槽内を冷却する二元運転とを行うことが可能であり、一元運転から二元運転に切り換える際に、一時的に槽内冷却用蒸発部と凝縮器冷却用蒸発部の双方に冷媒を通過させる移行運転が実施され、前記高温側膨張部は、槽内冷却用蒸発部に冷媒を供給する槽内冷却用膨張経路と、凝縮器冷却用蒸発部に冷媒を供給する凝縮器用膨張経路を有し、前記槽内冷却用膨張経路は冷媒の通過面積を変更可能であり、凝縮器用膨張経路は冷媒の通過経路を開閉可能であり、前記移行運転においては、凝縮器用膨張経路が開かれると共に槽内冷却用膨張経路の冷媒の通過面積が絞られることを特徴とする。   The invention of a cooling device that solves the same problem is a cooling device that cools the inside of a tank covered with a heat insulating material, and has a low temperature side compression unit, a low temperature side condensation unit, a low temperature side expansion unit, and a low temperature side evaporation unit. A low temperature side refrigeration circuit in which the refrigerant circulates, and a high temperature side refrigeration circuit in which the refrigerant circulates, including a high temperature side compression unit, a high temperature side condensing unit, a high temperature side expansion unit, a tank cooling evaporation unit, and a condenser cooling evaporation unit The low temperature side condensing part can be cooled by the condenser cooling evaporating part, and the refrigerant is provided in the high temperature side compressing part, the high temperature side condensing part, the high temperature side expanding part, and the tank cooling evaporating part of the high temperature side refrigeration circuit. The refrigerant is passed through the high-temperature side compressor, high-temperature side condensing unit, high-temperature side expansion unit, and condenser cooling evaporator in the high-temperature side refrigeration circuit, and the low-temperature side condensing unit Dual operation to cool and cool the inside of the tank by passing the refrigerant through the low temperature side refrigeration circuit; When switching from the one-way operation to the two-way operation, a transition operation for temporarily passing the refrigerant through both the tank cooling evaporator and the condenser cooling evaporator is performed, and the high temperature side The expansion section has an expansion path for cooling the tank for supplying refrigerant to the evaporation section for cooling the tank, and an expansion path for condenser for supplying the refrigerant to the evaporation section for cooling the condenser. The refrigerant passage area can be changed, and the condenser expansion path can open and close the refrigerant passage path. In the transition operation, the condenser expansion path is opened and the refrigerant passage area of the tank cooling expansion path is opened. Is characterized by being narrowed down.

本発明によると、槽内温度を低下させる過程で槽内温度が一時的に上昇する現象が発生しにくい。   According to the present invention, a phenomenon in which the temperature in the tank temporarily rises during the process of lowering the temperature in the tank is unlikely to occur.

本発明の環境試験装置及び冷却装置は、一元運転から二元運転へ切り替える際の冷却能力の低下が少なく、従来に比べて温度の変化勾配の変化が少ない。   The environmental test apparatus and the cooling apparatus of the present invention have a small decrease in the cooling capacity when switching from the one-way operation to the two-way operation, and the change in the temperature change gradient is less than that in the prior art.

本発明の実施形態の環境試験装置の断面図である。It is sectional drawing of the environmental test apparatus of embodiment of this invention. 図1の環境試験装置に搭載されている冷却装置の作動原理図である。It is an operation | movement principle figure of the cooling device mounted in the environmental test apparatus of FIG. 図2の冷却装置を一元運転した場合における冷媒の流れを太線で表した作動原理図である。FIG. 3 is an operation principle diagram in which a refrigerant flow in a single operation of the cooling device of FIG. 2 is represented by a bold line. 図2の冷却装置を移行運転した場合における冷媒の流れを太線で表した作動原理図であり、第1ステージにおける冷媒の流れを示す。It is an operation principle figure which expressed the flow of the refrigerant at the time of the transfer operation of the cooling device of Drawing 2 by the thick line, and shows the flow of the refrigerant in the 1st stage. 図2の冷却装置を移行運転した場合における冷媒の流れを太線で表した作動原理図であり、第2ステージにおける冷媒の流れを示す。It is an operation principle figure which expressed the flow of the refrigerant at the time of transfer operation of the cooling device of Drawing 2 by the thick line, and shows the flow of the refrigerant in the 2nd stage. 図2の冷却装置を移行運転した場合における冷媒の流れを太線で表した作動原理図であり、第3ステージにおける冷媒の流れを示す。It is an operation principle figure which expressed the flow of the refrigerant at the time of the transfer operation of the cooling device of Drawing 2 by the thick line, and shows the flow of the refrigerant in the 3rd stage. 図2の冷却装置を移行運転した場合における冷媒の流れを太線で表した作動原理図であり、第4ステージにおける冷媒の流れを示す。It is an operation principle figure which expressed the flow of the refrigerant at the time of a shift operation of the cooling device of Drawing 2 with the thick line, and shows the flow of the refrigerant in the 4th stage. 図2の冷却装置を移行運転した場合における冷媒の流れを太線で表した作動原理図であり、第5ステージにおける冷媒の流れを示す。It is an operation principle figure which expressed the flow of the refrigerant at the time of a shift operation of the cooling device of Drawing 2 with the thick line, and shows the flow of the refrigerant in the 5th stage. 図2の冷却装置を二元運転した場合における冷媒の流れを太線で表した作動である。It is the operation | movement which represented the flow of the refrigerant | coolant at the time of carrying out the dual operation of the cooling device of FIG. 2 with the thick line. 本実施形態の環境試験装置の試験室内を高温状態から低温状態に変化させた場合における時間経過と試験室内の温度との関係を実測したグラフである。It is the graph which measured the relationship between the passage of time and the temperature in a test room at the time of changing the test room of the environmental test apparatus of this embodiment from a high temperature state to a low temperature state. 環境試験装置の試験室内を高温状態から低温状態に変化させた場合における時間経過と試験室内の温度との関係を実測したグラフであり、冷却装置を一元運転していた状態から移行運転を経ずに二元運転に切り換えた場合を示す。This graph shows the relationship between the time elapsed and the temperature in the test chamber when the test chamber of the environmental test device is changed from a high temperature state to a low temperature state. Shows the case of switching to dual operation. 外気温度が高いという条件下において、本実施形態の環境試験装置の試験室内を、高温状態から低温状態に変化させた場合における試験室内の温度と高温側凝縮部内の冷媒の圧力との関係を実測したグラフである。Measured the relationship between the temperature in the test chamber and the refrigerant pressure in the high-temperature side condensing section when the test chamber of the environmental test apparatus of the present embodiment is changed from a high temperature state to a low temperature state under the condition that the outside air temperature is high. It is a graph. 外気温度が高いという条件下において、環境試験装置の試験室内を高温状態から低温状態に変化させた場合における試験室内の温度と高温側凝縮部内の冷媒の圧力との関係を実測したグラフであり、冷却装置を一元運転していた状態から移行運転を経ずに二元運転に切り換えた場合を示す。It is a graph in which the relationship between the temperature in the test chamber and the pressure of the refrigerant in the high-temperature side condensing part when the test chamber of the environmental test apparatus is changed from a high temperature state to a low temperature state under the condition that the outside air temperature is high, The case where the cooling device is switched from the one-way operation to the two-way operation without going through the transition operation is shown. 本実施形態の環境試験装置を、一元運転して試験室内に温度が低い環境を作り、移行運転を経て二元運転に切り換えた場合における試験室内の温度と冷媒の蒸発温度との関係を実測したグラフである。The environmental test apparatus of this embodiment was operated in a unified manner to create a low temperature environment in the test chamber, and the relationship between the temperature in the test chamber and the evaporation temperature of the refrigerant was measured when switching to the dual operation through the transition operation. It is a graph. 環境試験装置を、一元運転して試験室内に温度が低い環境を作り、移行運転を経ずに二元運転に切り換えた場合における試験室内の温度と冷媒の蒸発温度との関係を実測したグラフである。This is a graph showing the relationship between the temperature in the test chamber and the evaporation temperature of the refrigerant when the environmental test equipment is operated in a single operation to create a low-temperature environment in the test chamber and then switched to dual operation without going through the transition operation. is there.

以下さらに本発明の具体的実施例について説明する。
本実施形態の環境試験装置1は、小型のものであり、卓上に設置することができる程度の大きさである。環境試験装置1の基本構成は、公知のものと大差なく、図1に示すように断熱壁2によって覆われた断熱槽3を有している。そして当該断熱槽3の一部に試験室5が形成されている。試験室5は、被試験物を設置する空間である。
環境試験装置1は、さらに加湿装置6、冷却装置7、加熱ヒータ8、及び送風機10を備えている。
環境試験装置1には、試験室5と連通する空気流路15があり、当該空気流路15に前記した加湿装置6と、冷却装置7と、加熱ヒータ8、及び送風機10が設けられている。また空気流路15の出口側に、温度センサー(槽内温度検知手段)12と湿度センサー13が設けられている。環境試験装置1では、前記した空気流路15内の部材と、温度センサー12及び湿度センサー13によって空気調和装置17が構成されている。
また本実施形態の環境試験装置1は、外部の温度を検知する外気温度センサー(外気温度検知手段)18を有している。
環境試験装置1は、空気調和装置17によって、試験室5(断熱槽3)内に所望の温度・湿度環境を作ることができる。
Hereinafter, specific examples of the present invention will be described.
The environmental test apparatus 1 of the present embodiment is small and has a size that can be installed on a table. The basic configuration of the environmental test apparatus 1 has a heat insulating tank 3 covered with a heat insulating wall 2 as shown in FIG. A test chamber 5 is formed in a part of the heat insulating tank 3. The test chamber 5 is a space for installing a device under test.
The environmental test apparatus 1 further includes a humidifier 6, a cooling device 7, a heater 8, and a blower 10.
The environmental test apparatus 1 has an air flow path 15 that communicates with the test chamber 5, and the humidification device 6, the cooling device 7, the heater 8, and the blower 10 are provided in the air flow path 15. . Further, a temperature sensor (tank temperature detecting means) 12 and a humidity sensor 13 are provided on the outlet side of the air flow path 15. In the environmental test apparatus 1, an air conditioner 17 is configured by the members in the air flow path 15 described above, the temperature sensor 12, and the humidity sensor 13.
In addition, the environmental test apparatus 1 of the present embodiment includes an outside air temperature sensor (outside air temperature detecting means) 18 that detects an external temperature.
The environment test apparatus 1 can create a desired temperature / humidity environment in the test chamber 5 (the heat insulating tank 3) by the air conditioner 17.

本発明の実施形態の環境試験装置1で採用する冷却装置7は、図2に示されるような冷凍回路を備えている。
以下、冷却装置7の冷凍回路について説明する。
本実施形態の環境試験装置1で採用する冷却装置7は、低温側冷凍回路20と、高温側冷凍回路21を備えている。
低温側冷凍回路20は、作動原理図で外周側に描かれている回路であり、低温側圧縮部22、低温側冷媒予冷部23、低温側凝縮部25、低温側膨張部26、及び低温側蒸発部27を有し、これらが環状に接続されたものである。
The cooling device 7 employed in the environmental test apparatus 1 according to the embodiment of the present invention includes a refrigeration circuit as shown in FIG.
Hereinafter, the refrigeration circuit of the cooling device 7 will be described.
The cooling device 7 employed in the environmental test apparatus 1 of the present embodiment includes a low temperature side refrigeration circuit 20 and a high temperature side refrigeration circuit 21.
The low temperature side refrigeration circuit 20 is a circuit drawn on the outer peripheral side in the operation principle diagram, and includes a low temperature side compression unit 22, a low temperature side refrigerant precooling unit 23, a low temperature side condensing unit 25, a low temperature side expansion unit 26, and a low temperature side. It has the evaporation part 27, and these are connected cyclically | annularly.

ここで低温側圧縮部22は、公知の圧縮機である。低温側冷媒予冷部23は、公知の空冷式熱交換器であり、冷媒が通過する。
低温側凝縮部25は、低温側冷凍回路20の一部を構成し、圧縮された冷媒ガスが導入されて液化される部位である。
低温側膨張部26は、キャピラリーチューブである。
低温側蒸発部27は、公知の蒸発器であり、後記する槽内冷却用蒸発部33と一体化されて試験室5と連通する空気流路15に設置されている。
Here, the low temperature side compression unit 22 is a known compressor. The low temperature side refrigerant | coolant pre-cooling part 23 is a well-known air cooling type heat exchanger, and a refrigerant | coolant passes.
The low temperature side condensation part 25 comprises a part of low temperature side freezing circuit 20, and is a site | part which introduce | transduces and liquefies the compressed refrigerant gas.
The low temperature side expansion part 26 is a capillary tube.
The low-temperature side evaporator 27 is a known evaporator, and is installed in the air flow path 15 that is integrated with a tank cooling evaporator 33 described later and communicates with the test chamber 5.

高温側冷凍回路21は、作動原理図で内周側に描かれている回路であり、高温側圧縮部30、高温側凝縮部31、高温側膨張部32、槽内冷却用蒸発部33及び凝縮器冷却用蒸発部35を有し冷媒が循環する高温側冷凍回路である。
本実施形態では、槽内冷却用蒸発部33と凝縮器冷却用蒸発部35は、高温側圧縮部30に対して並列に配管されている。
また高温側膨張部32は、大きく槽内冷却用膨張経路36と、凝縮器用膨張経路37に分かれている。槽内冷却用膨張経路36は槽内冷却用蒸発部33に接続され、凝縮器用膨張経路37は凝縮器冷却用蒸発部35に接続されている。
The high temperature side refrigeration circuit 21 is a circuit drawn on the inner peripheral side in the operation principle diagram, and includes a high temperature side compression unit 30, a high temperature side condensation unit 31, a high temperature side expansion unit 32, a tank cooling evaporation unit 33, and condensation. This is a high-temperature side refrigeration circuit having an evaporator-cooling evaporator 35 in which the refrigerant circulates.
In the present embodiment, the tank cooling evaporator 33 and the condenser cooling evaporator 35 are connected in parallel to the high temperature side compressor 30.
The high temperature side expansion section 32 is largely divided into an expansion path 36 for cooling the tank and an expansion path 37 for the condenser. The tank cooling expansion path 36 is connected to the tank cooling evaporation section 33, and the condenser expansion path 37 is connected to the condenser cooling evaporation section 35.

高温側圧縮部30は、公知の圧縮機である。高温側凝縮部31は、公知の凝縮器である。本実施形態では、高温側凝縮部31と前記した低温側冷媒予冷部23が隣接して配置され、同一の送風機38で送風されて熱交換が行われる。
高温側膨張部32は作動原理図において一点鎖線で囲んだ部位であり、複数のキャピラリーチューブによって構成されている。本実施形態では、6個のキャピラリーチューブで構成されている。
The high temperature side compression unit 30 is a known compressor. The high temperature side condensing unit 31 is a known condenser. In the present embodiment, the high temperature side condensing unit 31 and the low temperature side refrigerant precooling unit 23 are disposed adjacent to each other, and are blown by the same blower 38 to perform heat exchange.
The high temperature side expansion portion 32 is a portion surrounded by a one-dot chain line in the operation principle diagram, and is constituted by a plurality of capillary tubes. In this embodiment, it is composed of six capillary tubes.

説明の便宜上、6個のキャピラリーチューブを凝縮器用キャピラリーチューブ40、槽内冷却用第1キャピラリーチューブ(以下、第1キャピラリーチューブ)41、槽内冷却用第2キャピラリーチューブ(以下、第2キャピラリーチューブ)42、槽内冷却用第3キャピラリーチューブ(以下、第3キャピラリーチューブ)43、槽内冷却用第4キャピラリーチューブ(以下、第4キャピラリーチューブ)44、槽内冷却用第5キャピラリーチューブ(以下、第5キャピラリーチューブ)45と称することとする。   For convenience of explanation, six capillary tubes are composed of a capillary tube for condenser 40, a first capillary tube for cooling in a tank (hereinafter referred to as a first capillary tube) 41, and a second capillary tube for cooling in a tank (hereinafter referred to as a second capillary tube). 42, a third capillary tube for cooling in the tank (hereinafter referred to as third capillary tube) 43, a fourth capillary tube for cooling in the tank (hereinafter referred to as fourth capillary tube) 44, and a fifth capillary tube for cooling in the tank (hereinafter referred to as the second capillary tube). 5 capillary tube) 45.

上記した6個のキャピラリーチューブの内、凝縮器用キャピラリーチューブ40だけが凝縮器用膨張経路37として機能し、他の5個のキャピラリーチューブは、いずれも槽内冷却用膨張経路36として機能する。
槽内冷却用膨張経路36を構成する5個のキャピラリーチューブ41,42,43,44,45は、いずれも同一の開口断面積を有している。凝縮器用キャピラリーチューブ40の開口断面積は、槽内冷却用膨張経路36を構成するキャピラリーチューブ41,42,43,44,45の開口断面積よりも大きい。
Of the six capillary tubes described above, only the condenser capillary tube 40 functions as the condenser expansion path 37, and the other five capillary tubes all function as the in-vessel cooling expansion path 36.
All of the five capillary tubes 41, 42, 43, 44, 45 constituting the in-tank cooling expansion path 36 have the same opening cross-sectional area. The opening cross-sectional area of the condenser capillary tube 40 is larger than the opening cross-sectional area of the capillary tubes 41, 42, 43, 44, 45 constituting the tank cooling expansion path 36.

槽内冷却用蒸発部33は、公知の蒸発器であり、低温側蒸発部27と一体化され、試験室5と連通する空気流路15に設置されている。   The tank cooling evaporator 33 is a known evaporator, and is integrated with the low temperature side evaporator 27 and installed in the air flow path 15 communicating with the test chamber 5.

凝縮器冷却用蒸発部35は、冷媒を気化させる空間であり、前記した低温側凝縮部25と一体化されてカスケードコンデンサ46を構成している。そのため、凝縮器冷却用蒸発部35が発生する冷熱によって、低温側凝縮部25を冷却することができる。   The condenser cooling evaporator 35 is a space for vaporizing the refrigerant, and is integrated with the low-temperature side condenser 25 to constitute a cascade condenser 46. Therefore, the low temperature side condensing unit 25 can be cooled by the cold heat generated by the condenser cooling evaporating unit 35.

高温側冷凍回路21の配管系統はやや複雑であり、高温側圧縮部30を起点として、高温側凝縮部31、高温側膨張部32の槽内冷却用膨張経路36、槽内冷却用蒸発部33を巡って高温側圧縮部30に戻る主回路50と、高温側圧縮部30を起点として、高温側凝縮部31、高温側膨張部32の凝縮器用膨張経路37、凝縮器冷却用蒸発部35を巡って高温側圧縮部30に戻る補助回路51に分かれている。
補助回路51の凝縮器冷却用蒸発部35から高温側圧縮部30に至る間には、逆止弁47が設けられている。
The piping system of the high temperature side refrigeration circuit 21 is somewhat complicated. Starting from the high temperature side compression unit 30, the high temperature side condensing unit 31, the high temperature side expansion unit 32, the in-vessel cooling expansion path 36, and the in-bath cooling evaporating unit 33. The main circuit 50 returning to the high temperature side compression unit 30 and the high temperature side compression unit 30 as a starting point, the high temperature side condensation unit 31, the condenser expansion path 37 of the high temperature side expansion unit 32, and the condenser cooling evaporation unit 35 The auxiliary circuit 51 returns to the high temperature side compression unit 30 around.
A check valve 47 is provided between the condenser cooling evaporator 35 of the auxiliary circuit 51 and the high temperature side compressor 30.

また主回路50と、補助回路51との分岐部53があり、当該分岐部53から下流側(冷媒の流れ方向を基準とする)には、それぞれ主回路側開閉弁55と、補助回路側開閉弁56が設けられている。主回路側開閉弁55及び補助回路側開閉弁56はいずれも電磁弁である。   Further, there is a branch portion 53 between the main circuit 50 and the auxiliary circuit 51, and the main circuit side opening / closing valve 55 and the auxiliary circuit side opening / closing are respectively provided downstream from the branch portion 53 (based on the refrigerant flow direction). A valve 56 is provided. Both the main circuit side opening / closing valve 55 and the auxiliary circuit side opening / closing valve 56 are electromagnetic valves.

さらに、主回路50側の膨張部たる槽内冷却用膨張経路36は、前記した様に5個のキャピラリーチューブ41,42,43,44,45によって構成されているが、これらはいずれも分岐配管によって並列に配管されている。
そして第5キャピラリーチューブ45に至る分岐配管を除いて、各分岐配管に開閉弁60,61,62,63が設けられている。これらはいずれもキャピラリーチューブ41,42,43,44,に直列に接続されている。
説明の便宜上、第1キャピラリーチューブ41に繋がる配管に接続された開閉弁60を第1開閉弁60と称し、第2キャピラリーチューブ42に繋がる配管に接続された開閉弁61を第2開閉弁61と称し、第3キャピラリーチューブ43に繋がる配管に接続された開閉弁62を第3開閉弁62と称し、第4キャピラリーチューブ44に繋がる配管に接続された開閉弁63を第4開閉弁63と称することとする。
Further, as described above, the in-vessel cooling expansion path 36, which is the expansion section on the main circuit 50 side, is constituted by the five capillary tubes 41, 42, 43, 44, 45, all of which are branched pipes. Are piped in parallel.
Except for the branch pipe that reaches the fifth capillary tube 45, the branch pipes are provided with on-off valves 60, 61, 62, and 63, respectively. These are all connected in series to the capillary tubes 41, 42, 43, 44.
For convenience of explanation, the on-off valve 60 connected to the pipe connected to the first capillary tube 41 is referred to as a first on-off valve 60, and the on-off valve 61 connected to the pipe connected to the second capillary tube 42 is referred to as the second on-off valve 61. The on-off valve 62 connected to the pipe connected to the third capillary tube 43 is referred to as a third on-off valve 62, and the on-off valve 63 connected to the pipe connected to the fourth capillary tube 44 is referred to as a fourth on-off valve 63. And

前記した5個のキャピラリーチューブ41,42,43,44,45が接続された分岐配管は、第1キャピラリーチューブ41が接続された配管と、第2キャピラリーチューブ42が接続された配管が集合されて第1中グループを構成し、第3キャピラリーチューブ43が接続された配管と、第4キャピラリーチューブ44が接続された配管と、第5キャピラリーチューブ45が接続された配管が集合された第2中グループを構成している。   The branch pipe to which the five capillary tubes 41, 42, 43, 44, and 45 are connected is a collection of a pipe to which the first capillary tube 41 is connected and a pipe to which the second capillary tube 42 is connected. The second middle group, which constitutes the first middle group, is a collection of piping connected to the third capillary tube 43, piping connected to the fourth capillary tube 44, and piping connected to the fifth capillary tube 45. Is configured.

二つの中グループの下流側には合流部70があり、その下流側が槽内冷却用蒸発部33に接続されている。
ただし、合流部70から槽内冷却用蒸発部33に至る配管の一部が、槽内冷却用蒸発部33から高温側圧縮部30に戻る戻り配管71と接している。この理由は、槽内冷却用蒸発部33から高温側圧縮部30に戻る冷媒を冷却し、高温側圧縮部30に過度に高温の冷媒が流入することを防ぐためである。
At the downstream side of the two middle groups, there is a junction 70, and the downstream side is connected to the tank cooling evaporator 33.
However, a part of the pipe from the junction 70 to the tank cooling evaporator 33 is in contact with the return pipe 71 that returns from the tank cooling evaporator 33 to the high temperature side compressor 30. The reason for this is to cool the refrigerant returning from the tank cooling evaporator 33 to the high temperature side compression unit 30 and prevent the excessively high temperature refrigerant from flowing into the high temperature side compression unit 30.

本実施形態の冷却装置7は、一元運転で運転することができる。一元運転は、高温側冷凍回路21の主回路50だけに冷媒を循環させて行う運転モードである。即ち一元運転を行う場合には、高温側圧縮部30だけを起動し、低温側圧縮部22は停止する。
一元運転における冷媒の流れは図3の通りである。即ち、高温側圧縮部30を起動すると共に主回路50に属する開閉弁55,60,61,62,63を全て開き、補助回路51に属する開閉弁(補助回路側開閉弁56)を閉じる。その結果、高温側圧縮部30を起点として、高温側凝縮部31、高温側膨張部32の槽内冷却用膨張経路36、槽内冷却用蒸発部33に冷媒が流れ、槽内冷却用蒸発部33の表面温度が低下して試験槽内を冷却する。
The cooling device 7 of this embodiment can be operated in a single operation. The unitary operation is an operation mode in which the refrigerant is circulated only in the main circuit 50 of the high temperature side refrigeration circuit 21. That is, when performing a one-way operation, only the high temperature side compression unit 30 is activated and the low temperature side compression unit 22 is stopped.
The flow of the refrigerant in the single operation is as shown in FIG. That is, the high temperature side compression unit 30 is started and all the on-off valves 55, 60, 61, 62, 63 belonging to the main circuit 50 are opened, and the on-off valve (auxiliary circuit side on-off valve 56) belonging to the auxiliary circuit 51 is closed. As a result, starting from the high temperature side compression unit 30, the refrigerant flows into the high temperature side condensing unit 31, the expansion passage 36 for cooling in the tank of the high temperature side expansion unit 32, and the evaporation unit 33 for cooling in the tank, and the evaporation unit for cooling in the tank The surface temperature of 33 falls and the inside of a test tank is cooled.

また本実施形態の冷却装置7は、二元運転で運転することもできる。二元運転は、高温側冷凍回路21の補助回路51と、低温側冷凍回路20に冷媒を循環させて行う運転モードである。即ち二元運転を行う場合には、高温側圧縮部30と、低温側圧縮部22の双方を起動する。
二元運転における冷媒の流れは図9の通りである。即ち、高温側圧縮部30を起動すると共に主回路50に属する開閉弁55,60,61,62,63を全て閉じ、補助回路51に属する補助回路側開閉弁56を開く。その結果、高温側圧縮部30を起点として、高温側凝縮部31、高温側膨張部32の凝縮器用膨張経路37、凝縮器冷却用蒸発部35を巡って高温側圧縮部30に戻る補助回路51に冷媒が流れ、カスケードコンデンサ46を構成する低温側凝縮部25を冷却する。
Further, the cooling device 7 of the present embodiment can be operated in a two-way operation. The dual operation is an operation mode performed by circulating a refrigerant through the auxiliary circuit 51 of the high temperature side refrigeration circuit 21 and the low temperature side refrigeration circuit 20. That is, when performing the dual operation, both the high temperature side compression unit 30 and the low temperature side compression unit 22 are activated.
The flow of the refrigerant in the dual operation is as shown in FIG. That is, the high temperature side compression unit 30 is started, all the on-off valves 55, 60, 61, 62, 63 belonging to the main circuit 50 are closed, and the auxiliary circuit-side on-off valve 56 belonging to the auxiliary circuit 51 is opened. As a result, the auxiliary circuit 51 returns to the high temperature side compression unit 30 from the high temperature side compression unit 30 through the high temperature side condensation unit 31, the condenser expansion path 37 of the high temperature side expansion unit 32, and the condenser cooling evaporation unit 35. Then, the refrigerant flows to cool the low temperature side condensing part 25 constituting the cascade condenser 46.

一方、低温側圧縮部22が起動されることにより、低温側冷凍回路20に冷媒が循環し、低温側圧縮部22を起点として、低温側冷媒予冷部23、低温側凝縮部25、低温側膨張部26、及び低温側蒸発部27に冷媒が流れる。低温側圧縮部22で圧縮され高温状態となった冷媒ガスは、低温側冷媒予冷部23で幾分冷却される。そして冷媒は、低温側凝縮部25に流れ込んで冷却されて凝縮し、さらに温度が低下して過冷却状態となる。
この凝縮した冷媒は、低温側膨張部26で狭窄部を通過し、低温側蒸発部27で膨張する。その結果、低温側蒸発部27で低温の冷媒が蒸発し、試験室5(断熱槽3)内を冷却する。
On the other hand, when the low temperature side compression unit 22 is activated, the refrigerant circulates in the low temperature side refrigeration circuit 20, and the low temperature side refrigerant precooling unit 23, the low temperature side condensing unit 25, and the low temperature side expansion start from the low temperature side compression unit 22. The refrigerant flows through the section 26 and the low temperature side evaporation section 27. The refrigerant gas that has been compressed by the low temperature side compression unit 22 and brought to a high temperature state is somewhat cooled by the low temperature side refrigerant precooling unit 23. And a refrigerant | coolant flows into the low temperature side condensation part 25, is cooled and condensed, and also temperature falls and it will be in a supercooled state.
The condensed refrigerant passes through the constriction portion at the low temperature side expansion portion 26 and expands at the low temperature side evaporation portion 27. As a result, the low-temperature refrigerant evaporates in the low-temperature side evaporation unit 27, and the inside of the test chamber 5 (the heat insulating tank 3) is cooled.

また本実施形態の冷却装置7は、一元運転から二元運転に切り換わる際に、移行運転が実施される。移行運転では、高温側冷凍回路21の主回路50と、補助回路51の双方に冷媒を流し、この状態で、低温側冷凍回路20にも冷媒を循環させる。
また本実施形態の冷却装置7では、移行運転は段階的に行われる。
即ち移行運転は、前記した様に高温側冷凍回路21の主回路50にも冷媒を通過させるが、主回路50の膨張部たる槽内冷却用膨張経路36の冷媒の通過面積が時間の経過と共に変化する。
具体的には、槽内冷却用膨張経路36を構成する5個のキャピラリーチューブ41,42,43,44,45を通過する流路を最初は全て開いておき、これらを時間の経過と共に一個ずつ閉じる。そして槽内冷却用膨張経路36の冷媒の通過面積を序々に絞る。そして一定時間経過後に5個のキャピラリーチューブ41,42,43,44,45を通過する流路を全閉する。
Further, the cooling device 7 of the present embodiment performs the transition operation when switching from the one-way operation to the two-way operation. In the transfer operation, the refrigerant is supplied to both the main circuit 50 and the auxiliary circuit 51 of the high temperature side refrigeration circuit 21, and the refrigerant is also circulated through the low temperature side refrigeration circuit 20 in this state.
Further, in the cooling device 7 of the present embodiment, the transition operation is performed in stages.
That is, in the transition operation, as described above, the refrigerant is also passed through the main circuit 50 of the high-temperature side refrigeration circuit 21, but the passage area of the refrigerant in the expansion passage 36 for cooling in the tank, which is the expansion portion of the main circuit 50, is increased with time. Change.
Specifically, all the flow paths that pass through the five capillary tubes 41, 42, 43, 44, 45 constituting the in-vessel cooling expansion path 36 are initially opened, and one by one with the passage of time. close up. And the passage area of the refrigerant | coolant of the expansion path 36 for tank cooling is gradually reduced. Then, the passages that pass through the five capillary tubes 41, 42, 43, 44, 45 are fully closed after a certain period of time.

本実施形態では、一元運転から二元運転に切り換えた直後は、第1ステージの状態で運転される。即ち一元運転から二元運転に切り換え直後の、第1ステージでは、図4の様に槽内冷却用膨張経路36を構成する5個のキャピラリーチューブ41,42,43,44,45のすべてに冷媒を通過させる。即ち主回路側開閉弁55を開くと共に、第1開閉弁60、第2開閉弁61、第3開閉弁62、第4開閉弁63を全て開く。
その結果、槽内冷却用膨張経路36は全開状態となり、高温側冷凍回路21に属する槽内冷却用蒸発部33の冷却能力が維持される。
その一方で、補助回路側開閉弁56も開かれていて補助回路51にも冷媒が流れ、カスケードコンデンサ46を構成する低温側凝縮部25が冷却される。そのため低温側冷凍回路20に属する低温側蒸発部27についても冷却能力を発現する。
そのため第1ステージの移行運転は、槽内冷却用膨張経路36が全開状態であって高温側冷凍回路21に属する槽内冷却用蒸発部33の冷却能力が相当に高く維持されており、且つ補助回路51にも幾分冷媒が流れて低温側蒸発部27についても冷却能力を発現する。
従って、第1ステージにおいては、冷却装置7の冷却能力には大きな変化は無い。少なくとも切り換え直後に冷却能力が大きく減じることはない。
In the present embodiment, the operation is performed in the state of the first stage immediately after switching from the one-way operation to the two-way operation. That is, in the first stage immediately after switching from the one-way operation to the two-way operation, as shown in FIG. 4, all five capillary tubes 41, 42, 43, 44, 45 constituting the tank cooling expansion path 36 have a refrigerant. Pass through. That is, the main circuit-side on-off valve 55 is opened, and the first on-off valve 60, the second on-off valve 61, the third on-off valve 62, and the fourth on-off valve 63 are all opened.
As a result, the tank cooling expansion path 36 is fully opened, and the cooling capacity of the tank cooling evaporator 33 belonging to the high temperature side refrigeration circuit 21 is maintained.
On the other hand, the auxiliary circuit side opening / closing valve 56 is also opened, and the refrigerant flows into the auxiliary circuit 51, so that the low temperature side condensing unit 25 constituting the cascade condenser 46 is cooled. For this reason, the low-temperature side evaporator 27 belonging to the low-temperature side refrigeration circuit 20 also exhibits a cooling capacity.
For this reason, in the first stage transition operation, the tank cooling expansion path 36 is fully open, the cooling capacity of the tank cooling evaporator 33 belonging to the high temperature side refrigeration circuit 21 is maintained at a considerably high level, and Some refrigerant also flows through the circuit 51, and the low-temperature side evaporation unit 27 also develops cooling capacity.
Accordingly, in the first stage, there is no significant change in the cooling capacity of the cooling device 7. At least immediately after switching, the cooling capacity is not greatly reduced.

一定の時間が経過すると、移行運転は第2ステージに移行する。第2ステージでは、図5の様に槽内冷却用膨張経路36を構成する5個のキャピラリーチューブ41,42,43,44,45を通過する流路の内、第1キャピラリーチューブ41を通過する流路が閉じられる。
即ち主回路側開閉弁55は開かれたままの状態を維持し、第1開閉弁60が閉じられる。第2開閉弁61、第3開閉弁62、第4開閉弁63は開かれた状態を維持する。
その結果、槽内冷却用膨張経路36は「5分の4開」状態となり、高温側冷凍回路21に属する槽内冷却用蒸発部33の冷却能力は幾分低下するものの相当に維持される。
補助回路側開閉弁56も開かれていて補助回路51にも冷媒が流れ、カスケードコンデンサ46を構成する低温側凝縮部25が冷却される。そのため低温側冷凍回路20に属する低温側蒸発部27についても冷却能力を発現する。また補助回路51に流れ込む冷媒量が幾分増えるので、低温側蒸発部27の冷凍能力はやや増加する。
When a certain time has elapsed, the transition operation shifts to the second stage. In the second stage, the flow passes through the first capillary tube 41 among the flow paths that pass through the five capillary tubes 41, 42, 43, 44, 45 constituting the in-vessel cooling expansion path 36 as shown in FIG. 5. The flow path is closed.
That is, the main circuit side opening / closing valve 55 is kept open and the first opening / closing valve 60 is closed. The second on-off valve 61, the third on-off valve 62, and the fourth on-off valve 63 are kept open.
As a result, the expansion path 36 for cooling in the tank is in a “four-fifth open” state, and the cooling capacity of the evaporation section 33 for cooling in the tank belonging to the high-temperature side refrigeration circuit 21 is somewhat reduced but maintained considerably.
The auxiliary circuit side opening / closing valve 56 is also opened, so that the refrigerant flows into the auxiliary circuit 51, and the low temperature side condensing part 25 constituting the cascade condenser 46 is cooled. For this reason, the low-temperature side evaporator 27 belonging to the low-temperature side refrigeration circuit 20 also exhibits a cooling capacity. Further, since the amount of refrigerant flowing into the auxiliary circuit 51 is somewhat increased, the refrigeration capacity of the low temperature side evaporator 27 is slightly increased.

さらに一定の時間が経過すると、移行運転は第3ステージに移行する。第3ステージでは、図6の様に槽内冷却用膨張経路36を構成する5個のキャピラリーチューブ41,42,43,44,45を通過する流路の内、第1キャピラリーチューブ41と第2キャピラリーチューブ42を通過する流路が閉じられる。
槽内冷却用膨張経路36は「5分の3開」状態となり、高温側冷凍回路21に属する槽内冷却用蒸発部33の冷却能力は全開時に比べて半減する。
その一方で、補助回路51を流れる冷媒量が増加し、低温側凝縮部25がさらに冷却される。そのため高温側冷凍回路21に属する槽内冷却用蒸発部33は冷却能力が低下するが、低温側蒸発部27の冷凍能力が増加する。
Further, when a certain time elapses, the shift operation shifts to the third stage. In the third stage, the first capillary tube 41 and the second of the flow paths that pass through the five capillary tubes 41, 42, 43, 44, 45 constituting the in-vessel cooling expansion path 36 as shown in FIG. 6. The flow path passing through the capillary tube 42 is closed.
The tank cooling expansion path 36 is in a “three-fifth open” state, and the cooling capacity of the tank cooling evaporator 33 belonging to the high-temperature side refrigeration circuit 21 is halved compared to when fully opened.
On the other hand, the amount of refrigerant flowing through the auxiliary circuit 51 increases, and the low-temperature side condensing unit 25 is further cooled. Therefore, although the cooling capacity of the tank cooling evaporator 33 belonging to the high temperature side refrigeration circuit 21 is reduced, the refrigeration capacity of the low temperature side evaporator 27 is increased.

さらに一定の時間が経過すると、移行運転は第4ステージに移行する。第4ステージでは、図7の様に槽内冷却用膨張経路36を構成する5個のキャピラリーチューブ41,42,43,44,45を通過する流路の内、第1キャピラリーチューブ41と第2キャピラリーチューブ42と、第3キャピラリーチューブ43を通過する流路が閉じられる。
槽内冷却用膨張経路36は「5分の2開」状態となり、高温側冷凍回路21に属する槽内冷却用蒸発部33の冷却能力は小さくなる。
その一方で、補助回路51を流れる冷媒量が大幅に増加し、低温側凝縮部25がさらに冷却される。そのため高温側冷凍回路21に属する槽内冷却用蒸発部33は冷却能力がさらに低下するが、低温側蒸発部27の冷凍能力はさらに増加する。
Further, when a certain time elapses, the shift operation shifts to the fourth stage. In the fourth stage, the first capillary tube 41 and the second of the flow paths passing through the five capillary tubes 41, 42, 43, 44, 45 constituting the in-vessel cooling expansion path 36 as shown in FIG. The flow paths passing through the capillary tube 42 and the third capillary tube 43 are closed.
The tank cooling expansion path 36 is in a “two-fifth open” state, and the cooling capacity of the tank cooling evaporator 33 belonging to the high temperature side refrigeration circuit 21 is reduced.
On the other hand, the amount of refrigerant flowing through the auxiliary circuit 51 is significantly increased, and the low temperature side condensing unit 25 is further cooled. Therefore, although the cooling capacity of the tank cooling evaporator 33 belonging to the high temperature side refrigeration circuit 21 is further reduced, the refrigeration capacity of the low temperature side evaporator 27 is further increased.

さらに一定の時間が経過すると、移行運転は第5ステージに移行する。第5ステージでは、図8の様に槽内冷却用膨張経路36を構成する5個のキャピラリーチューブ41,42,43,44,45を通過する流路の内、第1キャピラリーチューブ41と第2キャピラリーチューブ42と、第3キャピラリーチューブ43と、第4キャピラリーチューブ44を通過する流路が閉じられる。主回路側開閉弁55は開かれたままの状態を維持する。第5キャピラリーチューブ45が属する分岐管には開閉弁が無いので、第5キャピラリーチューブ45には冷媒が流れる。
しかし槽内冷却用膨張経路36は「5分の1開」状態となり、高温側冷凍回路21に属する槽内冷却用蒸発部33の冷却能力は極小さくなる。
その一方で、補助回路51を流れる冷媒量は、さらに大幅に増加し、低温側凝縮部25がさらに強力に冷却される。そのため高温側冷凍回路21に属する槽内冷却用蒸発部33については冷却能力はほぼ失われてしまうが、低温側蒸発部27の冷凍能力が全力に近い状況となる。
Further, when a certain time has elapsed, the shift operation shifts to the fifth stage. In the fifth stage, the first capillary tube 41 and the second of the flow paths passing through the five capillary tubes 41, 42, 43, 44, 45 constituting the in-vessel cooling expansion path 36 as shown in FIG. The flow paths passing through the capillary tube 42, the third capillary tube 43, and the fourth capillary tube 44 are closed. The main circuit side opening / closing valve 55 is kept open. Since the branch pipe to which the fifth capillary tube 45 belongs does not have an open / close valve, the refrigerant flows through the fifth capillary tube 45.
However, the tank cooling expansion path 36 is in the “one-fifth open” state, and the cooling capacity of the tank cooling evaporator 33 belonging to the high temperature side refrigeration circuit 21 is extremely small.
On the other hand, the amount of refrigerant flowing through the auxiliary circuit 51 is further greatly increased, and the low temperature side condensing unit 25 is cooled more powerfully. Therefore, although the cooling capacity of the in-vessel cooling evaporator 33 belonging to the high temperature side refrigeration circuit 21 is almost lost, the refrigeration capacity of the low temperature side evaporator 27 is close to full power.

そしてさらに一定の時間が経過すると、主回路側開閉弁55が閉じられて主回路50に流れ込む冷媒が停止し、図9の様な完全な二元運転に移行する。
移行運転が行われる時間は、2分から6分程度である。また移行運転が行われる時間は、3分から5分程度であることが推奨される。
各ステージの実施時間は、60秒から200秒程度である。初期のステージを比較的長く実施することが望ましい。
例えば、第1ステージを80秒実行した後に第2ステージに移行し、第2ステージを40秒実行する。さらに第3ステージを40秒、第4ステージを40秒、第5ステージを40秒実行する。その結果、240秒の間移行運転が行われ、二元運転に切り換わることとなる。
When a certain time further elapses, the main circuit side on-off valve 55 is closed and the refrigerant flowing into the main circuit 50 is stopped, and a complete two-way operation as shown in FIG. 9 is started.
The time during which the transition operation is performed is about 2 to 6 minutes. In addition, it is recommended that the time for performing the transition operation is about 3 to 5 minutes.
The execution time of each stage is about 60 seconds to 200 seconds. It is desirable to perform the initial stage relatively long.
For example, after executing the first stage for 80 seconds, the process proceeds to the second stage, and the second stage is executed for 40 seconds. Further, the third stage is executed for 40 seconds, the fourth stage is executed for 40 seconds, and the fifth stage is executed for 40 seconds. As a result, the transition operation is performed for 240 seconds, and the operation is switched to the dual operation.

本実施形態の冷却装置7では、原則として、第1ステージから順次ステージが進み、完全な二元運転に移行する。しかしながら、特有の条件が揃った場合には、何ステージかを飛ばして二元運転に移行させる。   In principle, in the cooling device 7 of the present embodiment, the stage advances sequentially from the first stage, and shifts to a complete dual operation. However, when specific conditions are met, some stages are skipped and a two-way operation is performed.

ステージを飛ばす条件の一つは、外気温度である。本実施形態の環境試験装置は、「外気温度補正機能」を有し、外気温度が高い場合には、第1ステージ又は第1、第2ステージを飛ばし、第2ステージまたは第3ステージから移行運転を開始する。   One of the conditions for skipping the stage is the outside air temperature. The environmental test apparatus of the present embodiment has an “outside temperature correction function”. When the outside temperature is high, the first stage or the first and second stages are skipped, and the transition operation is performed from the second stage or the third stage. To start.

即ち、外気温度が高い場合には外気の温度相当分に凝縮温度が高くなるため、高温側凝縮部31内の冷媒圧力が上昇する。
一方、高温側凝縮部31については、設計時に想定する運転条件があり、その一つに高温側凝縮部31内の圧力がある。そのため高温側凝縮部31内の圧力が過度に上昇すると、設計時に想定していた圧力の上限を超えてしまい、高圧回路の損傷の恐れがあり、圧縮機の仕様を外れる場合は圧縮機の故障の原因となり得る。
そのため高温側凝縮部31内の圧力は、一定未満に維持する必要がある。
That is, when the outside air temperature is high, the condensing temperature is increased by an amount corresponding to the outside air temperature, so that the refrigerant pressure in the high temperature side condensing unit 31 increases.
On the other hand, about the high temperature side condensation part 31, there exists the driving | running condition assumed at the time of design, and the pressure in the high temperature side condensation part 31 is one of them. Therefore, if the pressure in the high-temperature side condensing part 31 rises excessively, the upper limit of the pressure assumed at the time of design may be exceeded, and there is a risk of damage to the high-pressure circuit. Can cause
Therefore, the pressure in the high temperature side condensing part 31 needs to be maintained below a certain level.

一方、移行運転の第1ステージは、槽内冷却用膨張経路36が全開状態であるのに加えて、凝縮器用膨張経路37も開かれる。そのため高温側冷凍回路21を流れる冷媒量が増加し、高温側凝縮部31の圧力が上昇する要因となる。
そのため、外気温度が高い状態の際に、第1ステージの運転を行うと、高温側凝縮部31内の圧力が設計時に想定していた圧力の上限を超える事態となる。
On the other hand, in the first stage of the transition operation, the expansion path 37 for the condenser is opened in addition to the expansion path 36 for cooling in the tank being fully opened. For this reason, the amount of refrigerant flowing through the high temperature side refrigeration circuit 21 increases, and this increases the pressure of the high temperature side condensing unit 31.
Therefore, if the first stage is operated when the outside air temperature is high, the pressure in the high-temperature side condensing unit 31 exceeds the upper limit of the pressure assumed at the time of design.

そこで本実施形態では、外気温度センサー(外気温度検知手段)18を監視し、外気温度センサー18の検知温度が一定温度以上であるならば、移行運転を第2ステージ又は第3ステージから開始する。
例えば、外気温度センサー18の検知温度が、第1外気基準温度以上であるならば、移行運転を第2ステージから開始する。また外気温度センサー18の検知温度が、第2外気基準温度以上であるならば、移行運転を第3ステージから開始する。
Therefore, in this embodiment, the outside temperature sensor (outside temperature detecting means) 18 is monitored, and if the detected temperature of the outside temperature sensor 18 is equal to or higher than a certain temperature, the transition operation is started from the second stage or the third stage.
For example, if the detected temperature of the outside air temperature sensor 18 is equal to or higher than the first outside air reference temperature, the transition operation is started from the second stage. If the temperature detected by the outside air temperature sensor 18 is equal to or higher than the second outside air reference temperature, the transition operation is started from the third stage.

またステージを飛ばす条件のもう一つは、槽内温度である。
本実施形態の環境試験装置は、「槽内温度補正機能」を有し、槽内温度が低い場合には、第1ステージ又は第1、第2ステージを飛ばし、第2ステージまたは第3ステージから移行運転を開始する。
Another condition for skipping the stage is the temperature inside the tank.
The environmental test apparatus of the present embodiment has a “vessel temperature correction function”. When the bath temperature is low, the first stage or the first and second stages are skipped, and the second stage or the third stage is used. Start transition operation.

前記した様に、移行運転の第1ステージは、槽内冷却用膨張経路36が全開状態であるのに加えて、凝縮器用膨張経路37も開かれる。その結果、冷媒の蒸発圧力が上昇し、槽内冷却用蒸発部33の蒸発温度が上昇する。そのため、槽内温度が既に低温状態であるときに第1ステージの状態で運転を行うと、槽内冷却用蒸発部33の蒸発温度が槽内温度を超えてしまう場合がある。
そこで本実施形態で採用する冷却装置7では、試験室5に設けられた温度センサー12を監視し、温度センサー12の検知温度が一定未満であるならば、移行運転を第2ステージ又は第3ステージから開始する。
例えば、温度センサー12の検知温度が、第1槽内基準温度未満であるならば、移行運転を第3ステージから開始する。また温度センサー12の検知温度が、第1槽内基準温度以上であって第2槽内基準温度未満であるならば移行運転を第2ステージから開始する。
As described above, in the first stage of the transition operation, the expansion path 37 for the condenser is opened in addition to the expansion path 36 for cooling in the tank being fully opened. As a result, the evaporation pressure of the refrigerant increases and the evaporation temperature of the tank cooling evaporator 33 increases. Therefore, when the operation is performed in the state of the first stage when the temperature in the tank is already low, the evaporation temperature of the evaporation unit 33 for cooling in the tank may exceed the temperature in the tank.
Therefore, in the cooling device 7 employed in the present embodiment, the temperature sensor 12 provided in the test chamber 5 is monitored, and the transition operation is performed in the second stage or the third stage if the temperature detected by the temperature sensor 12 is less than a certain level. Start with
For example, if the detected temperature of the temperature sensor 12 is lower than the first tank reference temperature, the transition operation is started from the third stage. If the temperature detected by the temperature sensor 12 is equal to or higher than the first tank reference temperature and lower than the second tank reference temperature, the transition operation is started from the second stage.

第1槽内基準温度は、摂氏マイナス10度からプラス10度程度が望ましく、第2槽内基準温度は、摂氏40度から摂氏70度程度が望ましい。
実際には、外気基準温度と、槽内基準温度の双方を監視し、より細かく開始ステージが選定される。もちろん外気基準温度と、槽内基準温度のいずれか一方のみを監視するものであってもよい。
The first tank reference temperature is desirably about minus 10 degrees Celsius to plus 10 degrees Celsius, and the second tank reference temperature is desirably about 40 degrees Celsius to 70 degrees Celsius.
Actually, both the outside air reference temperature and the inside tank reference temperature are monitored, and the start stage is selected more finely. Of course, only one of the outside air reference temperature and the tank reference temperature may be monitored.

以上説明した実施形態では、複数のキャピラリーチューブ41,42,43,44,45によって槽内冷却用膨張経路36を構成したが、キャピラリーチューブ41,42,43,44,45に代わって膨張弁を使用してもよい。凝縮器用膨張経路37に設けられたれた凝縮器用キャピラリーチューブ40についても同様であり膨張弁に置き換えることができる。   In the embodiment described above, the tank cooling expansion path 36 is configured by the plurality of capillary tubes 41, 42, 43, 44, 45, but an expansion valve is used instead of the capillary tubes 41, 42, 43, 44, 45. May be used. The same applies to the condenser capillary tube 40 provided in the condenser expansion path 37 and can be replaced with an expansion valve.

また移行運転は、最初に5個のキャピラリーチューブ41,42,43,44,45を通過する流路を全て開いておき、これらを時間の経過と共に一個ずつ閉じることとしたが、複数のキャピラリーチューブ41,42,43,44,45を通過する流路を同時に閉鎖してもよい。   In addition, in the transfer operation, all the flow paths that pass through the five capillary tubes 41, 42, 43, 44, and 45 are first opened and then closed one by one over time. You may close the flow path which passes 41, 42, 43, 44, 45 simultaneously.

上記した実施形態では、槽内冷却用膨張経路36を5個のキャピラリーチューブ41,42,43,44,45で構成したが、キャピラリーチューブの数は任意であり、5未満であってもよく、6以上であってもよい。
キャピラリーチューブの適正な個数は、3から8程度である。
また上記した実施形態では、同一開口径のキャピラリーチューブを使用したが、開口径の異なるキャピラリーチューブが混在していてもよい。
In the above-described embodiment, the in-vessel cooling expansion path 36 is configured with five capillary tubes 41, 42, 43, 44, 45, but the number of capillary tubes is arbitrary and may be less than 5, It may be 6 or more.
The appropriate number of capillary tubes is about 3 to 8.
In the above-described embodiment, capillary tubes having the same opening diameter are used. However, capillary tubes having different opening diameters may be mixed.

また上記した実施形態では、主回路50に主回路側開閉弁55を設け、主回路50を主回路側開閉弁55で開閉する構成を採用した。また主回路側開閉弁55を開いた際に、最低限度の冷媒流量を確保する目的から、第5キャピラリーチューブ45に至る分岐配管には開閉弁を設けていない。
変形例として、主回路側開閉弁55を省略し、代わって第5キャピラリーチューブ45に至る分岐配管に別途開閉弁を設ける構成が考えられる。
In the above-described embodiment, the main circuit 50 is provided with the main circuit side opening / closing valve 55, and the main circuit 50 is opened / closed by the main circuit side opening / closing valve 55. Further, for the purpose of ensuring the minimum refrigerant flow rate when the main circuit side opening / closing valve 55 is opened, no opening / closing valve is provided in the branch pipe leading to the fifth capillary tube 45.
As a modified example, a configuration in which the main circuit side opening / closing valve 55 is omitted and a separate opening / closing valve is provided in the branch pipe leading to the fifth capillary tube 45 instead is conceivable.

次に本発明者らが行った実験について説明する。
(1)温度降下勾配の比較
本実施形態の環境試験装置として、図1に示す装置を採用し、槽内温度を摂氏150度の環境から、摂氏マイナス40度の環境に変化させた。一元運転から二元運転への切り換えは、槽内温度が摂氏50度の時に行い、一元運転から二元運転へ切り換える際に移行運転を実施した。移行運転は、第1ステージから開始し、順次ステージを上げて行き、第5ステージの後に、完全な二元運転に移行させた。
その際の槽内温度と時間との関係は、図10の通りであり、温度下降カーブは、一元運転実施時と、二元運転実施時で相違するものの、切り換わりは円滑であった。
Next, experiments conducted by the inventors will be described.
(1) Comparison of temperature drop gradient The apparatus shown in FIG. 1 was adopted as the environmental test apparatus of this embodiment, and the temperature in the tank was changed from an environment of 150 degrees Celsius to an environment of minus 40 degrees Celsius. Switching from the one-way operation to the two-way operation was performed when the temperature in the tank was 50 degrees Celsius, and a transition operation was performed when switching from the one-way operation to the two-way operation. The transition operation was started from the first stage, the stages were sequentially raised, and after the fifth stage, the operation was shifted to a complete dual operation.
The relationship between the temperature in the tank and the time at that time is as shown in FIG. 10, and the temperature decrease curve was different between the one-way operation and the two-way operation, but the switching was smooth.

これに対して、同一機械構造の環境試験装置を使用し、一元運転から二元運転への切り換えを、移行運転を経ることなく行った。
その際の槽内温度と時間との関係は、図11の通りであり、切り換わり時に槽内温度が一次的に上昇し、切り換えは円滑性を欠くものであった。
On the other hand, the environmental test apparatus having the same mechanical structure was used, and the switching from the single operation to the dual operation was performed without going through the transition operation.
The relationship between the temperature in the tank and the time at that time is as shown in FIG. 11, and the temperature in the tank was temporarily increased at the time of switching, and the switching lacked smoothness.

(2)高温側凝縮部31内の圧力の比較
本実施形態の環境試験装置として、図1に示す装置を採用した。環境試験装置1の高温側凝縮部31の設計上の上限圧力は、2.6MPaである。
実験に使用した装置は、「外気温度補正機能」を有し、外気温度が高い場合には、第1ステージ又は第1、第2ステージを飛ばし、第2ステージまたは第3ステージから移行運転を開始する。
環境試験装置の近傍の気温は、摂氏35度であった。
(2) Comparison of the pressure in the high temperature side condensing part 31 The apparatus shown in FIG. 1 was employ | adopted as an environmental test apparatus of this embodiment. The design upper limit pressure of the high temperature side condensing part 31 of the environmental test apparatus 1 is 2.6 MPa.
The apparatus used for the experiment has an “outside temperature correction function”. When the outside temperature is high, the first stage or the first and second stages are skipped, and the transition operation is started from the second stage or the third stage. To do.
The temperature in the vicinity of the environmental test apparatus was 35 degrees Celsius.

そして槽内温度を摂氏150度の環境から、摂氏マイナス40度の環境に変化させた。一元運転から二元運転への切り換えは、槽内温度が摂氏約60度の時に行われた。一元運転から二元運転へ切り換える際に移行運転を実施したが、移行運転は第2ステージから行われた。そして順次ステージを上げて行き、第5ステージの後に、完全な二元運転に移行させた。
その際の槽内温度と高温側凝縮部31内の冷媒の圧力との関係は、図12の通りであり、移行運転時に高温側凝縮部31内の冷媒の圧力が上昇するものの、設計上の上限圧力の2.6MPaを超えることはなかった。
The temperature inside the tank was changed from an environment of 150 degrees Celsius to an environment of minus 40 degrees Celsius. Switching from the single operation to the dual operation was performed when the temperature in the tank was about 60 degrees Celsius. The transition operation was performed when switching from the one-way operation to the two-way operation, but the transition operation was performed from the second stage. Then, the stage was moved up sequentially, and after the fifth stage, it was shifted to a complete dual operation.
The relationship between the temperature in the tank and the pressure of the refrigerant in the high-temperature side condensing unit 31 is as shown in FIG. 12, and the pressure of the refrigerant in the high-temperature side condensing unit 31 increases during the transition operation. The upper limit pressure of 2.6 MPa was not exceeded.

これに対して、同一機械構造の環境試験装置を使用し、一元運転から二元運転への切り換えを、移行運転を経て行ったが、移行運転は原則通り第1ステージから行った。そして順次ステージを上げて行き、第5ステージの後に、完全な二元運転に移行させた。
その際の槽内温度と高温側凝縮部31内の冷媒の圧力との関係は、図13の通りであり、移行運転時に高温側凝縮部31内の冷媒の圧力が上昇し、設計上の上限圧力の2.6MPaを超える事態となった。
On the other hand, the environmental test apparatus having the same mechanical structure was used, and the switching from the one-way operation to the two-way operation was performed through the transition operation, but the transition operation was performed from the first stage as a rule. Then, the stage was moved up sequentially, and after the fifth stage, it was shifted to a complete dual operation.
The relationship between the temperature in the tank and the pressure of the refrigerant in the high-temperature side condensing unit 31 at that time is as shown in FIG. The situation exceeded the pressure of 2.6 MPa.

(3)槽内温度と冷媒の蒸発温度との比較
本実施形態の環境試験装置として、図1に示す装置を採用した。
実験に使用した装置は、「槽内温度補正機能」を有し、槽内温度が低い場合には、第1ステージ又は第1、第2ステージを飛ばし、第2ステージまたは第3ステージから移行運転を開始する。
(3) Comparison between tank temperature and refrigerant evaporation temperature The apparatus shown in FIG. 1 was adopted as the environmental test apparatus of this embodiment.
The apparatus used in the experiment has a “vessel temperature correction function”. When the bath temperature is low, the first stage or the first and second stages are skipped, and the operation is shifted from the second stage or the third stage. To start.

そして槽内温度を摂氏マイナス15度の環境から、摂氏マイナス40度の環境に変化させた。一元運転から二元運転への切り換えは、槽内温度が摂氏マイナス15度の時に行われた。一元運転から二元運転へ切り換える際に移行運転を実施したが、移行運転は第2ステージから行われた。そして順次ステージを上げて行き、第5ステージの後に、完全な二元運転に移行させた。   The temperature inside the tank was changed from an environment of minus 15 degrees Celsius to an environment of minus 40 degrees Celsius. Switching from one-way operation to two-way operation was performed when the temperature in the tank was minus 15 degrees Celsius. The transition operation was performed when switching from the one-way operation to the two-way operation, but the transition operation was performed from the second stage. Then, the stage was moved up sequentially, and after the fifth stage, it was shifted to a complete dual operation.

その際の槽内温度と冷媒の蒸発温度(高温側冷凍回路21及び低温側冷凍回路20)との関係は、図14の通りであり、移行運転時に高温側冷凍回路21の蒸発温度(槽内冷却用蒸発部33側)が上昇するものの、高温側冷凍回路21の蒸発温度が槽内温度を超えることはない。
即ち高温側冷凍回路21に注目すると、一元運転から二元運転に切り換わる過程の移行運転で、高温側冷凍回路21の蒸発温度(槽内冷却用蒸発部33側)は一時的に上昇するが、その後に低下する。そして完全に二元運転に切り換わると、槽内冷却用蒸発部33側には冷媒が流れなくなる。
The relationship between the temperature in the tank and the evaporation temperature of the refrigerant (the high temperature side refrigeration circuit 21 and the low temperature side refrigeration circuit 20) is as shown in FIG. 14, and the evaporation temperature (inside the tank) of the high temperature side refrigeration circuit 21 during the transition operation. Although the cooling evaporator 33 side) rises, the evaporation temperature of the high temperature side refrigeration circuit 21 does not exceed the in-tank temperature.
That is, when attention is paid to the high temperature side refrigeration circuit 21, the evaporating temperature of the high temperature side refrigeration circuit 21 (on the side of the tank cooling evaporator 33 side) temporarily rises in the transition operation in the process of switching from the single operation to the dual operation. Then decline. When the operation is completely switched to the dual operation, the refrigerant does not flow to the tank cooling evaporator 33 side.

一方、低温側冷凍回路20に注目すると、一元運転から二元運転への切り換えの過程で移行運転が行われ、低温側冷凍回路20が起動し、図14の様に低温側冷凍回路20を流れる冷媒の蒸発温度がしだいに低下する。
本実施形態では、低温側冷凍回路20の運転状況が定常状態となり、低温側冷凍回路20を流れる冷媒の蒸発温度が、略安定状態となって所望の低温を発現した後に高温側冷凍回路21の槽内冷却用蒸発部33側への冷媒供給を停止するので、移行運転の際に槽内温度が上昇することはない。
On the other hand, when paying attention to the low temperature side refrigeration circuit 20, the transition operation is performed in the process of switching from the one-way operation to the two-way operation, the low temperature side refrigeration circuit 20 is activated, and flows through the low temperature side refrigeration circuit 20 as shown in FIG. The evaporation temperature of the refrigerant gradually decreases.
In the present embodiment, the operation state of the low-temperature side refrigeration circuit 20 becomes a steady state, and the evaporation temperature of the refrigerant flowing through the low-temperature side refrigeration circuit 20 becomes substantially stable and exhibits a desired low temperature. Since the refrigerant supply to the tank cooling evaporator 33 side is stopped, the tank temperature does not increase during the transition operation.

これに対して、同一機械構造の環境試験装置を使用し、一元運転から二元運転への切り換えを、移行運転を経て行ったが、移行運転は原則通り第1ステージから行われた。そして順次ステージを上げて行き、第5ステージの後に、完全な二元運転に移行させた。
その際の槽内温度と冷媒の蒸発温度との関係は、図15の通りであり、移行運転時に蒸発温度が上昇し、槽内温度を超えた。
On the other hand, the environmental test apparatus having the same mechanical structure was used, and the switching from the one-way operation to the two-way operation was performed through the transition operation, but the transition operation was performed from the first stage as a rule. Then, the stage was moved up sequentially, and after the fifth stage, it was shifted to a complete dual operation.
The relationship between the temperature in the tank and the evaporation temperature of the refrigerant at that time is as shown in FIG. 15, and the evaporation temperature increased during the transition operation and exceeded the temperature in the tank.

1 環境試験装置
3 断熱槽
5 試験室
7 冷却装置
12 温度センサー(槽内温度検知手段)
18 外気温度センサー(外気温度検知手段)
20 低温側冷凍回路
21 高温側冷凍回路
22 低温側圧縮部
25 低温側凝縮部
26 低温側膨張部
27 低温側蒸発部
30 高温側圧縮部
31 高温側凝縮部
32 高温側膨張部
33 槽内冷却用蒸発部
35 凝縮器冷却用蒸発部
36 槽内冷却用膨張経路
37 凝縮器用膨張経路
40 キャピラリーチューブ(凝縮器用)
41,42,43,44,45 キャピラリーチューブ(槽内冷却用)
60,61,62,63 開閉弁
DESCRIPTION OF SYMBOLS 1 Environmental test apparatus 3 Thermal insulation tank 5 Test chamber 7 Cooling apparatus 12 Temperature sensor (temperature detection means in a tank)
18 Outside temperature sensor (outside temperature detection means)
20 Low temperature side refrigeration circuit 21 High temperature side refrigeration circuit 22 Low temperature side compression unit 25 Low temperature side condensing unit 26 Low temperature side expansion unit 27 Low temperature side evaporation unit 30 High temperature side compression unit 31 High temperature side condensing unit 32 High temperature side expansion unit 33 Evaporating section 35 Evaporating section for condenser cooling 36 Expansion path for cooling in tank 37 Expansion path for condenser 40 Capillary tube (for condenser)
41, 42, 43, 44, 45 Capillary tube (for cooling inside the tank)
60, 61, 62, 63 On-off valve

Claims (6)

冷却装置によって槽内を冷却する機能を備えた環境試験装置において、
前記冷却装置は、低温側圧縮部、低温側凝縮部、低温側膨張部及び低温側蒸発部を有し冷媒が循環する低温側冷凍回路と、
高温側圧縮部、高温側凝縮部、高温側膨張部、槽内冷却用蒸発部及び凝縮器冷却用蒸発部を有し、冷媒が循環する高温側冷凍回路とが設けられ、
凝縮器冷却用蒸発部によって低温側凝縮部を冷却可能であり、
高温側冷凍回路の高温側圧縮部、高温側凝縮部、高温側膨張部、槽内冷却用蒸発部に冷媒を通過させて槽内を冷却する一元運転と、
高温側冷凍回路の高温側圧縮部、高温側凝縮部、高温側膨張部、凝縮器冷却用蒸発部に冷媒を通過させて低温側凝縮部を冷却すると共に低温側冷凍回路に冷媒を通過させて槽内を冷却する二元運転とを行うことが可能であり、
一元運転から二元運転に切り換える際に、一時的に槽内冷却用蒸発部と凝縮器冷却用蒸発部の双方に冷媒を通過させる移行運転が実施され、
前記高温側膨張部は、槽内冷却用蒸発部に冷媒を供給する槽内冷却用膨張経路と、凝縮器冷却用蒸発部に冷媒を供給する凝縮器用膨張経路を有し、前記槽内冷却用膨張経路は冷媒の通過面積を変更可能であり、
凝縮器用膨張経路は冷媒の通過経路を開閉可能であり、
前記移行運転においては、凝縮器用膨張経路が開かれると共に槽内冷却用膨張経路の冷媒の通過面積が絞られることを特徴とする環境試験装置。
In the environmental test equipment with the function of cooling the inside of the tank by the cooling device,
The cooling device has a low temperature side compressor, a low temperature side condenser, a low temperature side expansion unit, and a low temperature side evaporator, and a low temperature side refrigeration circuit in which refrigerant circulates;
A high temperature side compression unit, a high temperature side condensation unit, a high temperature side expansion unit, a tank cooling evaporation unit, and a condenser cooling evaporation unit, and a high temperature side refrigeration circuit through which a refrigerant circulates is provided,
The condenser on the low temperature side can be cooled by the evaporator for cooling the condenser,
A unitary operation in which the refrigerant is passed through the high-temperature side refrigeration circuit of the high-temperature side refrigeration circuit, the high-temperature side condensing unit, the high-temperature side expansion unit, and the tank cooling evaporator to cool the inside of the tank;
Pass the refrigerant through the high temperature side compressor, high temperature side condensing unit, high temperature side expansion unit and condenser cooling evaporator of the high temperature side refrigeration circuit to cool the low temperature side condensing unit and pass the refrigerant through the low temperature side refrigeration circuit. It is possible to perform dual operation to cool the inside of the tank,
When switching from the one-way operation to the two-way operation, a transition operation is performed in which the refrigerant is temporarily passed through both the tank cooling evaporator and the condenser cooling evaporator,
The high temperature side expansion section has a tank cooling expansion path for supplying refrigerant to the tank cooling evaporation section, and a condenser expansion path for supplying refrigerant to the condenser cooling evaporation section. The expansion path can change the passage area of the refrigerant,
The expansion path for the condenser can open and close the passage path of the refrigerant,
In the transition operation, the expansion path for the condenser is opened and the passage area of the refrigerant in the expansion path for cooling in the tank is reduced.
移行運転においては、槽内冷却用膨張経路の冷媒の通過面積が序々に絞られ、一定時間経過後には槽内冷却用膨張経路が全閉されることを特徴とする請求項1に記載の環境試験装置。   2. The environment according to claim 1, wherein, in the transition operation, the passage area of the refrigerant in the expansion path for cooling the tank is gradually reduced, and the expansion path for cooling the tank is fully closed after a predetermined time has elapsed. Test equipment. 外気温度を検知する外気温度検知手段を有し、一元運転から二元運転に切り換える際の外気温度が一定温度以上である場合には、外気温度が一定未満である場合に比べて槽内冷却用膨張経路の冷媒の通過面積が絞られることを特徴とする請求項1又は2に記載の環境試験装置。   When there is an outside air temperature detection means for detecting the outside air temperature, and the outside air temperature when switching from the one-way operation to the two-way operation is higher than a certain temperature, it is for cooling in the tank compared with the case where the outside air temperature is less than a certain temperature. The environmental test apparatus according to claim 1, wherein a passage area of the refrigerant in the expansion path is reduced. 槽内の温度を検知する槽内温度検知手段を有し、一元運転から二元運転に切り換える際の槽内温度が一定温度未満である場合には、槽内温度が一定以上である場合に比べて槽内冷却用膨張経路の冷媒の通過面積が絞られることを特徴とする請求項1乃至3のいずれかに記載の環境試験装置。   Has a tank temperature detection means for detecting the temperature in the tank, and when the tank temperature when switching from the one-way operation to the two-way operation is less than a certain temperature, compared to when the tank temperature is above a certain value The environmental test apparatus according to claim 1, wherein a passage area of the refrigerant in the expansion path for cooling the tank is reduced. 槽内冷却用膨張経路は、複数のキャピラリーチューブが並列に配管されたものであり、一又は複数のキャピラリーチューブに対して直列に開閉弁が設けられていることを特徴とする請求項1乃至4のいずれかに記載の環境試験装置。   5. The expansion path for cooling in the tank is formed by connecting a plurality of capillary tubes in parallel, and an open / close valve is provided in series with respect to one or a plurality of capillary tubes. The environmental test apparatus in any one of. 断熱材で覆われた槽内を冷却する冷却装置において、
低温側圧縮部、低温側凝縮部、低温側膨張部及び低温側蒸発部を有し冷媒が循環する低温側冷凍回路と、
高温側圧縮部、高温側凝縮部、高温側膨張部、槽内冷却用蒸発部及び凝縮器冷却用蒸発部を有し、冷媒が循環する高温側冷凍回路とが設けられ、
凝縮器冷却用蒸発部によって低温側凝縮部を冷却可能であり、
高温側冷凍回路の高温側圧縮部、高温側凝縮部、高温側膨張部、槽内冷却用蒸発部に冷媒を通過させて槽内を冷却する一元運転と、
高温側冷凍回路の高温側圧縮部、高温側凝縮部、高温側膨張部、凝縮器冷却用蒸発部に冷媒を通過させて低温側凝縮部を冷却すると共に低温側冷凍回路に冷媒を通過させて槽内を冷却する二元運転とを行うことが可能であり、
一元運転から二元運転に切り換える際に、一時的に槽内冷却用蒸発部と凝縮器冷却用蒸発部の双方に冷媒を通過させる移行運転が実施され、
前記高温側膨張部は、槽内冷却用蒸発部に冷媒を供給する槽内冷却用膨張経路と、凝縮器冷却用蒸発部に冷媒を供給する凝縮器用膨張経路を有し、前記槽内冷却用膨張経路は冷媒の通過面積を変更可能であり、
凝縮器用膨張経路は冷媒の通過経路を開閉可能であり、
前記移行運転においては、凝縮器用膨張経路が開かれると共に槽内冷却用膨張経路の冷媒の通過面積が絞られることを特徴とする冷却装置。
In the cooling device for cooling the inside of the tank covered with the heat insulating material,
A low temperature side refrigerating circuit having a low temperature side compression unit, a low temperature side condensing unit, a low temperature side expansion unit, and a low temperature side evaporation unit, in which the refrigerant circulates;
A high temperature side compression unit, a high temperature side condensation unit, a high temperature side expansion unit, a tank cooling evaporation unit, and a condenser cooling evaporation unit, and a high temperature side refrigeration circuit through which a refrigerant circulates is provided,
The condenser on the low temperature side can be cooled by the evaporator for cooling the condenser,
A unitary operation in which the refrigerant is passed through the high-temperature side refrigeration circuit of the high-temperature side refrigeration circuit, the high-temperature side condensing unit, the high-temperature side expansion unit, and the tank cooling evaporator to cool the inside of the tank;
Pass the refrigerant through the high temperature side compressor, high temperature side condensing unit, high temperature side expansion unit and condenser cooling evaporator of the high temperature side refrigeration circuit to cool the low temperature side condensing unit and pass the refrigerant through the low temperature side refrigeration circuit. It is possible to perform dual operation to cool the inside of the tank,
When switching from the one-way operation to the two-way operation, a transition operation is performed in which the refrigerant is temporarily passed through both the tank cooling evaporator and the condenser cooling evaporator,
The high temperature side expansion section has a tank cooling expansion path for supplying refrigerant to the tank cooling evaporation section, and a condenser expansion path for supplying refrigerant to the condenser cooling evaporation section. The expansion path can change the passage area of the refrigerant,
The expansion path for the condenser can open and close the passage path of the refrigerant,
In the transition operation, the condenser expansion path is opened, and the refrigerant passage area of the tank cooling expansion path is reduced.
JP2013246082A 2013-11-28 2013-11-28 Environmental test equipment and cooling equipment Active JP5995326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013246082A JP5995326B2 (en) 2013-11-28 2013-11-28 Environmental test equipment and cooling equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013246082A JP5995326B2 (en) 2013-11-28 2013-11-28 Environmental test equipment and cooling equipment

Publications (2)

Publication Number Publication Date
JP2015102541A true JP2015102541A (en) 2015-06-04
JP5995326B2 JP5995326B2 (en) 2016-09-21

Family

ID=53378320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013246082A Active JP5995326B2 (en) 2013-11-28 2013-11-28 Environmental test equipment and cooling equipment

Country Status (1)

Country Link
JP (1) JP5995326B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146285A (en) * 2016-02-19 2017-08-24 エスペック株式会社 Environmental test device
JP2019082493A (en) * 2019-02-20 2019-05-30 エスペック株式会社 Environmental test device
KR102494531B1 (en) * 2021-09-29 2023-02-06 (주)비에스테크 Temperature testing chamber

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189429A (en) * 1984-10-05 1986-05-07 Hitachi Ltd Cold shock testing device
JPS6169779U (en) * 1984-10-11 1986-05-13
JPS62125233A (en) * 1985-11-27 1987-06-06 Hitachi Ltd Cold heat environment testing device
JPH03191261A (en) * 1989-12-19 1991-08-21 Daikin Ind Ltd Refrigeration cycle device
JPH0429752A (en) * 1990-05-28 1992-01-31 Hitachi Ltd Cold shock testing apparatus
JPH04186064A (en) * 1990-11-16 1992-07-02 Hitachi Ltd Binary refrigerating cycle
JPH05142294A (en) * 1991-11-19 1993-06-08 Hitachi Ltd Thermal shock tester
JPH11173711A (en) * 1997-12-12 1999-07-02 Daikin Ind Ltd Dual refrigerator
JP2002346403A (en) * 2001-05-22 2002-12-03 Hitachi Ltd Thermohygrostat
JP2009002610A (en) * 2007-06-22 2009-01-08 Espec Corp Refrigerator and environmental tester

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6189429A (en) * 1984-10-05 1986-05-07 Hitachi Ltd Cold shock testing device
JPS6169779U (en) * 1984-10-11 1986-05-13
JPS62125233A (en) * 1985-11-27 1987-06-06 Hitachi Ltd Cold heat environment testing device
JPH03191261A (en) * 1989-12-19 1991-08-21 Daikin Ind Ltd Refrigeration cycle device
JPH0429752A (en) * 1990-05-28 1992-01-31 Hitachi Ltd Cold shock testing apparatus
JPH04186064A (en) * 1990-11-16 1992-07-02 Hitachi Ltd Binary refrigerating cycle
JPH05142294A (en) * 1991-11-19 1993-06-08 Hitachi Ltd Thermal shock tester
JPH11173711A (en) * 1997-12-12 1999-07-02 Daikin Ind Ltd Dual refrigerator
JP2002346403A (en) * 2001-05-22 2002-12-03 Hitachi Ltd Thermohygrostat
JP2009002610A (en) * 2007-06-22 2009-01-08 Espec Corp Refrigerator and environmental tester

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017146285A (en) * 2016-02-19 2017-08-24 エスペック株式会社 Environmental test device
JP2019082493A (en) * 2019-02-20 2019-05-30 エスペック株式会社 Environmental test device
KR102494531B1 (en) * 2021-09-29 2023-02-06 (주)비에스테크 Temperature testing chamber

Also Published As

Publication number Publication date
JP5995326B2 (en) 2016-09-21

Similar Documents

Publication Publication Date Title
JP5595245B2 (en) Refrigeration equipment
JP5639984B2 (en) Air conditioner
JP2010127531A (en) Refrigeration air conditioner
EP2257749B1 (en) Refrigerating system and method for operating the same
JP5842310B2 (en) Refrigeration apparatus and defrost method for load cooler
JP6486847B2 (en) Environmental test equipment
JP2016136082A (en) Cooling system
JP2010043856A (en) Refrigerating system
JPWO2018008139A1 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2020020576A (en) Refrigeration cycle device and air conditioner including the same
JP5624289B2 (en) refrigerator
JP5995326B2 (en) Environmental test equipment and cooling equipment
JP2009002610A (en) Refrigerator and environmental tester
JP4595121B2 (en) Cryogenic refrigerator using mechanical refrigerator and Joule Thomson expansion
US9581359B2 (en) Regenerative air-conditioning apparatus
JP5213986B2 (en) Refrigeration cycle equipment
JP5618326B2 (en) Refrigeration equipment
KR20120022203A (en) Defrosting system using air cooling refrigerant evaporator and condenser
JP5195302B2 (en) Refrigeration air conditioner
JP4334818B2 (en) Cooling system
JP4090240B2 (en) Cooling system
JP2005207660A (en) Extremely low temperature refrigerating device
JP6650062B2 (en) Environmental test equipment
KR20130061873A (en) Air conditioning boiler thermal efficiency system
JP2007101152A (en) Cooling system and vending machine using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160819

R150 Certificate of patent or registration of utility model

Ref document number: 5995326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250