JP4795709B2 - Constant temperature and humidity device - Google Patents

Constant temperature and humidity device Download PDF

Info

Publication number
JP4795709B2
JP4795709B2 JP2005102761A JP2005102761A JP4795709B2 JP 4795709 B2 JP4795709 B2 JP 4795709B2 JP 2005102761 A JP2005102761 A JP 2005102761A JP 2005102761 A JP2005102761 A JP 2005102761A JP 4795709 B2 JP4795709 B2 JP 4795709B2
Authority
JP
Japan
Prior art keywords
temperature
heat exchanger
liquid refrigerant
refrigerant
humidity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005102761A
Other languages
Japanese (ja)
Other versions
JP2006284063A (en
Inventor
誠 船上
憲司 尾野
仁 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2005102761A priority Critical patent/JP4795709B2/en
Publication of JP2006284063A publication Critical patent/JP2006284063A/en
Application granted granted Critical
Publication of JP4795709B2 publication Critical patent/JP4795709B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Devices For Use In Laboratory Experiments (AREA)
  • Control Of Temperature (AREA)
  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermo-hygrostat suitable as an environment tester while further saving energy with no waste. <P>SOLUTION: An air cooling heat exchanger 6, a heater 7, a humidifier 8 and a fan 10 are arranged in an air conditioning passage 5. A liquid refrigerant (brine) is distributed in the air cooling heat exchanger 6. The temperature of the liquid refrigerant is controlled with a dew point as Dp in a set environment to satisfy the following expression. When a temperature in a box is lowered, the temperature of the heat exchanger is controlled to be closer to the dew point in the set environment. <P>COPYRIGHT: (C)2007,JPO&amp;INPIT

Description

本発明は、所定の庫内や室内を目標とする温度及び湿度に調整可能な恒温恒湿装置に関するものであり、環境試験装置として使用されることが望ましいものである。   The present invention relates to a constant temperature and humidity device that can be adjusted to a target temperature and humidity in a predetermined cabinet or room, and is desirably used as an environmental test device.

機器や部品等の耐久性をテストする方策として環境試験が知られている。環境試験は、恒温恒湿装置又は環境試験装置と称される装置を使用して行われる。ここで恒温恒湿装置とは特許文献1の様にヒータと冷却装置及び加湿装置を備え、庫内に所望の環境を作るものである。例えば、温度60℃、湿度80%といった温度と湿度の環境を人工的に作る。   Environmental testing is known as a measure for testing the durability of equipment and components. The environmental test is performed using a device called a constant temperature and humidity device or an environmental test device. Here, the constant temperature and humidity device includes a heater, a cooling device, and a humidifying device as in Patent Document 1, and creates a desired environment in the cabinet. For example, an environment of temperature and humidity such as a temperature of 60 ° C. and a humidity of 80% is artificially created.

従来技術の恒温恒湿装置で採用する冷却装置は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであり、蒸発器(熱交換器)を庫内や外付けの空調機内に設置して庫内の空気を冷却している。また従来技術の恒温恒湿装置で採用する冷却装置では、蒸発器の表面で水蒸気を凝縮させて減湿している。   The cooling device employed in the conventional constant temperature and humidity device executes a refrigeration cycle that compresses and condenses the phase-changing refrigerant, evaporates and cools it, and stores the evaporator (heat exchanger). It is installed in an internal or external air conditioner to cool the air in the cabinet. Further, in the cooling device employed in the conventional constant temperature and humidity device, the moisture is condensed by condensing water vapor on the surface of the evaporator.

特開2000−111127号公報JP 2000-11127 A

従来技術の恒温恒湿装置は、性能的には申し分のないものであるが、消費電力を下げたいという市場の要求がある。即ち市場では、より省エネ型の恒温恒湿装置が求められている。特に恒温恒湿装置は、環境試験に使用される場合が多く、長期に渡って連続運転されることが多いので、市場においてはより省エネ型の装置が待望されている。   Although the temperature and humidity device of the prior art is satisfactory in terms of performance, there is a market demand for reducing power consumption. That is, more energy-saving constant temperature and humidity devices are required in the market. In particular, the constant temperature and humidity device is often used for environmental tests and is often operated continuously for a long period of time. Therefore, more energy-saving devices are expected in the market.

そこで本発明者は、従来技術の恒温恒湿装置におけるエネルギーロスを検討した。その結果、従来技術の恒温恒湿装置では、冷却装置のエネルギーが、庫内温度を下げるためだけではなく、庫内の水蒸気の、必要以上の凝縮にも消費されていることが判った。つまり従来技術の恒温恒湿装置では、庫内の顕熱を下げるだけでなく、潜熱を低下させるのにもエネルギーが消費され、エネルギーの無駄があることが判明した。   Therefore, the present inventor examined energy loss in the conventional constant temperature and humidity device. As a result, in the constant temperature and humidity device of the prior art, it has been found that the energy of the cooling device is consumed not only for lowering the internal temperature but also for the condensation of water vapor in the storage more than necessary. In other words, it has been found that the conventional constant temperature and humidity device not only lowers the sensible heat in the cabinet but also consumes energy to reduce the latent heat, resulting in wasted energy.

即ち従来技術の恒温恒湿装置で採用する冷却装置は、前記した様に相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであり、蒸発器(熱交換器)を庫内に設置して庫内の空気を冷却している。
そのため庫内の空気と熱交換を行う部位(蒸発器)の温度は相当に低いものとなり、庫内の空気に含有される水蒸気を凝縮させる。その結果、庫内の温度だけでなく湿度も低下してしまう。そのため従来技術の恒温恒湿装置では、湿度を維持するために加湿装置によって庫内に水蒸気を供給する必要があった。
That is, the cooling device employed in the constant temperature and humidity device of the prior art executes a refrigeration cycle that compresses and condenses the phase change refrigerant and evaporates and cools it as described above. An exchanger is installed in the cabinet to cool the air in the cabinet.
Therefore, the temperature of the part (evaporator) that exchanges heat with the air in the warehouse is considerably low, and the water vapor contained in the air in the warehouse is condensed. As a result, not only the temperature in the cabinet but also the humidity is lowered. Therefore, in the constant temperature and humidity device of the prior art, it was necessary to supply water vapor into the cabinet by the humidifier in order to maintain the humidity.

以下、図1に示す飽和水蒸気曲線を参照しつつ説明する。
図1は、飽和水蒸気曲線と、庫内温度及び庫内湿度の変化を示すグラフである。グラフにおいて、ポイントAは、現在の環境であり、現在における庫内温度及び含有する水蒸気量を示している。ポイントAは、温度80℃、相対湿度90%の環境である。
同Bは、目標とする環境(以下 設定環境と称する場合がある)であり、設定環境における庫内温度及び含有する水蒸気量を示している。ポイントBは、温度75℃、相対湿度90%の環境である。即ち設定環境は、現状の環境と相対湿度が同じで温度だけが低い。
なお飽和水蒸気曲線は、温度と絶対湿度、即ち気温と当該気温において一定容積に含み得る水蒸気の質量との関係を示すグラフであるから、一般に言う湿度(相対湿度)は、当該温度におけるグラフ上のY軸の値と、ポイントにおけるY軸の値の比率である。
Hereinafter, description will be made with reference to the saturated water vapor curve shown in FIG.
FIG. 1 is a graph showing a saturated water vapor curve and changes in the internal temperature and the internal humidity. In the graph, point A is the current environment, and shows the current internal temperature and the amount of water vapor contained. Point A is an environment with a temperature of 80 ° C. and a relative humidity of 90%.
B is a target environment (hereinafter sometimes referred to as a set environment), and shows the internal temperature and the amount of water vapor contained in the set environment. Point B is an environment with a temperature of 75 ° C. and a relative humidity of 90%. That is, the setting environment has the same relative humidity as the current environment and only the temperature is low.
Since the saturated water vapor curve is a graph showing the relationship between temperature and absolute humidity, that is, the temperature and the mass of water vapor that can be contained in a certain volume at the air temperature, generally speaking, the humidity (relative humidity) is on the graph at the temperature. It is the ratio of the Y-axis value to the Y-axis value at the point.

従来技術の恒温恒湿装置によると、庫内の環境は、破線の様な経過を経て目標たるポイントBの環境に至る。即ち庫内温度を低下すべく冷却装置を運転すると、熱交換器の表面温度が低いために熱交換器の表面で水蒸気が凝縮し、温度と共に湿度も低下してしまう。具体的には庫内の環境は、一旦ポイントCに至る。即ちポイントCは庫内温度が目標温度であり、湿度が目標値よりも低い環境である。
そして従来技術の恒温恒湿装置では、加湿装置を運転して庫内に水蒸気を供給し、湿度を上昇させて設定環境を作りだす。
According to the constant temperature and humidity device of the prior art, the environment in the cabinet reaches the target point B environment through the process shown by the broken line. That is, when the cooling device is operated to lower the internal temperature, the surface temperature of the heat exchanger is low, so that water vapor condenses on the surface of the heat exchanger, and the humidity decreases with temperature. Specifically, the environment in the warehouse once reaches point C. That is, the point C is an environment where the internal temperature is the target temperature and the humidity is lower than the target value.
In the conventional constant temperature and humidity device, the humidifier is operated to supply water vapor into the cabinet, and the humidity is increased to create a setting environment.

そのため従来技術の恒温恒湿装置は、冷却装置のエネルギーが、庫内温度を下げるためだけではなく、庫内の水蒸気を凝縮するためにも消費され、無駄があることが判った。
そこで本発明は、従来技術の上記した要望に応えるため、より無駄がなく、より省エネルギーである恒温恒湿装置の開発を課題とする。
For this reason, it has been found that in the constant temperature and humidity device of the prior art, the energy of the cooling device is consumed not only for lowering the internal temperature but also for condensing the water vapor in the internal space, which is wasteful.
Therefore, the present invention has an object to develop a constant temperature and humidity apparatus that is less wasteful and saves energy in order to meet the above-described demands of the prior art.

以下、課題を解決するための手段を説明するが、本明細書では、「熱交目標温度」の文言は、熱交換器そのものの温度を指す場合と、熱交換器に流通させる冷媒の温度を指す場合がある。   Hereinafter, means for solving the problem will be described. In this specification, the term “heat exchange target temperature” refers to the temperature of the heat exchanger itself and the temperature of the refrigerant to be circulated through the heat exchanger. May point.

上記した要望に応えることができる請求項1に記載の発明は、温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の環境が目標とする温度及び湿度となる様に調整可能な恒温恒湿装置において、冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し、前記所定空間内の温度を低下させる際に、前記熱交換器の表面温度を熱交目標温度に制御するものであり、前記熱交目標温度は前記目標とする環境における露点Dpの近傍であり、以下に示す式を満足する範囲にあって、冷却手段は前記熱交換器に液体冷媒を循環させるものであって液体冷媒を前記熱交換器に循環させる二次冷却回路と、蒸発器を介して液体冷媒を冷却する一次側温調回路を有し、前記二次冷却回路は、冷媒タンクと、冷媒タンクから熱交換器に液体冷媒を循環させる流路と、熱交換器を迂回して循環する外部配管と、弁を備えていて前記熱交換器に流れる液体冷媒を断続することが可能であり、一次側温調回路は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであって前記液体冷媒の温度を前記目標とする環境における露点Dpよりも低い温度にし、前記所定空間内の温度が目標とする温度よりも低い場合には、前記弁を冷媒タンク側に切り換えて液体冷媒を外部配管を経由して循環させて冷媒タンク内の液体冷媒を攪拌し、前記所定空間内の温度が目標とする温度よりも高い場合には、前記弁を熱交換器側に切り換えて熱交換器の温度を低下させて前記所定空間内の温度を降下させ、その際に熱交換器に流れる液体冷媒をオンオフし、熱交換器の表面温度が前記熱交目標温度となる様に制御することを特徴とする恒温恒湿装置である。

Figure 0004795709
The invention according to claim 1, which can meet the above-mentioned demand, is provided with a temperature detecting means, a humidity detecting means and a cooling means, and a constant temperature which can be adjusted so that the environment in the predetermined space becomes a target temperature and humidity. In the humidity control apparatus, the cooling means includes a heat exchanger that exchanges heat with the air in the space, and when the temperature in the predetermined space is lowered, the surface temperature of the heat exchanger is set to the heat exchange target temperature. The heat exchange target temperature is in the vicinity of the dew point Dp in the target environment and is in a range satisfying the following expression, and the cooling means circulates the liquid refrigerant in the heat exchanger. A secondary cooling circuit that circulates the liquid refrigerant to the heat exchanger, and a primary temperature control circuit that cools the liquid refrigerant via an evaporator, the secondary cooling circuit including a refrigerant tank, Liquid refrigerant is circulated from the refrigerant tank to the heat exchanger. And causing flow passage is, the external piping which circulates while bypassing the heat exchanger, it is possible to intermittently liquid refrigerant flowing through the heat exchanger provided with a valve, the primary-side temperature adjustment circuit changes phases condensed by compressing the refrigerant, which was the temperature of the liquid coolant be one that performs a refrigeration cycle for cooling by evaporation to a temperature below the dew point Dp in the environment to the target, the temperature within said predetermined space If the temperature is lower than the target temperature, the valve is switched to the refrigerant tank side to circulate the liquid refrigerant via an external pipe to stir the liquid refrigerant in the refrigerant tank, and the temperature in the predetermined space is When the temperature is higher than the target temperature, the valve is switched to the heat exchanger side to lower the temperature of the heat exchanger to lower the temperature in the predetermined space, and the liquid refrigerant that flows to the heat exchanger at that time and turning on and off the table of the heat exchanger Is a constant temperature and humidity device and controls As the temperature is the heat exchange target temperature.
Figure 0004795709

本発明では、「熱交目標温度」の文言は、熱交換器そのものの温度を指す。
請求項1に記載の発明では、庫内や室内の温度を低下させる際に、熱交換器の温度を、設定環境における露点Dpの近傍に制御する。
そのため熱交換器における水蒸気の凝縮が少なく、潜熱の低下に消費されるエネルギーが少ない。
In the present invention, the term “heat exchange target temperature” refers to the temperature of the heat exchanger itself.
In the first aspect of the present invention, the temperature of the heat exchanger is controlled in the vicinity of the dew point Dp in the setting environment when the temperature in the cabinet or the room is lowered.
Therefore, there is little condensation of water vapor in the heat exchanger, and less energy is consumed for lowering the latent heat.

同様の思想に基づく請求項2に記載の発明は、温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の環境が目標とする温度及び湿度となる様に調整可能な恒温恒湿装置において、冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し当該熱交換器に液体冷媒を循環させるものであり、前記所定空間内の温度を低下させる際に、前記液体冷媒の温度を熱交目標温度に制御するものであり、前記熱交目標温度は前記目標とする環境における露点Dpの近傍であり、以下に示す式を満足する範囲にあって、前記冷却手段は液体冷媒を前記熱交換器に循環させる二次冷却回路と、蒸発器を介して液体冷媒を冷却する一次側温調回路を有し、前記二次冷却回路は、冷媒タンクと、冷媒タンクから熱交換器に液体冷媒を循環させる流路と、熱交換器を迂回して循環する外部配管と、弁を備えていて前記熱交換器に流れる液体冷媒を断続することが可能であり、一次側温調回路は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであって前記液体冷媒の温度を前記熱交目標温度に制御するものであり、前記所定空間内の温度が目標とする温度よりも低い場合には、前記弁を冷媒タンク側に切り替えて液体冷媒を外部配管を経由して循環させて冷媒タンク内の液体冷媒を攪拌し、前記所定空間内の温度が目標とする温度よりも高い場合には、前記弁を熱交換器側に切り替えて熱交換器の温度を低下させて前記所定空間内の温度を降下させることを特徴とする恒温恒湿装置。

Figure 0004795709
The invention according to claim 2 based on the same idea includes a temperature detecting means, a humidity detecting means, and a cooling means, and the constant temperature and humidity apparatus adjustable so that the environment in the predetermined space becomes a target temperature and humidity. The cooling means has a heat exchanger for exchanging heat with the air in the space, and circulates the liquid refrigerant in the heat exchanger. When the temperature in the predetermined space is lowered, the liquid refrigerant The heat exchange target temperature is in the vicinity of the dew point Dp in the target environment and is in a range satisfying the following formula, and the cooling means is liquid. A secondary cooling circuit that circulates the refrigerant to the heat exchanger; and a primary temperature control circuit that cools the liquid refrigerant via the evaporator, the secondary cooling circuit exchanging heat from the refrigerant tank and the refrigerant tank. A flow path for circulating liquid refrigerant in the vessel, An external pipe for circulating bypassing the exchanger, it is possible to intermittently liquid refrigerant flowing through the heat exchanger provided with a valve, the primary-side temperature adjustment circuit compresses the phase change to a refrigerant condensing Then, a refrigeration cycle for evaporating and cooling the liquid refrigerant is executed, the temperature of the liquid refrigerant is controlled to the heat exchange target temperature, and the temperature in the predetermined space is lower than the target temperature. In this case, the valve is switched to the refrigerant tank side, the liquid refrigerant is circulated through an external pipe to stir the liquid refrigerant in the refrigerant tank, and the temperature in the predetermined space is higher than the target temperature. In the constant temperature and humidity device, the valve is switched to the heat exchanger side to lower the temperature of the heat exchanger to lower the temperature in the predetermined space.
Figure 0004795709

本発明では、「熱交目標温度」の文言は、熱交換器に流通させる冷媒の温度を指す。本発明の恒温恒湿装置は、熱交換器に液体冷媒を循環させて熱交換器の温度を低下させるものであるが、庫内や室内の温度を低下させる際に、冷媒の温度を、設定環境における露点Dpの近傍に制御する。
そのため本発明では、熱交換器の表面温度が設定環境における露点Dpに近いものとなり、熱交換器の表面における水蒸気の凝縮が少なく、潜熱を低下させるのに消費されるエネルギーが少ない。
In the present invention , the term “heat exchange target temperature” refers to the temperature of the refrigerant flowing through the heat exchanger. The constant temperature and humidity device of the present invention circulates a liquid refrigerant in the heat exchanger to lower the temperature of the heat exchanger, but the temperature of the refrigerant is set when the temperature inside the room or the room is lowered. Control near the dew point Dp in the environment.
Therefore, in the present invention, the surface temperature of the heat exchanger is close to the dew point Dp in the set environment, the water vapor is less condensed on the surface of the heat exchanger, and less energy is consumed to lower the latent heat.

請求項に記載の発明は、熱交目標温度は次の式を満足する範囲にあることを特徴とする請求項1乃至5のいずれかに記載の恒温恒湿装置である。
本発明においては、「熱交目標温度」は、熱交換器そのものの温度又は熱交換器に流通させる冷媒の温度である。

Figure 0004795709
The invention according to claim 6 is the constant temperature and humidity device according to any one of claims 1 to 5, wherein the heat exchange target temperature is in a range satisfying the following expression.
In the present invention, the “heat exchange target temperature” is the temperature of the heat exchanger itself or the temperature of the refrigerant flowing through the heat exchanger.
Figure 0004795709

請求項に記載の発明では、熱交換器の温度又は熱交換器に流通させる冷媒の温度を、目標とする環境における露点Dpよりも僅かに低い温度に制御する。そのため所定空間内の空気は僅かに除湿される。従って本発明によると、所定空間内の湿度を調整することもできる。また熱交目標温度は、露点Dpに対して僅かに低いに過ぎないので、潜熱の低下に消費されるエネルギーは少ない。 In the invention described in claim 6 , the temperature of the heat exchanger or the temperature of the refrigerant flowing through the heat exchanger is controlled to a temperature slightly lower than the dew point Dp in the target environment. Therefore, the air in the predetermined space is slightly dehumidified. Therefore, according to the present invention, the humidity in the predetermined space can also be adjusted. Moreover, since the heat exchange target temperature is only slightly lower than the dew point Dp, less energy is consumed for lowering the latent heat.

また推奨される態様は、温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の環境が目標とする温度及び湿度となる様に調整可能な恒温恒湿装置において、冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し当該熱交換器に液体冷媒を循環させるものであり、前記所定空間内の温度を低下させる際に、前記液体冷媒の温度を制御するものであり、目標とする環境における温度をToとし、目標とする環境における露点をDpとしたとき、液体冷媒の目標温度は次の式を満足する範囲にあることを特徴とする恒温恒湿装置である。

Figure 0004795709
Further, as a recommended aspect, in a constant temperature and humidity apparatus that includes a temperature detection unit, a humidity detection unit, and a cooling unit, and that can be adjusted so that the environment in the predetermined space has a target temperature and humidity, the cooling unit is the space. A heat exchanger for exchanging heat with the air inside, and circulating the liquid refrigerant in the heat exchanger, and controlling the temperature of the liquid refrigerant when the temperature in the predetermined space is lowered. There is a constant temperature and humidity device characterized in that when the temperature in the target environment is To and the dew point in the target environment is Dp, the target temperature of the liquid refrigerant is in a range satisfying the following equation: .
Figure 0004795709

本発明の恒温恒湿装置についても、熱交換器の表面温度を目標とする環境における露点Dpに近いものとする技術思想に基づくものである。
即ち熱交換器の表面温度(Tfとする)は、少なくとも内部を流れる冷媒の温度(Twoとする)よりも高い。また熱交換器の表面温度は、少なくとも目標とする環境における温度Toよりも低い。従って熱交換器の表面温度Tfは、設定環境における温度Toと内部を流れる冷媒の温度Twoの中間であり、(To+Two)/2の前後4℃程度である。従って次の式が成立する。

Figure 0004795709
The constant temperature and humidity device of the present invention is also based on the technical idea that the surface temperature of the heat exchanger is close to the dew point Dp in an environment where the surface temperature is a target.
That is, the surface temperature of the heat exchanger (Tf) is at least higher than the temperature of the refrigerant flowing inside (Two). Further, the surface temperature of the heat exchanger is lower than at least the temperature To in the target environment. Accordingly, the surface temperature Tf of the heat exchanger is intermediate between the temperature To in the set environment and the temperature Two of the refrigerant flowing inside, and is about 4 ° C. before and after (To + Two) / 2. Therefore, the following formula is established.
Figure 0004795709

そして熱交換器の表面温度Tfが目標とする環境における露点Dpの近傍となる様に制御するから次の式が成立する。

Figure 0004795709
Since the control is performed so that the surface temperature Tf of the heat exchanger is close to the dew point Dp in the target environment, the following equation is established.
Figure 0004795709

式4を変形すると次の式が導かれる。

Figure 0004795709
When formula 4 is transformed, the following formula is derived.
Figure 0004795709

誤差等を考慮すると、冷媒の温度Twoが次の範囲にあれば、熱交換器の表面温度が、目標とする環境における露点Dpの近傍となり、潜熱の低下に消費されるエネルギーが少ないものとなる。

Figure 0004795709
Considering errors and the like, if the temperature Two of the refrigerant is in the following range, the surface temperature of the heat exchanger will be near the dew point Dp in the target environment, and less energy will be consumed for lowering the latent heat. .
Figure 0004795709

またもう一つの推奨される態様は、冷却手段は、液体冷媒を循環させる二次冷却回路と、熱交換器を介して液体冷媒を冷却する一次側温調回路を有し、一次側温調回路は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであって冷媒の蒸発温度と発揮される冷凍能力Qとの間に所定の関係があり、前記所定空間内の温度を低下させる際に冷媒の蒸発温度を制御し、このときの冷媒の蒸発温度の目標値ETは、目標とする環境における温度をToとし、目標とする環境における露点をDp、前記熱交換器の熱交換面積をA、熱交換効率をKとしたとき、次の式を満足する範囲にあることを特徴とする恒温恒湿装置である。

Figure 0004795709
In another preferred embodiment, the cooling means includes a secondary cooling circuit for circulating the liquid refrigerant, and a primary side temperature adjustment circuit for cooling the liquid refrigerant via the heat exchanger, and the primary side temperature adjustment circuit. Is a refrigeration cycle that compresses and condenses the phase-change refrigerant, evaporates and cools it, and has a predetermined relationship between the evaporation temperature of the refrigerant and the refrigeration capacity Q that is exhibited, When the temperature in the predetermined space is lowered, the evaporation temperature of the refrigerant is controlled. At this time, the target value ET of the evaporation temperature of the refrigerant is To in the target environment, and the dew point in the target environment is Dp. The constant temperature and humidity device is characterized in that the following equation is satisfied, where A is the heat exchange area of the heat exchanger and K is the heat exchange efficiency.
Figure 0004795709

別の推奨される態様は、冷凍サイクルを利用して液体冷媒を冷却し、この冷却された液体冷媒を利用して庫内又は室内を冷却するものである。また一般に液体冷媒を使用して庫内を冷却する恒温恒湿装置では、冷凍サイクル側の蒸発温度を一定に保ち、圧縮器をオンオフ制御することによって液体冷媒の温度を制御するが、この態様によれば、これに加えて、あるいはこれに代わって冷媒の蒸発温度を適切な温度に制御する機能を備える。
即ち従来の恒温恒湿装置は、能力に余裕のある冷凍機を搭載し、これをオンオフして液体冷媒の温度を制御していた。そのため冷凍機は必要以上に大きなものであり、消費電力も大きいという問題があった。そこで本発明は、冷凍機のオンオフ回数を減らして冷凍機の能力を最大限活用し、冷凍機の小型化と省エネルギー化を実現することを目的としている。
Another recommended mode is to cool the liquid refrigerant using a refrigeration cycle, and cool the interior or the room using the cooled liquid refrigerant. In constant temperature and humidity device for cooling the inside of the refrigerator using the generally liquid refrigerant, keeping the evaporation temperature of the refrigeration cycle side constant, but to control the temperature of the liquid refrigerant by turning on and off the compressor, in this embodiment According to this, in addition to or instead of this, a function of controlling the evaporation temperature of the refrigerant to an appropriate temperature is provided.
That is, the conventional constant temperature and humidity device is equipped with a refrigerator having sufficient capacity, and controls the temperature of the liquid refrigerant by turning it on and off. For this reason, there is a problem that the refrigerator is larger than necessary and power consumption is large. Accordingly, an object of the present invention is to reduce the number of times the refrigerator is turned on and off so as to make maximum use of the capacity of the refrigerator and to realize downsizing and energy saving of the refrigerator.

ここで相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行する装置では、一般に蒸発温度と発揮される冷凍能力Qとの間に一対一に対応する所定の関係がある。具体的には膨張弁等を絞ると蒸発温度が低下するが冷媒の流量自体が減少するので発揮される冷凍能力Qは低下する。一方膨張弁等を開くと蒸発温度が上昇するが冷媒の流量自体が増加するので発揮される冷凍能力Qは増加する。
この態様は、冷凍機の上記した性質を利用して冷媒(一次側)の温度を制御し、熱交換器の表面温度が、目標とする環境における露点Dpの近傍とる様に調整するものである。
Here, in an apparatus that executes a refrigeration cycle that compresses and condenses the phase-change refrigerant and evaporates and cools it, a predetermined relationship that generally corresponds one-to-one between the evaporation temperature and the refrigeration capacity Q that is exhibited. There is. Specifically, when the expansion valve or the like is throttled, the evaporating temperature is lowered, but the refrigerant flow rate itself is reduced, so that the refrigerating capacity Q exhibited is lowered. On the other hand, when the expansion valve or the like is opened, the evaporating temperature rises, but the refrigerant flow rate itself increases, so that the refrigeration capacity Q exerted increases.
In this aspect , the temperature of the refrigerant (primary side) is controlled using the above-described properties of the refrigerator, and the surface temperature of the heat exchanger is adjusted to be close to the dew point Dp in the target environment. .

上記した請求項1,2に記載の発明では、冷却手段は、前記熱交換器に流れる液体冷媒を断続することが可能であり、前記所定空間内の温度が目標とする温度よりも高い場合に前記熱交換器に液体冷媒を流して前記熱交換器の温度を低下させることができる。   In the first and second aspects of the invention described above, the cooling means can interrupt the liquid refrigerant flowing through the heat exchanger, and the temperature in the predetermined space is higher than the target temperature. A liquid refrigerant can be passed through the heat exchanger to lower the temperature of the heat exchanger.

また前記熱交換器の表面温度を検出する表面温度センサーを有し、表面温度センサーの信号に基づいて前記熱交換器に流れる液体冷媒を断続する構成も推奨される。   It is also recommended to have a surface temperature sensor for detecting the surface temperature of the heat exchanger and intermittently liquid refrigerant flowing to the heat exchanger based on a signal from the surface temperature sensor.

上記した請求項1,2に記載の発明では、冷却手段は、冷媒タンクと、熱交換器に液体冷媒を循環させる流路と、熱交換器を迂回する外部流路を備え、液体冷媒を前記外部流路を経由して循環させることが可能である。   In the first and second aspects of the invention, the cooling means includes a refrigerant tank, a flow path for circulating the liquid refrigerant in the heat exchanger, and an external flow path that bypasses the heat exchanger, and the liquid refrigerant is It is possible to circulate via an external channel.

上記した請求項1,2に記載の発明では、冷却手段は、液体冷媒を循環させる二次冷却回路と、蒸発器を介して液体冷媒を冷却する一次側温調回路を有し、一次側温調回路は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであって冷媒を圧縮する圧縮器を備え、当該圧縮器をオンオフ制御することによって前記液体冷媒の温度を制御することができる。   In the first and second aspects of the invention, the cooling means includes a secondary cooling circuit for circulating the liquid refrigerant, and a primary side temperature adjusting circuit for cooling the liquid refrigerant via the evaporator, and the primary side temperature is The adjusting circuit executes a refrigeration cycle that compresses and condenses the phase-change refrigerant, evaporates and cools the refrigerant, and includes a compressor that compresses the refrigerant, and controls the compressor by turning on and off the compressor. The temperature of the liquid refrigerant can be controlled.

液体冷媒の温度を検知する液体冷媒温度検知センサーを有し、液体冷媒温度検知センサーが検知する液体冷媒温度が目標値となる様に圧縮器をオンオフ制御することが望ましい。   It is desirable to have a liquid refrigerant temperature detection sensor that detects the temperature of the liquid refrigerant, and to control the on / off of the compressor so that the liquid refrigerant temperature detected by the liquid refrigerant temperature detection sensor becomes a target value.

前記熱交換器の表面温度を検出する表面温度センサーを有し、表面温度センサーの信号に基づいて圧縮器をオンオフ制御する構成を採用することが望ましい。   It is desirable to employ a configuration that includes a surface temperature sensor that detects the surface temperature of the heat exchanger and that controls the compressor on and off based on a signal from the surface temperature sensor.

本発明の恒温恒湿装置は、従来に比べて消費電力が少なく、省エネルギーである。   The constant temperature and humidity device of the present invention consumes less power and saves energy compared to the prior art.

以下さらに本発明の実施形態について説明する。
図2は、本発明の実施形態の恒温恒湿装置の概念図である。
図2に示す恒温恒湿装置1は、断熱材15によって囲まれた恒温恒湿槽(所定空間)2を備える。恒温恒湿槽2の内部は、図の様に試験片配置室3と、空調通路5に分かれている。空調通路5は、下部側と上部側に試験片配置室3と連通する開口があり、試験片配置室3内であって、空調通路5の上部の開口の近傍に室内温度検知センサー11と湿度検知センサー12が設けられている。
室内温度検知センサー11は具体的には熱電対である。
Embodiments of the present invention will be further described below.
FIG. 2 is a conceptual diagram of the constant temperature and humidity device of the embodiment of the present invention.
A constant temperature and humidity apparatus 1 shown in FIG. 2 includes a constant temperature and humidity tank (predetermined space) 2 surrounded by a heat insulating material 15. The interior of the constant temperature and humidity chamber 2 is divided into a test piece arrangement chamber 3 and an air conditioning passage 5 as shown in the figure. The air conditioning passage 5 has an opening communicating with the test piece arrangement chamber 3 on the lower side and the upper side, and is located in the test piece arrangement chamber 3 and in the vicinity of the upper opening of the air conditioning passage 5 with the indoor temperature detection sensor 11 and the humidity. A detection sensor 12 is provided.
The indoor temperature detection sensor 11 is specifically a thermocouple.

空調通路5には、空気冷却用熱交換器6、加熱ヒータ7、加湿器8及びファン10が配されている。
空気冷却用熱交換器6は、後記する冷却装置20の一部であり、内部に液体冷媒(ブライン)が流通する。
加熱ヒータ7は、公知の電気ヒータである。加湿器8は、蒸気を供給するものである。ファン10は、公知のものである。
In the air conditioning passage 5, an air cooling heat exchanger 6, a heater 7, a humidifier 8, and a fan 10 are arranged.
The air cooling heat exchanger 6 is a part of a cooling device 20 described later, and a liquid refrigerant (brine) circulates therein.
The heater 7 is a known electric heater. The humidifier 8 supplies steam. The fan 10 is a known one.

本実施形態の恒温恒湿装置1では、ファン10によって恒温恒湿槽2内の空気が循環して空調通路5を通過し、所望の環境が作られる。即ち恒温恒湿槽2内の空気はファン10によって空調通路5の下部側から吸入され、空調通路5を通過して上部側の開口に抜ける。このとき、空気は空気冷却用熱交換器6を通過し、さらに加熱ヒータ7に触れる。また空気は加湿器8の近傍を通過する。   In the constant temperature and humidity device 1 of the present embodiment, the air in the constant temperature and humidity chamber 2 is circulated by the fan 10 and passes through the air conditioning passage 5 to create a desired environment. That is, the air in the constant temperature and humidity chamber 2 is sucked from the lower side of the air conditioning passage 5 by the fan 10, passes through the air conditioning passage 5, and goes out to the opening on the upper side. At this time, the air passes through the air cooling heat exchanger 6 and further touches the heater 7. Further, the air passes in the vicinity of the humidifier 8.

恒温恒湿装置1では、室内温度検知センサー11と湿度検知センサー12によって試験片配置室3内の温度と湿度が監視されている。そして試験片配置室3内の温度が設定環境の温度よりも低い場合には加熱ヒータ7に通電して昇温され、試験片配置室3内の温度が設定環境の温度よりも高い場合には空気冷却用熱交換器6に液体冷媒(ブライン)を流して空気冷却用熱交換器6の温度を低下させ、流通する空気から熱を奪う。
また試験片配置室3内の湿度が設定環境の湿度よりも低い場合には加湿器8から蒸気を噴射して通過する空気に混入する。
In the constant temperature and humidity device 1, the temperature and humidity in the test piece arrangement chamber 3 are monitored by the indoor temperature detection sensor 11 and the humidity detection sensor 12. When the temperature inside the test piece arrangement chamber 3 is lower than the temperature of the set environment, the heater 7 is energized to raise the temperature. When the temperature inside the test piece arrangement chamber 3 is higher than the temperature of the set environment, A liquid refrigerant (brine) is allowed to flow through the air cooling heat exchanger 6 to lower the temperature of the air cooling heat exchanger 6, and heat is taken away from the circulating air.
Further, when the humidity in the test piece arrangement chamber 3 is lower than the humidity of the set environment, steam is injected from the humidifier 8 and mixed into the passing air.

次に本実施形態で採用する冷却装置20について説明する。
本実施形態で採用する冷却装置20は、冷却された液体冷媒(ブライン)を前記した空気冷却用熱交換器6に流して恒温恒湿槽2内を冷却するものであり、大きく二系統に分かれている。即ち本実施形態で採用する冷却装置20は、液体冷媒(ブライン)が流れる二次冷却回路21と、気・液間で相変化する冷媒が流れる一次冷却回路22を備えている。
Next, the cooling device 20 employed in the present embodiment will be described.
The cooling device 20 employed in the present embodiment cools the temperature and humidity chamber 2 by flowing a cooled liquid refrigerant (brine) through the air cooling heat exchanger 6 described above, and is divided into two systems. ing. That is, the cooling device 20 employed in the present embodiment includes a secondary cooling circuit 21 in which a liquid refrigerant (brine) flows, and a primary cooling circuit 22 in which a refrigerant that changes phase between gas and liquid flows.

二次冷却回路21は、図2の様に冷媒タンク23、ポンプ25、3方弁26及び前記した空気冷却用熱交換器6によって構成されている。
そして冷媒タンク23はポンプ25の吸い込み側に接続され、ポンプ25の吐出側は3方弁26の一つの開口(第一開口)に接続されている。3方弁26の残る2開口は、それぞれ空気冷却用熱交換器6と冷媒タンク23に接続されている。即ち3方弁26の第二開口は、空気冷却用熱交換器6の入り側開口に接続され、第三開口は、冷媒タンク23に接続されている。
また空気冷却用熱交換器6の出側開口は、冷媒タンク23に接続されている。
As shown in FIG. 2, the secondary cooling circuit 21 includes a refrigerant tank 23, a pump 25, a three-way valve 26, and the air cooling heat exchanger 6 described above.
The refrigerant tank 23 is connected to the suction side of the pump 25, and the discharge side of the pump 25 is connected to one opening (first opening) of the three-way valve 26. The remaining two openings of the three-way valve 26 are connected to the air cooling heat exchanger 6 and the refrigerant tank 23, respectively. That is, the second opening of the three-way valve 26 is connected to the entrance opening of the air cooling heat exchanger 6, and the third opening is connected to the refrigerant tank 23.
The outlet opening of the air cooling heat exchanger 6 is connected to the refrigerant tank 23.

一次冷却回路22は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであり、図示しない圧縮器、凝縮器、膨張弁を備えている。そして一次冷却装置22の蒸発器27は、冷媒タンク23に内蔵されている。   The primary cooling circuit 22 executes a refrigeration cycle that compresses and condenses the phase-change refrigerant, evaporates and cools the refrigerant, and includes a compressor, a condenser, and an expansion valve (not shown). The evaporator 27 of the primary cooling device 22 is built in the refrigerant tank 23.

従って、一次冷却装置22の図示しない圧縮器を起動すると、冷媒ガスが圧縮され、図示しない凝縮器で液化される。そして膨張弁を経て蒸発器27に入り、低温を作る。
本実施形態の恒温恒湿装置1では、冷媒タンク23内に液体冷媒温度検知センサー28が設けられ、液体冷媒温度検知センサー28が検知する温度が所定の温度となる様に図示しない圧縮器がオンオフ制御される。
Therefore, when a compressor (not shown) of the primary cooling device 22 is started, the refrigerant gas is compressed and liquefied by a condenser (not shown). Then, it enters the evaporator 27 through an expansion valve and creates a low temperature.
In the constant temperature and humidity device 1 of the present embodiment, a liquid refrigerant temperature detection sensor 28 is provided in the refrigerant tank 23, and a compressor (not shown) is turned on / off so that the temperature detected by the liquid refrigerant temperature detection sensor 28 becomes a predetermined temperature. Be controlled.

また二次冷却回路21については、ポンプ25が常時運転されており、3方弁26を切り換えることによって空気冷却用熱交換器6に流れる液体冷媒を断続する。
即ち恒温恒湿装置1では、室内温度検知センサー11によって試験片配置室3内の温度が監視されており、試験片配置室3内の温度が設定環境の温度よりも低い場合には3方弁26が冷媒タンク23側に切り換えられる。その結果、液体冷媒は、外部配管を経由して循環し、冷媒タンク23内の冷媒が攪拌される。
一方、試験片配置室3内の温度が設定環境の温度よりも高い場合には3方弁26を空気冷却用熱交換器6側に切り換える。その結果、空気冷却用熱交換器6に液体冷媒(ブライン)が流れ、空気冷却用熱交換器6の温度が低下し、試験片配置室3内の温度が降下する。
As for the secondary cooling circuit 21, the pump 25 is always operated, and the liquid refrigerant flowing to the air cooling heat exchanger 6 is intermittently switched by switching the three-way valve 26.
That is, in the constant temperature and humidity device 1, the temperature in the test piece arrangement chamber 3 is monitored by the indoor temperature detection sensor 11, and when the temperature in the test piece arrangement chamber 3 is lower than the temperature of the set environment, the three-way valve 26 is switched to the refrigerant tank 23 side. As a result, the liquid refrigerant circulates via the external pipe, and the refrigerant in the refrigerant tank 23 is agitated.
On the other hand, when the temperature in the test piece arrangement chamber 3 is higher than the temperature of the set environment, the three-way valve 26 is switched to the air cooling heat exchanger 6 side. As a result, the liquid refrigerant (brine) flows into the air cooling heat exchanger 6, the temperature of the air cooling heat exchanger 6 is lowered, and the temperature in the test piece arrangement chamber 3 is lowered.

以上、恒温恒湿装置1の構成を説明したが、本実施形態の恒温恒湿装置1は、特有の温度制御方式を採用している。
図3は、本実施形態の恒温恒湿装置1の制御装置のブロック図である。
本実施形態で採用する温度制御装置30は、マイクロコンピュータ等によって構成され、室内温度検知センサー11の信号と、湿度検知センサー12の信号と、液体冷媒温度検知センサー28の信号が入力されている。
また温度制御装置30には、設定器31が接続されている。設定器31は、設定環境の温度や湿度を入力する装置である。
一方、温度制御装置30の出力側には、3方弁駆動回路32と、圧縮器駆動回路33が接続されている。
Although the configuration of the constant temperature and humidity device 1 has been described above, the constant temperature and humidity device 1 of the present embodiment employs a specific temperature control method.
FIG. 3 is a block diagram of the control device of the constant temperature and humidity device 1 of the present embodiment.
The temperature control device 30 employed in the present embodiment is configured by a microcomputer or the like, and receives a signal from the indoor temperature detection sensor 11, a signal from the humidity detection sensor 12, and a signal from the liquid refrigerant temperature detection sensor 28.
A setter 31 is connected to the temperature control device 30. The setting device 31 is a device that inputs the temperature and humidity of the setting environment.
On the other hand, a three-way valve drive circuit 32 and a compressor drive circuit 33 are connected to the output side of the temperature control device 30.

温度制御装置30には、本実施形態に特有の構成として露点Dpを算出するプログラムが格納されている。具体的には、設定器31で設定された設定環境における露点Dpが算出される。例えば、設定環境が図1のポイントBであり、温度75℃、湿度90%の環境である。ならばこの環境における露点Dpが73.5℃と算出される。
そして液体冷媒温度検知センサー28の信号を監視し、この温度が、前記した露点Dpよりも僅かに低温となる様に一次冷却器の圧縮器をオンオフ制御する。
前記した「僅かに低温」とは具体的には4℃以内である。
即ち本実施形態では、液体冷媒温度検知センサー28が検知する液体冷媒温度Tbが次の式を満足する目標値となる様に圧縮器がオンオフ制御される。

Figure 0004795709
The temperature control device 30 stores a program for calculating the dew point Dp as a configuration unique to the present embodiment. Specifically, the dew point Dp in the setting environment set by the setting device 31 is calculated. For example, the setting environment is point B in FIG. 1 and is an environment having a temperature of 75 ° C. and a humidity of 90%. Then, the dew point Dp in this environment is calculated as 73.5 ° C.
Then, the signal of the liquid refrigerant temperature detection sensor 28 is monitored, and the compressor of the primary cooler is turned on / off so that the temperature is slightly lower than the dew point Dp.
The above-mentioned “slightly low temperature” is specifically within 4 ° C.
That is, in this embodiment, the compressor is on / off controlled so that the liquid refrigerant temperature Tb detected by the liquid refrigerant temperature detection sensor 28 becomes a target value that satisfies the following equation.
Figure 0004795709

またより好ましくは、液体冷媒温度検知センサー28が検知する液体冷媒温度Tbが次の式を満足する目標値となる様に圧縮器がオンオフ制御される。

Figure 0004795709
More preferably, the compressor is on / off controlled so that the liquid refrigerant temperature Tb detected by the liquid refrigerant temperature detection sensor 28 becomes a target value satisfying the following expression.
Figure 0004795709

また上記した式に代わって次の式を採用してもよい。   Further, the following formula may be adopted instead of the above formula.

Figure 0004795709
Figure 0004795709

そして室内温度検知センサー11が検知する試験片配置室3内の温度が目標とする温度よりも高い場合には、温度制御装置30から3方弁駆動回路32に対して所定の制御信号が発信され、3方弁26が切り換えられて上記した目標温度に制御された液体冷媒が空気冷却用熱交換器6に流される。   When the temperature in the test piece arrangement chamber 3 detected by the indoor temperature detection sensor 11 is higher than the target temperature, a predetermined control signal is transmitted from the temperature control device 30 to the three-way valve drive circuit 32. The three-way valve 26 is switched and the liquid refrigerant controlled to the target temperature described above is caused to flow to the air cooling heat exchanger 6.

ここで前記した液体冷媒の温度は、設定環境における露点Dpに近く、これよりも僅かに低い温度であるから、空気冷却用熱交換器6の表面温度は、設定環境における露点Dpに比べて僅かに低い温度を目標として降下する。この温度は、現在の庫内温度よりも低く、設定温度よりもさらに低いため庫内の温度は設定温度となる様に低下して行く。ただし空気冷却用熱交換器6の表面温度は、設定環境における露点Dpから僅かに低いものであるから、庫内の湿度が設定環境の湿度を大きく下回ることはない。
前記した図1を参照しつつ従来技術の場合と比較すると、従来技術の恒温恒湿装置では、破線の様に一旦ポイントCの環境となり、湿度が大きく低下したのに対し、本実形態の恒温恒湿装置1では、実線の様により直線的にポイントAからポイントBに向かう。そのため水蒸気の凝縮が少なく、潜熱を低下させるのに要する無駄なエネルギーが少ない。
Here, the temperature of the liquid refrigerant described above is close to the dew point Dp in the set environment and slightly lower than this, so the surface temperature of the air cooling heat exchanger 6 is slightly lower than the dew point Dp in the set environment. Descent to a lower temperature. Since this temperature is lower than the current internal temperature and is further lower than the set temperature, the internal temperature decreases so as to become the set temperature. However, since the surface temperature of the air-cooling heat exchanger 6 is slightly lower than the dew point Dp in the setting environment, the humidity in the cabinet does not greatly fall below the humidity in the setting environment.
Compared with the case of the prior art with reference to FIG. 1 described above, in the constant temperature and humidity device of the prior art, the environment of the point C is once changed as indicated by the broken line, and the humidity is greatly reduced. In the humidity control apparatus 1, the point A moves from the point A to the point B linearly as indicated by a solid line. Therefore, there is little condensation of water vapor, and there is little useless energy required for lowering latent heat.

上述した実施形態では冷媒タンク23に液体冷媒温度検知センサー28を設け、冷媒タンク23内の冷媒の温度が設定環境の露点Dp近傍となる様に制御したが、空気冷却用熱交換器6の表面温度を検知し、当該温度が露点Dp近傍となる様に制御してもよい。
図4は、本発明の第二実施形態の恒温恒湿装置の概念図である。図5は、図4に示す恒温恒湿装置の制御装置のブロック図である。
図4に示す恒温恒湿装置50では、空気冷却用熱交換器6の表面に、温度センサー51が取り付けられており、当該温度センサー51によって空気冷却用熱交換器6の表面温度が直接的に検出される。
そして当該表面温度センサー51の信号は、図5に示すように制御装置30に入力される。本実施形態では、空気冷却用熱交換器6の表面温度Tsが前記した露点Dpよりも僅かに低温となる様に一次冷却器の圧縮器をオンオフ制御する。
即ち本実施形態では、表面温度センサー51が検知する空気冷却用熱交換器6の表面温度Tsが次の式を満足する目標値となる様に圧縮器がオンオフ制御される。

Figure 0004795709
In the embodiment described above, the liquid refrigerant temperature detection sensor 28 is provided in the refrigerant tank 23 and the temperature of the refrigerant in the refrigerant tank 23 is controlled to be close to the dew point Dp of the set environment, but the surface of the air cooling heat exchanger 6 is controlled. The temperature may be detected and controlled so that the temperature is close to the dew point Dp.
FIG. 4 is a conceptual diagram of the constant temperature and humidity device of the second embodiment of the present invention. FIG. 5 is a block diagram of the control device of the constant temperature and humidity device shown in FIG.
In the constant temperature and humidity device 50 shown in FIG. 4, a temperature sensor 51 is attached to the surface of the air cooling heat exchanger 6, and the surface temperature of the air cooling heat exchanger 6 is directly adjusted by the temperature sensor 51. Detected.
And the signal of the said surface temperature sensor 51 is input into the control apparatus 30 as shown in FIG. In the present embodiment, the compressor of the primary cooler is on / off controlled so that the surface temperature Ts of the air cooling heat exchanger 6 is slightly lower than the dew point Dp.
That is, in this embodiment, the compressor is on / off controlled so that the surface temperature Ts of the air cooling heat exchanger 6 detected by the surface temperature sensor 51 becomes a target value that satisfies the following equation.
Figure 0004795709

またより好ましくは、表面温度センサー51が検知する空気冷却用熱交換器6の表面温度Tsが次の式を満足する目標値となる様に圧縮器がオンオフ制御される。

Figure 0004795709
More preferably, the compressor is on / off controlled so that the surface temperature Ts of the air cooling heat exchanger 6 detected by the surface temperature sensor 51 becomes a target value satisfying the following expression.
Figure 0004795709

上記した式に代わって次の式を採用してもよい。

Figure 0004795709
The following equation may be adopted instead of the above equation.
Figure 0004795709

またさらに異なる実施形態として、液体冷媒の温度を前記した露点Dpよりも相当に低い温度とし、空気冷却用熱交換器6の表面に、温度センサー51を取り付け、温度センサー51の信号に基づいて3方弁26を切り換えて空気冷却用熱交換器6に流れる液体冷媒をオンオフし、空気冷却用熱交換器6の表面温度が上記した温度となる様に制御してもよい。   As a further different embodiment, the temperature of the liquid refrigerant is set to a temperature substantially lower than the dew point Dp described above, and a temperature sensor 51 is attached to the surface of the air cooling heat exchanger 6. The liquid refrigerant flowing in the air cooling heat exchanger 6 may be switched on and off by switching the direction valve 26 so that the surface temperature of the air cooling heat exchanger 6 is controlled to the above-described temperature.

また上記した実施形態では、いずれも液体冷媒の温度が一定となる様に制御したが、液体冷媒の温度や、相変化する冷媒の温度等を変化させて空気冷却用熱交換器6の表面温度が上記した温度となる様に制御してもよい。   In the above embodiments, the temperature of the liquid refrigerant is controlled to be constant. However, the surface temperature of the air cooling heat exchanger 6 is changed by changing the temperature of the liquid refrigerant, the temperature of the phase-changing refrigerant, or the like. May be controlled so that the temperature becomes the above-described temperature.

以下、相変化する冷媒の温度を変化させて空気冷却用熱交換器6の表面温度が上記した温度となる様に制御する方策について説明する。
図6は、参考例の恒温恒湿装置の概念図である。図7は、図6に示す恒温恒湿装置の制御装置のブロック図である。
Hereinafter, a method for controlling the surface temperature of the air-cooling heat exchanger 6 to be the above-described temperature by changing the temperature of the phase-change refrigerant will be described.
FIG. 6 is a conceptual diagram of a constant temperature and humidity device of a reference example . FIG. 7 is a block diagram of the control device of the constant temperature and humidity device shown in FIG.

恒温恒湿装置60では、一次冷却装置22は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであり、図6の様に圧縮器61、凝縮器62、膨張弁63を備えている。膨張弁63は開度を調節することができる。また膨張弁63の下流側には蒸発温度検知センサー65が設けられている。蒸発温度検知センサー65の信号は、図7の様に制御装置に入力される。またこの参考例では、制御装置は膨張弁制御回路(蒸発温度調整回路)66に接続されており、制御装置によって膨張弁63の開度が調節される。
またこの参考例では、一次冷却装置22の特性、具体的には蒸発温度と、発揮される冷凍能力Qとの間の関係が制御装置に記憶されている。両者の関係は、数式、あるいはテーブルの形で記憶されている。
In the constant temperature and humidity device 60, the primary cooling device 22 performs a refrigeration cycle that compresses and condenses the phase-change refrigerant, evaporates it, and cools it. As shown in FIG. A vessel 62 and an expansion valve 63 are provided. The opening degree of the expansion valve 63 can be adjusted. An evaporation temperature detection sensor 65 is provided on the downstream side of the expansion valve 63. The signal of the evaporating temperature detection sensor 65 is input to the control device as shown in FIG. In this reference example , the control device is connected to an expansion valve control circuit (evaporation temperature adjustment circuit) 66, and the opening degree of the expansion valve 63 is adjusted by the control device.
In this reference example , the characteristics of the primary cooling device 22, specifically, the relationship between the evaporation temperature and the refrigerating capacity Q to be exhibited are stored in the control device. The relationship between the two is stored in the form of a mathematical expression or a table.

恒温恒湿装置60では、試験片配置室3内の温度を低下させる際に、膨張弁63の開度を調節して冷媒の蒸発温度を制御する。このときの冷媒の蒸発温度の目標値ETは、設定環境における温度をToとし、設定環境における露点をDpとし、一次冷却装置22の蒸発器(熱交換器)27の熱交換面積をA、熱交換効率をKとしたとき、次の式を満足する範囲にある。

Figure 0004795709
The constant temperature and humidity device 60 controls the evaporation temperature of the refrigerant by adjusting the opening of the expansion valve 63 when lowering the temperature in the test piece arrangement chamber 3. The target value ET for the evaporation temperature of the refrigerant at this time is set to To the temperature in the set environment, Dp in the set environment, the heat exchange area of the evaporator (heat exchanger) 27 of the primary cooling device 22 to A, heat When the exchange efficiency is K, the following equation is satisfied.
Figure 0004795709

蒸発器(熱交換器)27の熱交換面積Aは、個々の恒温恒湿装置60によって決まる定数である。なお恒温恒湿装置60を設計する際には、蒸発器(熱交換器)27は、恒温恒湿装置60を実際に使用する際に想定される冷凍能力(冷凍熱量)の最大量Qmaxが熱交換し得る熱交換面積Aのものを選定することが望ましい。
具体的には、次の式によって算出される熱交換面積Aに近いものが選定される。

Figure 0004795709
The heat exchange area A of the evaporator (heat exchanger) 27 is a constant determined by the individual constant temperature and humidity device 60. When designing the constant temperature and humidity device 60, the evaporator (heat exchanger) 27 has a maximum amount Qmax of the refrigerating capacity (refrigeration heat amount) assumed when the constant temperature and humidity device 60 is actually used. It is desirable to select a heat exchange area A that can be exchanged.
Specifically, the one close to the heat exchange area A calculated by the following equation is selected.
Figure 0004795709

従って

Figure 0004795709
Therefore
Figure 0004795709

ここでETmaxは、冷凍能力がQmaxの時の冷媒の蒸発温度である。
Twmaxはその時の液体熱媒体の温度である。
Here, ETmax is the evaporation temperature of the refrigerant when the refrigeration capacity is Qmax.
Twmax is the temperature of the liquid heat medium at that time.

恒温恒湿装置60は、冷凍サイクルを利用して液体冷媒を冷却し、この冷却された液体冷媒を利用して試験片配置室3を冷却するものである。また一般に液体冷媒を使用して庫内を冷却する恒温恒湿装置では、冷凍サイクル側の蒸発温度を一定に保ち、圧縮器61をオンオフ制御することによって液体冷媒の温度を制御するが、この参考例では、これに加えて、あるいはこれに代わって冷媒の蒸発温度を適正に保つ機能を備える。
即ち従来の恒温恒湿装置は、能力に余裕のある冷凍機を搭載し、これをオンオフして液体冷媒の温度を制御していた。そのため冷凍機は必要以上に大きなものであり、消費電力も大きいという問題があった。そこで本実施形態は、冷凍機のオンオフ回数を減らして冷凍機の能力を最大限活用し、冷凍機の小型化と省エネルギー化を実現することを目的としている。
The constant temperature and humidity device 60 cools the liquid refrigerant using a refrigeration cycle, and cools the test piece arrangement chamber 3 using the cooled liquid refrigerant. In the generally constant temperature and humidity device for cooling the inside of the refrigerator using a liquid refrigerant, keeping the evaporation temperature of the refrigeration cycle side constant, but to control the temperature of the liquid refrigerant by turning on and off the compressor 61, this reference In the example , in addition to or instead of this, a function of appropriately maintaining the evaporation temperature of the refrigerant is provided.
That is, the conventional constant temperature and humidity device is equipped with a refrigerator having sufficient capacity, and controls the temperature of the liquid refrigerant by turning it on and off. For this reason, there is a problem that the refrigerator is larger than necessary and power consumption is large. Therefore, the present embodiment aims to reduce the number of times the refrigerator is turned on and off to make the best use of the capacity of the refrigerator and to realize downsizing and energy saving of the refrigerator.

ここで相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行する装置では、一般に蒸発温度と、発揮される冷凍能力Qとの間に一対一に対応する所定の関係がある。具体的には膨張弁等を絞ると蒸発温度が低下するが冷媒の流量自体が減少するので発揮される冷凍能力Qは低下する。一方膨張弁等を開くと蒸発温度が上昇するが冷媒の流量自体が増加するので発揮される冷凍能力Qは増加する。
冷凍能力と蒸発温度との関係は、図8のグラフの様である。即ち図8は、冷凍機における冷媒の蒸発温度と冷凍能力との関係を示すグラフである。
Here, in an apparatus that executes a refrigeration cycle that compresses and condenses the phase-change refrigerant, evaporates and cools the refrigerant, generally, a predetermined one-to-one correspondence between the evaporation temperature and the refrigeration capacity Q to be exerted There is a relationship. Specifically, when the expansion valve or the like is throttled, the evaporating temperature is lowered, but the refrigerant flow rate itself is reduced, so that the refrigerating capacity Q exhibited is lowered. On the other hand, when the expansion valve or the like is opened, the evaporating temperature rises, but the refrigerant flow rate itself increases, so that the refrigeration capacity Q exerted increases.
The relationship between the refrigerating capacity and the evaporation temperature is as shown in the graph of FIG. That is, FIG. 8 is a graph showing the relationship between the refrigerant evaporation temperature and the refrigeration capacity in the refrigerator.

この参考例は、冷凍機の上記した性質を利用して冷媒(一次側)の温度を制御し、熱交換器の表面温度が、設定環境における露点Dpの近傍となる様に調整するものである。以下、具体的な理論について説明する。
一次側の冷媒から二次側の冷媒に移動する熱量は、熱交換器の伝熱面積と、両冷媒の温度差に比例する。
従って任意の温度における冷凍能力をQnとし、一次冷却回路における相変化する冷媒と液体冷媒との熱交換面積をA、熱交換効率をK、冷媒の蒸発温度をETnとすると、次の式が成立する。

Figure 0004795709
In this reference example , the temperature of the refrigerant (primary side) is controlled using the above-described properties of the refrigerator, and the surface temperature of the heat exchanger is adjusted to be close to the dew point Dp in the set environment. . Hereinafter, a specific theory will be described.
The amount of heat transferred from the primary refrigerant to the secondary refrigerant is proportional to the heat transfer area of the heat exchanger and the temperature difference between the two refrigerants.
Therefore, if the refrigeration capacity at an arbitrary temperature is Qn, the heat exchange area between the phase-change refrigerant and the liquid refrigerant in the primary cooling circuit is A, the heat exchange efficiency is K, and the refrigerant evaporation temperature is ETn, the following equation is established. To do.
Figure 0004795709

また前記した様に、そして熱交換器の表面温度Tfが設定環境における露点Dpの近傍となる様に制御するための冷媒の温度Twoは前記した数6の式の通りであり、これを再掲すれば次の通りである。

Figure 0004795709
Further, as described above, the temperature Two of the refrigerant for controlling the surface temperature Tf of the heat exchanger to be close to the dew point Dp in the set environment is as shown in the above-described formula 6, and this is shown again. It is as follows.
Figure 0004795709

さらにTwn=TwoとしてTwnとTwoを消去すると、次の式となる。

Figure 0004795709
Further, when Twn and Two are deleted with Twn = Two, the following equation is obtained.
Figure 0004795709

ここで前記した様に蒸発温度と、発揮される冷凍能力Qとの間に一対一に対応する所定の関係があり、制御装置にはその関係が記憶されているから、記憶された蒸発温度・冷凍能力Qの関係と上記した式とによって蒸発温度ETnを決定することができる。そして本実施形態では、算出された蒸発温度ETnとなる様に、膨張弁の開度が調節される。
そのためこの恒温恒湿装置では、空気冷却用熱交換器6の表面温度が設定環境における露点Dpに近いものとなり、空気冷却用熱交換器6の表面で水蒸気凝縮が少なく、庫内の湿度が設定環境の湿度を大きく下回ることはない。
そのためこの参考例においても、図1の実線の様に、より直線的にポイントAからポイントBに向かい、そのため水蒸気の凝縮が少なく、潜熱を低下させるのに要する無駄なエネルギーが少ない。
Here, as described above, there is a predetermined one-to-one relationship between the evaporation temperature and the refrigerating capacity Q to be exerted, and the relationship is stored in the control device. The evaporation temperature ETn can be determined by the relationship between the refrigerating capacity Q and the above-described equation. In this embodiment, the opening degree of the expansion valve is adjusted so that the calculated evaporation temperature ETn is obtained.
Therefore, in this constant temperature and humidity device, the surface temperature of the air cooling heat exchanger 6 is close to the dew point Dp in the setting environment, and there is little water vapor condensation on the surface of the air cooling heat exchanger 6, and the humidity inside the chamber is set. The humidity of the environment is not significantly below.
Therefore, also in this reference example , as shown by the solid line in FIG. 1, the point A is further linearly moved from the point A to the point B, so that there is little condensation of water vapor, and less wasted energy is required to reduce the latent heat.

飽和水蒸気曲線と、庫内温度及び庫内湿度の変化を示すグラフである。It is a graph which shows the change of a saturated water vapor curve, and the internal temperature and internal humidity. 本発明の実施形態の恒温恒湿装置の概念図である。It is a conceptual diagram of the constant temperature and humidity apparatus of embodiment of this invention. 本実施形態の恒温恒湿装置1の制御装置のブロック図である。It is a block diagram of the control apparatus of the constant temperature and humidity apparatus 1 of this embodiment. 本発明の第二実施形態の恒温恒湿装置の概念図であるIt is a conceptual diagram of the constant temperature and humidity apparatus of 2nd embodiment of this invention. 図4に示す恒温恒湿装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the constant temperature and humidity apparatus shown in FIG. 参考例の恒温恒湿装置の概念図である。It is a conceptual diagram of the constant temperature and humidity apparatus of a reference example . 図6に示す恒温恒湿装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the constant temperature and humidity apparatus shown in FIG. 冷凍機における冷媒の蒸発温度と冷凍能力との関係を示すグラフである。It is a graph which shows the relationship between the evaporation temperature of the refrigerant | coolant in a refrigerator, and freezing capacity.

2 恒温恒湿漕
3 試験片配置室
5 空調通路
6 空気冷却用熱交換機
7 加熱ヒータ
8 加湿器
10 ファン
11 室内温度検知センサー
12 湿度検知センサー
15 断熱材
20 冷却装置
21 二次冷却回路
22 一次冷却回路
23 冷媒タンク
25 ポンプ
26 3方弁
27 蒸発器
28 液体冷媒温度検知センサー
2 Constant Temperature and Humidity 3 Test Piece Placement Room 5 Air Conditioning Passage 6 Air Cooling Heat Exchanger 7 Heater 8 Humidifier 10 Fan 11 Indoor Temperature Detection Sensor 12 Humidity Detection Sensor 15 Heat Insulation Material 20 Cooling Device 21 Secondary Cooling Circuit 22 Primary Cooling Circuit 23 Refrigerant tank 25 Pump 26 Three-way valve 27 Evaporator 28 Liquid refrigerant temperature detection sensor

Claims (6)

温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の環境が目標とする温度及び湿度となる様に調整可能な恒温恒湿装置において、
冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し、前記所定空間内の温度を低下させる際に、前記熱交換器の表面温度を熱交目標温度に制御するものであり、前記熱交目標温度は前記目標とする環境における露点Dpの近傍であり、以下に示す式を満足する範囲にあって、
冷却手段は前記熱交換器に液体冷媒を循環させるものであって液体冷媒を前記熱交換器に循環させる二次冷却回路と、蒸発器を介して液体冷媒を冷却する一次側温調回路を有し、
前記二次冷却回路は、冷媒タンクと、冷媒タンクから熱交換器に液体冷媒を循環させる流路と、熱交換器を迂回して循環する外部配管と、弁を備えていて前記熱交換器に流れる液体冷媒を断続することが可能であり、
一次側温調回路は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであって前記液体冷媒の温度を前記目標とする環境における露点Dpよりも低い温度にし、
前記所定空間内の温度が目標とする温度よりも低い場合には、前記弁を冷媒タンク側に切り換えて液体冷媒を外部配管を経由して循環させて冷媒タンク内の液体冷媒を攪拌し、
前記所定空間内の温度が目標とする温度よりも高い場合には、前記弁を熱交換器側に切り換えて熱交換器の温度を低下させて前記所定空間内の温度を降下させ、その際に熱交換器に流れる液体冷媒をオンオフし、熱交換器の表面温度が前記熱交目標温度となる様に制御することを特徴とする恒温恒湿装置。
Figure 0004795709
In a constant temperature and humidity device that includes a temperature detection means, a humidity detection means, and a cooling means, and can be adjusted so that the environment in the predetermined space has a target temperature and humidity,
The cooling means has a heat exchanger for exchanging heat with the air in the space, and controls the surface temperature of the heat exchanger to the heat exchange target temperature when the temperature in the predetermined space is lowered. The heat exchange target temperature is in the vicinity of the dew point Dp in the target environment, and is in a range satisfying the following equation:
The cooling means has a secondary cooling circuit that circulates the liquid refrigerant to the heat exchanger, circulates the liquid refrigerant to the heat exchanger, and a primary side temperature control circuit that cools the liquid refrigerant through the evaporator. And
The secondary cooling circuit includes a refrigerant tank, a flow path for circulating liquid refrigerant from the refrigerant tank to the heat exchanger, an external pipe that circulates around the heat exchanger, and a valve. It is possible to interrupt the flowing liquid refrigerant,
Primary temperature control circuit is condensed by compressing a phase change to a refrigerant, which the dew point Dp in the environment that the target temperature of the liquid coolant be one that performs a refrigeration cycle for cooling by evaporation Lower temperature,
When the temperature in the predetermined space is lower than the target temperature, the liquid refrigerant in the refrigerant tank is stirred by switching the valve to the refrigerant tank side to circulate the liquid refrigerant via an external pipe,
When the temperature in the predetermined space is higher than the target temperature, the valve is switched to the heat exchanger side to lower the temperature of the heat exchanger to lower the temperature in the predetermined space. A constant temperature and humidity device characterized in that the liquid refrigerant flowing in the heat exchanger is turned on and off so that the surface temperature of the heat exchanger becomes the heat exchange target temperature .
Figure 0004795709
温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の環境が目標とする温度及び湿度となる様に調整可能な恒温恒湿装置において、
冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し当該熱交換器に液体冷媒を循環させるものであり、前記所定空間内の温度を低下させる際に、前記液体冷媒の温度を熱交目標温度に制御するものであり、前記熱交目標温度は前記目標とする環境における露点Dpの近傍であり、以下に示す式を満足する範囲にあって、
前記冷却手段は液体冷媒を前記熱交換器に循環させる二次冷却回路と、蒸発器を介して液体冷媒を冷却する一次側温調回路を有し、
前記二次冷却回路は、冷媒タンクと、冷媒タンクから熱交換器に液体冷媒を循環させる流路と、熱交換器を迂回して循環する外部配管と、弁を備えていて前記熱交換器に流れる液体冷媒を断続することが可能であり、
一次側温調回路は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであって前記液体冷媒の温度を前記熱交目標温度に制御するものであり、
前記所定空間内の温度が目標とする温度よりも低い場合には、前記弁を冷媒タンク側に切り替えて液体冷媒を外部配管を経由して循環させて冷媒タンク内の液体冷媒を攪拌し、
前記所定空間内の温度が目標とする温度よりも高い場合には、前記弁を熱交換器側に切り替えて熱交換器の温度を低下させて前記所定空間内の温度を降下させる恒温恒湿装置。
Figure 0004795709
In a constant temperature and humidity device that includes a temperature detection means, a humidity detection means, and a cooling means, and can be adjusted so that the environment in the predetermined space has a target temperature and humidity,
The cooling means includes a heat exchanger that exchanges heat with the air in the space, and circulates the liquid refrigerant in the heat exchanger. When the temperature in the predetermined space is lowered, the temperature of the liquid refrigerant To the heat exchange target temperature, the heat exchange target temperature is in the vicinity of the dew point Dp in the target environment, and is in a range satisfying the following equation:
The cooling means has a secondary cooling circuit for circulating the liquid refrigerant to the heat exchanger, and a primary side temperature control circuit for cooling the liquid refrigerant via the evaporator,
The secondary cooling circuit includes a refrigerant tank, a flow path for circulating liquid refrigerant from the refrigerant tank to the heat exchanger, an external pipe that circulates around the heat exchanger, and a valve. It is possible to interrupt the flowing liquid refrigerant,
The primary side temperature control circuit executes a refrigeration cycle that compresses and condenses the phase-change refrigerant, evaporates and cools it, and controls the temperature of the liquid refrigerant to the heat exchange target temperature. Yes,
When the temperature in the predetermined space is lower than the target temperature, the liquid refrigerant in the refrigerant tank is stirred by switching the valve to the refrigerant tank side to circulate the liquid refrigerant via an external pipe,
When the temperature in the predetermined space is higher than the target temperature, the constant temperature and humidity device that switches the valve to the heat exchanger side to lower the temperature of the heat exchanger to lower the temperature in the predetermined space .
Figure 0004795709
冷媒タンク内に液体冷媒温度検知センサーが設けられ、液体冷媒温度検知センサーが検知する温度が前記熱交目標温度よりも低い温度となる様に前記一次側冷却装置の圧縮器がオンオフ制御されることを特徴とする請求項1に記載の恒温恒湿装置。 A liquid refrigerant temperature detection sensor is provided in the refrigerant tank, and the compressor of the primary side cooling device is on / off controlled so that the temperature detected by the liquid refrigerant temperature detection sensor is lower than the heat exchange target temperature. The constant temperature and humidity device according to claim 1. 冷媒タンク内に液体冷媒温度検知センサーが設けられ、液体冷媒温度検知センサーが検知する温度が前記熱交目標温度となる様に前記一次側冷却装置の圧縮器がオンオフ制御されることを特徴とする請求項2に記載の恒温恒湿装置。 A liquid refrigerant temperature detection sensor is provided in the refrigerant tank, and the compressor of the primary side cooling device is on / off controlled so that the temperature detected by the liquid refrigerant temperature detection sensor becomes the heat exchange target temperature. The constant temperature and humidity apparatus according to claim 2. 前記熱交換器の表面温度を検出する表面温度センサーを有し、表面温度センサーの信号に基づいて前記熱交換器に流れる液体冷媒を断続することを特徴とする請求項1に記載の恒温恒湿装置。   2. The constant temperature and humidity according to claim 1, further comprising a surface temperature sensor that detects a surface temperature of the heat exchanger, wherein the liquid refrigerant flowing in the heat exchanger is intermittently based on a signal of the surface temperature sensor. apparatus. 熱交目標温度は次の式を満足する範囲にあることを特徴とする請求項1乃至5のいずれかに記載の恒温恒湿装置。
Figure 0004795709
The constant temperature and humidity device according to any one of claims 1 to 5, wherein the heat exchange target temperature is in a range satisfying the following equation.
Figure 0004795709
JP2005102761A 2005-03-31 2005-03-31 Constant temperature and humidity device Active JP4795709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102761A JP4795709B2 (en) 2005-03-31 2005-03-31 Constant temperature and humidity device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102761A JP4795709B2 (en) 2005-03-31 2005-03-31 Constant temperature and humidity device

Publications (2)

Publication Number Publication Date
JP2006284063A JP2006284063A (en) 2006-10-19
JP4795709B2 true JP4795709B2 (en) 2011-10-19

Family

ID=37406178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102761A Active JP4795709B2 (en) 2005-03-31 2005-03-31 Constant temperature and humidity device

Country Status (1)

Country Link
JP (1) JP4795709B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794206A (en) * 2011-05-26 2012-11-28 上海爱斯佩克环境设备有限公司 Environmental test equipment with large-capacity refrigeration system and control method for environment test equipment
CN106584854A (en) * 2017-01-16 2017-04-26 中国计量大学 Super-precision 3D printing equipment hood

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105715795A (en) * 2014-12-05 2016-06-29 天津航天瑞莱科技有限公司 Novel sealing device for temperature shock environment testing box
TWI669492B (en) 2015-06-05 2019-08-21 日商伸和控制工業股份有限公司 Environmental test device
JP6537986B2 (en) 2016-01-26 2019-07-03 伸和コントロールズ株式会社 Temperature control system
CN107256052A (en) * 2017-07-06 2017-10-17 深圳市信通检测技术有限公司 Programmable constant temperature humidity chamber application method and control method
CN107631464A (en) * 2017-09-13 2018-01-26 珠海格力电器股份有限公司 Heat exchanger assembly and its design method, air conditioner
JP6987715B2 (en) * 2018-07-30 2022-01-05 三菱電機ビルテクノサービス株式会社 Air conditioner
KR102234336B1 (en) * 2019-04-12 2021-03-31 주식회사 진성피엘티 Constant temperature and humidity apparatus having a smoke detection function and controll method using the same
CN111974466A (en) * 2020-08-28 2020-11-24 无锡德华仕环境科技有限公司 Energy-saving constant temperature and humidity case
CN115854435A (en) * 2023-02-17 2023-03-28 深圳市华图测控系统有限公司 Microenvironment humidity control method and control system based on constant humidity machine

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2527643B2 (en) * 1990-10-29 1996-08-28 高砂熱学工業株式会社 A method of controlling the amount of water change in a water heat source air conditioning system
JP3323984B2 (en) * 1997-04-14 2002-09-09 オリオン機械株式会社 Constant temperature and constant humidity air supply device
JP2000283500A (en) * 1999-03-29 2000-10-13 Canon Inc Environment controller, semiconductor production system and inspecting/measuring apparatus
JP2002154319A (en) * 2000-09-05 2002-05-28 Denso Corp Air-conditioning device for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102794206A (en) * 2011-05-26 2012-11-28 上海爱斯佩克环境设备有限公司 Environmental test equipment with large-capacity refrigeration system and control method for environment test equipment
CN102794206B (en) * 2011-05-26 2014-09-03 上海爱斯佩克环境设备有限公司 Environmental test equipment with large-capacity refrigeration system and control method for environment test equipment
CN106584854A (en) * 2017-01-16 2017-04-26 中国计量大学 Super-precision 3D printing equipment hood
CN106584854B (en) * 2017-01-16 2018-08-24 中国计量大学 Ultraprecise 3D printing equipment hood

Also Published As

Publication number Publication date
JP2006284063A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4795709B2 (en) Constant temperature and humidity device
TW201809560A (en) Systems and methods for controlling a refrigeration system
JP5514787B2 (en) Environmental test equipment
JP5958503B2 (en) Room temperature adjustment system
WO2005052467A1 (en) Freezer and air contitioner
JP2009139014A (en) Air conditioner and operation control method for it
US10161651B2 (en) Air conditioning apparatus
JP4783048B2 (en) Constant temperature and humidity device
JP6486847B2 (en) Environmental test equipment
JP2006078026A5 (en)
WO2020174618A1 (en) Air-conditioning device
KR20060124960A (en) Cool mode control method of air conditioner
JP2007309585A (en) Refrigerating device
JP2007132545A (en) Air conditioning system
JP2006220332A (en) Composite type air conditioner
JP2012247118A (en) Air-cooled heat pump chiller
KR100901726B1 (en) Heat pump type thermo - hygrostat have a cooling and heating apparatus
EP3757481B1 (en) Air conditioning device
JP2009008346A (en) Refrigerating device
JP6650062B2 (en) Environmental test equipment
JP2003106683A (en) Refrigerator
KR102126903B1 (en) Outdoor unit integrated precision air conditioner with function to discharge smoke
Riviere et al. A new installation for part load testing of air to water single stage chillers and heat pumps
JP7098513B2 (en) Environment forming device and cooling device
JP7132782B2 (en) air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081218

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090723

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091023

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20091222

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20100212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Ref document number: 4795709

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250