JP2019082493A - Environmental test device - Google Patents

Environmental test device Download PDF

Info

Publication number
JP2019082493A
JP2019082493A JP2019028308A JP2019028308A JP2019082493A JP 2019082493 A JP2019082493 A JP 2019082493A JP 2019028308 A JP2019028308 A JP 2019028308A JP 2019028308 A JP2019028308 A JP 2019028308A JP 2019082493 A JP2019082493 A JP 2019082493A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
refrigeration circuit
main
auxiliary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019028308A
Other languages
Japanese (ja)
Other versions
JP2019082493A5 (en
JP6650062B2 (en
Inventor
宗昭 園部
Muneaki Sonobe
宗昭 園部
拓哉 平田
Takuya Hirata
拓哉 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2019028308A priority Critical patent/JP6650062B2/en
Publication of JP2019082493A publication Critical patent/JP2019082493A/en
Publication of JP2019082493A5 publication Critical patent/JP2019082493A5/ja
Application granted granted Critical
Publication of JP6650062B2 publication Critical patent/JP6650062B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

To develop an environmental test device which consumes less electricity than an existing environmental test device does and has a testing room 3, a temperature of which makes the same temperature dropping curve as an existing curve does to reach a desired low level.SOLUTION: The environmental test device includes: a testing room 3; a main freezing circuit 31; a sub freezing circuit 32; a refrigerant cooling circuit 51 branching from the sub freezing circuit 32 for cooling a refrigerant of the main freezing circuit 31; refrigerant control means for intermitting flow of the refrigerant in the refrigerant cooling circuit 51; and switch control means capable of performing a normal operation to circulate the refrigerant in the main freezing circuit 31 and control the temperature in the testing room 3 and performing an excessive cooling operation to circulate the refrigerant in the main freezing circuit 31 and causing the refrigerant to pass through the refrigerant cooling circuit 51, for causing the refrigerant control means to be activated on a certain condition and switching the normal operation and the excessive cooling operation.SELECTED DRAWING: Figure 1

Description

本発明は、被試験物を所定の環境にさらすことのできる環境試験装置に関するものである。   The present invention relates to an environmental test apparatus capable of exposing a test object to a predetermined environment.

製品や部品等の性能や耐久性を調べる方策として、環境試験が知られている。環境試験は、環境試験装置と称される設備を使用して実施される。環境試験装置は、例えば高温環境や、低温環境、高湿度環境等を人工的に作り出すものである。
環境試験装置は、例えば図13の様な構成を備えている。図13に示す環境試験装置100は、試験室3、冷却手段106、加熱ヒータ6、加湿装置7及び送風機8を備えている。試験室3は、断熱材2によって覆われた空間である。そして試験室3と連通する空気流路10があり、当該空気流路10に前記した冷却手段106の蒸発器107と、加熱ヒータ6、加湿装置7及び送風機8が設けられている。また、空気流路10の出口側に、温度センサー12と湿度センサー13が設けられている。
環境試験装置100では、前記した空気流路10内の部材と、温度センサー12及び湿度センサー13によって空気調和装置15が構成されている。
Environmental testing is known as a method for examining the performance and durability of products and parts. Environmental testing is performed using equipment called environmental testing equipment. The environmental test apparatus artificially creates, for example, a high temperature environment, a low temperature environment, a high humidity environment, and the like.
The environmental test apparatus has, for example, a configuration as shown in FIG. An environmental test apparatus 100 shown in FIG. 13 includes a test chamber 3, a cooling unit 106, a heater 6, a humidifier 7, and a blower 8. The test room 3 is a space covered by the heat insulating material 2. There is an air flow path 10 communicating with the test chamber 3, and the air flow path 10 is provided with the evaporator 107 of the cooling means 106 described above, the heater 6, the humidifying device 7 and the blower 8. Further, a temperature sensor 12 and a humidity sensor 13 are provided on the outlet side of the air flow path 10.
In the environmental test apparatus 100, an air conditioner 15 is configured by the members in the air flow path 10, the temperature sensor 12, and the humidity sensor 13.

冷却手段106は、相変化する熱媒体を使用して冷凍サイクルを実現するものであり、蒸発器107の他に、圧縮機101と、凝縮器102と、膨張弁103を有する循環回路である。ここで膨張弁103は、例えば電子膨張弁であり、開度を変化させることができる。圧縮機101を駆動するモータは、誘導モータであり、回転数を変化させることはできない。即ち圧縮機101を駆動するモータはインバータ制御されておらず、一定回転数で回転する。なお、インバータ駆動の圧縮機を用いることもある。
そして前記した圧縮機101と、凝縮器102と、膨張弁103及び蒸発器107が配管で環状に接続されて循環回路を構成し、その内部に相変化する冷媒が封入されている。冷媒は、前記した循環回路を循環する。
冷却手段106は、公知のそれと同様に、蒸発器107内で冷媒を膨張させ、蒸発器107の表面温度を低下させて環境から熱を奪う。
なお冷却手段106に加えて小型の補助冷却手段(図示せず)を備えたものがある。補助冷却手段は、試験室3内の温度が安定した後、試験室3内の温度を設定温度に維持する用途に使用される。
The cooling means 106 implements a refrigeration cycle using a phase-changing heat medium, and is a circulation circuit having a compressor 101, a condenser 102, and an expansion valve 103 in addition to the evaporator 107. Here, the expansion valve 103 is, for example, an electronic expansion valve, and can change the opening degree. The motor for driving the compressor 101 is an induction motor and can not change the rotational speed. That is, the motor for driving the compressor 101 is not inverter-controlled, and rotates at a constant rotational speed. An inverter-driven compressor may be used.
The compressor 101, the condenser 102, the expansion valve 103, and the evaporator 107 are annularly connected by piping to form a circulation circuit, and a refrigerant that changes phase is sealed therein. The refrigerant circulates in the above-described circulation circuit.
The cooling means 106 expands the refrigerant in the evaporator 107 and lowers the surface temperature of the evaporator 107 to remove heat from the environment, as in the known one.
In addition to the cooling means 106, a small auxiliary cooling means (not shown) may be provided. The auxiliary cooling means is used for maintaining the temperature in the test chamber 3 at the set temperature after the temperature in the test chamber 3 is stabilized.

加熱ヒータ6は、公知の電気ヒータである。   The heater 6 is a known electric heater.

加湿装置7は、加湿ヒータ25と水皿26が組み合わされたものであり、水皿26内の水を加湿ヒータ25で加熱して蒸発させる。   The humidifying device 7 is a combination of the humidifying heater 25 and the water tray 26, and heats and evaporates the water in the water tray 26 by the humidifying heater 25.

湿度センサー13は、湿度を検知可能なものであれば特に限定するものではなく、例えば、乾湿球湿度計等が採用できる。   The humidity sensor 13 is not particularly limited as long as it can detect humidity, and, for example, a wet and dry bulb hygrometer can be employed.

環境試験装置100は、内蔵される空気調和装置15によって、試験室3内に所望の温度・湿度環境を作るものである。
即ち、送風機8を駆動して試験室3内の空気を空気流路10に導入し、必要に応じて、加熱、冷却、加湿、除湿して試験室3内を所望の温度・湿度環境にする。
例えば、外気と同じ環境を開始環境とし、高温・高湿環境を作る場合には、加熱ヒータ6と加湿装置7を駆動して試験室3内を加熱及び加湿する。
逆に低温・低湿環境を作る場合には、冷却手段106を駆動して、試験室3内の温度及び湿度を低下させ、さらに加熱ヒータ6と加湿装置7を駆動して試験室3内の温度及び湿度を微調整する。
The environmental test apparatus 100 creates a desired temperature and humidity environment in the test room 3 by the built-in air conditioner 15.
That is, the blower 8 is driven to introduce the air in the test chamber 3 into the air flow path 10, and if necessary, the inside of the test chamber 3 is brought to a desired temperature and humidity environment by heating, cooling, humidifying and dehumidifying. .
For example, in the case where the same environment as the outside air is set as the start environment and a high temperature and high humidity environment is to be created, the heater 6 and the humidifier 7 are driven to heat and humidify the inside of the test chamber 3.
Conversely, when creating a low temperature and low humidity environment, the cooling means 106 is driven to lower the temperature and humidity in the test chamber 3, and the heater 6 and the humidifier 7 are driven to further reduce the temperature in the test chamber 3 And fine-tune the humidity.

また、低温・高湿環境を作る場合には、冷却手段106を駆動して、試験室3内の温度を低下させ、さらに加湿装置7を駆動して試験室3内の湿度を上昇させる。
低温・高湿環境を作る場合にも、温度及び湿度を微調整するために加熱ヒータ6等も運転される。
When a low temperature and high humidity environment is to be created, the cooling means 106 is driven to lower the temperature in the test chamber 3, and the humidifying device 7 is driven to increase the humidity in the test chamber 3.
Even in the case of creating a low temperature and high humidity environment, the heater 6 or the like is also operated to finely adjust the temperature and humidity.

いずれの場合においても、試験室3が所望の環境に至った後は、冷却手段106と、加熱ヒータ6及び加湿装置7を適宜動作させて、前記した所望の環境を維持する。   In any case, after the test chamber 3 reaches a desired environment, the cooling means 106, the heater 6, and the humidifying device 7 are operated appropriately to maintain the desired environment described above.

従来技術の環境試験装置100に搭載されている冷却手段106について付言すると、冷却手段106は、カタログ等に表示した温度領域の環境を一定時間内に作り出すことができるだけの容量(定格出力)を持っている。
また被試験物が発熱するものであることを前提としている環境試験装置100であれば、冷却手段106は、発熱負荷を許容することができる容量を備えている。
例えば、摂氏100度から摂氏マイナス40度の環境を作ることができると表示されている環境試験装置100であるならば、搭載されている冷却手段106の圧縮機101は、常温状態の試験室3の温度を所定時間以内に摂氏マイナス40度に降下させることができるだけの容量を持っている。また搭載されている圧縮機101は、多少の外乱があっても、試験室3の温度を設定温度(例えば摂氏マイナス40度)に維持することができるだけの容量を持っている。
即ち従来技術の環境試験装置100の圧縮機101は、予想される最大の冷却負荷に対応できるだけの容量を備えている。
以下、説明の都合上、予想される最大の冷却負荷に対応できるだけの容量の圧縮機101を搭載した従来技術の環境試験装置100を「標準構成の環境試験装置100」あるいは「従来技術の環境試験装置100」と称する。
Regarding the cooling means 106 mounted in the environmental testing apparatus 100 of the prior art, the cooling means 106 has a capacity (rated output) that can create an environment of a temperature range displayed in a catalog etc. within a fixed time. ing.
In the case of the environmental test apparatus 100 on the premise that the test object generates heat, the cooling means 106 has a capacity capable of accepting a heat generation load.
For example, if it is an environmental testing apparatus 100 that can create an environment of 100 degrees Celsius to minus 40 degrees Celsius, the compressor 101 of the cooling means 106 mounted is a test room 3 in a normal temperature state. The capacity of the temperature can be lowered to minus 40 degrees Celsius within a predetermined time. In addition, the mounted compressor 101 has a capacity sufficient to maintain the temperature of the test chamber 3 at the set temperature (for example, minus 40 degrees Celsius) even if there is a slight disturbance.
That is, the compressor 101 of the prior art environmental test apparatus 100 has a capacity sufficient to cope with the expected maximum cooling load.
Hereinafter, for convenience of explanation, the environmental test apparatus 100 of the prior art equipped with the compressor 101 of a capacity sufficient to cope with the expected maximum cooling load is the "environmental test apparatus 100 of standard configuration" or the "environmental test of the prior art" It is referred to as device 100 ".

特公平5−60614号公報Japanese Examined Patent Publication No. 5-60614

環境試験装置100は、電気機器を内蔵しており、当然に電力を消費する。また環境試験は、長時間に渡って行われることがある。そのため環境試験装置100は、相当に電力を消費する装置であると言える。
また環境試験装置100は、試験室3内の温度を精密に制御するため、前記した様に冷却手段106と加熱ヒータ6等を同時に駆動する場合がある。即ち冷却手段106は応答性が劣る。そのため環境試験装置100では、試験室3内がやや低温傾向となる様に冷却手段106を駆動し、同時に加熱ヒータ6を駆動して温度を微調整する場合がある。
ここで従来技術(標準構成)の環境試験装置100では、予想される最大の冷却負荷に対応できるだけの容量を持つ圧縮機101が搭載されているので、試験室3内の温度が安定している際には、冷却手段106の冷凍出力が過剰気味となり、加熱ヒータ6等の出力を増してこれを相殺する必要があった。そのため従来技術(標準構成)の環境試験装置100は、消費電力が大きいという不満があった。
The environmental test apparatus 100 incorporates an electric device and naturally consumes power. Environmental testing may also take place over extended periods of time. Therefore, it can be said that the environmental test apparatus 100 is an apparatus which consumes a considerable amount of power.
Further, in order to precisely control the temperature in the test chamber 3, the environmental test apparatus 100 may simultaneously drive the cooling unit 106 and the heater 6 as described above. That is, the cooling means 106 has poor responsiveness. Therefore, in the environmental test apparatus 100, the cooling means 106 may be driven so that the inside of the test chamber 3 tends to have a somewhat low temperature, and at the same time, the heater 6 may be driven to finely adjust the temperature.
Here, in the environmental test apparatus 100 according to the prior art (standard configuration), since the compressor 101 having a capacity sufficient to cope with the expected maximum cooling load is mounted, the temperature in the test room 3 is stable. In this case, the frozen output of the cooling means 106 tends to be excessive, and it is necessary to increase the output of the heater 6 or the like to offset this. Therefore, the environmental test apparatus 100 according to the prior art (standard configuration) is dissatisfied that the power consumption is large.

この状況に際し、市場においては、消費電力の少ない、所謂省エネ型の環境試験装置の開発が望まれている。
本発明者らは、この要求に応えるべく検討を重ね、環境試験装置100を構成する機器が消費する電力の割合を調査した。その結果、環境試験装置100を構成する機器の中で、冷却手段106の消費電力が最も多いことが分かった。
そこで本発明者らは冷却手段106の消費電力を抑制することを目的として、圧縮機101の容量を現状よりも小さいものに置き換えた環境試験装置(以下、改良型環境試験装置)200を試作した。
即ち冷却手段106の消費電力の大半は、圧縮機101を駆動させるのに要する電力である。そのため圧縮機101の容量を現状(標準構成)よりも小さくすれば、冷却手段106の消費電力が低下し、環境試験装置200全体の消費電力も下がる。
Under these circumstances, development of a so-called energy saving type environmental testing device with low power consumption is desired in the market.
The present inventors have made studies to meet this requirement, and investigated the proportion of power consumed by the devices constituting the environmental test apparatus 100. As a result, it was found that the power consumption of the cooling means 106 was the largest among the devices constituting the environmental test apparatus 100.
Therefore, for the purpose of suppressing the power consumption of the cooling means 106, the present inventors prototyped an environmental test apparatus (hereinafter, an improved environmental test apparatus) 200 in which the capacity of the compressor 101 was replaced with one smaller than the present one. .
That is, most of the power consumption of the cooling means 106 is the power required to drive the compressor 101. Therefore, if the capacity of the compressor 101 is made smaller than the present (standard configuration), the power consumption of the cooling means 106 is reduced, and the power consumption of the entire environmental test apparatus 200 is also reduced.

ここで圧縮機101の容量を現状(標準構成)よりもある程度小さいものに置き換えても、冷媒の蒸発温度を上げることにより、現状(標準構成)と同等の冷凍出力を得ることができる。そのため試験室3内の温度がある程度高い場合には、環境試験を実施する上で特段の問題は生じない。
また公知の様に、実際の冷凍出力(冷凍機が奪う熱エネルギー量)と、圧縮機101のモータ負荷(モータが発生する機械エネルギー量 消費電力)は比例せず、改良型環境試験装置200の冷却手段(冷凍機)106は、従来(標準構成)の冷却手段106と同等の冷凍出力を発現することができ、且つ消費電力は従来に比べて少ないものとなった。
Here, even if the capacity of the compressor 101 is replaced with one that is somewhat smaller than the present (standard configuration), a refrigeration output equivalent to the present (standard configuration) can be obtained by raising the evaporation temperature of the refrigerant. Therefore, when the temperature in the test room 3 is high to a certain extent, no particular problem occurs in carrying out the environmental test.
Also, as is known, the actual refrigeration output (the amount of thermal energy taken by the refrigerator) and the motor load of the compressor 101 (the amount of mechanical energy and the power consumption generated by the motor) are not proportional. The cooling means (refrigerator) 106 can exhibit the same refrigeration output as that of the conventional (standard configuration) cooling means 106, and the power consumption is smaller than that of the conventional.

以下、この原理について簡単に説明する。
冷却手段106は、冷凍サイクルを構成する冷凍機であり、気体状の冷媒を圧縮機101で圧縮して冷媒ガスを高温高圧化する。そして凝縮器102で冷媒ガスを冷却して液化し、高圧の液体冷媒を作る。その後、膨張弁103で液体冷媒の圧力を下げ、蒸発器107内で液体冷媒を蒸発させて気化する。このとき、冷媒が気化熱を奪い、蒸発器107の表面温度が低下する。冷却手段106は上記した原理によって蒸発器107の表面温度を低下させている。
The principle will be briefly described below.
The cooling means 106 is a refrigerator that constitutes a refrigeration cycle, and compresses a gaseous refrigerant with the compressor 101 to make the refrigerant gas have a high temperature and pressure. Then, the refrigerant gas is cooled and liquefied in the condenser 102 to produce a high pressure liquid refrigerant. Thereafter, the pressure of the liquid refrigerant is reduced by the expansion valve 103, and the liquid refrigerant is evaporated and vaporized in the evaporator 107. At this time, the refrigerant takes heat of vaporization, and the surface temperature of the evaporator 107 decreases. The cooling means 106 reduces the surface temperature of the evaporator 107 according to the principle described above.

従って冷凍出力(冷凍機が奪う熱エネルギー量)は、蒸発器107に供給される冷媒の量に大きく依存し、蒸発器107に供給される冷媒の量が多いほど冷凍出力が大きい。
そのため改良型環境試験装置200は、冷媒の蒸発温度を従来(標準構成)よりも上げて蒸発器107に多くの冷媒を供給する方法を採用している。
その結果、改良型環境試験装置200は、標準構成よりも定格出力(容量)が小さい圧縮機101を搭載しているにも係わらず、従来と同等の冷凍出力を発揮することができる。
Therefore, the refrigeration output (the amount of heat energy removed by the refrigerator) largely depends on the amount of refrigerant supplied to the evaporator 107, and the larger the amount of refrigerant supplied to the evaporator 107, the larger the refrigeration output.
Therefore, the improved environmental test apparatus 200 employs a method of supplying a larger amount of refrigerant to the evaporator 107 by raising the evaporation temperature of the refrigerant than in the conventional case (standard configuration).
As a result, the improved environmental test apparatus 200 can exhibit the same refrigeration output as that of the related art despite the fact that the compressor 101 having a smaller rated output (capacity) than the standard configuration is mounted.

次に蒸発器107の表面温度について説明する。
蒸発器107の表面温度は、冷媒の蒸発温度に依存し、冷媒の蒸発温度は冷媒の蒸発圧力に依存する。
具体的には、冷媒の蒸発圧力が低いと、冷媒の蒸発温度が低下し、蒸発器107の表面温度が低下する。逆に冷媒の蒸発圧力が高いと、冷媒の蒸発温度が上昇し、蒸発器107の表面温度が上昇する。
また冷媒の蒸発圧力は、膨張弁103の開度と圧縮機101の容量に依存し、膨張弁103の開度を絞るかあるいは圧縮機101からの冷媒吐出量が少ないと冷媒の蒸発温度が低下し、蒸発器107の表面温度が低下する。逆に膨張弁103の開度を広げるかあるいは圧縮機101からの冷媒吐出量が多いと冷媒の蒸発温度が上昇し、蒸発器107の表面温度が上昇する。
そのため改良型環境試験装置200は、前記した様に省エネルギー化を目的とするものであり、従来(標準構成)に比べて冷媒の蒸発温度が従来よりも上昇し、蒸発器107の表面温度が上昇してしまう。
Next, the surface temperature of the evaporator 107 will be described.
The surface temperature of the evaporator 107 depends on the evaporation temperature of the refrigerant, and the evaporation temperature of the refrigerant depends on the evaporation pressure of the refrigerant.
Specifically, when the evaporation pressure of the refrigerant is low, the evaporation temperature of the refrigerant decreases, and the surface temperature of the evaporator 107 decreases. Conversely, when the evaporation pressure of the refrigerant is high, the evaporation temperature of the refrigerant rises, and the surface temperature of the evaporator 107 rises.
The evaporation pressure of the refrigerant depends on the opening degree of the expansion valve 103 and the capacity of the compressor 101, and the evaporation temperature of the refrigerant decreases if the opening degree of the expansion valve 103 is narrowed or the refrigerant discharge amount from the compressor 101 is small. The surface temperature of the evaporator 107 is lowered. Conversely, if the opening degree of the expansion valve 103 is expanded or the refrigerant discharge amount from the compressor 101 is large, the evaporation temperature of the refrigerant rises, and the surface temperature of the evaporator 107 rises.
Therefore, as described above, the improved environmental testing apparatus 200 aims to save energy, and the evaporation temperature of the refrigerant is higher than that of the conventional (standard configuration), and the surface temperature of the evaporator 107 is increased. Resulting in.

前記した様に、改良型環境試験装置200は、標準構成の環境試験装置100に比べて蒸発器107内における冷媒の蒸発圧力が高く、従来に比べて蒸発器107の表面温度が幾分高いものの、試験室3の設定温度がある程度高い場合には、環境試験を実施する上で特段の問題は生じない。
しかしながら改良型環境試験装置200は、極低温の環境を必要とする環境試験には適用が困難であった。
即ち改良型環境試験装置200は、従来(標準構成)に比べて蒸発器107内の冷媒の蒸発圧力が高くなり、従来に比べて蒸発器107の表面温度が幾分高くならざるを得ない。
蒸発器107の表面温度が幾分高くなるといっても蒸発器107の表面温度はある程度の温度にまで下がるので、試験室3の設定温度が例えばその温度以上である場合には、試験室3内の実際の温度よりも蒸発器107の表面温度を所定の温度幅をもって下げることができ、試験室3内の温度を所望の設定温度に下げ、且つそれを維持することができる。
As described above, although the improved environmental test apparatus 200 has a higher evaporation pressure of the refrigerant in the evaporator 107 compared to the environmental test apparatus 100 having the standard configuration, the surface temperature of the evaporator 107 is somewhat higher than that of the conventional one. When the set temperature in the test room 3 is high to a certain extent, no particular problem occurs in performing the environmental test.
However, the improved environmental test apparatus 200 has been difficult to apply to environmental tests that require cryogenic environments.
That is, in the improved environmental test apparatus 200, the evaporation pressure of the refrigerant in the evaporator 107 is higher than in the conventional (standard configuration), and the surface temperature of the evaporator 107 must be somewhat higher than in the conventional.
Even though the surface temperature of the evaporator 107 is somewhat high, the surface temperature of the evaporator 107 is lowered to a certain temperature. Therefore, when the set temperature of the test chamber 3 is, for example, equal to or higher than that temperature It is possible to lower the surface temperature of the evaporator 107 with a predetermined temperature range than the actual temperature of the above, and to lower the temperature in the test chamber 3 to a desired set temperature and maintain it.

これに対して、例えば摂氏マイナス40度という様な極低温環境を試験室3内に作り出す場合は、蒸発器107の表面温度を少なくともこれ以下にしなければならない。望ましくは、蒸発器107の表面温度は、設定温度に対して所定の温度幅をもって下げるべきである。
しかしながら改良型環境試験装置200は、冷媒の蒸発温度が従来(標準構成)に比べて上昇し、蒸発器107の表面温度は従来(標準構成)に比べて高い。そのため改良型環境試験装置200は、蒸発器107の表面温度を下げにくい。
On the other hand, when creating a cryogenic environment, such as minus 40 degrees Celsius, in the test chamber 3, the surface temperature of the evaporator 107 must be at least lower than that. Desirably, the surface temperature of the evaporator 107 should be lowered with a predetermined temperature range with respect to the set temperature.
However, in the improved environmental test apparatus 200, the evaporation temperature of the refrigerant rises compared to the conventional (standard configuration), and the surface temperature of the evaporator 107 is higher than the conventional (standard configuration). Therefore, the improved environmental test apparatus 200 does not easily lower the surface temperature of the evaporator 107.

ここで改良型環境試験装置200であっても、膨張弁103の開度を従来(標準構成)よりも絞れば、蒸発器107の表面温度を設定温度よりも下げることができる。
しかしながら、改良型環境試験装置200に搭載されている圧縮機101は、そもそも定格出力が標準構成に比べて小さいから、蒸発器107の表面温度を設定温度よりも下げて運転すると、必要な冷凍出力(冷凍機が奪う熱エネルギー量)が得られない。
即ち標準構成の環境試験装置100に搭載されている冷却手段106の圧縮機101は、常温状態の試験室3の温度を所定時間以内に設定温度(例えば摂氏マイナス40度程度)に降下させ、且つ多少の外乱があっても、試験室3の温度をその温度に維持することができるたけの容量をもっているが、改良型環境試験装置200に搭載されている圧縮機101は、従来のものに比べて容量が小さい。
そのため蒸発器107の表面温度を極低温の設定温度よりも下げて運転すると、必要な冷凍出力(冷凍機が奪う熱エネルギー量)が得られず、試験室3の温度を設定温度に低下させるのに過度の時間が掛かる。
即ち改良型環境試験装置200の試験室3の常温状態から対応温度範囲の下限に至るまでの試験室3内の温度と時間との関係を示す曲線(温度低下曲線)は、従来(標準構成)の環境試験装置100に比べて緩慢となる。
Here, even in the improved environmental testing apparatus 200, the surface temperature of the evaporator 107 can be lowered below the set temperature if the opening degree of the expansion valve 103 is narrowed as compared with the conventional (standard configuration).
However, since the compressor 101 mounted in the improved environmental testing apparatus 200 is originally smaller in rated output than the standard configuration, if the surface temperature of the evaporator 107 is operated lower than the set temperature, the required refrigeration output (The amount of heat energy that the refrigerator takes away) can not be obtained.
That is, the compressor 101 of the cooling means 106 mounted in the environmental testing apparatus 100 of the standard configuration lowers the temperature of the test chamber 3 in the normal temperature state to a set temperature (for example, about -40 degrees Celsius) within a predetermined time, The compressor 101 mounted on the improved environmental testing apparatus 200 has a capacity sufficient to maintain the temperature of the test room 3 at that temperature even if there is a slight disturbance, compared to the conventional one. Capacity is small.
Therefore, if the surface temperature of the evaporator 107 is operated lower than the set temperature of cryogenic temperature, the required refrigeration output (the amount of heat energy which the refrigerator takes away) can not be obtained, and the temperature of the test room 3 is lowered to the set temperature. Takes an excessive amount of time.
That is, the curve (temperature drop curve) showing the relationship between the temperature in the test chamber 3 and the time from the normal temperature state of the test chamber 3 of the improved environmental test apparatus 200 to the lower limit of the corresponding temperature range is a conventional (standard configuration) In comparison with the environmental test apparatus 100 of

そこで本発明は、前記した改良型環境試験装置200をさらに発展させ、消費電力が従来に比べて少なく、且つ試験室3の温度が、従来と同様の温度低下曲線を描いて所望の低温に達することが可能な環境試験装置の開発を課題とする。   Therefore, the present invention further develops the above-described improved environmental test apparatus 200, consumes less power than in the conventional case, and the temperature of the test room 3 reaches a desired low temperature by drawing the same temperature drop curve as the conventional. The task is to develop an environmental test device that can

上記した課題を解決するための請求項1に記載の発明は、被試験物を配置する試験室と、冷却手段を有し、前記冷却手段は、主冷凍回路と、補助冷凍回路を有し、前記主冷凍回路及び前記補助冷凍回路は、いずれも圧縮機と、凝縮器と、膨張手段と、庫内蒸発器を有していて相変化する冷媒が循環するものであり、前記主冷凍回路及び前記補助冷凍回路の前記庫内蒸発器は、前記試験室内または前記試験室に通じる位置に設けられており、前記補助冷凍回路から分岐され、前記主冷凍回路の凝縮器から膨張手段に至るまでの間を通過する冷媒を冷却する冷媒冷却回路と、当該冷媒冷却回路に流れる冷媒を断続及び/又は流量制御する冷媒制御手段を有し、前記主冷凍回路及び/又は前記補助冷凍回路に冷媒を循環させて前記試験室内の温度を制御する通常運転と、前記主冷凍回路に冷媒を循環させると共に前記冷媒冷却回路に冷媒を通過させる過冷却運転を行うことが可能であり、一定の条件に基づいて前記冷媒制御手段を動作させ、前記通常運転と過冷却運転を切り替える切り替え制御手段を有し、前記試験室の温度が一定温度以下になった場合及び/又は前記試験室の温度と前記主冷凍回路に属する庫内蒸発器の表面温度の差が一定以下となった場合に、過冷却運転が行われることを特徴とする環境試験装置である。   The invention according to claim 1 for solving the above-mentioned problems has a test chamber in which an object to be tested is placed, and a cooling means, and the cooling means has a main refrigeration circuit and an auxiliary refrigeration circuit. Each of the main refrigeration circuit and the auxiliary refrigeration circuit includes a compressor, a condenser, an expansion means, and an in-compartment evaporator, through which a phase-changing refrigerant circulates, and the main refrigeration circuit and The in-compartment evaporator of the auxiliary refrigeration circuit is provided at the test chamber or at a position communicating with the test chamber, branched from the auxiliary refrigeration circuit, and extending from the condenser of the main refrigeration circuit to the expansion means A refrigerant cooling circuit for cooling the refrigerant passing between the refrigerant and the refrigerant control means for intermittently and / or controlling the flow of the refrigerant flowing in the refrigerant cooling circuit, and circulating the refrigerant to the main refrigeration circuit and / or the auxiliary refrigeration circuit Let the temperature in the test room It is possible to perform a normal operation to control and a supercooling operation to circulate the refrigerant to the main refrigeration circuit and pass the refrigerant to the refrigerant cooling circuit, and operate the refrigerant control means based on certain conditions; It has switching control means for switching between the normal operation and the subcooling operation, and the temperature of the test chamber becomes lower than a predetermined temperature and / or the temperature of the test chamber and the surface of the in-house evaporator belonging to the main refrigeration circuit A subcooling operation is performed when the temperature difference becomes lower than or equal to a certain value.

冷媒制御手段は、冷媒冷却回路に流れる冷媒を完全に遮断することができるものであることが望ましいが、必ずしも冷媒を完全に遮断することができるものである必要はない。冷媒冷却回路に流れる冷媒を完全に遮断することができない場合、通常運転の際には、冷媒冷却回路に導入される冷媒を少量とし、実質的に主冷凍回路を流れる冷媒の過冷却に実質的に寄与させないようにすればよい。
本発明の環境試験装置では、冷却手段として主冷凍回路と補助冷凍回路を有している。そして主冷凍回路及び補助冷凍回路の庫内蒸発器は、試験室内または試験室に通じる位置に設けられている。そのため本発明の環境試験装置では、主冷凍回路及び補助冷凍回路の庫内蒸発器の双方によって試験室内の温度等を調整することができる。
また本発明の環境試験装置では、補助冷凍回路から分岐され、主冷凍回路の凝縮器から膨張手段に至るまでの間を通過する冷媒を冷却する冷媒冷却回路を備えている。そのため本発明の環境試験装置では、主冷凍回路の冷媒を補助冷凍回路で冷却することができる。即ち本発明の環境試験装置では、主冷凍回路を流れる冷媒をより冷却し、過冷却状態として膨張手段に送り出すことができる。
本発明の環境試験装置では、凝縮器で放熱し、飽和液状態になった液体冷媒が、補助冷凍回路の低温冷媒で冷却されて過冷却状態になる。即ち飽和凝縮液が顕熱(相変化を伴わずに温度を変化させるのに要する熱エネルギー)を奪われて過冷却液となり、冷媒のエンタルピーが小さくなる。その過冷却された液体冷媒を膨張弁で断熱膨張させると、蒸発温度が仮に同じであってもエンタルピーが小さい状態で蒸発が開始される。
この様に本発明の環境試験装置においては、冷媒の過冷却状態が進んでいてエンタルピーが従来よりも小さい。本発明の環境試験装置においては、冷媒のエンタルピーは、飽和凝縮液のエンタルピーよりも小さく、このエンタルピーの差が従来に対する冷凍出力の増加量となる。
また蒸発器内部の冷媒の状態については、冷媒が過冷却状態で膨張手段に入った場合の方が、同じ蒸発温度でも、過冷却をしないで冷媒を膨張させた場合より、液の割合が多い。そのため冷凍能力が増加するとも言える。
本発明の環境試験装置では、凝縮器を出た直後の温度が例えば摂氏プラス30度の液冷媒を、さらに冷却して過冷却状態とし、例えば摂氏20度にする。この時の過冷却処理が成された際の熱移動が顕熱で奪われた熱量である。冷媒が膨張手段で摂氏マイナス40度に断熱膨張された時の冷凍能力は、摂氏30度の飽和液が摂氏マイナス40度に断熱膨張された時の冷凍能力より、過冷却された分だけ大きくなる。
また本発明の環境試験装置は、主冷凍回路等に冷媒を循環させて試験室内の温度を制御する通常運転と、主冷凍回路を流れる冷媒を過冷却状態として膨張手段に送り出す過冷却運転を、一定の条件に基づいて切り替える。そのため試験室の温度が、従来と同様の温度低下曲線を描いて所望の低温に達することができる。
また通常運転は、従来よりも容量の小さい圧縮機を使用して行うことができるので、消費電力は従来に比べて少ない。また過冷却運転で運転されている際においても、従来に比べて消費電力は少ないものとなる。
また、本発明の環境試験装置は、試験室内の温度が従来と同様の温度低下曲線を描いて低下し、所望の低温に達する。
The refrigerant control means is desirably capable of completely interrupting the refrigerant flowing to the refrigerant cooling circuit, but is not necessarily capable of completely interrupting the refrigerant. When the refrigerant flowing into the refrigerant cooling circuit can not be completely shut off, during normal operation, a small amount of refrigerant introduced into the refrigerant cooling circuit substantially reduces the amount of refrigerant substantially flowing through the main refrigeration circuit. If you do not want to contribute to
The environmental test apparatus of the present invention has a main refrigeration circuit and an auxiliary refrigeration circuit as cooling means. And the storage evaporator of the main refrigeration circuit and the auxiliary refrigeration circuit is provided at a position communicating with the test chamber or the test chamber. Therefore, in the environmental test apparatus of the present invention, the temperature and the like in the test chamber can be adjusted by both the main refrigeration circuit and the in-storage evaporator of the auxiliary refrigeration circuit.
Further, the environmental test apparatus of the present invention is provided with a refrigerant cooling circuit which cools the refrigerant branched from the auxiliary refrigeration circuit and passing from the condenser of the main refrigeration circuit to the expansion means. Therefore, in the environmental test device of the present invention, the refrigerant of the main refrigeration circuit can be cooled by the auxiliary refrigeration circuit. That is, in the environmental test apparatus of the present invention, the refrigerant flowing through the main refrigeration circuit can be cooled further and sent out to the expansion means in a subcooled state.
In the environmental test apparatus of the present invention, the liquid refrigerant that has dissipated heat in the condenser and is in a saturated liquid state is cooled by the low temperature refrigerant of the auxiliary refrigeration circuit to be in a subcooled state. That is, the saturated condensate is deprived of sensible heat (heat energy required to change the temperature without phase change) to form a supercooled liquid, which reduces the enthalpy of the refrigerant. When the subcooled liquid refrigerant is adiabatically expanded by the expansion valve, evaporation starts with a small enthalpy even if the evaporation temperature is the same.
As described above, in the environmental test apparatus of the present invention, the subcooling state of the refrigerant is progressing, and the enthalpy is smaller than that of the prior art. In the environmental test apparatus of the present invention, the enthalpy of the refrigerant is smaller than the enthalpy of the saturated condensate, and the difference between the enthalpies is the increase of the refrigeration output relative to the conventional one.
With regard to the state of the refrigerant inside the evaporator, the proportion of the liquid is higher in the case where the refrigerant enters the expansion means in the subcooled state than in the case where the refrigerant is expanded without subcooling even at the same evaporation temperature. . Therefore, it can be said that the refrigeration capacity is increased.
In the environmental test apparatus of the present invention, the liquid refrigerant having a temperature of, for example, + 30 ° C. immediately after leaving the condenser is further cooled to a subcooled state, for example, 20 ° C. The heat transfer at the time of the supercooling treatment at this time is the amount of heat removed by sensible heat. The refrigeration capacity when the refrigerant is adiabatically expanded to -40 degrees Celsius by the expansion means is larger than the refrigeration capacity when the saturated liquid of 30 degrees Celsius is adiabatically expanded to -40 degrees Celsius by the amount of supercooling .
Further, the environmental test apparatus of the present invention includes a normal operation of controlling the temperature in the test chamber by circulating the refrigerant in the main refrigeration circuit etc., and a supercooling operation of delivering the refrigerant flowing in the main refrigeration circuit to the expansion means as a supercooling state. Switch based on certain conditions. As a result, the temperature of the test chamber can reach a desired low temperature by drawing a conventional temperature drop curve.
In addition, since the normal operation can be performed using a compressor having a smaller capacity than the conventional one, the power consumption is smaller than that of the conventional one. In addition, even when operating in the subcooling operation, power consumption is reduced compared to the prior art.
Further, in the environmental test apparatus of the present invention, the temperature in the test chamber decreases in the same manner as in the conventional temperature decrease curve, and the desired low temperature is reached.

同様の課題を解決するための請求項2に記載の発明は、被試験物を配置する試験室と、冷却手段を有し、前記冷却手段は、主冷凍回路と、補助冷凍回路を有し、前記主冷凍回路は、圧縮機と、凝縮器と、膨張手段と、庫内蒸発器を有していて相変化する冷媒が循環するものであり、前記主冷凍回路の前記庫内蒸発器は、前記試験室内または前記試験室に通じる位置に設けられており、前記主冷凍回路の凝縮器から膨張手段に至るまでの間を通過する冷媒を冷却するものであって、前記補助冷凍回路の一部又は前記補助冷凍回路から分岐された回路によって構成された冷媒冷却回路を有し、当該冷媒冷却回路に流れる冷媒を断続及び/又は流量制御する冷媒制御手段を有し、前記主冷凍回路に冷媒を循環させて前記試験室内の温度を制御する通常運転と、前記主冷凍回路に冷媒を循環させると共に前記冷媒冷却回路に冷媒を通過させる過冷却運転を行うことが可能であり、一定の条件に基づいて前記冷媒制御手段を動作させ、前記通常運転と過冷却運転を切り替える切り替え制御手段を有し、前記試験室の温度が一定温度以下になった場合及び/又は前記試験室の温度と前記主冷凍回路に属する庫内蒸発器の表面温度の差が一定以下となった場合に、過冷却運転が行われることを特徴とする環境試験装置である。   In order to solve the same problem, the invention according to claim 2 has a test chamber in which an object to be tested is placed, and cooling means, and the cooling means has a main refrigeration circuit and an auxiliary refrigeration circuit. The main refrigeration circuit includes a compressor, a condenser, an expansion means, and an in-compartment evaporator to circulate a phase-changing refrigerant, and the in-compartment evaporator of the main refrigeration circuit is: The test chamber or a position communicating with the test chamber, for cooling the refrigerant passing from the condenser of the main refrigeration circuit to the expansion means, which is a part of the auxiliary refrigeration circuit Or a refrigerant control circuit constituted by a circuit branched from the auxiliary refrigeration circuit, for controlling or interrupting the flow of the refrigerant flowing in the refrigerant cooling circuit, and / or controlling the flow rate of the refrigerant; It is circulated to control the temperature in the test chamber. It is possible to perform an operation and perform a supercooling operation to circulate the refrigerant to the main refrigeration circuit and pass the refrigerant to the refrigerant cooling circuit, operate the refrigerant control means based on certain conditions, and perform the normal operation And switching control means for switching between the subcooling operation and the difference between the temperature of the test chamber and the surface temperature of the in-house evaporator belonging to the main refrigeration circuit when the temperature of the test chamber becomes lower than a predetermined temperature Is an environmental test device characterized in that a subcooling operation is performed when

請求項3に記載の発明は、前記補助冷凍回路に属する圧縮機の容量は、前記主冷凍回路に属する圧縮機の容量よりも小さいことを特徴とする請求項1又は2に記載の環境試験装置である。   The invention according to claim 3 is the environmental test device according to claim 1 or 2, wherein the capacity of the compressor belonging to the auxiliary refrigeration circuit is smaller than the capacity of the compressor belonging to the main refrigeration circuit. It is.

補助冷凍回路の主たる用途は、冷媒冷却回路に冷媒を送り出すことであり、主冷凍回路を流れる冷媒を冷却することである。そのため補助冷凍回路に属する圧縮機の容量は、主冷凍回路に属する圧縮機の容量より小さいもので足る。   The main application of the auxiliary refrigeration circuit is to deliver the refrigerant to the refrigerant cooling circuit and to cool the refrigerant flowing through the main refrigeration circuit. Therefore, the capacity of the compressor belonging to the auxiliary refrigeration circuit may be smaller than the capacity of the compressor belonging to the main refrigeration circuit.

請求項4に記載の発明は、前記主冷凍回路は、冷媒の蒸発温度を調節可能であり、前記試験室の温度低下に応じて蒸発温度を低下させ、前記試験室の温度が一定温度以下となったことを条件として通常運転から過冷却運転へ切り替えられることを特徴とする請求項1乃至3のいずれかに記載の環境試験装置である。   In the invention according to claim 4, the main refrigeration circuit is capable of adjusting the evaporation temperature of the refrigerant, and the evaporation temperature is decreased according to the temperature decrease of the test chamber, and the temperature of the test chamber is equal to or lower than a predetermined temperature. The environmental test device according to any one of claims 1 to 3, characterized in that the normal operation is switched to the subcooling operation on condition that it becomes the condition.

本発明の環境試験装置は、試験室内の温度が従来と同様の温度低下曲線を描いて低下し、所望の低温に達する。   In the environmental test apparatus of the present invention, the temperature in the test chamber is lowered in the same manner as in the conventional temperature drop curve, and the desired low temperature is reached.

請求項5に記載の発明は、前記補助冷凍回路は、圧縮機と、凝縮器と、膨張手段と、庫内蒸発器を有していて相変化する冷媒が循環するものであり、前記試験室内の温度が一定の中温以上であり、前記試験室の設定温度が一定の低温以下である場合には、前記主冷凍回路と前記補助冷凍回路を駆動して前記主冷凍回路及び前記補助冷凍回路の庫内蒸発器に冷媒を通過させる急冷運転を実行し、前記試験室内の温度低下に応じて前記双方の庫内蒸発器内における蒸発温度を低下させ、その後に前記補助冷凍回路の庫内蒸発器に対する冷媒の供給を停止して過冷却運転に切り替え、前記試験室内の温度が設定温度に達すると前記主冷凍回路だけで通常運転を行うことを特徴とする請求項1乃至4のいずれかに記載の環境試験装置である。   In the invention according to claim 5, the auxiliary refrigeration circuit includes a compressor, a condenser, an expansion means, and an in-compartment evaporator, and a phase-changing refrigerant circulates, and the test chamber The main refrigeration circuit and the auxiliary refrigeration circuit are driven to drive the main refrigeration circuit and the auxiliary refrigeration circuit when the temperature of the test room is above a certain medium temperature and the set temperature of the test room is below a certain low temperature. The quenching operation is performed to pass the refrigerant to the in-compartment evaporator, and the evaporation temperature in both of the in-compartment evaporators is lowered according to the temperature drop in the test chamber, and thereafter the in-compartment evaporator of the auxiliary refrigeration circuit 5. The system according to any one of claims 1 to 4, wherein the supply of the refrigerant to the engine is stopped and the operation is switched to the subcooling operation, and the normal operation is performed only by the main refrigeration circuit when the temperature in the test chamber reaches the set temperature. Environmental testing equipment.

ここで「中温度」とは常温近傍またはそれよりもやや低い温度であり、過冷却運転を行わなくても、試験室内の温度と蒸発器の表面温度との間に相当の温度差を生じさせることができる程度の温度である。
本発明の環境試験装置では、試験開始前の試験室内の温度が一定の中温度以上である場合には、主冷凍回路と補助冷凍回路を駆動して急冷運転を行い、試験室内の温度を短時間の内に低下させることができる。
また本発明の環境試験装置では、試験室内の温度低下に応じて前記双方の庫内蒸発器内における蒸発温度を低下させるので、試験室内の温度が低下していっても、庫内蒸発器の表面温度をそれ以下に維持することができる。
Here, the "medium temperature" is a temperature near or slightly lower than the normal temperature, and causes a considerable temperature difference between the temperature in the test chamber and the surface temperature of the evaporator even without performing the subcooling operation. It is the temperature that can be done.
In the environmental test apparatus of the present invention, when the temperature in the test chamber before the start of the test is equal to or higher than a certain middle temperature, the main refrigeration circuit and the auxiliary refrigeration circuit are driven to perform the quenching operation to shorten the temperature in the test chamber. It can be lowered in time.
Further, in the environmental test apparatus of the present invention, the evaporation temperature in both the storage evaporators is lowered according to the temperature drop in the test chamber, so even if the temperature in the test chamber is lowered, The surface temperature can be maintained below that.

請求項6に記載の発明は、前記補助冷凍回路は、凝縮器から出た冷媒を圧縮機に戻すバイパス回路を有し、バイパス回路において前記補助冷凍回路の凝縮器から出た冷媒が前記補助冷凍回路の圧縮機から出た冷媒と熱交換され、過熱ガスとなって当該圧縮機に戻されることを特徴とする請求項1乃至5のいずれかに記載の環境試験装置である。   In the invention according to claim 6, the auxiliary refrigeration circuit has a bypass circuit for returning the refrigerant discharged from the condenser to the compressor, and the refrigerant discharged from the condenser of the auxiliary refrigeration circuit in the bypass circuit is the auxiliary refrigeration The environmental test apparatus according to any one of claims 1 to 5, wherein the environmental test device is heat-exchanged with the refrigerant that has exited from the compressor of the circuit and is returned to the compressor as a superheated gas.

過冷却運転から通常運転に切り替える際には、徐々に主冷凍回路を冷却する補助冷凍回路の冷媒量を減らすため、補助冷凍回路にバイパス回路を設けることが望ましい。これにより主冷凍回路の冷凍能力を連続的に可変することができる。   When switching from the supercooling operation to the normal operation, it is desirable to provide a bypass circuit in the auxiliary refrigeration circuit in order to reduce the amount of refrigerant in the auxiliary refrigeration circuit that gradually cools the main refrigeration circuit. Thereby, the refrigeration capacity of the main refrigeration circuit can be varied continuously.

請求項7に記載の発明は、前記主冷凍回路は、当該主冷凍回路の凝縮器から出た冷媒を当該主冷凍回路の圧縮機に戻すバイパス回路を有し、当該バイパス回路において前記主冷凍回路の凝縮器から出た冷媒が前記主冷凍回路の圧縮機から出た冷媒と熱交換され、過熱ガスとなって当該圧縮機に戻されることを特徴とする請求項1乃至6のいずれかに記載の環境試験装置である。   The invention described in claim 7 is that the main refrigeration circuit has a bypass circuit that returns the refrigerant coming from the condenser of the main refrigeration circuit to the compressor of the main refrigeration circuit, and the main refrigeration circuit in the bypass circuit The refrigerant according to any one of claims 1 to 6, wherein the refrigerant coming out of the condenser is heat-exchanged with the refrigerant coming out of the compressor of the main refrigeration circuit, and is returned to the compressor as a superheated gas. Environmental testing equipment.

本発明では、主冷凍回路にバイパス回路が設けられているから、蒸発器に流れる冷媒をより少なくすることができる。
バイパス回路の容量は、圧縮機から出た冷媒を全量通過させて圧縮機に戻すことができるものであることが望ましい。即ち蒸発器に流れる冷媒を止めても、圧縮機を止めずに主冷凍回路を運転することが可能であることが望ましい。
またバイパス回路には、膨張弁等の流量調節手段があることが望ましい。バイパス回路に膨張弁等の流量調節手段を設けることにより、蒸発器を迂回する冷媒量を任意に調節することができ、結果的に蒸発器に流れる冷媒を調整することができる。
In the present invention, since the main refrigeration circuit is provided with the bypass circuit, the amount of refrigerant flowing to the evaporator can be reduced.
The capacity of the bypass circuit is preferably such that the entire amount of refrigerant coming out of the compressor can pass through and be returned to the compressor. That is, it is desirable that the main refrigeration circuit can be operated without stopping the compressor even if the refrigerant flowing to the evaporator is stopped.
Further, it is desirable that the bypass circuit has a flow rate adjusting means such as an expansion valve. By providing flow control means such as an expansion valve in the bypass circuit, the amount of refrigerant bypassing the evaporator can be arbitrarily adjusted, and as a result, the refrigerant flowing to the evaporator can be adjusted.

請求項8に記載の発明は、通常運転から過冷却運転に移行する切り替え手段及び/又は過冷却運転から通常運転に移行する切り替え手段を有することを特徴とする請求項1乃至7のいずれかに記載の環境試験装置である。   The invention according to claim 8 has switching means for shifting from normal operation to supercooling operation and / or switching means for shifting from supercooling operation to normal operation. It is an environmental test apparatus as described.

本発明によると環境試験装置を停止することなく運転方法を切り替えることができ、試験室内の温度を円滑に制御することができる。   According to the present invention, the operation method can be switched without stopping the environmental test apparatus, and the temperature in the test chamber can be controlled smoothly.

請求項9に記載の発明は、前記試験室の設定温度を設定することが可能であり、設定温度及び/又は前記試験室の現状の温度に応じて通常運転と過冷却運転が切り替わることを特徴とする請求項1乃至8のいずれかに記載の環境試験装置である。   The invention according to claim 9 is characterized in that the set temperature of the test chamber can be set, and the normal operation and the supercooling operation are switched according to the set temperature and / or the current temperature of the test chamber. The environmental test apparatus according to any one of claims 1 to 8, wherein

本発明によると運転方法を自動的に選択することができる。   According to the invention, the method of operation can be selected automatically.

請求項10に記載の発明は、前記補助冷凍回路の運転を停止することが可能であることを特徴とする請求項1乃至9のいずれかに記載の環境試験装置である。   The invention according to claim 10 is the environmental test apparatus according to any one of claims 1 to 9, characterized in that the operation of the auxiliary refrigeration circuit can be stopped.

本発明によると運転方法を変更することができる。   According to the invention, the method of operation can be changed.

本発明の環境試験装置は、消費電力が従来に比べて少ない。また本発明の環境試験装置では、試験室の温度が従来と同様の温度低下曲線を描いて所望の低温に達することができる。   The environmental test apparatus of the present invention consumes less power than before. Also, in the environmental testing device of the present invention, the temperature of the test room can reach a desired low temperature by drawing a temperature drop curve similar to the conventional one.

本発明の実施形態の環境試験装置の構成図である。It is a block diagram of the environmental test apparatus of embodiment of this invention. 図1の環境試験装置の構成図であって、中冷運転(通常運転)を実施する際の冷媒の流れを示す。It is a block diagram of the environmental test apparatus of FIG. 1, Comprising: The flow of a refrigerant | coolant at the time of implementing middle cooling operation (normal operation) is shown. 図1の環境試験装置の構成図であって、緩冷運転(通常運転)を実施する際の冷媒の流れを示す。It is a block diagram of the environmental test apparatus of FIG. 1, Comprising: The flow of a refrigerant | coolant at the time of implementing a slow cooling operation (normal operation) is shown. 図1の環境試験装置の構成図であって、急冷運転(通常運転)を実施する際の冷媒の流れを示す。It is a block diagram of the environmental test apparatus of FIG. 1, Comprising: The flow of a refrigerant | coolant at the time of implementing quenching operation (normal operation) is shown. 図1の環境試験装置の構成図であって、過冷却運転を実施する際の冷媒の流れを示す。It is a block diagram of the environmental test apparatus of FIG. 1, Comprising: The flow of the refrigerant | coolant at the time of implementing a subcooling operation is shown. 運転方法の切り替え状況の一例を示すフローチャ−トである。It is a flow chart which shows an example of the change situation of a driving method. 本発明のさらに他の実施形態の環境試験装置の構成図である。It is a block diagram of the environmental test apparatus of other embodiment of this invention. 本発明のさらに他の実施形態の環境試験装置の構成図である。It is a block diagram of the environmental test apparatus of other embodiment of this invention. 本発明のさらに他の実施形態で採用する膨張手段の構成図である。It is a block diagram of the expansion means employ | adopted by the further another embodiment of this invention. 比較例1(標準構成)の環境試験装置の常温状態から対応温度範囲の下限に至るまでの試験室内の温度と時間との関係(温度低下曲線)を示すグラフである。It is a graph which shows the relationship (temperature fall curve) between the temperature in a test chamber from the normal temperature state of the environmental test apparatus of Comparative example 1 (standard composition) to the lower limit of a corresponding temperature range (temperature fall curve). 比較例2(改良型環境試験装置)の常温状態から対応温度範囲の下限に至るまでの試験室内の温度と時間との関係(温度低下曲線)を示すグラフである。It is a graph which shows the relationship (temperature fall curve) of the temperature in a test chamber and time to the lower limit of a corresponding temperature range from the normal temperature state of comparative example 2 (improved type environmental testing apparatus). 本発明の実施例の環境試験装置の常温状態から対応温度範囲の下限に至るまでの試験室内の温度と時間との関係(温度低下曲線)を示すグラフである。It is a graph which shows the relationship (temperature fall curve) between the temperature in a test chamber from the normal temperature state of the environmental test apparatus of the Example of this invention to the lower limit of a corresponding temperature range, and time. 従来技術及び改良型環境試験装置の構成図である。It is a block diagram of a prior art and an improved environmental test apparatus.

以下さらに本発明の実施形態について説明する。なお従来技術(標準構成)の環境試験装置100と同一の部材については、同一の番号を付して重複した説明を省略する。
本発明の実施形態の環境試験装置1の機械的構成は、冷却手段30の構造を除いて従来技術の環境試験装置100と同一である。
即ち環境試験装置1は図1の様に、試験室3、冷却手段30、加熱ヒータ6、加湿装置7及び送風機8を備えている。試験室3は、断熱材2によって覆われた空間である。そして試験室3と連通する空気流路10があり、当該空気流路10に前記した冷却手段30の2基の庫内蒸発器38,48と、加熱ヒータ6、加湿装置7及び送風機8が設けられている。加湿装置7は、加湿ヒータ25と水皿26が組み合わされたものであり、水皿26内の水を加湿ヒータ25で加熱して蒸発させる。
また、空気流路10の出口側に、温度センサー12と湿度センサー13が設けられている。環境試験装置1では、前記した空気流路10内の部材と、温度センサー12及び湿度センサー13によって空気調和装置15が構成されている。
Hereinafter, embodiments of the present invention will be further described. In addition, about the member same as the environmental test apparatus 100 of a prior art (standard structure), the same number is attached | subjected and the duplicate description is abbreviate | omitted.
The mechanical configuration of the environmental test apparatus 1 according to the embodiment of the present invention is the same as the environmental test apparatus 100 according to the prior art except for the structure of the cooling means 30.
That is, as shown in FIG. 1, the environmental test apparatus 1 includes a test chamber 3, a cooling unit 30, a heater 6, a humidifier 7 and a blower 8. The test room 3 is a space covered by the heat insulating material 2. There is an air flow passage 10 communicating with the test chamber 3, and the air flow passage 10 is provided with the two internal evaporators 38 and 48 of the cooling means 30 described above, the heater 6, the humidifier 7 and the blower 8. It is done. The humidifying device 7 is a combination of the humidifying heater 25 and the water tray 26, and heats and evaporates the water in the water tray 26 by the humidifying heater 25.
Further, a temperature sensor 12 and a humidity sensor 13 are provided on the outlet side of the air flow path 10. In the environmental test apparatus 1, an air conditioner 15 is configured by the members in the air flow path 10 described above, the temperature sensor 12 and the humidity sensor 13.

冷却手段30は、本実施形態の特徴的構成であり、詳細に説明する。本実施形態で採用する冷却手段30は、2系統の冷凍回路31,32を有している。その内の一方の冷凍回路31は、主冷凍回路31である。また他方は補助冷凍回路32である。
主冷凍回路31は、図2の太線で描かれた回路である。主冷凍回路31は、公知のそれと同様に、圧縮機35と、凝縮器36と、膨張手段37及び蒸発器38が配管で環状に接続されて循環回路を構成し、その内部に相変化する冷媒が封入されたものである。
以下、主冷凍回路31側の機器を補助冷凍回路32側の機器と区別するため、主冷凍回路31の構成部材を主側圧縮機35、主側凝縮器36、主側膨張手段37及び主側庫内蒸発器38と称する。
また本実施形態では、主冷凍回路31上に、戻り冷媒加熱用熱交換器63の一次側流路と、過冷却用熱交換器50の二次側流路がある。従って本実施形態では、主冷凍回路31は、主側圧縮機35から、戻り冷媒加熱用熱交換器63の一次側流路、主側凝縮器36、過冷却用熱交換器50の二次側流路、主側膨張手段37及び主側庫内蒸発器38を巡って主側圧縮機35に戻る環状流路である。
The cooling means 30 is a characteristic configuration of the present embodiment and will be described in detail. The cooling means 30 employed in the present embodiment has two systems of refrigeration circuits 31 and 32. One of the refrigeration circuits 31 is the main refrigeration circuit 31. The other is an auxiliary refrigeration circuit 32.
The main refrigeration circuit 31 is a circuit drawn by thick lines in FIG. The main refrigeration circuit 31 has a compressor 35, a condenser 36, an expansion means 37 and an evaporator 38 annularly connected by piping to form a circulation circuit, similarly to known ones, and forms a circulation circuit inside which a phase change occurs Is enclosed.
Hereinafter, in order to distinguish the equipment on the main refrigeration circuit 31 side from the equipment on the auxiliary refrigeration circuit 32 side, the constituent members of the main refrigeration circuit 31 are the main compressor 35, the main condenser 36, the main expansion means 37 and the main side It is called an in-compartment evaporator 38.
Further, in the present embodiment, on the main refrigeration circuit 31, there are the primary side flow path of the return refrigerant heating heat exchanger 63 and the secondary side flow path of the supercooling heat exchanger 50. Therefore, in the present embodiment, the main refrigeration circuit 31 is connected from the main compressor 35 to the primary flow path of the return refrigerant heating heat exchanger 63, the main condenser 36, and the secondary side of the supercooling heat exchanger 50. It is an annular flow path that returns to the main compressor 35 around the flow path, the main expansion means 37 and the main storage evaporator 38.

一方、補助冷凍回路32は、図3の太線で描かれた回路である。補助冷凍回路32も公知のそれと同様に、圧縮機45と、凝縮器46と、膨張手段47及び蒸発器48及び逆止弁49が配管で環状に接続されて循環回路を構成し、その内部に相変化する冷媒が封入されたものである。
以下、補助冷凍回路32側の機器を主冷凍回路31側の機器と区別するため、補助冷凍回路32の構成部材を補助側圧縮機45、補助側凝縮器46と、補助側膨張手段47及び補助側庫内蒸発器48と称する。
また本実施形態では、補助冷凍回路32上に、戻り冷媒加熱用熱交換器65の一次側流路が介在されている。
従って本実施形態では、補助冷凍回路32は、補助側圧縮機45から、戻り冷媒加熱用熱交換器65の一次側流路、補助側凝縮器46、補助側膨張手段47、補助側庫内蒸発器48、逆止弁49を巡って補助側圧縮機45に戻る環状流路である。
On the other hand, the auxiliary refrigeration circuit 32 is a circuit drawn by thick lines in FIG. The auxiliary refrigeration circuit 32 also has a compressor 45, a condenser 46, an expansion means 47, an evaporator 48, and a check valve 49, which are annularly connected by piping to form a circulation circuit, similarly to known ones. A phase change refrigerant is sealed.
Hereinafter, in order to distinguish the apparatus on the auxiliary refrigeration circuit 32 side from the apparatus on the main refrigeration circuit 31 side, the constituent members of the auxiliary refrigeration circuit 32 are the auxiliary compressor 45, the auxiliary condenser 46, the auxiliary expansion means 47 and the auxiliary It is called an in-compartment evaporator 48.
Further, in the present embodiment, on the auxiliary refrigeration circuit 32, the primary side flow passage of the return refrigerant heating heat exchanger 65 is interposed.
Therefore, in the present embodiment, the auxiliary refrigeration circuit 32 includes the primary side flow passage of the heat exchanger 65 for heating the return refrigerant, the auxiliary side condenser 46, the auxiliary side expansion means 47, and the auxiliary side internal evaporation from the auxiliary compressor 45. It is an annular channel that returns to the auxiliary compressor 45 around the vessel 48 and the check valve 49.

主冷凍回路31内の冷媒と、補助冷凍回路32内の冷媒が入れ混じることはないが、主冷凍回路31と補助冷凍回路32の間は、過冷却用熱交換器50を介して熱的に連係されている。以下、説明する。
本実施形態では、主冷凍回路31上に、過冷却用熱交換器50が設けられている。過冷却用熱交換器50の取り付け位置は、主冷凍回路31上であって、主側凝縮器36と主側膨張手段37の間である。
本実施形態では、過冷却用熱交換器50の二次側流路が主冷凍回路31に接続されており、主側凝縮器36を通過して液化した冷媒が、過冷却用熱交換器50の二次側流路を通過して主側膨張手段37に至る。
Although the refrigerant in the main refrigeration circuit 31 and the refrigerant in the auxiliary refrigeration circuit 32 are not mixed, the space between the main refrigeration circuit 31 and the auxiliary refrigeration circuit 32 is thermally coupled via the supercooling heat exchanger 50. It is coordinated. This will be described below.
In the present embodiment, the subcooling heat exchanger 50 is provided on the main refrigeration circuit 31. The mounting position of the supercooling heat exchanger 50 is on the main refrigeration circuit 31 and between the main condenser 36 and the main expansion means 37.
In the present embodiment, the secondary side flow passage of the subcooling heat exchanger 50 is connected to the main refrigeration circuit 31, and the refrigerant liquefied by passing through the main side condenser 36 is the supercooling heat exchanger 50. Leading to the main side expansion means 37 through the secondary side flow path.

また過冷却用熱交換器50の一次側流路は、比較的大きな空間があり、実質的に蒸発器としての機能を発揮する。
過冷却用熱交換器50の一次側流路は、補助冷凍回路32から分岐された冷媒冷却回路51の一部を構成している。
冷媒冷却回路51は、補助冷凍回路32の補助側凝縮器46と補助側膨張手段47の間から分岐され、補助側圧縮機45の吸入側に至る流路であり、その中途に、冷媒冷却用膨張手段52と前記した過冷却用熱交換器50の一次側流路が介在されている。
Further, the primary side flow passage of the subcooling heat exchanger 50 has a relatively large space, and substantially functions as an evaporator.
The primary side flow passage of the subcooling heat exchanger 50 constitutes a part of the refrigerant cooling circuit 51 branched from the auxiliary refrigeration circuit 32.
The refrigerant cooling circuit 51 is a flow passage branched from between the auxiliary condenser 46 and the auxiliary expansion means 47 of the auxiliary refrigeration circuit 32 and leading to the suction side of the auxiliary compressor 45. The expansion means 52 and the primary side flow path of the above-described heat exchanger for supercooling 50 are interposed.

また補助的回路として、主冷凍回路31側には主冷凍回路側バイパス回路60があり、補助冷凍回路32側には補助冷凍回路側バイパス回路61がある。
主冷凍回路側バイパス回路60は、主冷凍回路31の過冷却用熱交換器50と主側膨張手段37の間から分岐され、主側圧縮機35の吸入側に至る流路である。主冷凍回路側バイパス回路60の中途にバイパス用膨張手段53と戻り冷媒加熱用熱交換器63の二次側流路がある。
補助冷凍回路側バイパス回路61は、補助冷凍回路32の補助側凝縮器46と補助側膨張手段47の間から分岐され、補助側圧縮機45の吸入側に至る流路であり、その中途にバイパス用膨張手段66と戻り冷媒加熱用熱交換器65の二次側流路がある。
Further, as an auxiliary circuit, there is a main refrigeration circuit side bypass circuit 60 on the main refrigeration circuit 31 side, and an auxiliary refrigeration circuit side bypass circuit 61 on the auxiliary refrigeration circuit 32 side.
The main refrigeration circuit side bypass circuit 60 is a flow path branched from between the supercooling heat exchanger 50 of the main refrigeration circuit 31 and the main side expansion means 37 and leading to the suction side of the main side compressor 35. In the middle of the main refrigeration circuit side bypass circuit 60, there are secondary side flow paths of the bypass expansion means 53 and the return refrigerant heating heat exchanger 63.
The auxiliary refrigeration circuit side bypass circuit 61 is a flow path branched from between the auxiliary side condenser 46 and the auxiliary side expansion means 47 of the auxiliary refrigeration circuit 32 and leading to the suction side of the auxiliary side compressor 45 and bypassing in the middle thereof There are secondary side flow paths of the expansion means 66 and the heat exchanger 65 for heating the return refrigerant.

本実施形態では、冷却手段30の圧縮機(主側圧縮機35と補助側圧縮機45)はいずれも誘導モータで駆動されるものであり、回転数は一定であって変えることはできない。即ち本実施形態では、冷却手段30の圧縮機(主側圧縮機35と補助側圧縮機45)はいずれもインバータ制御機能を備えていない。
主側圧縮機35と補助側圧縮機45の容量は相違する。具体的には補助側圧縮機45の容量は主側圧縮機35の容量よりも小さい。
主側圧縮機35の容量と補助側圧縮機45の容量の割合は、目的の冷凍能力と省エネ効果のバランスで決められる。本実施形態では、補助側圧縮機45の容量は、主側圧縮機35の容量の20乃至35パーセントである。
In the present embodiment, the compressors of the cooling means 30 (the main compressor 35 and the auxiliary compressor 45) are all driven by the induction motor, and the number of rotations is constant and can not be changed. That is, in the present embodiment, none of the compressors of the cooling means 30 (the main compressor 35 and the auxiliary compressor 45) has an inverter control function.
The capacities of the main compressor 35 and the auxiliary compressor 45 are different. Specifically, the capacity of the auxiliary compressor 45 is smaller than the capacity of the main compressor 35.
The ratio between the capacity of the main compressor 35 and the capacity of the auxiliary compressor 45 is determined by the balance between the target refrigeration capacity and the energy saving effect. In the present embodiment, the capacity of the auxiliary compressor 45 is 20 to 35 percent of the capacity of the main compressor 35.

即ち補助側圧縮機45の容量は主側圧縮機35の容量の50パーセント以下であることが望ましく、より望ましくは35パーセント以下である。また補助側圧縮機45の容量は主側圧縮機35の容量の20パーセント以上であることが望ましい。
最も推奨される補助側圧縮機45の容量は、主側圧縮機35の容量の20乃至35パーセントである。
That is, the capacity of the auxiliary compressor 45 is desirably 50% or less of the capacity of the main compressor 35, and more desirably 35% or less. The capacity of the auxiliary compressor 45 is preferably at least 20 percent of the capacity of the main compressor 35.
The capacity of the auxiliary compressor 45 most recommended is 20 to 35 percent of the capacity of the main compressor 35.

補助冷凍回路32の主たる用途は、主冷凍回路31を流れる冷媒を過冷却状態とすることにあるから、補助側圧縮機45には大きな容量は必要でなく、且つ容量が大きいと省エネの目的に反することとなる。一方、過度に補助側圧縮機45の容量が小さいと、主冷凍回路31を流れる冷媒を十分に過冷却状態とすることができない。   Since the main application of the auxiliary refrigeration circuit 32 is to supercool the refrigerant flowing through the main refrigeration circuit 31, the auxiliary compressor 45 does not need a large capacity, and if the capacity is large, for the purpose of energy saving It will be against. On the other hand, when the capacity of the auxiliary compressor 45 is excessively small, the refrigerant flowing through the main refrigeration circuit 31 can not be sufficiently subcooled.

また主側圧縮機35の容量は、従来(標準構成)に比べて小さい。主側圧縮機35だけを使用すると、次のいずれかの事態が生じる可能性がある。
(1)主側圧縮機35だけを使用して試験室3を冷却すると、カタログに記載した温度適用範囲の最低温度に達しない。
(2)主側圧縮機35だけを使用して常温の試験室3を冷却すると、カタログに記載した温度適用範囲の最低温度に達するのに従来(標準構成)に比べて時間を要する。例えば90分以上を要する。
Further, the capacity of the main compressor 35 is smaller than that of the conventional (standard configuration). If only the main compressor 35 is used, one of the following situations may occur.
(1) When the test chamber 3 is cooled using only the main side compressor 35, the minimum temperature of the temperature range described in the catalog is not reached.
(2) When only the main side compressor 35 is used to cool the test room 3 at normal temperature, it takes more time to reach the lowest temperature of the temperature application range described in the catalog, as compared with the conventional (standard configuration). For example, it takes 90 minutes or more.

また本実施形態では、冷却手段30の膨張手段はいずれも電子膨張弁であり、開度を変化させることができる。冷却手段30の膨張手段はいずれも全閉状態とすることができる。即ち主側膨張手段37、補助側膨張手段47、冷媒冷却用膨張手段52、バイパス用膨張手段53、バイパス用膨張手段66はいずれも電子膨張弁であって開度を変化させることができ、且つ全閉状態とすることができる。   Further, in the present embodiment, the expansion means of the cooling means 30 are all electronic expansion valves, and the opening degree can be changed. Any expansion means of the cooling means 30 can be fully closed. That is, the main side expansion means 37, the auxiliary side expansion means 47, the refrigerant cooling expansion means 52, the bypass expansion means 53, and the bypass expansion means 66 are all electronic expansion valves and can change the degree of opening, It can be in a fully closed state.

本実施形態では、補助冷凍回路32の補助側膨張手段47と、冷媒冷却回路51の冷媒冷却用膨張手段52が、冷媒冷却回路51に流れる冷媒を断続する冷媒制御手段として機能する。本実施形態では、補助側膨張手段47と、冷媒冷却用膨張手段52を開閉することによって冷媒冷却回路51が断続される。
即ち補助側膨張手段47を閉じ、冷媒冷却用膨張手段52を開くことによって冷媒冷却回路51が開かれ、補助側庫内蒸発器48に至る流路は遮断される。その結果、冷媒が過冷却用熱交換器50の一次側流路に供給される。
逆に補助側膨張手段47を開き、冷媒冷却用膨張手段52を閉じることによって冷媒冷却回路51が閉じられ、補助側庫内蒸発器48に至る流路が開く。その結果、冷媒が補助側庫内蒸発器48に供給される。
In the present embodiment, the auxiliary expansion means 47 of the auxiliary refrigeration circuit 32 and the refrigerant cooling expansion means 52 of the refrigerant cooling circuit 51 function as refrigerant control means for interrupting the refrigerant flowing to the refrigerant cooling circuit 51. In the present embodiment, the refrigerant cooling circuit 51 is interrupted by opening and closing the auxiliary expansion means 47 and the refrigerant cooling expansion means 52.
That is, by closing the auxiliary side expansion means 47 and opening the refrigerant cooling expansion means 52, the refrigerant cooling circuit 51 is opened, and the flow path leading to the auxiliary side internal evaporator 48 is shut off. As a result, the refrigerant is supplied to the primary side flow passage of the supercooling heat exchanger 50.
Conversely, by opening the auxiliary side expansion means 47 and closing the refrigerant cooling expansion means 52, the refrigerant cooling circuit 51 is closed, and the flow path leading to the auxiliary in-house evaporator 48 is opened. As a result, the refrigerant is supplied to the auxiliary in-compartment evaporator 48.

本実施形態の環境試験装置1では、冷却手段30を4通りの運転方式で運転することができる。
より具体的には、図2に太線で示す主冷凍回路31に冷媒を循環させる中冷運転(通常運転)と、図3に太線で示す補助冷凍回路32に冷媒を循環させる緩冷運転(通常運転)と、図4に太線で示す様に冷媒を主冷凍回路31と補助冷凍回路32の双方に循環させる急冷運転(通常運転)と、図5に示す様に冷媒を主冷凍回路31と冷媒冷却回路51に循環させる過冷却運転を行うことができる。
In the environmental test apparatus 1 of this embodiment, the cooling means 30 can be operated by four operation methods.
More specifically, the medium cooling operation (normal operation) in which the refrigerant is circulated in the main refrigeration circuit 31 shown by a thick line in FIG. 2 and the slow cooling operation (normal operation) in which the refrigerant is circulated in the auxiliary refrigeration circuit 32 shown by a thick line in FIG. 4) and a rapid cooling operation (normal operation) in which the refrigerant is circulated to both the main refrigeration circuit 31 and the auxiliary refrigeration circuit 32 as shown by thick lines in FIG. 4; and the refrigerant as the main refrigeration circuit 31 and the refrigerant as shown in FIG. A supercooling operation can be performed to circulate the cooling circuit 51.

中冷運転(図2)では、主冷凍回路31に属する主側圧縮機35だけを駆動し、補助冷凍回路32に属する補助側圧縮機45は停止される。
中冷運転(図2)は、主冷凍回路31のみに冷媒を循環させて行われる。
中冷運転では、主側圧縮機35で気体状の冷媒を圧縮し、圧縮された冷媒は戻り冷媒加熱用熱交換器63の一次側流路を通過し、主側凝縮器36に入って液化される。そして液化した冷媒は、過冷却用熱交換器50の二次側流路を素通り(熱交換されない)して、主側膨張手段37で減圧され、主側庫内蒸発器38に入って蒸発し、主側圧縮機35に戻る。
また本実施形態では、試験室3の温度が監視され、試験室3の温度が低下するとそれに応じて主側庫内蒸発器38の表面温度を低下させるべく主側膨張手段37の開度が絞られる。
In the middle cooling operation (FIG. 2), only the main compressor 35 belonging to the main refrigeration circuit 31 is driven, and the auxiliary compressor 45 belonging to the auxiliary refrigeration circuit 32 is stopped.
The medium cooling operation (FIG. 2) is performed by circulating the refrigerant only to the main refrigeration circuit 31.
In the middle cooling operation, the gaseous refrigerant is compressed by the main side compressor 35, and the compressed refrigerant is returned through the primary side flow path of the refrigerant heating heat exchanger 63 and enters the main side condenser 36 and is liquefied Be done. The liquefied refrigerant passes through the secondary flow path of the supercooling heat exchanger 50 (is not heat exchanged), is decompressed by the main expansion means 37, enters the main in-house evaporator 38 and evaporates. , Return to the main compressor 35.
Further, in the present embodiment, the temperature of the test chamber 3 is monitored, and when the temperature of the test chamber 3 decreases, the opening degree of the main expansion means 37 is narrowed in order to lower the surface temperature of the main chamber internal evaporator 38 accordingly. Be

即ち試験室3の温度がある程度下がると、主側庫内蒸発器38と試験室3内の温度差が小さくなり、熱交換効率が低下するので、主側膨張手段37の開度が絞られる。
主側庫内蒸発器38と試験室3内の温度差が小さくなると、前記した様に主側膨張手段37の開度がしだいに絞られ、主側庫内蒸発器38の温度が低下するので主側庫内蒸発器38の表面温度と試験室3内の温度に一定の温度差が確保される。
That is, when the temperature of the test chamber 3 is lowered to a certain extent, the temperature difference between the main in-compartment evaporator 38 and the test chamber 3 becomes small and the heat exchange efficiency decreases, so the opening degree of the main expansion means 37 is narrowed.
When the temperature difference between the main storage evaporator 38 and the test chamber 3 decreases, the opening degree of the main expansion means 37 is gradually narrowed as described above, and the temperature of the main storage evaporator 38 decreases. A constant temperature difference is secured between the surface temperature of the main-side storage evaporator 38 and the temperature in the test chamber 3.

なお試験室3内の温度が設定温度に到達した後は、省エネルギーのためさらに主側膨張手段37の開度を絞っていくが、冷媒を主側膨張手段37に通過させるために、主側圧縮機35の吸込み圧力の下限となるまでしか開度を小さくできない。
しかしながら主冷凍回路側バイパス回路60を開いていくことにより、主側膨張手段37を通過させて主側庫内蒸発器38に流す冷媒量を更に少なくできる。
即ち主側膨張手段37の開度が一定であっても、バイパス用膨張手段53を閉じた状態から開くことにより、あるいはバイパス用膨張手段53の開度をより広げることにより、主側膨張手段37を流れる冷媒の量を減少させることができる。
本実施形態では、主としてバイパス用膨張手段53の開度を調整し、主冷凍回路側バイパス回路60を開いていくことにより、主側膨張手段37を通過して主側庫内蒸発器38に流す冷媒量を減少させてゆく制御を「主冷凍回路側バイパス制御」と称する。
また主として主側膨張手段37の開度を絞って主側庫内蒸発器38に流す冷媒量を減少させてゆく制御を「通常制御」と称し、「主冷凍回路側バイパス制御」と区別する。
After the temperature in the test chamber 3 reaches the set temperature, the opening degree of the main expansion means 37 is further narrowed to save energy, but the main side compression means 37 allows the refrigerant to pass through the main expansion means 37. The opening degree can only be reduced until the suction pressure of the machine 35 reaches the lower limit.
However, by opening the main refrigeration circuit side bypass circuit 60, it is possible to further reduce the amount of refrigerant which is allowed to pass through the main expansion means 37 and flow to the main storage internal evaporator 38.
That is, even if the opening degree of the main side expansion means 37 is constant, the main side expansion means 37 can be opened by opening the bypass expansion means 53 from the closed state or by expanding the opening degree of the bypass expansion means 53 more. The amount of refrigerant flowing through can be reduced.
In the present embodiment, the opening degree of the bypass expansion means 53 is mainly adjusted, and the main refrigeration circuit side bypass circuit 60 is opened to flow through the main side expansion means 37 and flow into the main side internal evaporator 38. Control for reducing the amount of refrigerant is referred to as "main refrigeration circuit side bypass control".
Also, control for reducing the opening amount of the main expansion means 37 to reduce the amount of refrigerant flowing to the main storage in-chamber evaporator 38 is referred to as "normal control" and is distinguished from "main refrigeration circuit side bypass control".

また本実施形態では、主冷凍回路側バイパス回路60の太さやバイパス用膨張手段53の口径が相当に大きく、主側圧縮機35を駆動した状態を維持して、主側膨張手段37を通過して主側庫内蒸発器38に流れる冷媒をゼロにすることができる。即ち主側圧縮機35から出た冷媒の全量を主冷凍回路側バイパス回路60に流して主側圧縮機35に戻すことができる。   Further, in the present embodiment, the thickness of the main refrigeration circuit side bypass circuit 60 and the diameter of the bypass expansion means 53 are considerably large, and the main compressor 35 is maintained while passing through the main expansion means 37. Thus, the refrigerant flowing to the main-in-compartment evaporator 38 can be made zero. That is, the entire amount of the refrigerant that has exited from the main compressor 35 can be flowed to the main refrigeration circuit bypass circuit 60 and returned to the main compressor 35.

主側膨張手段37の開度が絞られると、主側庫内蒸発器38を通過する冷媒の量が減少するので、余剰の冷媒がある場合にも主冷凍回路側バイパス回路60を経由して主側圧縮機35の吸入側に戻される。
バイパス用膨張手段53が開かれると冷媒の一部又は全部が主冷凍回路側バイパス回路60に流れる。そして冷媒は、戻り冷媒加熱用熱交換器63の二次側流路に流れて、冷媒加熱用熱交換器63の一次側流路を流れる高温の冷媒と熱交換されて気化され、過熱ガスとなった状態で主側圧縮機35の吸入側に戻る。
本実施形態の環境試験装置1では、主冷凍回路31の主側圧縮機35の容量が従来(標準構成)に比べて小さいので、主側圧縮機35だけを駆動して実施される中冷運転の消費電力は、従来に比べて少ない。
If the opening degree of the main expansion means 37 is narrowed, the amount of refrigerant passing through the main storage internal evaporator 38 is reduced, so even when there is an excess of refrigerant, the main refrigeration circuit side bypass circuit 60 is used. It is returned to the suction side of the main compressor 35.
When the bypass expansion means 53 is opened, part or all of the refrigerant flows to the main refrigeration circuit side bypass circuit 60. Then, the refrigerant flows into the secondary flow passage of the return refrigerant heating heat exchanger 63, is heat-exchanged with the high temperature refrigerant flowing in the primary flow passage of the refrigerant heating heat exchanger 63, and is vaporized to form the overheated gas. It returns to the suction side of the main side compressor 35 in the state which became.
In the environmental test apparatus 1 of the present embodiment, the capacity of the main compressor 35 of the main refrigeration circuit 31 is smaller than that of the conventional (standard configuration), so an intermediate cooling operation performed by driving only the main compressor 35 is performed. Power consumption is less than before.

次に緩冷運転(図3)について説明する。
緩冷運転(図3)は、前記した様に補助冷凍回路32に冷媒を循環させて行われる。緩冷運転では、補助冷凍回路32に属する補助側圧縮機45だけを駆動し、主冷凍回路31に属する主側圧縮機35は停止される。
また緩冷運転を行う際には冷媒冷却用膨張手段52が閉鎖され、冷媒冷却回路51への冷媒供給が阻止される。
緩冷運転では、補助側圧縮機45で気体状の冷媒を圧縮し、圧縮された冷媒は戻り冷媒加熱用熱交換器65の一次側流路を通過し、補助側凝縮器46に入って液化される。そして液化した冷媒は、補助側膨張手段47で減圧され、補助側庫内蒸発器48に入って蒸発し、補助側圧縮機45に戻る。
前記した様に本実施形態では、試験室3の温度が監視され、試験室3の温度が低下するとそれに応じて補助側庫内蒸発器48の表面温度を低下させるべく補助側膨張手段47の開度が絞られる。
Next, the slow cooling operation (FIG. 3) will be described.
The slow cooling operation (FIG. 3) is performed by circulating the refrigerant in the auxiliary refrigeration circuit 32 as described above. In the slow cooling operation, only the auxiliary compressor 45 belonging to the auxiliary refrigeration circuit 32 is driven, and the main compressor 35 belonging to the main refrigeration circuit 31 is stopped.
Further, when performing the slow cooling operation, the refrigerant cooling expansion means 52 is closed, and the refrigerant supply to the refrigerant cooling circuit 51 is prevented.
In the slow cooling operation, the gaseous refrigerant is compressed by the auxiliary compressor 45, and the compressed refrigerant passes through the primary flow path of the return refrigerant heating heat exchanger 65, enters the auxiliary condenser 46, and is liquefied Be done. Then, the liquefied refrigerant is depressurized by the auxiliary expansion means 47, enters the auxiliary in-house evaporator 48, evaporates, and returns to the auxiliary compressor 45.
As described above, in the present embodiment, the temperature of the test chamber 3 is monitored, and when the temperature of the test chamber 3 decreases, the auxiliary expansion means 47 is opened to lower the surface temperature of the auxiliary storage evaporator 48 accordingly. The degree is narrowed.

緩冷運転時においても、バイパス用膨張手段66を開いて補助冷凍回路側バイパス回路61に冷媒を通過させることにより、補助側膨張手段47を通過させて補助側庫内蒸発器48に流す冷媒量を更に少なくすることができる。
本実施形態では、補助冷凍回路側バイパス回路61を開いていくことにより、補助側膨張手段47を通過させて補助側庫内蒸発器48に流す冷媒量を減少させてゆく制御を「補助冷凍回路側バイパス制御」と称する。
また主として補助側膨張手段47の開度を絞って補助側庫内蒸発器48に流す冷媒量を減少させてゆく制御を「通常制御」と称し、「補助冷凍回路側バイパス制御」と区別する。
Even in the slow cooling operation, the amount of refrigerant flowing through the auxiliary expansion means 47 by passing through the auxiliary expansion means 47 by opening the bypass expansion means 66 and letting the refrigerant pass through the auxiliary refrigeration circuit side bypass circuit 61 Can be further reduced.
In the present embodiment, the auxiliary refrigeration circuit side bypass circuit 61 is opened to reduce the amount of refrigerant flowing through the auxiliary side expansion means 47 and flowing to the auxiliary side in-house evaporator 48. It is called "side bypass control".
Also, control for reducing the opening amount of the auxiliary expansion means 47 to decrease the amount of refrigerant flowing to the auxiliary storage evaporator 48 is referred to as "normal control" and is distinguished from "auxiliary refrigeration circuit side bypass control".

本実施形態では、補助冷凍回路側バイパス回路61の太さやバイパス用膨張手段66の口径が相当に大きく、補助側圧縮機45を駆動した状態を維持して、補助側膨張手段47を通過して補助側庫内蒸発器48に流れる冷媒をゼロにすることができる。即ち補助側凝縮器46から出た冷媒の全量を補助冷凍回路側バイパス回路61に流し、冷媒加熱用熱交換器65で加熱し過熱ガスとした状態で補助側圧縮機45に戻すことができる。   In the present embodiment, the thickness of the auxiliary refrigeration circuit side bypass circuit 61 and the diameter of the bypass expansion means 66 are considerably large, and the auxiliary compressor 45 is maintained in a driven state and passes through the auxiliary expansion means 47. The refrigerant flowing to the auxiliary side in-house evaporator 48 can be made zero. That is, the entire amount of the refrigerant coming out of the auxiliary side condenser 46 can be supplied to the auxiliary refrigeration circuit side bypass circuit 61, and can be returned to the auxiliary side compressor 45 in a state of being heated by the refrigerant heating heat exchanger 65 to be an overheated gas.

緩冷運転は、容量の小さい補助側圧縮機45を駆動して冷却するので、冷凍能力は小さい。   In the slow cooling operation, since the auxiliary compressor 45 with a small capacity is driven to cool, the refrigeration capacity is small.

次に急冷運転(図5)について説明する。
急冷運転(図5)は、主冷凍回路31と補助冷凍回路32の双方を駆動して冷却を行う運転方式である。即ち急冷運転では、主冷凍回路31に属する主側圧縮機35と補助冷凍回路32に属する補助側圧縮機45を駆動し、前記した中冷運転に相当する運転と、緩冷運転に相当する運転が同時に行われる。
急冷運転は、2基の圧縮機(主側圧縮機35と補助側圧縮機45)を同時に駆動して冷却が行われるので冷凍能力が大きい。
なお試験室3内の温度がある程度高い場合には、主側庫内蒸発器38の表面温度と補助側庫内蒸発器48の表面温度は一般に試験室3よりも低いから、主側庫内蒸発器38の温度と補助側庫内蒸発器48の温度に差があっても差し支えない。
一方、試験室3内の温度が相当に低い場合には、主側庫内蒸発器38の温度と補助側庫内蒸発器48の温度がいずれも試験室3内の温度より低くなる様に制御される。
Next, the quenching operation (FIG. 5) will be described.
The rapid cooling operation (FIG. 5) is an operation method of driving and cooling both the main refrigeration circuit 31 and the auxiliary refrigeration circuit 32. That is, in the rapid cooling operation, the main compressor 35 belonging to the main refrigeration circuit 31 and the auxiliary compressor 45 belonging to the auxiliary refrigeration circuit 32 are driven, and an operation corresponding to the above-mentioned middle cooling operation and an operation corresponding to the slow cooling operation Takes place simultaneously.
In the rapid cooling operation, since the two compressors (the main compressor 35 and the auxiliary compressor 45) are simultaneously driven to perform cooling, the refrigeration capacity is large.
When the temperature in the test chamber 3 is high to a certain extent, the surface temperature of the main-in-room evaporator 38 and the surface temperature of the auxiliary-in-room evaporator 48 are generally lower than that of the test chamber 3. There may be a difference between the temperature of the vessel 38 and the temperature of the auxiliary in-compartment evaporator 48.
On the other hand, when the temperature in the test chamber 3 is considerably low, control is performed so that the temperature of the main in-chamber evaporator 38 and the temperature of the auxiliary in-chamber evaporator 48 become lower than the temperature in the test chamber 3 Be done.

急冷運転時においても「主冷凍回路側バイパス制御」及び「補助冷凍回路側バイパス制御」を行うことができる。また急冷運転時に主側圧縮機35を駆動した状態を維持して、主側膨張手段37を通過して主側庫内蒸発器38に流れる冷媒をゼロにすることができる。同様に急冷運転時に補助側圧縮機45を駆動した状態を維持して、補助側膨張手段47を通過して補助側庫内蒸発器48に流れる冷媒をゼロにすることができる。
本実施形態の環境試験装置1では、主冷凍回路31の主側圧縮機35の容量が従来(標準構成)に比べて小さいので、主側圧縮機35を駆動して実施される急冷運転の消費電力は、補助冷却手段を有するタイプの従来技術の環境試験装置に比べて少ない。
Also in the rapid cooling operation, "main refrigeration circuit side bypass control" and "auxiliary refrigeration circuit side bypass control" can be performed. Further, it is possible to keep the refrigerant flowing through the main expansion means 37 and flowing to the main storage evaporator 38 zero while maintaining the driving state of the main compressor 35 during the quenching operation. Similarly, the state in which the auxiliary compressor 45 is driven during the quenching operation can be maintained, and the refrigerant flowing through the auxiliary expansion means 47 and flowing to the auxiliary in-house evaporator 48 can be made zero.
In the environmental test apparatus 1 of the present embodiment, since the capacity of the main compressor 35 of the main refrigeration circuit 31 is smaller than that of the conventional (standard configuration), consumption of the quenching operation performed by driving the main compressor 35 The power is less compared to prior art environmental test equipment of the type having auxiliary cooling means.

次に、過冷却運転について説明する。過冷却運転は、図5に示す様に冷媒を主冷凍回路31と冷媒冷却回路51に循環させて行われる。
過冷却運転を行う場合は、冷媒制御手段たる補助側膨張手段47を閉じて補助側庫内蒸発器48に至る流路を遮断し、冷媒冷却用膨張手段52を開く。
過冷却運転の際には主側圧縮機35及び補助側圧縮機45の双方を駆動する。過冷却運転の際には補助冷凍回路32に属する補助側圧縮機45を駆動するが、補助冷凍回路32の補助側庫内蒸発器48には冷媒を流さない。具体的には、補助側庫内蒸発器48に繋がる補助側膨張手段47を閉止し、補助側庫内蒸発器48は使用しない。
それに代わって、補助冷凍回路32では、冷媒冷却用膨張手段52が開かれ、冷媒冷却回路51に冷媒が供給される。
Next, the subcooling operation will be described. The subcooling operation is performed by circulating the refrigerant between the main refrigeration circuit 31 and the refrigerant cooling circuit 51 as shown in FIG.
When performing the supercooling operation, the auxiliary expansion means 47 serving as the refrigerant control means is closed to shut off the flow path leading to the auxiliary side storage evaporator 48, and the refrigerant cooling expansion means 52 is opened.
In the subcooling operation, both the main compressor 35 and the auxiliary compressor 45 are driven. In the case of the supercooling operation, the auxiliary compressor 45 belonging to the auxiliary refrigeration circuit 32 is driven, but the refrigerant does not flow to the auxiliary in-storage evaporator 48 of the auxiliary refrigeration circuit 32. Specifically, the auxiliary expansion means 47 connected to the auxiliary in-storage evaporator 48 is closed, and the auxiliary in-storage evaporator 48 is not used.
Instead, in the auxiliary refrigeration circuit 32, the refrigerant cooling expansion means 52 is opened, and the refrigerant is supplied to the refrigerant cooling circuit 51.

過冷却運転の際には、補助側圧縮機45が駆動されており、補助側圧縮機45で気体状の冷媒を圧縮し、圧縮された冷媒は戻り冷媒加熱用熱交換器65の一次側流路を通過し、補助側凝縮器46に入って液化される。そして液化した冷媒は、冷媒冷却用膨張手段52で減圧され、過冷却用熱交換器50の一次側流路に入る。前記した様に過冷却用熱交換器50の一次側流路は、実質的に蒸発器としての機能を発揮する。その結果、冷媒は過冷却用熱交換器50の一次側流路で気化し、一次側流路の温度が低下する。気化した冷媒は補助側圧縮機45に戻る。   During the subcooling operation, the auxiliary compressor 45 is driven, and the gaseous refrigerant is compressed by the auxiliary compressor 45, and the compressed refrigerant is returned to the primary side flow of the heat exchanger 65 for heating the refrigerant. It passes through the path, enters the auxiliary condenser 46 and is liquefied. Then, the liquefied refrigerant is decompressed by the refrigerant cooling expansion means 52 and enters the primary side flow passage of the supercooling heat exchanger 50. As described above, the primary side flow passage of the subcooling heat exchanger 50 substantially functions as an evaporator. As a result, the refrigerant is vaporized in the primary side flow passage of the supercooling heat exchanger 50, and the temperature of the primary side flow passage is lowered. The vaporized refrigerant returns to the auxiliary compressor 45.

一方、主冷凍回路31では、前記した中冷運転(図2)と同等の流路を冷媒が循環している。即ち主冷凍回路31では、主側圧縮機35で気体状の冷媒を圧縮し、圧縮された冷媒は戻り冷媒加熱用熱交換器63の一次側流路を通過し、主側凝縮器36に入って液化される。そして液化した冷媒は、過冷却用熱交換器50の二次側流路を通過する。
ここで過冷却運転の際には、補助側圧縮機45が駆動されていて補助側凝縮器46で液化した冷媒が冷媒冷却回路51を流れ、過冷却用熱交換器50の一次側流路で蒸発し、一次側流路の温度が低下している。
そのため主冷凍回路31を流れ、主側凝縮器36で液化した冷媒は、過冷却用熱交換器50でさらに冷却され、強度に過冷却状態となる。即ち主側凝縮器36で液化した冷媒も幾分過冷却状態である場合が多いが、過冷却用熱交換器50でさらに冷却されることによって過冷却の程度が進む。
On the other hand, in the main refrigeration circuit 31, the refrigerant circulates in the same flow path as the above-described medium cooling operation (FIG. 2). That is, in the main refrigeration circuit 31, the gaseous refrigerant is compressed by the main compressor 35, and the compressed refrigerant is returned, passes through the primary flow path of the refrigerant heating heat exchanger 63, and enters the main condenser 36. And liquefied. Then, the liquefied refrigerant passes through the secondary flow passage of the subcooling heat exchanger 50.
Here, during the subcooling operation, the auxiliary compressor 45 is driven, and the refrigerant liquefied in the auxiliary condenser 46 flows through the refrigerant cooling circuit 51, and in the primary flow path of the supercooling heat exchanger 50. It evaporates and the temperature of the primary side flow path is falling.
Therefore, the refrigerant flowing through the main refrigeration circuit 31 and liquefied by the main-side condenser 36 is further cooled by the supercooling heat exchanger 50, and the refrigerant is strongly subcooled. That is, in many cases, the refrigerant liquefied in the main side condenser 36 is also somewhat subcooled in some cases, but the degree of subcooling advances by further cooling by the subcooling heat exchanger 50.

過冷却用熱交換器50による冷却量、言い換えれば過冷却の程度は、冷媒冷却回路51を通過する冷媒の量を増減することによって調整される。
本実施形態では、バイパス用膨張手段66の開度を調節することにより、冷媒冷却回路51を通過する冷媒の量を増減し、過冷却用熱交換器50による冷却量を変化させることができる。
また過冷却運転時においても、バイパス用膨張手段66を開いて補助冷凍回路側バイパス回路61に冷媒を通過させることにより、冷媒冷却用膨張手段52を通過して過冷却用熱交換器50に流れる冷媒量を更に少なくすることができる。
即ち本実施形態では、補助冷凍回路32側に補助冷凍回路側バイパス回路61があり、補助冷凍回路側バイパス回路61にはバイパス用膨張手段66が設けられている。そしてバイパス用膨張手段66は開度を変更可能である。
本実施形態では、冷媒冷却回路51側の冷媒冷却用膨張手段52の開度と、補助冷凍回路側バイパス回路61に設けられたバイパス用膨張手段66の開度を調整することにより、過冷却用熱交換器50に流れる冷媒の量を調節し、主冷凍回路31を流れる冷媒の過冷却度を調整することができる。
The amount of cooling by the supercooling heat exchanger 50, in other words, the degree of supercooling, is adjusted by increasing or decreasing the amount of refrigerant passing through the refrigerant cooling circuit 51.
In the present embodiment, by adjusting the opening degree of the bypass expansion means 66, the amount of refrigerant passing through the refrigerant cooling circuit 51 can be increased or decreased, and the amount of cooling by the supercooling heat exchanger 50 can be changed.
Further, even during the supercooling operation, the bypass expansion means 66 is opened to allow the refrigerant to pass through the auxiliary refrigeration circuit side bypass circuit 61, thereby passing through the refrigerant cooling expansion means 52 and flowing to the supercooling heat exchanger 50. The amount of refrigerant can be further reduced.
That is, in the present embodiment, the auxiliary refrigeration circuit side bypass circuit 61 is provided on the auxiliary refrigeration circuit 32 side, and the auxiliary refrigeration circuit side bypass circuit 61 is provided with bypass expansion means 66. The bypass expansion means 66 can change the opening degree.
In the present embodiment, for supercooling by adjusting the opening degree of the refrigerant cooling expansion means 52 on the refrigerant cooling circuit 51 side and the opening degree of the bypass expansion means 66 provided in the auxiliary refrigeration circuit side bypass circuit 61. The amount of refrigerant flowing into the heat exchanger 50 can be adjusted to adjust the degree of subcooling of the refrigerant flowing through the main refrigeration circuit 31.

前記した様に補助冷凍回路側バイパス回路61の太さやバイパス用膨張手段66の口径が相当に大きいので、補助側圧縮機45を駆動した状態を維持して、冷媒冷却用膨張手段52を通過して過冷却用熱交換器50に流れる冷媒をゼロにすることができる。
本実施形態では、補助冷凍回路側バイパス回路61を開いていくことにより、冷媒冷却用膨張手段52を通過して過冷却用熱交換器50に流れる冷媒量を減らしていく制御を「冷媒冷却回路バイパス制御」と称する。また主として冷媒冷却用膨張手段52の開度を絞って過冷却用熱交換器50に流れる冷媒量を減少させてゆく制御を「通常制御」と称し、「冷媒冷却回路バイパス制御」と区別する。
As described above, since the thickness of the auxiliary refrigeration circuit side bypass circuit 61 and the diameter of the bypass expansion means 66 are relatively large, the auxiliary compressor 45 is maintained in the driven state and passes through the refrigerant cooling expansion means 52. Thus, the refrigerant flowing to the supercooling heat exchanger 50 can be made zero.
In the present embodiment, by opening the auxiliary refrigeration circuit side bypass circuit 61, control for reducing the amount of refrigerant flowing through the refrigerant cooling expansion means 52 to the supercooling heat exchanger 50 is referred to as “refrigerant cooling circuit It is called "bypass control". Also, control for reducing the opening amount of the refrigerant cooling expansion means 52 to reduce the amount of refrigerant flowing to the subcooling heat exchanger 50 is referred to as "normal control" and is distinguished from "refrigerant cooling circuit bypass control".

過冷却用熱交換器50では、摂氏10度以上、過冷却を進ませることが望ましく、より望ましくは、摂氏15度以上、過冷却を進ませる。   In the subcooling heat exchanger 50, it is desirable to proceed with subcooling at 10 degrees Celsius or more, and more desirably, to proceed with supercooling at 15 degrees Celsius or more.

そして過冷却状態の冷媒が主側膨張手段37で減圧され、主側庫内蒸発器38に入って蒸発し、主側圧縮機35に戻る。   Then, the subcooled refrigerant is depressurized by the main expansion means 37, enters the main storage evaporator 38, evaporates, and returns to the main compressor 35.

過冷却運転と前記した中冷運転を比較すると、双方とも主側庫内蒸発器38内で液体冷媒が気化し、蒸発熱(潜熱)を奪って主側庫内蒸発器38の表面温度を低下させる点で共通する。
過冷却運転では、蒸発熱(潜熱)による主側庫内蒸発器38の温度低下に加えて、過冷却によるエンタルピーの減少によっても主側庫内蒸発器38の表面温度が低下する。そのため過冷却運転を行うことにより、冷凍能力(冷凍機が奪う熱エネルギー量)が中冷運転よりも増大する。
その結果、主側庫内蒸発器38の表面温度を、中冷運転を行っている際の主側庫内蒸発器38の表面温度よりも低くしても、必要な冷凍出力を発現させることができる。
言い換えれば、過冷却運転では、主側庫内蒸発器38の表面温度を、従来の環境試験装置と同等の温度としても、従来の環境試験装置と同等の冷凍出力を得ることができる。
When the supercooling operation and the above-mentioned middle cooling operation are compared, the liquid refrigerant is vaporized in the main storage internal evaporator 38 in both of them, and the heat of evaporation (latent heat) is taken away to lower the surface temperature of the main storage internal evaporator 38 It is common in the point which
In the subcooling operation, the surface temperature of the main in-compartment evaporator 38 is also lowered due to the decrease in enthalpy due to the subcooling, in addition to the temperature decrease of the main in-compartment evaporator 38 due to the heat of evaporation (latent heat). Therefore, by performing the subcooling operation, the refrigeration capacity (the amount of heat energy taken by the refrigerator) is increased compared to the middle cooling operation.
As a result, even if the surface temperature of the main-in-compartment evaporator 38 is lower than the surface temperature of the main-in-compartment evaporator 38 when performing the middle cooling operation, the required refrigeration output can be expressed it can.
In other words, in the supercooling operation, even when the surface temperature of the main-side in-compartment evaporator 38 is made equal to that of the conventional environmental test device, it is possible to obtain the same refrigeration output as the conventional environmental test device.

本実施形態の環境試験装置1は、一定の条件に基づいて運転方式と制御方法が切り替わる。具体的には、設定温度と、試験室3内の現実の温度に基づいて、急冷運転、中冷運転、緩冷運転、及び過冷却運転が切り替わる。
また一定の条件に基づいて通常制御とバイパス制御(主冷凍回路側バイパス制御、補助冷凍回路側バイパス制御、冷媒冷却回路バイパス制御)が切り替わる。
In the environmental test apparatus 1 of the present embodiment, the operation method and the control method are switched based on certain conditions. Specifically, the quenching operation, the medium cooling operation, the slow cooling operation, and the supercooling operation are switched based on the set temperature and the actual temperature in the test chamber 3.
Further, normal control and bypass control (main refrigeration circuit side bypass control, auxiliary refrigeration circuit side bypass control, refrigerant cooling circuit bypass control) are switched based on certain conditions.

本実施形態では、急冷運転、中冷運転、緩冷運転を総称して通常運転と称する。
本実施形態では、通常運転として急冷運転、中冷運転、緩冷運転があり、状況に応じて運転方法が自動的に選択される。
急冷運転、中冷運転、緩冷運転は、冷却能力が相違するだけであり、単純に冷却負荷に応じて選択される。
即ち冷却負荷が大きく、急激に試験室3内の温度を低下させる必要がある場合には急冷運転が実行される。
また冷却負荷が中程度であり、急冷運転を行うと、試験室3内の温度が急変してしまう可能性がある場合には中冷運転が選択される。また試験室3内の温度が設定温度に達しているが、設定温度が極低温であり、緩冷運転では冷凍出力が不足して試験室3内の温度を安定させることができない場合にも中冷運転が選択される。
試験室3内の温度が比較的高い状態で安定している場合等、冷却負荷が小さい場合には緩冷運転が選択される。
In the present embodiment, the rapid cooling operation, the medium cooling operation, and the slow cooling operation are collectively referred to as a normal operation.
In the present embodiment, there are a rapid cooling operation, an intermediate cooling operation, and a slow cooling operation as the normal operation, and the operation method is automatically selected according to the situation.
The quenching operation, the medium-cooling operation, and the slow-cooling operation only differ in cooling capacity, and are simply selected according to the cooling load.
That is, when the cooling load is large and the temperature in the test chamber 3 needs to be rapidly reduced, the quenching operation is performed.
Also, if the cooling load is medium and there is a possibility that the temperature in the test chamber 3 may suddenly change when the quenching operation is performed, the medium cooling operation is selected. Although the temperature in the test chamber 3 has reached the set temperature, the set temperature is extremely low, and the freezing output is insufficient in the slow cooling operation, and the temperature in the test chamber 3 can not be stabilized. Cold driving is selected.
The slow cooling operation is selected when the cooling load is small, such as when the temperature in the test chamber 3 is relatively high and stable.

また蒸発器38,48や、過冷却用熱交換器50に供給される冷媒量を制御する方法として、通常制御とバイパス制御(主冷凍回路側バイパス制御、補助冷凍回路側バイパス制御、冷媒冷却回路バイパス制御)がある。バイパス制御は、蒸発器38,48や、過冷却用熱交換器50に供給される冷媒量をより少なくしたい場合に選択される。   Further, as a method of controlling the amount of refrigerant supplied to the evaporators 38 and 48 and the supercooling heat exchanger 50, normal control and bypass control (main refrigeration circuit side bypass control, auxiliary refrigeration circuit side bypass control, refrigerant cooling circuit There is bypass control). The bypass control is selected when it is desired to reduce the amount of refrigerant supplied to the evaporators 38 and 48 and the subcooling heat exchanger 50.

本実施形態では、設定温度によって過冷却運転を行う場合と、過冷却運転を行わない場合がある。即ち設定温度によって大きく二通りの流れによって運転方法が移行してゆく。例えば摂氏A度を境として過冷却運転が行われるか否かが選択される。なお摂氏A度は、常温よりも低い温度であり、例えば、摂氏0度から摂氏10度程度である。   In the present embodiment, the subcooling operation may be performed depending on the set temperature, and the subcooling operation may not be performed. That is, depending on the set temperature, the operation method shifts in two large flows. For example, it is selected whether or not the supercooling operation is performed at a temperature of a degree Celsius. In addition, A degree C is a temperature lower than normal temperature, for example, is about 0 degree C to about 10 degree C.

図6は、運転方法の移行過程を示すフローチャートである。本実施形態では、設定温度が摂氏A度以上である場合には、開始時にフル運転の急冷運転が行われる。即ち運転方法は急冷運転であり、制御方法は通常制御で運転される。   FIG. 6 is a flowchart showing the transition process of the driving method. In the present embodiment, when the set temperature is A degrees Celsius or more, the quenching operation of the full operation is performed at the start. That is, the operation method is a quenching operation, and the control method is usually operated under control.

そして試験室3内の温度が設定温度の近傍に至ると、制御方法が切り替わり、省エネルギーのために冷却出力を低下させていく。具体的には急冷運転を行いつつ補助冷凍回路側バイパス制御を行って冷却出力を低下させていく。
そして補助側圧縮機45を駆動した状態を維持して、補助側膨張手段47を通過して補助側庫内蒸発器48に流れる冷媒をゼロにし、実質的に中冷運転に切り替える。即ち補助側圧縮機45は駆動しているものの、運転方法は実質的に中冷運転となり、主冷凍回路31の制御方法は通常制御となる。
その後、主冷凍回路31の制御方法を主冷凍回路側バイパス制御に自動的に切り替え、冷凍出力を下げてゆく。
さらにその後、緩冷運転を復活させる。具体的には補助側膨張手段47の開度を開く。即ち現在は実質的に中冷運転が行われているものの、補助側圧縮機45は駆動した状態を維持している。そのため補助側膨張手段47の開度を開くと、補助側庫内蒸発器48に冷媒が流れ、緩冷運転が復活する。この時の補助冷凍回路32の制御方法は通常制御である。
緩冷運転が復活した段階で、主側圧縮機35を停止する。即ち急冷運転が事実上停止され、緩冷運転が行われる。
Then, when the temperature in the test room 3 reaches the vicinity of the set temperature, the control method is switched, and the cooling output is reduced for energy saving. Specifically, the auxiliary refrigeration circuit side bypass control is performed while the rapid cooling operation is performed to reduce the cooling output.
Then, maintaining the state where the auxiliary compressor 45 is driven, the refrigerant flowing through the auxiliary expansion means 47 and flowing to the auxiliary in-house evaporator 48 is made zero, and the mode is switched to the substantially middle cooling operation. That is, although the auxiliary compressor 45 is driven, the operation method is substantially medium cooling operation, and the control method of the main refrigeration circuit 31 is normal control.
Thereafter, the control method of the main refrigeration circuit 31 is automatically switched to the main refrigeration circuit side bypass control to lower the refrigeration output.
After that, the slow cooling operation is restored. Specifically, the opening degree of the auxiliary side expansion means 47 is opened. That is, although the intermediate cooling operation is currently performed, the auxiliary compressor 45 is maintained in the driven state. Therefore, when the opening degree of the auxiliary side expansion means 47 is opened, the refrigerant flows to the auxiliary side in-house evaporator 48, and the slow cooling operation is restored. The control method of the auxiliary refrigeration circuit 32 at this time is normal control.
The main compressor 35 is stopped when the slow cooling operation is restored. That is, the quenching operation is practically stopped and the slow cooling operation is performed.

さらに試験室3内の温度が低下すると、補助冷凍回路32の制御方法を補助冷凍回路側バイパス制御に切り替え、冷却出力をさらに低下させていく。そして最終的に補助側圧縮機45も停止する。
図6のフローチャートでは、最初に急冷運転を行い、最後に緩冷運転を行う例を示したが、最初の運転方法は中冷運転でもよく、最後に中冷運転で終わってもよい。
When the temperature in the test chamber 3 further decreases, the control method of the auxiliary refrigeration circuit 32 is switched to the auxiliary refrigeration circuit side bypass control to further reduce the cooling output. Finally, the auxiliary compressor 45 is also stopped.
The flowchart of FIG. 6 shows an example in which the quenching operation is performed first and the slow cooling operation is performed last, but the first operation method may be the medium cooling operation, and the medium cooling operation may finally be finished.

一方、設定温度が摂氏A度未満である場合には、開始時に過冷却運転が実施される。開始時の制御方法は通常制御である。
そして試験室3内の温度低下に応じて、制御方法が切り替わる。即ち過冷却運転を行いつつ冷媒冷却回路バイパス制御を行う。
さらに試験室3内の温度が低下すると、補助側圧縮機45を停止して中冷運転に移行する。この時の主冷凍回路31の制御方法は通常制御である。
さらに試験室3内の温度が低下し設定温度に至ると、制御方法が切り替わり、主冷凍回路側バイパス制御を実施し、試験室3内の温度を設定温度に維持する。
On the other hand, if the set temperature is less than A degrees Celsius, the subcooling operation is performed at the start. The control method at the start is normal control.
Then, the control method is switched according to the temperature decrease in the test chamber 3. That is, the refrigerant cooling circuit bypass control is performed while performing the subcooling operation.
When the temperature in the test chamber 3 further decreases, the auxiliary compressor 45 is stopped to shift to the middle cooling operation. The control method of the main refrigeration circuit 31 at this time is normal control.
When the temperature in the test chamber 3 further decreases and reaches the set temperature, the control method is switched, the main refrigeration circuit side bypass control is performed, and the temperature in the test chamber 3 is maintained at the set temperature.

次に設定温度が摂氏A度以上である場合と、摂氏A度未満の場合における運転方法を具体的に説明する。
設定温度が摂氏A度以上である場合は、前記した様に原則的に最初に急冷運転が行われる。
Next, an operation method in the case where the set temperature is A degree C or more and the case where the set temperature is less than A degree C will be specifically described.
In the case where the set temperature is A ° C. or higher, the quenching operation is basically performed first as described above.

急冷運転においては、主冷凍回路31と補助冷凍回路32の双方を駆動して試験室3内の温度を低下させる。そして試験室3内の温度が設定温度に近づくと、冷凍出力を序々に低下させていく。
急冷運転の初期においては、主冷凍回路31と補助冷凍回路32がフル運転される。また試験室3の温度がある程度低下すると、主側庫内蒸発器38及び補助側庫内蒸発器48と試験室3内の温度差が小さくなり、熱交換効率が低下するので、主側膨張手段37及び補助側膨張手段47の開度が絞られる(通常制御)。
In the rapid cooling operation, both the main refrigeration circuit 31 and the auxiliary refrigeration circuit 32 are driven to lower the temperature in the test chamber 3. When the temperature in the test chamber 3 approaches the set temperature, the refrigeration output is gradually reduced.
At the initial stage of the rapid cooling operation, the main refrigeration circuit 31 and the auxiliary refrigeration circuit 32 are fully operated. When the temperature in the test chamber 3 is lowered to some extent, the temperature difference between the main in-compartment evaporator 38 and the auxiliary in-compartment evaporator 48 and the test chamber 3 becomes small, and the heat exchange efficiency is lowered. The opening degree of the auxiliary expansion means 47 is reduced (normal control).

急冷運転を行うことにより、試験室3内の温度が低下し、設定温度近傍に至ると、必要な冷熱量がしだいに減少してゆくので、省エネルギーの為に冷凍出力を序々に低下させていく。
即ち仮に被試験物が発熱しないものであるならば、試験室3内の温度が目標温度に達した後に必要な冷熱は、送風機8が内部の空気を攪拌することによって発生する発熱を抑制するのに必要な冷熱と、外部環境から侵入する熱を抑制するのに必要な冷熱等に限られ、立ち上げ時にくらべて少ない。従って試験室3内の温度が目標温度を維持するために冷却手段30に要求される冷熱は、これらに見合うもので足り、少量である。そのため制御方法や運転方法を変更し、冷凍出力を序々に低下させていく。
By performing the quenching operation, the temperature in the test room 3 is lowered, and when it reaches the set temperature, the required amount of cold heat gradually decreases, so the refrigeration output is gradually reduced for energy saving .
That is, if the object under test does not generate heat, the cold heat necessary after the temperature in the test chamber 3 reaches the target temperature suppresses the heat generation generated by the blower 8 stirring the air inside. It is limited to the cold heat required for cooling and the cold heat required to suppress heat entering from the external environment, and is smaller than at startup. Therefore, the amount of cold heat required of the cooling means 30 in order for the temperature in the test chamber 3 to maintain the target temperature is sufficient for these, and is small. Therefore, the control method and the operation method are changed, and the refrigeration output is gradually reduced.

運転方法及び制御方法の移行は、加熱ヒータ6又は加湿ヒータ25又はその両方の出力を参照して行う。
本方策では、最初に急冷運転を実施し、加熱ヒータ6等の出力を監視する。そして加熱ヒータ6等の出力が最小となる様に、運転方法又は制御方法を移行させる。
即ち本実施形態の環境試験装置1では、試験室3内の温度を微調整するために加熱ヒータ6等が運転される。そのため加熱ヒータ6等の発熱量が大きい場合には、冷凍出力が過剰であると言える。
そこで本実施形態では、加熱ヒータ6又は加湿ヒータ25又はその両方の出力を監視し、これが最小となる様に、運転方法又は制御方法を変更する。
運転方法又は制御方法を変更する順序は前記した図6の通りであり、試験室3内の温度が設定温度の近傍に至ると、急冷運転を行いつつ補助冷凍回路側バイパス制御を行って冷却出力を低下させていく。
それでも加熱ヒータ6等の発熱量が大きい場合には、補助側圧縮機45を駆動した状態を維持して、補助側膨張手段47を通過して補助側庫内蒸発器48に流れる冷媒をゼロにし、実質的に中冷運転に切り替え、主冷凍回路31を通常制御する。
それでも加熱ヒータ6等の発熱量が大きい場合には、主冷凍回路31に対して主冷凍回路側バイパス制御を実施して冷凍出力を下げてゆく。
The transition of the operation method and control method is performed with reference to the output of the heater 6 and / or the humidification heater 25 or both.
In this measure, the quenching operation is first performed to monitor the output of the heater 6 or the like. Then, the operation method or control method is shifted so as to minimize the output of the heater 6 or the like.
That is, in the environmental test apparatus 1 of the present embodiment, the heater 6 or the like is operated to finely adjust the temperature in the test chamber 3. Therefore, when the calorific value of the heater 6 or the like is large, it can be said that the refrigeration output is excessive.
Therefore, in the present embodiment, the output of the heater 6 and / or the humidifying heater 25 is monitored, and the operation method or control method is changed so as to minimize this.
The order of changing the operation method or control method is as shown in FIG. 6 described above, and when the temperature in the test chamber 3 reaches near the set temperature, the auxiliary refrigeration circuit side bypass control is performed while performing the quenching operation, and the cooling output To reduce
If the calorific value of the heater 6 or the like is still large, the auxiliary compressor 45 is maintained and the refrigerant flowing through the auxiliary expansion means 47 and flowing to the auxiliary in-house evaporator 48 is made zero. Substantially switching to the middle cooling operation to control the main refrigeration circuit 31 normally.
If the calorific value of the heater 6 or the like is still large, the main refrigeration circuit side bypass control is performed on the main refrigeration circuit 31 to lower the refrigeration output.

主側庫内蒸発器38を通過する冷媒量を減らし続け、主冷凍回路31の主側庫内蒸発器38に流す冷媒量が下限に至ると、図示しない制御装置によって、主冷凍回路31の運転を停止するべきか否かが判定される。具体的には加熱ヒータ6等の発熱量が大きい場合には、主冷凍回路31の運転を停止し、緩冷運転に切り替える。
前記した様に現在は実質的に中冷運転が行われているものの、補助側圧縮機45は駆動した状態を維持している。そのため補助側膨張手段47の開度を開くと、冷媒が補助側庫内蒸発器48に流れ、緩冷運転が復活する。
緩冷運転が復活した段階で、主側圧縮機35を停止する。即ち急冷運転が事実上停止され、緩冷運転が行われる。
またそれでも加熱ヒータ6等の発熱量が大きい場合には、補助冷凍回路32に対して補助冷凍回路側バイパス制御を行い、冷却出力をさらに低下させていく。そして最終的に補助側圧縮機45も停止する。
When the amount of refrigerant passing through the main side in-house evaporator 38 continues to be reduced and the amount of refrigerant flowing to the main side in-house evaporator 38 of the main refrigeration circuit 31 reaches the lower limit, the control device (not shown) operates the main refrigeration circuit 31 It is determined whether or not to stop. Specifically, when the calorific value of the heater 6 or the like is large, the operation of the main refrigeration circuit 31 is stopped to switch to the slow cooling operation.
As described above, although the intermediate cooling operation is currently performed, the auxiliary compressor 45 is maintained in the driven state. Therefore, when the opening degree of the auxiliary side expansion means 47 is opened, the refrigerant flows to the auxiliary side internal evaporator 48, and the slow cooling operation is restored.
The main compressor 35 is stopped when the slow cooling operation is restored. That is, the quenching operation is practically stopped and the slow cooling operation is performed.
If the heating value of the heater 6 or the like is still large, the auxiliary refrigeration circuit side bypass control is performed on the auxiliary refrigeration circuit 32 to further reduce the cooling output. Finally, the auxiliary compressor 45 is also stopped.

次に設定温度が摂氏マイナス40度という様に常温に比べて極めて低い極低温の場合の運転方法について説明する。
本実施形態では、設定温度が摂氏マイナス40度であって設定温度が摂氏A度未満であるから、開始時に過冷却運転が実施される。
過冷却運転の際には主側圧縮機35及び補助側圧縮機45の双方を駆動する。
そして試験室3の温度がある程度下がり、主側庫内蒸発器38の表面温度と試験室3内の温度差が一定未満になると、主側膨張手段37の開度がしだいに絞られてゆき、主側庫内蒸発器38の温度を低下させて主側庫内蒸発器38の表面温度と試験室3内の温度に一定の温度差が確保される。
Next, an operation method in the case of extremely low temperature, which is extremely low compared to normal temperature, such as set temperature of minus 40 degrees Celsius, will be described.
In the present embodiment, since the set temperature is minus 40 degrees Celsius and the set temperature is less than A degree Celsius, the supercooling operation is performed at the start.
In the subcooling operation, both the main compressor 35 and the auxiliary compressor 45 are driven.
When the temperature of the test chamber 3 drops to some extent and the surface temperature of the main chamber internal evaporator 38 and the temperature difference in the test chamber 3 become less than a certain level, the opening degree of the main expansion means 37 is gradually narrowed. The temperature of the main in-compartment evaporator 38 is lowered to ensure a constant temperature difference between the surface temperature of the main in-compartment evaporator 38 and the temperature in the test chamber 3.

ここで過冷却運転においては、蒸発熱(潜熱)による主側庫内蒸発器38の温度低下に加えて、過冷却によるエンタルピーの減少によっても主側庫内蒸発器38の表面温度が低下するので、冷凍能力(冷凍機が奪う熱エネルギー量)が大きい。
そのため、主側庫内蒸発器38の表面温度を相当に低くしても必要な冷凍出力を発現させることができる。
そのため試験室3内の温度を設定温度まで低下することができる。
Here, in the subcooling operation, in addition to the temperature drop of the main side in-house evaporator 38 due to the heat of evaporation (latent heat), the surface temperature of the main side in-house evaporator 38 also decreases due to the reduction of enthalpy due to the subcooling , The refrigeration capacity (the amount of heat energy that the refrigerator takes away) is large.
Therefore, even if the surface temperature of the main-in-compartment evaporator 38 is considerably lowered, the required refrigeration output can be expressed.
Therefore, the temperature in the test chamber 3 can be lowered to the set temperature.

過冷却運転を行うことにより、試験室3内の温度が低下し、設定温度近傍に至ると、必要な冷熱量がしだいに減少してゆくので、省エネルギーの為に冷凍出力を序々に低下させていく。
即ち制御方法や運転方法を変更し、冷凍出力を序々に低下させていく。
By performing the supercooling operation, the temperature in the test chamber 3 decreases, and when it reaches the set temperature, the required amount of cold heat gradually decreases, so the refrigeration output is gradually reduced for energy saving. Go.
That is, the control method and the operation method are changed, and the refrigeration output is gradually reduced.

運転方法及び制御方法の移行は、前記した場合と同様に加熱ヒータ6又は加湿ヒータ25又はその両方の出力を参照して行う。
運転方法又は制御方法を変更する順序は前記した図6の通りであり、試験室3内の温度が設定温度の近傍に至ると、過冷却運転を行いつつ冷媒冷却回路バイパス制御を行い、冷媒冷却用膨張手段52を通過して過冷却用熱交換器50に流れる冷媒量を減らしていく。具体的には本実施形態では、補助冷凍回路側バイパス回路61を開いていくことにより、過冷却用熱交換器50に流す冷媒量を減らしていく。
その結果、主冷凍回路31を流れる冷媒の過冷却度が下がり、冷媒のエンタルピーが上昇して冷凍出力が低下する。
そして遂には過冷却用熱交換器50に流れる冷媒量がゼロになる。
そして図示しない制御装置によって、補助冷凍回路32の運転を停止するべきか否かが判定される。具体的には加熱ヒータ6等の発熱量が大きい場合には、補助冷凍回路32の運転を停止する。即ち運転方法が過冷却運転から中冷運転に切り替わる。
補助冷凍回路32の運転を停止して中冷運転に切り替えてもなお加熱ヒータ6等の発熱量が大きい場合には、主冷凍回路31を通常制御して冷凍出力を低下させる。それでも加熱ヒータ6等の発熱量が大きい場合には、制御方法を切り替え、主冷凍回路31に対して主冷凍回路側バイパス制御を実施して冷凍出力を下げてゆく。
The transition of the operation method and the control method is performed with reference to the output of the heater 6 and / or the humidification heater 25 as in the case described above.
The order of changing the operation method or control method is as shown in FIG. 6 described above, and when the temperature in the test chamber 3 reaches the vicinity of the set temperature, the refrigerant cooling circuit bypass control is performed while performing the subcooling operation. The amount of refrigerant passing through the expansion means 52 and flowing to the supercooling heat exchanger 50 is reduced. Specifically, in the present embodiment, the amount of refrigerant flowing to the supercooling heat exchanger 50 is reduced by opening the auxiliary refrigeration circuit side bypass circuit 61.
As a result, the degree of subcooling of the refrigerant flowing through the main refrigeration circuit 31 is reduced, the enthalpy of the refrigerant is increased, and the refrigeration output is reduced.
Finally, the amount of refrigerant flowing to the subcooling heat exchanger 50 becomes zero.
Then, a control device (not shown) determines whether the operation of the auxiliary refrigeration circuit 32 should be stopped. Specifically, when the calorific value of the heater 6 or the like is large, the operation of the auxiliary refrigeration circuit 32 is stopped. That is, the operation method switches from the subcooling operation to the middle cooling operation.
Even when the operation of the auxiliary refrigeration circuit 32 is stopped and switched to the intermediate cooling operation, when the calorific value of the heater 6 or the like is large, the main refrigeration circuit 31 is normally controlled to reduce the refrigeration output. If the calorific value of the heater 6 or the like is still large, the control method is switched, and the main refrigeration circuit side bypass control is performed on the main refrigeration circuit 31 to reduce the refrigeration output.

上記した実施形態では、設定温度が摂氏A度未満である場合、開始時に過冷却運転を実施した。しかしながら本発明はこの構成に限定されるものではなく、設定温度が摂氏A度未満である場合、最初に中冷運転や急冷運転を行い、途中から過冷却運転に移行してもよい。
以下この方法について説明する。
In the embodiment described above, when the set temperature is less than A degree Celsius, the subcooling operation is performed at the start. However, the present invention is not limited to this configuration, and when the set temperature is less than A degree Celsius, the medium cooling operation or the quenching operation may be performed first, and the operation may be shifted to the supercooling operation halfway.
This method will be described below.

例えば中冷運転を行うのであれば、冷媒制御手段たる補助側膨張手段47を開き、冷媒冷却用膨張手段52を閉じて冷媒冷却回路51を閉じ、補助側庫内蒸発器48に至る流路を開く。そして主冷凍回路31に属する主側圧縮機35だけが駆動され、主側庫内蒸発器38の温度が低下する。運転初期においては、主冷凍回路31は通常制御で運転される。
そのため主側膨張手段37の開度を全開にして主側庫内蒸発器38に大量の冷媒を送り込み、多くの冷熱を発生させて試験室3内の温度を急激に低下させる。
そして試験室3の温度がある程度下がると、主側庫内蒸発器38の表面温度と試験室3内の温度差が小さくなり、熱交換効率が低下するので、主側膨張手段37の開度が絞られる。
For example, if the medium cooling operation is to be performed, the auxiliary expansion means 47 serving as the refrigerant control means is opened, the refrigerant cooling expansion means 52 is closed, the refrigerant cooling circuit 51 is closed, and the flow path leading to the auxiliary side internal evaporator 48 is open. Then, only the main compressor 35 belonging to the main refrigeration circuit 31 is driven, and the temperature of the main in-compartment evaporator 38 is lowered. At the initial stage of operation, the main refrigeration circuit 31 is operated under normal control.
Therefore, the opening degree of the main expansion means 37 is fully opened, a large amount of refrigerant is sent to the main storage internal evaporator 38, a large amount of cold heat is generated, and the temperature in the test chamber 3 is rapidly reduced.
When the temperature of the test chamber 3 is lowered to a certain extent, the difference between the surface temperature of the main chamber internal evaporator 38 and the temperature in the test chamber 3 becomes small, and the heat exchange efficiency is lowered. Squeezed.

即ち主側庫内蒸発器38の表面温度と試験室3内の温度差が一定未満になると、主側膨張手段37の開度がしだいに絞られてゆき、主側庫内蒸発器38の温度を低下させて主側庫内蒸発器38の表面温度と試験室3内の温度に一定の温度差が確保される。   That is, when the surface temperature of the main side in-house evaporator 38 and the temperature difference in the test chamber 3 become less than a constant, the opening degree of the main side expansion means 37 is gradually narrowed, and the temperature of the main side in-house evaporator 38 To maintain a constant temperature difference between the surface temperature of the main in-compartment evaporator 38 and the temperature in the test chamber 3.

試験室3の温度が低下すると、主側膨張手段37も順次絞られてゆくが、前記した様に本実施形態では冷媒の蒸発温度が高めであるから、遂には主側庫内蒸発器38の表面温度と試験室3内の温度に一定の温度差が確保しえなくなる場合がある。また主側庫内蒸発器38の表面温度と試験室3内の温度に一定の温度差が確保できたとしても、冷凍出力が極端に減少し、実質的に試験室3の温度を低下させることができなくなる状況となる場合がある。   When the temperature of the test chamber 3 decreases, the main side expansion means 37 is also squeezed in sequence, but as described above, since the evaporation temperature of the refrigerant is high in the present embodiment, In some cases, a constant temperature difference can not be secured between the surface temperature and the temperature in the test chamber 3. Further, even if a constant temperature difference can be secured between the surface temperature of the main side in-house evaporator 38 and the temperature in the test chamber 3, the refrigeration output is extremely reduced and the temperature of the test chamber 3 is substantially reduced. May not be able to

本実施形態では、主側庫内蒸発器38の表面温度と試験室3内の温度に一定の温度差が確保しえなくなると予想される温度、あるいはそれよりもやや高い温度を閾値として予め記憶している。
試験室3の温度低下が進み、現状の試験室3の温度が所定の閾値(例えば摂氏0度)よりも低くなると、運転方法が切り替わり、過冷却運転に移行する。
その結果、補助冷凍回路32側の補助側圧縮機45が起動され、補助冷凍回路32の運転が開始される。そして冷媒制御手段たる補助側膨張手段47が閉じられ、冷媒冷却用膨張手段52が開かれて冷媒冷却回路51が開き、補助側庫内蒸発器48に至る流路が遮断される。
主側凝縮器36で液化した冷媒は、過冷却用熱交換器50でさらに冷却され、強度に過冷却状態となる。その結果、主側庫内蒸発器38の表面温度を、中冷運転を行っている際の主側庫内蒸発器38の表面温度よりも低下させることが可能となり、主側庫内蒸発器38の表面温度と試験室3内の温度に一定の温度差が確保され、試験室3の温度がさらに低下する。
In the present embodiment, a temperature at which it is predicted that a constant temperature difference can not be secured between the surface temperature of the main-side storage evaporator 38 and the temperature in the test chamber 3 or a temperature slightly higher than that is stored in advance as a threshold. doing.
When the temperature in the test chamber 3 advances and the current temperature in the test chamber 3 becomes lower than a predetermined threshold (for example, 0 degrees Celsius), the operation method is switched to shift to the supercooling operation.
As a result, the auxiliary compressor 45 on the auxiliary refrigeration circuit 32 side is activated, and the operation of the auxiliary refrigeration circuit 32 is started. Then, the auxiliary side expansion means 47 serving as the refrigerant control means is closed, the refrigerant cooling expansion means 52 is opened, the refrigerant cooling circuit 51 is opened, and the flow path leading to the auxiliary side internal evaporator 48 is shut off.
The refrigerant liquefied by the main-side condenser 36 is further cooled by the subcooling heat exchanger 50 and is strongly subcooled. As a result, the surface temperature of the main-side storage evaporator 38 can be made lower than the surface temperature of the main-side storage evaporator 38 during the middle cooling operation, and the main-side storage evaporator 38 A constant temperature difference is secured between the surface temperature of and the temperature in the test chamber 3, and the temperature of the test chamber 3 further decreases.

試験室3の温度が設定温度近傍に至った後の運転は、前記したものと同一であり、加熱ヒータ6等の発熱量を監視し、制御方法又は運転方法を変更してゆく。   The operation after the temperature of the test chamber 3 reaches the vicinity of the set temperature is the same as that described above. The amount of heat generation of the heater 6 or the like is monitored, and the control method or the operation method is changed.

本実施方法では、設定温度が極低温の場合は、前記した様に、試験室3内の温度が閾値に至るまでの間、通常運転(中冷運転)が行われ、試験室3内の温度が閾値以下になると過冷却運転に切り換わる。
ここで本実施形態において、主側圧縮機35は、従来技術(標準構成)の圧縮機に比べて容量が小さく、試験室3内の温度が閾値以下になるまでの間に駆動される主側圧縮機35による消費電力が少ない。また過冷却運転に切り換わった後の消費電力についても、環境試験装置1は、従来に比べて消費電力が少ない。
In the present embodiment, when the set temperature is extremely low, as described above, the normal operation (medium cooling operation) is performed until the temperature in the test chamber 3 reaches the threshold, and the temperature in the test chamber 3 is Switches to the subcooling operation when the value becomes below the threshold.
Here, in the present embodiment, the main compressor 35 has a smaller capacity than the compressor of the related art (standard configuration), and is driven before the temperature in the test chamber 3 falls below the threshold. Power consumption by the compressor 35 is low. Further, with regard to the power consumption after the switching to the supercooling operation, the environmental test device 1 consumes less power than in the prior art.

以上説明した実施形態では、設定温度が極低温の場合の試験方法として、最初に中冷運転を行い、試験室3内の温度が閾値以下となったことを条件として過冷却運転に切り替えたが、最初に急冷運転を行って試験室3内の温度を急激に低下させてもよい。最初に急冷運転を行う場合であっても、試験室3内の温度が閾値以下となったことを条件として過冷却運転に切り替える。   In the embodiment described above, the medium cooling operation is performed first as a test method in the case where the set temperature is extremely low, and the operation is switched to the supercooling operation on the condition that the temperature in the test chamber 3 becomes equal to or less than the threshold. First, the quenching operation may be performed to rapidly reduce the temperature in the test chamber 3. Even when the quenching operation is performed first, the operation is switched to the supercooling operation on condition that the temperature in the test chamber 3 becomes equal to or less than the threshold.

最初に急冷運転を行い、その後に過冷却運転に切り替える場合は、2基の圧縮機(主側圧縮機35と補助側圧縮機45)を同時に駆動して冷却が行われる。急冷運転においては、原則的に試験室3の温度が変化した場合に主側庫内蒸発器38の表面温度だけを低下させるが、今回の運転方法では、設定温度が極低温であるから、補助側庫内蒸発器48についても試験室3内の温度より低くなる様に制御される。
そして試験室3内の温度が閾値以下になると過冷却運転に切り換わる。
最初に急冷運転を行う運転方法の場合、補助側圧縮機45は既に起動されているので、冷媒制御手段たる補助側膨張手段47が閉じられ、冷媒冷却用膨張手段52が開くことによって冷媒冷却回路51が開かれ、過冷却運転に移行する。
In the case of performing the quenching operation first and then switching to the subcooling operation, cooling is performed by simultaneously driving the two compressors (the main compressor 35 and the auxiliary compressor 45). In the quenching operation, in principle, only the surface temperature of the main-compartment internal evaporator 38 is lowered when the temperature of the test chamber 3 changes, but in the present operation method, since the set temperature is extremely low, The in-storage evaporator 48 is also controlled to be lower than the temperature in the test chamber 3.
Then, when the temperature in the test chamber 3 becomes lower than the threshold value, the operation is switched to the subcooling operation.
In the case of the operation method in which the quenching operation is performed first, since the auxiliary compressor 45 is already activated, the auxiliary expansion unit 47 serving as the refrigerant control unit is closed and the refrigerant cooling expansion unit 52 is opened. 51 is opened, and it shifts to supercooling operation.

以上説明した実施形態では、冷却手段30の圧縮機(主側圧縮機35と補助側圧縮機45)はいずれもインバータ制御機能を備えていないが、インバータ制御機能を備えていてもよい。   In the embodiment described above, although the compressors of the cooling means 30 (the main compressor 35 and the auxiliary compressor 45) do not have the inverter control function, they may have the inverter control function.

以上説明した実施形態では、予め閾値を定め、試験室3内の温度が閾値を下回ったことを条件として運転方式を通常運転から過冷却運転に切り替えた。ここで閾値の値は、摂氏10度から摂氏マイナス10度程度であることが推奨される。またより推奨される範囲は、摂氏10度から摂氏0度の範囲である。   In the embodiment described above, the threshold is determined in advance, and the operation mode is switched from the normal operation to the supercooling operation on the condition that the temperature in the test chamber 3 falls below the threshold. Here, it is recommended that the threshold value be about 10 degrees Celsius to minus 10 degrees Celsius. A more recommended range is also in the range of 10 degrees Celsius to 0 degrees Celsius.

閾値に代わって、試験室3内の温度と、主側庫内蒸発器38の表面温度(蒸発温度)を比較し、両者が一定以内となったことを条件として運転方式を通常運転から過冷却運転へ切り替えてもよい。   Instead of the threshold value, the temperature in the test room 3 is compared with the surface temperature (evaporation temperature) of the evaporator 38 on the main storage side, and the operation method is supercooled from the normal operation on condition that both are within a certain level You may switch to driving.

以上説明した実施形態では、主冷凍回路側バイパス回路60を主冷凍回路31の過冷却用熱交換器50と主側膨張手段37の間から分岐したが、他の部位から分岐してもよい。例えば図7の環境試験装置72の様に、主側凝縮器36と過冷却用熱交換器50の間から分岐してもよい。   In the embodiment described above, the main refrigeration circuit side bypass circuit 60 is branched from between the supercooling heat exchanger 50 of the main refrigeration circuit 31 and the main expansion means 37, but may be branched from other parts. For example, as shown in the environmental test apparatus 72 of FIG. 7, a branch may be made from between the main condenser 36 and the subcooling heat exchanger 50.

以上説明した実施形態では、補助冷凍回路32は、補助側庫内蒸発器48を含む循環回路であるが、図8に示す環境試験装置75の様に補助側庫内蒸発器48に至る回路を省略してもよい。   In the embodiment described above, the auxiliary refrigeration circuit 32 is a circulation circuit including the auxiliary side in-storage evaporator 48, but a circuit leading to the auxiliary side in-storage evaporator 48 like the environmental test apparatus 75 shown in FIG. It may be omitted.

以上説明した実施形態では、膨張手段として電子膨張弁を使用したが、他の構成のものであってもよい。
例えば図9に示す膨張手段80の様に、キャピラリーチューブ81と電磁弁82を直列に接続して開閉弁付きキャピラリーチューブ83を構成し、これを複数、並列的に配管したものであってもよい。
Although the electronic expansion valve is used as the expansion means in the embodiment described above, it may have another configuration.
For example, as in the expansion means 80 shown in FIG. 9, a capillary tube 81 and a solenoid valve 82 may be connected in series to constitute a capillary tube 83 with an on-off valve, and a plurality of these may be connected in parallel. .

以上説明した実施形態では、バイパス回路60,61に戻り冷媒加熱用熱交換器63,65を設け、バイパス回路60,61を流れる冷媒と圧縮機35,45の吐出側の高温の気体冷媒との間で熱交換させたが、凝縮器36,46出口側の配管を流れる液体冷媒と熱交換させる構成としてもよい。   In the embodiment described above, the bypass circuits 60, 61 are provided with the refrigerant heating heat exchangers 63, 65, and the refrigerant flowing in the bypass circuits 60, 61 and the high temperature gaseous refrigerant on the discharge side of the compressors 35, 45 Although the heat exchange is performed between the heat exchangers, heat exchange may be performed with the liquid refrigerant flowing through the pipes on the outlet side of the condensers 36 and 46.

以下、本発明の実施例について説明する。
本実施例の環境試験装置1の系統図は、図1と同一である。
環境試験装置1では、主側圧縮機35として定格出力1.2kwの圧縮機を採用した。また補助側圧縮機45として定格出力0.4kwの圧縮機を採用した。
比較例(標準構成)1は、図13の系統図の環境試験装置100であり、市販の環境試験装置100を用いた。環境試験装置100は、圧縮機101として定格出力1.5kwの圧縮機を搭載している。
比較例1は、市販の環境試験装置100であり、冷却手段106は、カタログ等に表示した温度領域の環境を任意に作り出すことができるだけの容量(定格出力)を持っている。
比較例2は、前記した改良型環境試験装置であり、図13の系統図の環境試験装置200であって前記した市販の環境試験装置100を改造し圧縮機101を定格出力1.2kwの圧縮機に載せ代えたものである。
比較例2の、改良型環境試験装置に搭載された圧縮機101は、比較例(標準構成)1のものよりも容量が小さく、試験室3を冷却すると、カタログに記載した温度適用範囲の最低温度に達するのに比較例1よりも長時間を要する。
Hereinafter, examples of the present invention will be described.
A system diagram of the environmental test apparatus 1 of the present embodiment is the same as that of FIG.
In the environmental test device 1, a compressor with a rated output of 1.2 kw was adopted as the main side compressor 35. In addition, a compressor with a rated output of 0.4 kw was adopted as the auxiliary compressor 45.
The comparative example (standard composition) 1 is the environmental test apparatus 100 of the systematic diagram of FIG. 13, and the commercially available environmental test apparatus 100 was used. The environmental test apparatus 100 is equipped with a compressor having a rated output of 1.5 kw as the compressor 101.
The comparative example 1 is a commercially available environmental test apparatus 100, and the cooling means 106 has a capacity (rated output) which can arbitrarily create an environment of a temperature range displayed in a catalog or the like.
The comparative example 2 is the above-mentioned improved type environmental testing device, which is the environmental testing device 200 of the system diagram of FIG. 13 and is a modification of the above-mentioned commercially available environmental testing device 100 to compress the compressor 101 at the rated power of 1.2 kw. It was replaced by a machine.
The compressor 101 mounted in the improved environmental testing apparatus of Comparative Example 2 has a smaller capacity than that of Comparative Example (standard configuration) 1, and when the test room 3 is cooled, the minimum temperature coverage described in the catalog is obtained. It takes a longer time to reach the temperature than Comparative Example 1.

室内温度が摂氏20度、設定温度を摂氏マイナス40度とし、比較例(標準構成)1の環境試験装置100を起動した。比較例(標準構成)1の環境試験装置100を起動した後の、蒸発器107の表面温度と、試験室3の温度変化との関係は、図10のグラフの通りであった。
比較例(標準構成)1の環境試験装置100は、カタログ等に表示した温度領域の環境を任意に作り出すことができるだけの容量(定格出力)を持った圧縮機101を搭載しており、短時間の内に、試験室3の温度が設定温度まで低下し、その後、安定した。
The indoor temperature was 20 degrees Celsius, the set temperature was −40 degrees Celsius, and the environmental test apparatus 100 of Comparative Example (standard configuration) 1 was started. The relationship between the surface temperature of the evaporator 107 and the temperature change of the test chamber 3 after activating the environmental test apparatus 100 of the comparative example (standard configuration) 1 was as shown in the graph of FIG.
The environmental test apparatus 100 of the comparative example (standard configuration) 1 is equipped with the compressor 101 having a capacity (rated output) capable of arbitrarily creating an environment of a temperature range displayed in a catalog etc. The temperature of the test room 3 dropped to the set temperature and then stabilized.

また室内温度が摂氏20度、設定温度を摂氏マイナス40度とし、比較例2の環境試験装置200を起動した。環境試験装置200を起動した後の、蒸発器107の表面温度と、試験室3の温度変化との関係は、図11のグラフの通りであった。
比較例2の環境試験装置200では、試験室3の温度を設定温度に至らせることはできなかった。
Further, the environmental temperature was set to 20 degrees Celsius and the set temperature was set to minus 40 degrees Celsius, and the environmental test apparatus 200 of Comparative Example 2 was started. The relationship between the surface temperature of the evaporator 107 and the temperature change of the test chamber 3 after starting the environmental test apparatus 200 was as shown in the graph of FIG.
In the environmental test apparatus 200 of Comparative Example 2, the temperature of the test room 3 could not be brought to the set temperature.

室内温度が摂氏20度、設定温度を摂氏マイナス40度とし、実施例の環境試験装置1を起動した。実施例の環境試験装置1を起動した後の、主側庫内蒸発器38の表面温度と、試験室3の温度変化との関係は、図12のグラフの通りであった。
実施例の環境試験装置1の主側庫内蒸発器38の表面温度と、試験室3の温度変化との関係(図12)は、比較例(標準構成)1の環境試験装置100を起動した後のそれに近く、比較例1に比べて遜色のないものであった。
The indoor temperature was set to 20 degrees Celsius and the set temperature was set to minus 40 degrees Celsius, and the environmental test device 1 of the example was started. The relationship between the surface temperature of the evaporator 38 in the main storage and the temperature change of the test chamber 3 after the environmental test device 1 of the example was started was as shown in the graph of FIG.
The relationship (FIG. 12) between the surface temperature of the main-chamber internal evaporator 38 of the environmental test apparatus 1 of the embodiment and the temperature change of the test chamber 3 (FIG. 12) starts the environmental test apparatus 100 of the comparative example (standard configuration) It was comparable to that of Comparative Example 1 after that.

比較例(標準構成)1の環境試験装置100と実施例の環境試験装置1について、それぞれ最大冷凍出力を発現させた際の、冷媒の蒸発温度と、冷媒の過冷却温度、及び冷凍出力は、次の表1の通りであった。   Regarding the environmental test apparatus 100 of Comparative Example (standard configuration) 1 and the environmental test apparatus 1 of Example, the evaporation temperature of the refrigerant, the subcooling temperature of the refrigerant, and the refrigeration output when the maximum refrigeration output is expressed respectively are It was as Table 1 below.

Figure 2019082493
Figure 2019082493

上記した表で明らかな様に、本実施例の環境試験装置1の冷却手段30は、冷媒の蒸発温度が比較例(標準構成)1に比べて高いものの、同等の最大出力を発現することができる。   As apparent from the above-mentioned table, the cooling means 30 of the environmental test apparatus 1 of this embodiment can express the same maximum output although the evaporation temperature of the refrigerant is higher than that of the comparative example (standard configuration) 1 it can.

また比較例(標準構成)1の環境試験装置100と実施例の環境試験装置1について、設定温度を摂氏マイナス40度とした際の冷媒の蒸発温度と、冷媒の過冷却温度、及び冷凍出力は、次の表2の通りであった。   With regard to the environmental test apparatus 100 of Comparative Example (standard configuration) 1 and the environmental test apparatus 1 of Example, the evaporation temperature of the refrigerant when the set temperature is set to minus 40 degrees Celsius, the subcooling temperature of the refrigerant, and the refrigeration output Table 2 below.

Figure 2019082493
Figure 2019082493

上記した表で明らかな様に、本実施例の環境試験装置1の冷却手段30は、過冷却度が比較例(標準構成)1に比べて高く、蒸発温度を同一にした条件で、同等の冷凍出力を発現することができる。   As apparent from the above-mentioned table, the cooling means 30 of the environmental test apparatus 1 of the present embodiment has a degree of supercooling higher than that of the comparative example (standard configuration) 1 and is equivalent under the same evaporation temperature. Frozen output can be expressed.

比較例(標準構成)1の環境試験装置100の設定温度と消費電力との関係、及び実施例の環境試験装置1の設定温度と消費電力との関係は、次の表3の通りであった。
両者を比較すると、実施例の環境試験装置1の設定温度と消費電力は、比較例1の環境試験装置100の設定温度と消費電力に比べて30パーセント程度低いものであった。
The relationship between the set temperature and power consumption of the environmental test apparatus 100 of the comparative example (standard configuration) 1 and the relationship between the set temperature and power consumption of the environmental test apparatus 1 of the example were as shown in Table 3 below. .
When the two are compared, the set temperature and the power consumption of the environmental test device 1 of the example are about 30 percent lower than the set temperature and the power consumption of the environmental test device 100 of the comparative example 1.

Figure 2019082493
Figure 2019082493

1 環境試験装置
30 冷却手段
31 主冷凍回路
32 補助冷凍回路
35 主側圧縮機
36 主側凝縮器
37 主側膨張手段
38 主側庫内蒸発器
45 補助側圧縮機
46 補助側凝縮器
47 補助側膨張手段
48 補助側庫内蒸発器
50 過冷却用熱交換器
51 冷媒冷却回路
52 冷媒冷却用膨張手段
60 主冷凍回路側バイパス回路
61 補助冷凍回路側バイパス回路
63 冷媒加熱用熱交換器
70 環境試験装置
72 環境試験装置
75 環境試験装置
DESCRIPTION OF SYMBOLS 1 Environmental test apparatus 30 Cooling means 31 Main refrigeration circuit 32 Auxiliary refrigeration circuit 35 Main side compressor 36 Main side condenser 37 Main side expansion means 38 Main side in-house evaporator 45 Auxiliary side compressor 46 Auxiliary side condenser 47 Auxiliary side Expansion means 48 Auxiliary side internal evaporator 50 Overcooling heat exchanger 51 Refrigerant cooling circuit 52 Refrigerant cooling expansion means 60 Main refrigeration circuit side bypass circuit 61 Auxiliary refrigeration circuit side bypass circuit 63 Refrigerant heating heat exchanger 70 Environmental test Equipment 72 Environmental test equipment 75 Environmental test equipment

Claims (10)

被試験物を配置する試験室と、冷却手段を有し、前記冷却手段は、主冷凍回路と、補助冷凍回路を有し、前記主冷凍回路及び前記補助冷凍回路は、いずれも圧縮機と、凝縮器と、膨張手段と、庫内蒸発器を有していて相変化する冷媒が循環するものであり、
前記主冷凍回路及び前記補助冷凍回路の前記庫内蒸発器は、前記試験室内または前記試験室に通じる位置に設けられており、
前記補助冷凍回路から分岐され、前記主冷凍回路の凝縮器から膨張手段に至るまでの間を通過する冷媒を冷却する冷媒冷却回路と、
当該冷媒冷却回路に流れる冷媒を断続及び/又は流量制御する冷媒制御手段を有し、
前記主冷凍回路及び/又は前記補助冷凍回路に冷媒を循環させて前記試験室内の温度を制御する通常運転と、前記主冷凍回路に冷媒を循環させると共に前記冷媒冷却回路に冷媒を通過させる過冷却運転を行うことが可能であり、
一定の条件に基づいて前記冷媒制御手段を動作させ、前記通常運転と過冷却運転を切り替える切り替え制御手段を有し、
前記試験室の温度が一定温度以下になった場合及び/又は前記試験室の温度と前記主冷凍回路に属する庫内蒸発器の表面温度の差が一定以下となった場合に、過冷却運転が行われることを特徴とする環境試験装置。
The test room has a test chamber in which the test object is placed, and a cooling means, and the cooling means has a main refrigeration circuit and an auxiliary refrigeration circuit, and both the main refrigeration circuit and the auxiliary refrigeration circuit are compressors, A condenser, an expansion means, and an in-compartment evaporator, through which a phase-changing refrigerant circulates,
The internal evaporator of the main refrigeration circuit and the auxiliary refrigeration circuit is provided at a position communicating with the test chamber or the test chamber,
A refrigerant cooling circuit for cooling a refrigerant branched from the auxiliary refrigeration circuit and passing from the condenser of the main refrigeration circuit to the expansion means;
It has a refrigerant control means for controlling and / or controlling the flow of the refrigerant flowing in the refrigerant cooling circuit.
Normal operation of controlling the temperature in the test chamber by circulating the refrigerant in the main refrigeration circuit and / or the auxiliary refrigeration circuit, and supercooling in which the refrigerant is circulated through the refrigerant cooling circuit while circulating the refrigerant through the main refrigeration circuit It is possible to drive and
It has switching control means for operating the refrigerant control means based on certain conditions and switching between the normal operation and the subcooling operation,
The supercooling operation is performed when the temperature of the test chamber falls below a certain temperature and / or when the difference between the temperature of the test chamber and the surface temperature of the in-house evaporator belonging to the main refrigeration circuit falls below a certain value. An environmental test apparatus characterized in that it is carried out.
被試験物を配置する試験室と、冷却手段を有し、前記冷却手段は、主冷凍回路と、補助冷凍回路を有し、前記主冷凍回路は、圧縮機と、凝縮器と、膨張手段と、庫内蒸発器を有していて相変化する冷媒が循環するものであり、
前記主冷凍回路の前記庫内蒸発器は、前記試験室内または前記試験室に通じる位置に設けられており、
前記主冷凍回路の凝縮器から膨張手段に至るまでの間を通過する冷媒を冷却するものであって、前記補助冷凍回路の一部又は前記補助冷凍回路から分岐された回路によって構成された冷媒冷却回路を有し、
当該冷媒冷却回路に流れる冷媒を断続及び/又は流量制御する冷媒制御手段を有し、
前記主冷凍回路に冷媒を循環させて前記試験室内の温度を制御する通常運転と、前記主冷凍回路に冷媒を循環させると共に前記冷媒冷却回路に冷媒を通過させる過冷却運転を行うことが可能であり、
一定の条件に基づいて前記冷媒制御手段を動作させ、前記通常運転と過冷却運転を切り替える切り替え制御手段を有し、
前記試験室の温度が一定温度以下になった場合及び/又は前記試験室の温度と前記主冷凍回路に属する庫内蒸発器の表面温度の差が一定以下となった場合に、過冷却運転が行われることを特徴とする環境試験装置。
The test room has a test chamber in which the object to be tested is placed, and cooling means, and the cooling means has a main refrigeration circuit and an auxiliary refrigeration circuit, and the main refrigeration circuit includes a compressor, a condenser, and expansion means. And an in-compartment evaporator, through which a phase-changing refrigerant circulates,
The in-compartment evaporator of the main refrigeration circuit is provided at a position communicating with the test chamber or the test chamber,
A refrigerant cooling system for cooling a refrigerant passing from the condenser of the main refrigeration circuit to the expansion means, the refrigerant cooling system comprising a part of the auxiliary refrigeration circuit or a circuit branched from the auxiliary refrigeration circuit Have a circuit,
It has a refrigerant control means for controlling and / or controlling the flow of the refrigerant flowing in the refrigerant cooling circuit.
It is possible to perform a normal operation in which the refrigerant is circulated in the main refrigeration circuit to control the temperature in the test chamber, and a supercooling operation in which the refrigerant is circulated through the refrigerant cooling circuit while circulating the refrigerant in the main refrigeration circuit. Yes,
It has switching control means for operating the refrigerant control means based on certain conditions and switching between the normal operation and the subcooling operation,
The supercooling operation is performed when the temperature of the test chamber falls below a certain temperature and / or when the difference between the temperature of the test chamber and the surface temperature of the in-house evaporator belonging to the main refrigeration circuit falls below a certain value. An environmental test apparatus characterized in that it is carried out.
前記補助冷凍回路に属する圧縮機の容量は、前記主冷凍回路に属する圧縮機の容量よりも小さいことを特徴とする請求項1又は2に記載の環境試験装置。   The environmental test device according to claim 1 or 2, wherein a capacity of a compressor belonging to the auxiliary refrigeration circuit is smaller than a capacity of a compressor belonging to the main refrigeration circuit. 前記主冷凍回路は、冷媒の蒸発温度を調節可能であり、
前記試験室の温度低下に応じて蒸発温度を低下させ、前記試験室の温度が一定温度以下となったことを条件として通常運転から過冷却運転へ切り替えられることを特徴とする請求項1乃至3のいずれかに記載の環境試験装置。
The main refrigeration circuit is capable of adjusting the evaporation temperature of the refrigerant,
4. The method according to claim 1, wherein the evaporation temperature is lowered according to the temperature decrease of the test chamber, and the normal operation is switched to the supercooling operation on condition that the temperature of the test chamber becomes lower than a predetermined temperature. An environmental test apparatus according to any of the above.
前記補助冷凍回路は、圧縮機と、凝縮器と、膨張手段と、庫内蒸発器を有していて相変化する冷媒が循環するものであり、
前記試験室内の温度が一定の中温以上であり、前記試験室の設定温度が一定の低温以下である場合には、
前記主冷凍回路と前記補助冷凍回路を駆動して前記主冷凍回路及び前記補助冷凍回路の庫内蒸発器に冷媒を通過させる急冷運転を実行し、
前記試験室内の温度低下に応じて前記双方の庫内蒸発器内における蒸発温度を低下させ、
その後に前記補助冷凍回路の庫内蒸発器に対する冷媒の供給を停止して過冷却運転に切り替え、
前記試験室内の温度が設定温度に達すると前記主冷凍回路だけで通常運転を行うことを特徴とする請求項1乃至4のいずれかに記載の環境試験装置。
The auxiliary refrigeration circuit includes a compressor, a condenser, an expansion means, and an in-storage evaporator, through which a phase-changing refrigerant circulates.
If the temperature in the test room is above a certain medium temperature and the set temperature in the test room is below a certain low temperature,
A rapid cooling operation is performed to drive the main refrigeration circuit and the auxiliary refrigeration circuit to pass refrigerant to the in-storage evaporator of the main refrigeration circuit and the auxiliary refrigeration circuit.
In accordance with the temperature drop in the test chamber, the evaporation temperature in the two storage evaporators is decreased,
Thereafter, the supply of the refrigerant to the in-storage evaporator of the auxiliary refrigeration circuit is stopped to switch to the supercooling operation,
The environmental test device according to any one of claims 1 to 4, wherein normal operation is performed only with the main refrigeration circuit when the temperature in the test chamber reaches a set temperature.
前記補助冷凍回路は、凝縮器から出た冷媒を圧縮機に戻すバイパス回路を有し、バイパス回路において前記補助冷凍回路の凝縮器から出た冷媒が前記補助冷凍回路の圧縮機から出た冷媒と熱交換され、過熱ガスとなって当該圧縮機に戻されることを特徴とする請求項1乃至5のいずれかに記載の環境試験装置。   The auxiliary refrigeration circuit has a bypass circuit that returns the refrigerant that has exited from the condenser to the compressor, and in the bypass circuit, the refrigerant that has exited from the condenser of the auxiliary refrigeration circuit has exited from the compressor of the auxiliary refrigeration circuit The environmental test apparatus according to any one of claims 1 to 5, wherein the environmental test device is heat-exchanged and returned to the compressor as a superheated gas. 前記主冷凍回路は、当該主冷凍回路の凝縮器から出た冷媒を当該主冷凍回路の圧縮機に戻すバイパス回路を有し、当該バイパス回路において前記主冷凍回路の凝縮器から出た冷媒が前記主冷凍回路の圧縮機から出た冷媒と熱交換され、過熱ガスとなって当該圧縮機に戻されることを特徴とする請求項1乃至6のいずれかに記載の環境試験装置。   The main refrigeration circuit has a bypass circuit that returns the refrigerant exiting the condenser of the main refrigeration circuit to the compressor of the main refrigeration circuit, and the refrigerant exiting the condenser of the main refrigeration circuit in the bypass circuit is the above-mentioned The environmental test apparatus according to any one of claims 1 to 6, wherein heat is exchanged with the refrigerant that has exited from the compressor of the main refrigeration circuit, and is returned to the compressor as a superheated gas. 通常運転から過冷却運転に移行する切り替え手段及び/又は過冷却運転から通常運転に移行する切り替え手段を有することを特徴とする請求項1乃至7のいずれかに記載の環境試験装置。   The environmental test device according to any one of claims 1 to 7, further comprising switching means for shifting from normal operation to supercooling operation and / or switching means for shifting from supercooling operation to normal operation. 前記試験室の設定温度を設定することが可能であり、設定温度及び/又は前記試験室の現状の温度に応じて通常運転と過冷却運転が切り替わることを特徴とする請求項1乃至8のいずれかに記載の環境試験装置。   The set temperature of the test room can be set, and the normal operation and the subcooling operation are switched according to the set temperature and / or the current temperature of the test room. Environmental test equipment described in. 前記補助冷凍回路の運転を停止することが可能であることを特徴とする請求項1乃至9のいずれかに記載の環境試験装置。   The environmental test device according to any one of claims 1 to 9, wherein the operation of the auxiliary refrigeration circuit can be stopped.
JP2019028308A 2019-02-20 2019-02-20 Environmental test equipment Active JP6650062B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028308A JP6650062B2 (en) 2019-02-20 2019-02-20 Environmental test equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028308A JP6650062B2 (en) 2019-02-20 2019-02-20 Environmental test equipment

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2016030482A Division JP6486847B2 (en) 2016-02-19 2016-02-19 Environmental test equipment

Publications (3)

Publication Number Publication Date
JP2019082493A true JP2019082493A (en) 2019-05-30
JP2019082493A5 JP2019082493A5 (en) 2019-07-18
JP6650062B2 JP6650062B2 (en) 2020-02-19

Family

ID=66671100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028308A Active JP6650062B2 (en) 2019-02-20 2019-02-20 Environmental test equipment

Country Status (1)

Country Link
JP (1) JP6650062B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742377U (en) * 1980-08-21 1982-03-08
JP2001174381A (en) * 1999-12-15 2001-06-29 Hitachi Ltd Low/high temperature room type thermal shock testing device and its operating method
JP2007225257A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Refrigeration unit
US20120023979A1 (en) * 2010-07-27 2012-02-02 Raytheon Company System And Method For Providing Efficient Cooling Within A Test Environment
JP2013073502A (en) * 2011-09-28 2013-04-22 Espec Corp Environment testing device
JP2015102541A (en) * 2013-11-28 2015-06-04 エスペック株式会社 Environmental test device and cooling system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5742377U (en) * 1980-08-21 1982-03-08
JP2001174381A (en) * 1999-12-15 2001-06-29 Hitachi Ltd Low/high temperature room type thermal shock testing device and its operating method
JP2007225257A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Refrigeration unit
US20120023979A1 (en) * 2010-07-27 2012-02-02 Raytheon Company System And Method For Providing Efficient Cooling Within A Test Environment
JP2013073502A (en) * 2011-09-28 2013-04-22 Espec Corp Environment testing device
JP2015102541A (en) * 2013-11-28 2015-06-04 エスペック株式会社 Environmental test device and cooling system

Also Published As

Publication number Publication date
JP6650062B2 (en) 2020-02-19

Similar Documents

Publication Publication Date Title
JP3462156B2 (en) refrigerator
US8984904B2 (en) Refrigerating device
JP6486847B2 (en) Environmental test equipment
JP5514787B2 (en) Environmental test equipment
WO2012128229A1 (en) Binary refrigeration cycle device
JP5183804B2 (en) Refrigeration cycle equipment, air conditioning equipment
JP4795709B2 (en) Constant temperature and humidity device
WO2005052467A1 (en) Freezer and air contitioner
JP2009228979A (en) Air conditioner
JP6420686B2 (en) Refrigeration cycle equipment
JP2006284035A (en) Air conditioner and its control method
CN110618084B (en) Test chamber and method
JP2006207990A (en) Refrigerating apparatus
KR20150118482A (en) Refrigerator and control method of the same
JP3975664B2 (en) Refrigerating refrigerator, operation method of freezing refrigerator
WO2022267886A1 (en) Anti-frost control method for air conditioner and air conditioner
JPH11173729A (en) Refrigerator
JP2005233559A (en) Air conditioning/refrigerating/freezing equipment and its operation method
JP3906637B2 (en) Freezer refrigerator
JP4542054B2 (en) Refrigeration equipment
JP2007309585A (en) Refrigerating device
JP2007309536A (en) Refrigerating device
JP6650062B2 (en) Environmental test equipment
US20140284024A1 (en) Method for controlling refrigerator
JP4169080B2 (en) Freezer refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200117

R150 Certificate of patent or registration of utility model

Ref document number: 6650062

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250