JP4783048B2 - Constant temperature and humidity device - Google Patents

Constant temperature and humidity device Download PDF

Info

Publication number
JP4783048B2
JP4783048B2 JP2005102426A JP2005102426A JP4783048B2 JP 4783048 B2 JP4783048 B2 JP 4783048B2 JP 2005102426 A JP2005102426 A JP 2005102426A JP 2005102426 A JP2005102426 A JP 2005102426A JP 4783048 B2 JP4783048 B2 JP 4783048B2
Authority
JP
Japan
Prior art keywords
temperature
humidity
air
predetermined space
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005102426A
Other languages
Japanese (ja)
Other versions
JP2006285454A (en
Inventor
誠 船上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Espec Corp
Original Assignee
Espec Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Espec Corp filed Critical Espec Corp
Priority to JP2005102426A priority Critical patent/JP4783048B2/en
Publication of JP2006285454A publication Critical patent/JP2006285454A/en
Application granted granted Critical
Publication of JP4783048B2 publication Critical patent/JP4783048B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、所定の庫内や室内を目標とする温度及び湿度に調整可能な恒温恒湿装置に関するものであり、環境試験装置として使用されることが望ましいものである。   The present invention relates to a constant temperature and humidity device that can be adjusted to a target temperature and humidity in a predetermined cabinet or room, and is desirably used as an environmental test device.

機器や部品等の耐久性をテストする方策として環境試験が知られている。環境試験は、恒温恒湿装置又は環境試験装置と称される装置を使用して行われる。ここで恒温恒湿装置とは特許文献1の様にヒータと冷却装置及び加湿装置を備え、庫内に所望の環境を作るものである。例えば、温度60℃(摂氏温度)、湿度80%(パーセント)といった温度と湿度の環境を人工的に作る。   Environmental testing is known as a measure for testing the durability of equipment and components. The environmental test is performed using a device called a constant temperature and humidity device or an environmental test device. Here, the constant temperature and humidity device includes a heater, a cooling device, and a humidifying device as in Patent Document 1, and creates a desired environment in the cabinet. For example, an environment of temperature and humidity such as a temperature of 60 ° C. (degrees Celsius) and a humidity of 80% (percent) is artificially created.

従来技術の恒温恒湿装置で採用する冷却装置は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであり、蒸発器(熱交換器)を庫内又は外付けの空調機部内に設置して庫内の空気を冷却している。   The cooling device employed in the conventional constant temperature and humidity device executes a refrigeration cycle that compresses and condenses the phase-changing refrigerant, evaporates and cools it, and stores the evaporator (heat exchanger). It is installed in the internal or external air conditioner to cool the air in the cabinet.

特開2000−111127号公報JP 2000-11127 A

従来技術の恒温恒湿装置は、性能的には申し分のないものであるが、消費電力を下げたいという市場の要求がある。即ち市場では、より省エネ型の恒温恒湿装置が求められている。特に恒温恒湿装置は、環境試験に使用される場合が多く、長期に渡って連続運転されることが多いので、市場においてはより省エネ型の装置が待望されている。   Although the temperature and humidity device of the prior art is satisfactory in terms of performance, there is a market demand for reducing power consumption. That is, more energy-saving constant temperature and humidity devices are required in the market. In particular, the constant temperature and humidity device is often used for environmental tests and is often operated continuously for a long period of time. Therefore, more energy-saving devices are expected in the market.

そこで本発明者は、従来技術の恒温恒湿装置におけるエネルギーロスを検討した。その結果、従来技術の恒温恒湿装置では、冷却装置のエネルギーが、庫内温度を下げるためだけではなく、庫内の水蒸気を凝縮するためにも消費されていることが判った。つまり従来技術の恒温恒湿装置では、庫内の顕熱を下げるだけでなく、潜熱を低下させるのにもエネルギーが消費され、エネルギーの無駄があることが判明した。   Therefore, the present inventor examined energy loss in the conventional constant temperature and humidity device. As a result, in the constant temperature and humidity device of the prior art, it has been found that the energy of the cooling device is consumed not only for lowering the internal temperature but also for condensing the water vapor in the internal space. In other words, it has been found that the conventional constant temperature and humidity device not only lowers the sensible heat in the cabinet but also consumes energy to reduce the latent heat, resulting in wasted energy.

即ち従来技術の恒温恒湿装置で採用する冷却装置は、前記した様に相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであり、蒸発器(熱交換器)を庫内や空調機部内に設置して庫内の空気を冷却している。
そのため庫内の空気と熱交換を行う部位(蒸発器)の温度は相当に低いものとなり、庫内の空気に含有される水蒸気を凝縮させてしまう。その結果、庫内の温度だけでなく湿度も低下してしまう。そのため従来技術の恒温恒湿装置では、湿度を維持するために加湿装置によって庫内に水蒸気を供給する必要があった。
That is, the cooling device employed in the constant temperature and humidity device of the prior art executes a refrigeration cycle that compresses and condenses the phase change refrigerant and evaporates and cools it as described above. The exchanger is installed in the cabinet or in the air conditioner section to cool the air in the cabinet.
Therefore, the temperature of the part (evaporator) that exchanges heat with the air in the warehouse becomes considerably low, and water vapor contained in the air in the warehouse is condensed. As a result, not only the temperature in the cabinet but also the humidity is lowered. Therefore, in the constant temperature and humidity device of the prior art, it was necessary to supply water vapor into the cabinet by the humidifier in order to maintain the humidity.

以下、図1に示す飽和水蒸気曲線を参照しつつ説明する。
図1は、飽和水蒸気曲線と、庫内温度及び庫内湿度の変化を示すグラフである。グラフにおいて、ポイントAは、現在の環境であり、現在における庫内温度及び含有する水蒸気量を示している。ポイントAは、温度80℃(摂氏温度)、相対湿度90%(パーセント)の環境である。
同Bは、目標とする環境(以下 設定環境と称する場合がある)であり、設定環境における庫内温度及び含有する水蒸気量を示している。ポイントBは、温度75℃、相対湿度90%の環境である。即ち設定環境は、現状の環境と相対湿度が同じで温度だけが低い。
なお飽和水蒸気曲線は、温度と絶対湿度、即ち気温と当該気温において一定容積に含み得る水蒸気の質量との関係を示すグラフであるから、一般に言う湿度(相対湿度)は、当該温度におけるグラフ上のY軸の値と、ポイントにおけるY軸の値の比率である。
Hereinafter, description will be made with reference to the saturated water vapor curve shown in FIG.
FIG. 1 is a graph showing a saturated water vapor curve and changes in the internal temperature and the internal humidity. In the graph, point A is the current environment, and shows the current internal temperature and the amount of water vapor contained. Point A is an environment having a temperature of 80 ° C. (degrees Celsius) and a relative humidity of 90% (percent).
B is a target environment (hereinafter sometimes referred to as a set environment), and shows the internal temperature and the amount of water vapor contained in the set environment. Point B is an environment with a temperature of 75 ° C. and a relative humidity of 90%. That is, the setting environment has the same relative humidity as the current environment and only the temperature is low.
Since the saturated water vapor curve is a graph showing the relationship between temperature and absolute humidity, that is, the temperature and the mass of water vapor that can be contained in a certain volume at the air temperature, generally speaking, the humidity (relative humidity) is on the graph at the temperature. It is the ratio of the Y-axis value to the Y-axis value at the point.

従来技術の恒温恒湿装置によると、庫内の環境は、破線の様な経過を経て目標たるポイントBの環境に至る。即ち庫内温度を低下すべく冷却装置を運転すると、熱交換器の表面温度が低いために熱交換器の表面で水蒸気が凝縮し、温度と共に湿度も低下してしまう。具体的には庫内の環境は、一旦ポイントCに至る。即ちポイントCは庫内温度が目標温度であり、湿度が目標値よりも低い環境である。
そして従来技術の恒温恒湿装置では、加湿装置を運転して庫内に水蒸気を供給し、湿度を上昇させて設定環境を作りだす。
According to the constant temperature and humidity device of the prior art, the environment in the cabinet reaches the target point B environment through the process shown by the broken line. That is, when the cooling device is operated to lower the internal temperature, the surface temperature of the heat exchanger is low, so that water vapor condenses on the surface of the heat exchanger, and the humidity decreases with temperature. Specifically, the environment in the warehouse once reaches point C. That is, the point C is an environment where the internal temperature is the target temperature and the humidity is lower than the target value.
In the conventional constant temperature and humidity device, the humidifier is operated to supply water vapor into the cabinet, and the humidity is increased to create a setting environment.

そのため従来技術の恒温恒湿装置は、冷却装置のエネルギーが、庫内温度を下げるためだけではなく、庫内の水蒸気を凝縮するためにも消費され、無駄があることが判った。
そこで本発明は、従来技術の上記した要望に応えるため、より無駄がなく、より省エネルギーである恒温恒湿装置の開発を課題とする。
For this reason, it has been found that in the constant temperature and humidity device of the prior art, the energy of the cooling device is consumed not only for lowering the internal temperature but also for condensing the water vapor in the internal space, which is wasteful.
Therefore, the present invention has an object to develop a constant temperature and humidity apparatus that is less wasteful and saves energy in order to meet the above-described demands of the prior art.

そして上記した要望に応えることができる請求項1に記載の発明は、温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の空気が循環し、当該所定空間内の環境が目標とする温度(To)及び目標とする湿度となる様に調整可能な恒温恒湿装置において、乾式除湿装置を備え、湿度検知手段によって所定空間内の湿度が監視され、湿度検知手段が目標とする絶対湿度より高いことを検知すると、前記乾式除湿装置が起動して前記所定空間内の空気が乾式除湿装置を通過して所定空間内に戻され、冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し、前記所定空間内の温度を低下させる際に冷却手段の前記熱交換器の温度を、目標とする前記温度(To)未満であって、目標とする前記温度(To)及び前記目標とする湿度の環境における露点Dp以上に制御することを特徴とする恒温恒湿装置である。 The invention according to claim 1, which can meet the above-described demand, includes a temperature detection means, a humidity detection means, and a cooling means, and air in the predetermined space circulates, and the environment in the predetermined space is a target. A constant temperature and humidity control device that can be adjusted to achieve a temperature (To) and a target humidity. The device is equipped with a dry dehumidifier, the humidity in the predetermined space is monitored by the humidity detection means, and the humidity detection means targets the absolute humidity. When it is detected that the air is higher, the dry dehumidifier is activated, the air in the predetermined space passes through the dry dehumidifier and is returned to the predetermined space, and the cooling means performs heat exchange with the air in the space. Having a exchanger, the temperature of the heat exchanger of the cooling means when lowering the temperature in the predetermined space is less than the target temperature (To), the target temperature (To) and Of the target humidity It is a constant temperature and humidity device and controlling than the dew point Dp in the boundary.

本発明の恒温恒湿装置では、冷却装置によって顕熱のみを下げ、湿度調節は、乾式除湿装置によって行うことを意図している。
前記した図1で示したポイントAとポイントBの関係は、相対湿度が同じで温度だけが低いものであるが、実際の環境試験においてはこの様なケースが多い。この例の様に、湿度を維持して温度だけを低下させる為には、単に温度を低下させるだけでなく、空気中の水蒸気を除去しなければならない。従来技術の恒温恒湿装置では、前記した様に熱交換器の表面で結露させて空気中の水蒸気を除去していたのに対し、本発明では、専用の乾式除湿装置によって空気中の水蒸気を除去する。
即ち本発明の恒温恒湿装置では、室内等の温度を低下させる際に熱交換器の温度を目標とする環境における露点Dp以上であって目標とする環境における温度未満に制御する。そのため熱交換器表面における水蒸気の凝縮が極めて少ないものとなり、過剰な水分除去はなされない。また本発明では、乾式除湿装置によって必要な量だけ水分を除去するので、所望の環境に至らせるのに要するエネルギーが小さい。
In the constant temperature and humidity device of the present invention, only the sensible heat is lowered by the cooling device, and the humidity adjustment is intended to be performed by the dry dehumidifying device.
The relationship between point A and point B shown in FIG. 1 described above is that the relative humidity is the same and only the temperature is low, but there are many cases in actual environmental tests. As in this example, in order to maintain the humidity and reduce only the temperature, not only the temperature but also water vapor in the air must be removed. In the constant temperature and humidity device of the prior art, as described above, the water vapor in the air is removed by dew condensation on the surface of the heat exchanger, whereas in the present invention, the water vapor in the air is removed by a dedicated dry dehumidifier. Remove.
That is, in the constant temperature and humidity device of the present invention, when the temperature of the room or the like is lowered, the temperature of the heat exchanger is controlled to be equal to or higher than the dew point Dp in the target environment and lower than the temperature in the target environment. Therefore, the condensation of water vapor on the surface of the heat exchanger becomes extremely small, and excessive water removal is not performed. Further, in the present invention, since the moisture is removed by the dry dehumidifier, the energy required to reach the desired environment is small.

また同様の課題を解決するための請求項2に記載の発明は、温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の環境が目標とする温度(To)及び目標とする湿度となる様に調整可能な恒温恒湿装置において、乾式除湿装置を備え、湿度検知手段によって所定空間内の湿度が監視され、湿度検知手段が目標とする絶対湿度より高いことを検知すると、前記乾式除湿装置が起動して前記所定空間内の空気が乾式除湿装置を通過して所定空間内に戻され、冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し、前記所定空間内の温度を低下させる際に、冷却手段の前記熱交換器の温度Tsが下記の式を満足する目標値となる様に制御されることを特徴とする恒温恒湿装置である。

Figure 0004783048
The invention according to claim 2 for solving the same problem includes a temperature detecting means, a humidity detecting means, and a cooling means, and the environment in the predetermined space is set to a target temperature (To) and a target humidity. In the constant temperature and humidity device that can be adjusted as described above, the dry dehumidification device is provided, the humidity in the predetermined space is monitored by the humidity detection means, and when the humidity detection means detects that the humidity is higher than the target absolute humidity, the dry dehumidification device When the apparatus is activated, the air in the predetermined space passes through the dry dehumidifier and is returned to the predetermined space, and the cooling means has a heat exchanger for exchanging heat with the air in the space. When the temperature is lowered, the temperature and humidity control apparatus is controlled such that the temperature Ts of the heat exchanger of the cooling means becomes a target value satisfying the following formula.
Figure 0004783048

本発明の恒温恒湿装置についても、冷却装置によって顕熱のみを下げ、湿度調節は、乾式除湿装置によって行うことを意図した設計となっている。
即ち本発明の恒温恒湿装置では、室内等の温度を低下させる際に熱交換器の温度を目標とする環境における露点Dpの近傍となる様に制御する。
そのため熱交換器表面における水蒸気の凝縮が極めて少ないものとなり、過剰な水分除去はなされない。また本発明では、乾式除湿装置によって必要な量だけ水分を除去するので、所望の環境に至らせるのに要するエネルギーが小さい。
The constant temperature and humidity device of the present invention is also designed to reduce only the sensible heat by the cooling device and to adjust the humidity by the dry dehumidifying device.
That is, in the constant temperature and humidity device of the present invention, the temperature of the heat exchanger is controlled to be close to the dew point Dp in the target environment when the temperature of the room or the like is lowered.
Therefore, the condensation of water vapor on the surface of the heat exchanger becomes extremely small, and excessive water removal is not performed. Further, in the present invention, since the moisture is removed by the dry dehumidifier, the energy required to reach the desired environment is small.

請求項3に記載の発明は、前記所定空間内の温度を低下させる際に、乾式除湿装置で所定空間内の水蒸気を必要な量だけ除去することを特徴とする請求項1又は2に記載の恒温恒湿装置である。   The invention according to claim 3 is characterized in that when the temperature in the predetermined space is lowered, the dry dehumidifier removes a necessary amount of water vapor in the predetermined space. It is a constant temperature and humidity device.

本発明の恒温恒湿装置によると、潜熱を低下させるエネルギーが冷却手段に負荷されず、消費エネルギーが少ない。   According to the constant temperature and humidity device of the present invention, energy for reducing latent heat is not loaded on the cooling means, and energy consumption is small.

請求項4に記載の発明は、冷却手段は熱交換器に液体冷媒を循環させるものであり、前記所定空間内の温度を低下させる際に、前記液体冷媒の温度が所定の温度となる様に制御することによって熱交換器の温度を制御するものであることを特徴とする請求項1乃至3のいずれかに記載の恒温恒湿装置である。   According to a fourth aspect of the present invention, the cooling means circulates the liquid refrigerant through the heat exchanger, and when the temperature in the predetermined space is lowered, the temperature of the liquid refrigerant becomes a predetermined temperature. The constant temperature and humidity device according to any one of claims 1 to 3, wherein the temperature of the heat exchanger is controlled by controlling the temperature.

本発明の恒温恒湿装置は、熱交換器に液体冷媒を循環させて熱交換器の温度を低下させるものであり、庫内や室内の温度を低下させる際に、冷媒の温度が所定の温度となる様に制御することによって熱交換器の温度を制御する。そのため熱交換器の温度が安定し、水蒸気の凝縮が少ないものとなる。
また、請求項5に記載の発明は、冷却手段は、熱交換器に液体冷媒が流れる二次冷却回路と、相変化する冷媒が流れて当該液体冷媒を冷却する一次冷却回路とを備え、前記二次冷却回路は冷媒タンクと3方弁を有し、3方弁の一つの開口は空気冷却用熱交換器に接続され、別の一つの開口は冷媒タンクに接続されており、温度検知手段により検知された温度が設定環境の温度より低い場合は、3方弁を冷媒タンク側に切り換え、温度検知手段により検知された温度が設定環境の温度より高い場合は、3方弁を空気冷却用熱交換器側に切り換えて空気冷却用熱交換器に流れる液体冷媒を断続することが可能であることを特徴とする請求項1乃至4のいずれかに記載の恒温恒湿装置である。
The constant temperature and humidity device of the present invention circulates a liquid refrigerant in the heat exchanger to lower the temperature of the heat exchanger. When the temperature in the chamber or the room is lowered, the temperature of the refrigerant is a predetermined temperature. The temperature of the heat exchanger is controlled by controlling so that Therefore, the temperature of the heat exchanger is stabilized, and the condensation of water vapor is small.
Further, in the invention according to claim 5, the cooling means includes a secondary cooling circuit in which the liquid refrigerant flows in the heat exchanger, and a primary cooling circuit in which the phase-changing refrigerant flows to cool the liquid refrigerant, The secondary cooling circuit has a refrigerant tank and a three-way valve, and one opening of the three-way valve is connected to the air cooling heat exchanger, and the other opening is connected to the refrigerant tank. If the detected temperature is lower than the temperature of the set environment, the three-way valve is switched to the refrigerant tank side. If the temperature detected by the temperature detection means is higher than the set environment temperature, the three-way valve is used for air cooling. 5. The constant temperature and humidity device according to claim 1, wherein the liquid refrigerant flowing to the air cooling heat exchanger can be intermittently switched to the heat exchanger side.

請求項6に記載の発明は、乾式除湿装置は、固形乾燥剤が充填され通気可能な回転部材と、処理空気導通路と再生空気導通路を備え、前記処理空気導通路及び再生空気導通路は、回転部材の一部を流路の一部に含み、前記処理空気導通路には前記所定空間内の空気が導入され、再生空気導通路には高温の空気及び/又は低湿度の空気が導入されることを特徴とする請求項1乃至5のいずれかに記載の恒温恒湿装置である。   According to a sixth aspect of the present invention, the dry dehumidifier includes a rotating member that is filled with a solid desiccant and can be ventilated, a processing air conduction path, and a regeneration air conduction path, and the processing air conduction path and the regeneration air conduction path are In addition, a part of the rotating member is included in a part of the flow path, air in the predetermined space is introduced into the processing air conduction path, and high temperature air and / or low humidity air is introduced into the regeneration air conduction path. The constant temperature and humidity device according to any one of claims 1 to 5, wherein:

本発明の恒温恒湿装置では、処理空気導通路に所定空間内の空気が導入され、空気中の水分が固形乾燥剤に奪われ、所定空間内の空気が除湿される。水分を吸収した固形乾燥剤は、回転部材の回転に伴って再生空気導通路の部位に至る。そして再生空気導通路に高温の空気等が導入されるから、固形乾燥材に含まれる水分が除去される。   In the constant temperature and humidity device of the present invention, air in the predetermined space is introduced into the processing air conduction path, moisture in the air is taken away by the solid desiccant, and the air in the predetermined space is dehumidified. The solid desiccant that has absorbed moisture reaches the portion of the regeneration air conduction path as the rotating member rotates. And since high temperature air etc. are introduce | transduced into the reproduction | regeneration air conduction path, the water | moisture content contained in a solid desiccant is removed.

本発明の恒温恒湿装置は、従来に比べて消費電力が少なく、省エネルギーである。   The constant temperature and humidity device of the present invention consumes less power and saves energy compared to the prior art.

以下さらに本発明の実施形態について説明する。
図2(図7)は、本発明の実施形態の恒温恒湿装置の概念図である。図3は、乾式乾燥装置の概念図である。
図2(図7)に示す恒温恒湿装置1は、断熱材15によって囲まれた恒温恒湿槽(所定空間)2を備える。また恒温恒湿槽(所定空間)2には、湿度調節回路30が取り付けられている。恒温恒湿槽2の内部は、図の様に試験片配置室3と、空調通路5に分かれている。空調通路5は、下部側と上部側に試験片配置室3と連通する開口があり、試験片配置室3内であって、空調通路5の上部の開口の近傍に室内温度検知センサー11と湿度検知センサー12が設けられている。
室内温度検知センサー11は具体的には熱電対である。
Embodiments of the present invention will be further described below.
FIG. 2 (FIG. 7) is a conceptual diagram of the constant temperature and humidity device of the embodiment of the present invention. FIG. 3 is a conceptual diagram of a dry drying apparatus.
A constant temperature and humidity device 1 shown in FIG. 2 (FIG. 7) includes a constant temperature and humidity chamber (predetermined space) 2 surrounded by a heat insulating material 15. A humidity control circuit 30 is attached to the constant temperature and humidity chamber (predetermined space) 2. The interior of the constant temperature and humidity chamber 2 is divided into a test piece arrangement chamber 3 and an air conditioning passage 5 as shown in the figure. The air conditioning passage 5 has an opening communicating with the test piece arrangement chamber 3 on the lower side and the upper side, and is located in the test piece arrangement chamber 3 and in the vicinity of the upper opening of the air conditioning passage 5 with the indoor temperature detection sensor 11 and the humidity. A detection sensor 12 is provided.
The indoor temperature detection sensor 11 is specifically a thermocouple.

空調通路5には、空気冷却用熱交換器6、加熱ヒータ7及びファン10が配されている。
空気冷却用熱交換器6は、後記する冷却装置20の一部であり、内部に液体冷媒(ブライン)が流通する。
加熱ヒータ7は、公知の電気ヒータである。ファン10は、公知のものである。
In the air conditioning passage 5, an air cooling heat exchanger 6, a heater 7, and a fan 10 are arranged.
The air cooling heat exchanger 6 is a part of a cooling device 20 described later, and a liquid refrigerant (brine) circulates therein.
The heater 7 is a known electric heater. The fan 10 is a known one.

本実施形態の恒温恒湿装置1では、ファン10によって恒温恒湿槽2内の空気が循環して空調通路5を通過し、所望の環境が作られる。即ち恒温恒湿槽2内の空気はファン10によって空調通路5の下部側から吸入され、空調通路5を通過して上部側の開口に抜ける。このとき、空気は空気冷却用熱交換器6を通過し、さらに加熱ヒータ7に触れる。   In the constant temperature and humidity device 1 of the present embodiment, the air in the constant temperature and humidity chamber 2 is circulated by the fan 10 and passes through the air conditioning passage 5 to create a desired environment. That is, the air in the constant temperature and humidity chamber 2 is sucked from the lower side of the air conditioning passage 5 by the fan 10, passes through the air conditioning passage 5, and goes out to the opening on the upper side. At this time, the air passes through the air cooling heat exchanger 6 and further touches the heater 7.

恒温恒湿装置1では、室内温度検知センサー11と湿度検知センサー12によって試験片配置室3内の温度と湿度が監視されている。そして試験片配置室3内の温度が設定環境の温度よりも低い場合には加熱ヒータ7に通電して昇温され、試験片配置室3内の温度が設定環境の温度よりも高い場合には空気冷却用熱交換器6に液体冷媒(ブライン)を流して空気冷却用熱交換器6の温度を低下させ、流通する空気から熱を奪う。
また試験片配置室3内の湿度が設定環境の湿度よりも低い場合には後記する加湿器8から蒸気を噴射して通過する空気に混入する。
In the constant temperature and humidity device 1, the temperature and humidity in the test piece arrangement chamber 3 are monitored by the indoor temperature detection sensor 11 and the humidity detection sensor 12. When the temperature inside the test piece arrangement chamber 3 is lower than the temperature of the set environment, the heater 7 is energized to raise the temperature. When the temperature inside the test piece arrangement chamber 3 is higher than the temperature of the set environment, A liquid refrigerant (brine) is allowed to flow through the air cooling heat exchanger 6 to lower the temperature of the air cooling heat exchanger 6, and heat is taken away from the circulating air.
Further, when the humidity in the test piece arrangement chamber 3 is lower than the humidity of the set environment, steam is injected from the humidifier 8 described later and mixed into the passing air.

次に本実施形態で採用する冷却装置20について説明する。
本実施形態で採用する冷却装置20は、冷却された液体冷媒(ブライン)を前記した空気冷却用熱交換器6に流して恒温恒湿槽2内を冷却するものであり、大きく二系統に分かれている。即ち本実施形態で採用する冷却装置20は、液体冷媒(ブライン)が流れる二次冷却回路21と、気・液間で相変化する冷媒が流れる一次冷却回路22を備えている。
Next, the cooling device 20 employed in the present embodiment will be described.
The cooling device 20 employed in the present embodiment cools the temperature and humidity chamber 2 by flowing a cooled liquid refrigerant (brine) through the air cooling heat exchanger 6 described above, and is divided into two systems. ing. That is, the cooling device 20 employed in the present embodiment includes a secondary cooling circuit 21 in which a liquid refrigerant (brine) flows, and a primary cooling circuit 22 in which a refrigerant that changes phase between gas and liquid flows.

二次冷却回路21は、図2(図7)の様に冷媒タンク23、ポンプ25、3方弁26及び前記した空気冷却用熱交換器6によって構成されている。
そして冷媒タンク23はポンプ25の吸い込み側に接続され、ポンプ25の吐出側は3方弁26の一つの開口(第一開口)に接続されている。3方弁26の残る2開口は、それぞれ空気冷却用熱交換器6と冷媒タンク23に接続されている。即ち3方弁26の第二開口は、空気冷却用熱交換器6の入り側開口に接続され、第三開口は、冷媒タンク23に接続されている。
また空気冷却用熱交換器6の出側開口は、冷媒タンク23に接続されている。
As shown in FIG. 2 (FIG. 7), the secondary cooling circuit 21 includes a refrigerant tank 23, a pump 25, a three-way valve 26, and the air cooling heat exchanger 6 described above.
The refrigerant tank 23 is connected to the suction side of the pump 25, and the discharge side of the pump 25 is connected to one opening (first opening) of the three-way valve 26. The remaining two openings of the three-way valve 26 are connected to the air cooling heat exchanger 6 and the refrigerant tank 23, respectively. That is, the second opening of the three-way valve 26 is connected to the entrance opening of the air cooling heat exchanger 6, and the third opening is connected to the refrigerant tank 23.
The outlet opening of the air cooling heat exchanger 6 is connected to the refrigerant tank 23.

一次冷却回路22は、相変化する冷媒を圧縮して凝縮し、これを蒸発させて冷却する冷凍サイクルを実行するものであり、図示しない圧縮器、凝縮器、膨張弁を備えた冷凍機である。そして一次冷却装置22の蒸発器27は、冷媒タンク23に内蔵されている。   The primary cooling circuit 22 executes a refrigeration cycle that compresses and condenses the phase-change refrigerant, evaporates and cools it, and is a refrigerator that includes a compressor, a condenser, and an expansion valve (not shown). . The evaporator 27 of the primary cooling device 22 is built in the refrigerant tank 23.

従って、一次冷却装置22の図示しない圧縮器を起動すると、冷媒ガスが圧縮され、図示しない凝縮器で液化される。そして膨張弁を経て蒸発器27に入り、低温を作る。
本実施形態の恒温恒湿装置1では、冷媒タンク23内に液体冷媒温度検知センサー28が設けられ、液体冷媒温度検知センサー28が検知する温度が所定の温度となる様に図示しない圧縮器がオンオフ制御される。
Therefore, when a compressor (not shown) of the primary cooling device 22 is started, the refrigerant gas is compressed and liquefied by a condenser (not shown). Then, it enters the evaporator 27 through an expansion valve and creates a low temperature.
In the constant temperature and humidity device 1 of the present embodiment, a liquid refrigerant temperature detection sensor 28 is provided in the refrigerant tank 23, and a compressor (not shown) is turned on / off so that the temperature detected by the liquid refrigerant temperature detection sensor 28 becomes a predetermined temperature. Be controlled.

また二次冷却回路21については、ポンプ25が常時運転されており、3方弁26を切り換えることによって空気冷却用熱交換器6に流れる液体冷媒を断続する。
即ち恒温恒湿装置1では、室内温度検知センサー11によって試験片配置室3内の温度が監視されており、試験片配置室3内の温度が目標とする試験片配置室3内の温度が設定環境の温度よりも低い場合には3方弁26が冷媒タンク23側に切り換えられる。その結果、液体冷媒は、外部配管を経由して循環し、冷媒タンク23内の冷媒が攪拌される。
一方、試験片配置室3内の温度が設定環境の温度よりも高い場合には3方弁26を空気冷却用熱交換器6側に切り換える。その結果、空気冷却用熱交換器6に液体冷媒(ブライン)が流れ、空気冷却用熱交換器6の温度が低下し、試験片配置室3内の温度が降下する。
As for the secondary cooling circuit 21, the pump 25 is always operated, and the liquid refrigerant flowing to the air cooling heat exchanger 6 is intermittently switched by switching the three-way valve 26.
That is, in the constant temperature and humidity apparatus 1, the temperature in the test piece arrangement chamber 3 is monitored by the indoor temperature detection sensor 11, and the target temperature in the test piece arrangement chamber 3 is set as the target temperature in the test piece arrangement chamber 3. When the temperature is lower than the environmental temperature, the three-way valve 26 is switched to the refrigerant tank 23 side. As a result, the liquid refrigerant circulates via the external pipe, and the refrigerant in the refrigerant tank 23 is agitated.
On the other hand, when the temperature in the test piece arrangement chamber 3 is higher than the temperature of the set environment, the three-way valve 26 is switched to the air cooling heat exchanger 6 side. As a result, the liquid refrigerant (brine) flows into the air cooling heat exchanger 6, the temperature of the air cooling heat exchanger 6 is lowered, and the temperature in the test piece arrangement chamber 3 is lowered.

また本実施形態の恒温恒湿装置1では、特有の構成として湿度調節回路30が設けられている。湿度調節回路30は、恒温恒湿槽2に外付けされ、試験片配置室3と空調通路5とを結ぶ空気流路である。そして湿度調節回路30の中途部分に乾式除湿装置31と加湿器8が配されている。   Moreover, in the constant temperature and humidity apparatus 1 of this embodiment, the humidity control circuit 30 is provided as a specific structure. The humidity control circuit 30 is an air flow path that is externally attached to the constant temperature and humidity chamber 2 and connects the test piece arrangement chamber 3 and the air conditioning passage 5. A dry dehumidifier 31 and a humidifier 8 are disposed in the middle of the humidity control circuit 30.

ここで乾式除湿装置31は、図3に示す様に、回転部材35と処理空気導通路36と再生空気導通路37を備えている。
回転部材35は、円筒状であり、内部に固形乾燥剤が充填されている。固形乾燥剤には、加熱することによって再生可能なものが選定されている。固形乾燥剤は表面吸着によって除湿するものが推奨され、例えばシリカゲルやシリカアルミナゲル、塩化リチウム等が使用可能である。
Here, as shown in FIG. 3, the dry dehumidifier 31 includes a rotating member 35, a processing air conduction path 36, and a regeneration air conduction path 37.
The rotating member 35 has a cylindrical shape and is filled with a solid desiccant. A solid desiccant that can be regenerated by heating is selected. A solid desiccant that is dehumidified by surface adsorption is recommended. For example, silica gel, silica alumina gel, lithium chloride, or the like can be used.

また回転部材35は軸方向に通気性を有する。回転部材35は、図示しないモータによってゆっくりと回転する。
回転部材35は、周囲に前記した処理空気導通路36と再生空気導通路37を備えている。処理空気導通路36及び再生空気導通路37は、いずれも往き側通路36a、37aと、排出側通路36b、37bを備え、これらはいずれも回転部材35に面して開口している。
The rotating member 35 has air permeability in the axial direction. The rotating member 35 is slowly rotated by a motor (not shown).
The rotating member 35 includes the processing air conduction path 36 and the regeneration air conduction path 37 as described above. Each of the processing air conduction path 36 and the regeneration air conduction path 37 includes forward passages 36 a and 37 a and discharge passages 36 b and 37 b, both of which open to face the rotating member 35.

即ち回転部材35の一定の領域を挟んでその前後に往き側処理空気通路36aと排出側処理空気通路36bがある。そして往き側処理空気通路36aの端部は回転部材35の一方の側面に面して開いている。また排出側処理空気通路36bの開口は、回転部材35の他方の面であって、往き側処理空気通路36aと対向する位置にある。前記した様に、回転部材35は軸方向に通気性を有するので、往き側処理空気通路36aと排出側処理空気通路36bは、回転部材35の一領域を介して連通する。言い換えれば処理空気導通路36は、回転部材35の一部を流路の一部に含む。排出側処理空気通路36bにはファン40が設けられており排出側処理空気通路36b側を負圧にして往き側処理空気通路36aの空気を吸引し、回転部材35の一領域を通過させて排出側処理空気通路36b側に空気を排出する。なお図3におけるファン40、41の画は、モデル的に表示したものであり、取付け方向等は図に限定されない。   That is, there are a forward processing air passage 36a and a discharge processing air passage 36b before and after a certain region of the rotating member 35. The end of the forward processing air passage 36 a is open facing one side surface of the rotating member 35. The opening of the discharge side processing air passage 36b is on the other surface of the rotating member 35 and is located at a position facing the forward side processing air passage 36a. As described above, since the rotation member 35 has air permeability in the axial direction, the forward processing air passage 36 a and the discharge processing air passage 36 b communicate with each other through a region of the rotation member 35. In other words, the processing air conduction path 36 includes a part of the rotating member 35 in a part of the flow path. A fan 40 is provided in the discharge-side processing air passage 36b, and the discharge-side processing air passage 36b side is set to a negative pressure so that air in the forward-side processing air passage 36a is sucked and discharged through one area of the rotating member 35. Air is discharged to the side processing air passage 36b side. Note that the images of the fans 40 and 41 in FIG. 3 are displayed in a model manner, and the mounting direction and the like are not limited to the drawings.

また回転部材35の他の領域を挟んでその前後に往き側再生空気通路37aと排出側再生空気通路37bがある。そして往き側再生空気通路37aの端部は回転部材35の一方の側面に面して開いている。また排出側再生空気通路37bの開口は、回転部材35の他方の面であって、往き側再生空気通路37aと対向する位置にある。前記した様に、回転部材35は軸方向に通気性を有するので、往き側再生空気通路37aと排出側再生空気通路37bは、回転部材35の一領域を介して連通する。従って再生空気導通路37についても、回転部材35の一部を流路の一部に含む。排出側再生空気通路37bにはファン41が設けられており排出側再生空気通路37b側を負圧にして往き側再生空気通路37aの空気を吸引し、回転部材35の一領域を通過させて排出側再生空気通路36b側に空気を排出する。また往き側再生空気通路37aにはヒータ45が挿入されており、加熱され、相対湿度が低下した空気が回転部材35に供給される。なおヒータ45によって加熱された空気の温度を変えることによって、回転部材35の除湿量を変えることができる。ひいてはヒータ45によって加熱された空気の温度を変えることによって、恒温恒湿槽2内から除去する水分量を変化させることもできる。   Further, there are a forward regeneration air passage 37a and a discharge regeneration air passage 37b before and after the other region of the rotating member 35. The end of the forward regeneration air passage 37 a is open to face one side surface of the rotating member 35. Further, the opening of the discharge side regeneration air passage 37b is the other surface of the rotating member 35 and is located at a position facing the forward side regeneration air passage 37a. As described above, since the rotation member 35 has air permeability in the axial direction, the forward regeneration air passage 37 a and the discharge regeneration air passage 37 b communicate with each other through a region of the rotation member 35. Accordingly, the regeneration air conducting path 37 also includes a part of the rotating member 35 in a part of the flow path. A fan 41 is provided in the discharge side regeneration air passage 37b, and the discharge side regeneration air passage 37b side is set to a negative pressure so that the air in the forward regeneration air passage 37a is sucked and passed through a region of the rotary member 35 and discharged. Air is discharged to the side regeneration air passage 36b side. In addition, a heater 45 is inserted into the forward regeneration air passage 37 a, and air that has been heated and whose relative humidity has decreased is supplied to the rotating member 35. Note that the amount of dehumidification of the rotating member 35 can be changed by changing the temperature of the air heated by the heater 45. As a result, by changing the temperature of the air heated by the heater 45, the amount of water removed from the constant temperature and humidity chamber 2 can be changed.

なお、回転部材35中における空気の流れ方向は、処理空気導通路36と再生空気導通路37で異なる。即ち処理空気導通路36は、図3の様に図面手前側から奥側に対して空気が流れ、再生空気導通路37は、図面奥側から手前側に空気が流れる。   Note that the air flow direction in the rotating member 35 is different between the processing air conduction path 36 and the regeneration air conduction path 37. That is, as shown in FIG. 3, air flows from the front side of the drawing to the back side of the processing air conduction path 36, and air flows from the back side of the drawing to the front side of the regeneration air conduction path 37.

加湿器8は、蒸気を供給するものである。   The humidifier 8 supplies steam.

処理空気導通路36は、前記した様に湿度調節回路30の中途部分にあり、往き側処理空気通路36aが試験片配置室3側に接続され、排出側処理空気通路36bが空調通路5側に接続されている。また排出側処理空気通路36bと空調通路5の間に前記した加湿器8が介在されている。   The processing air conduction path 36 is in the middle of the humidity control circuit 30 as described above, the forward processing air passage 36a is connected to the test piece arrangement chamber 3 side, and the discharge processing air passage 36b is connected to the air conditioning passage 5 side. It is connected. Further, the humidifier 8 described above is interposed between the discharge side processing air passage 36 b and the air conditioning passage 5.

従って排出側処理空気通路36bに設けられたファン40を起動させると、試験片配置室3内の空気が往き側処理空気通路36aに吸引されて回転部材35の中を通過し、加湿器8の部位を経て空調通路5に入る。即ち処理空気導通路36に設けられたファン40を起動させると、恒温恒湿槽(所定空間)2内の空気が湿度調節回路30に入り、空気は中途に設けられた乾式除湿装置31の回転部材35を通過して恒温恒湿槽(所定空間)2に戻る。回転部材35の中には固形乾燥剤が充填されているので、恒温恒湿槽(所定空間)2に戻された空気は除湿されている。   Therefore, when the fan 40 provided in the discharge-side processing air passage 36b is started, the air in the test piece arrangement chamber 3 is sucked into the forward-side processing air passage 36a and passes through the rotating member 35, and the humidifier 8 Enter the air conditioning passage 5 through the part. That is, when the fan 40 provided in the processing air conduction path 36 is started, the air in the constant temperature and humidity chamber (predetermined space) 2 enters the humidity control circuit 30, and the air rotates in the dry dehumidifier 31 provided in the middle. It passes through the member 35 and returns to the constant temperature and humidity chamber (predetermined space) 2. Since the rotary member 35 is filled with the solid desiccant, the air returned to the constant temperature and humidity chamber (predetermined space) 2 is dehumidified.

再生空気導通路37は、全体の両端がいずれも大気開放されている。即ち往き側再生空気通路37aの端部は大気開放されている。また排出側再生空気通路37bの端部についても大気開放されている。従って排出側再生空気通路37bに設けられたファン41を起動し、往き側再生空気通路37aに設けられたヒータ45に通電すると、外部の空気が往き側再生空気通路37aに取り込まれ、ヒータ45によって加熱昇温(相対湿度低下)されて回転部材35の中を通過する。この時、通過する空気が固形乾燥剤に含まれる水分を奪う。そのため固形乾燥剤が湿っていたとしても加熱によって再生し、再度吸湿可能な状態となる。
回転部材35を通過した空気は、大気中に放出される。
Both ends of the regenerative air conduction path 37 are open to the atmosphere. In other words, the end of the forward regeneration air passage 37a is open to the atmosphere. The end of the discharge side regeneration air passage 37b is also open to the atmosphere. Accordingly, when the fan 41 provided in the discharge side regeneration air passage 37b is started and the heater 45 provided in the outward regeneration air passage 37a is energized, external air is taken into the outward regeneration air passage 37a and is heated by the heater 45. The temperature is raised by heating (relative humidity reduction) and passes through the rotating member 35. At this time, the passing air takes away moisture contained in the solid desiccant. For this reason, even if the solid desiccant is wet, it is regenerated by heating and becomes capable of absorbing moisture again.
The air that has passed through the rotating member 35 is released into the atmosphere.

本実施形態では、後記する様に、試験片配置室3内の湿度が設定環境よりも高い場合に処理空気導通路36に設けられたファン40が起動され、恒温恒湿槽2内の空気が湿度調節回路30に入り、乾式除湿装置31を経て恒温恒湿槽(所定空間)2に戻される。
一方、再生空気導通路37に設けられたファン41及びヒータ45は、常時起動しており、外部の空気がヒータ45によって加熱昇温(相対湿度低下)されて回転部材35の中を通過し、固形乾燥剤に含まれる水分を奪い、固形乾燥剤を再生させる。また回転部材35は図示しないモータによって常時回転されている。従って回転部材35の全域に順次、加熱昇温(相対湿度低下)された空気が流される。即ち加熱昇温された空気は、往き側再生空気通路37aの端部から回転部材35に供給され、往き側再生空気通路37aは回転部材35の一領域に面して開口しているに過ぎないが、回転部材35が常時回転しているので、回転部材35の全域に順次、加熱昇温された空気が通過する。
In this embodiment, as will be described later, when the humidity in the test piece arrangement chamber 3 is higher than the set environment, the fan 40 provided in the processing air conduction path 36 is activated, and the air in the constant temperature and humidity chamber 2 is It enters the humidity control circuit 30 and returns to the constant temperature and humidity chamber (predetermined space) 2 through the dry dehumidifier 31.
On the other hand, the fan 41 and the heater 45 provided in the regeneration air conduction path 37 are always activated, and the external air is heated by the heater 45 (heated by a relative humidity is reduced) and passes through the rotating member 35. The moisture contained in the solid desiccant is removed and the solid desiccant is regenerated. The rotating member 35 is always rotated by a motor (not shown). Accordingly, air that has been heated and heated (relative humidity reduction) is flowed sequentially over the entire area of the rotating member 35. In other words, the heated and heated air is supplied to the rotating member 35 from the end of the forward regeneration air passage 37 a, and the forward regeneration air passage 37 a is merely opened facing one area of the rotational member 35. However, since the rotating member 35 is always rotating, the heated and heated air sequentially passes through the entire area of the rotating member 35.

以上、恒温恒湿装置1の構成を説明したが、本実施形態の恒温恒湿装置1は、特有の温度制御方式及び湿度制御方式を採用している。
図4は、本実施形態の恒温恒湿装置1の制御装置のブロック図である。
本実施形態で採用する温度制御装置50は、マイクロコンピュータ等によって構成され、室内温度検知センサー11の信号と、湿度検知センサー12の信号と、液体冷媒温度検知センサー28の信号が入力されている。
また温度制御装置50には、設定器51が接続されている。設定器51は、設定環境の温度や湿度を入力する装置である。
一方、温度制御装置50の出力側には、3方弁駆動回路32と、圧縮器駆動回路33、除湿装置駆動回路55、加湿器駆動回路56が接続されている。
As mentioned above, although the structure of the constant temperature and humidity apparatus 1 was demonstrated, the constant temperature and humidity apparatus 1 of this embodiment employ | adopts the specific temperature control system and humidity control system.
FIG. 4 is a block diagram of the control device of the constant temperature and humidity device 1 of the present embodiment.
The temperature control device 50 employed in the present embodiment is configured by a microcomputer or the like, and receives a signal from the indoor temperature detection sensor 11, a signal from the humidity detection sensor 12, and a signal from the liquid refrigerant temperature detection sensor 28.
A setter 51 is connected to the temperature control device 50. The setting device 51 is a device that inputs the temperature and humidity of the setting environment.
On the other hand, a three-way valve drive circuit 32, a compressor drive circuit 33, a dehumidifier drive circuit 55, and a humidifier drive circuit 56 are connected to the output side of the temperature control device 50.

温度制御装置50には、本実施形態に特有の構成として露点を算出するプログラムが格納されている。具体的には、設定器51で設定された設定環境における露点が算出される。例えば、設定環境が図1のポイントBであり、温度75℃、湿度90%の環境であるならばこの環境における露点Dpが73.5℃と算出される。
そして液体冷媒温度検知センサー28の信号を監視し、この温度が、設定環境における露点Dp以上であって設定環境における温度To未満となる様に制御される。
なお実際上は、露点よりも多少低い温度であっても悪影響は少ない。また液体冷媒の温度は、より低い方が空気の冷却速度が早くなる点で望ましい。
これらの点から、本実施形態では、液体冷媒温度検知センサー28が検知する液体冷媒温度Tbが次の式を満足する目標値となる様に圧縮器がオンオフ制御される。
The temperature control device 50 stores a program for calculating a dew point as a configuration unique to the present embodiment. Specifically, the dew point in the setting environment set by the setting device 51 is calculated. For example, if the set environment is point B in FIG. 1, and the temperature is 75 ° C. and the humidity is 90%, the dew point Dp in this environment is calculated as 73.5 ° C.
Then, the signal of the liquid refrigerant temperature detection sensor 28 is monitored, and this temperature is controlled to be equal to or higher than the dew point Dp in the set environment and lower than the temperature To in the set environment.
In practice, even if the temperature is slightly lower than the dew point, there is little adverse effect. Further, it is desirable that the temperature of the liquid refrigerant is lower because the cooling rate of air becomes faster.
From these points, in this embodiment, the compressor is on / off controlled so that the liquid refrigerant temperature Tb detected by the liquid refrigerant temperature detection sensor 28 becomes a target value that satisfies the following equation.

Figure 0004783048
Figure 0004783048

より好ましくは、液体冷媒温度検知センサー28が検知する液体冷媒温度Tbが設定環境における露点に等しくなる様に制御される。   More preferably, the liquid refrigerant temperature Tb detected by the liquid refrigerant temperature detection sensor 28 is controlled to be equal to the dew point in the set environment.

そして室内温度検知センサー11が検知する試験片配置室3内の温度が目標とする温度よりも高い場合には、温度制御装置50から3方弁駆動回路32に対して所定の制御信号が発信され、3方弁26が切り換えられて上記した目標温度に制御された液体冷媒が空気冷却用熱交換器6に流される。また同時に、湿度調節回路30の乾式除湿装置31が起動される。   When the temperature in the test piece arrangement chamber 3 detected by the room temperature detection sensor 11 is higher than the target temperature, a predetermined control signal is transmitted from the temperature control device 50 to the three-way valve drive circuit 32. The three-way valve 26 is switched and the liquid refrigerant controlled to the target temperature described above is caused to flow to the air cooling heat exchanger 6. At the same time, the dry dehumidifier 31 of the humidity control circuit 30 is activated.

前記した様に、室内温度検知センサー11が検知する温度が目標とする温度よりも高い場合に液体冷媒が空気冷却用熱交換器6に流されるが、前記した液体冷媒の温度は、設定環境における露点温度であるから、空気冷却用熱交換器6の表面温度は、設定環境における露点に比べて僅かに高い温度を目標として降下する。この温度は、現在の庫内温度よりも低く、設定温度よりもさらに低いため庫内の温度は設定温度となる様に低下して行く。ただし空気冷却用熱交換器6の表面温度は、設定環境における露点の近傍であるから、空気冷却用熱交換器6の表面で水蒸気が過度に凝縮することはない。即ち空気冷却用熱交換器6の表面温度は、現在における露点よりも低いから水蒸気が凝縮する可能性があるが、当該表面温度は、設定環境における露点の近傍であるから、水蒸気の凝縮量は極めて少ない。   As described above, when the temperature detected by the indoor temperature detection sensor 11 is higher than the target temperature, the liquid refrigerant is flowed to the air cooling heat exchanger 6. Since it is a dew point temperature, the surface temperature of the air-cooling heat exchanger 6 drops with a target of a slightly higher temperature than the dew point in the set environment. Since this temperature is lower than the current internal temperature and is further lower than the set temperature, the internal temperature decreases so as to become the set temperature. However, since the surface temperature of the air cooling heat exchanger 6 is in the vicinity of the dew point in the setting environment, the water vapor is not excessively condensed on the surface of the air cooling heat exchanger 6. That is, since the surface temperature of the air-cooling heat exchanger 6 is lower than the current dew point, there is a possibility that water vapor is condensed. However, since the surface temperature is in the vicinity of the dew point in the set environment, the amount of water vapor condensed is Very few.

本実施形態では、試験片配置室3内の湿度は、湿度調節回路30によって調節する。
即ち本実施形態では、前記した様に、室内温度検知センサー11が目標とする温度よりも高い温度を検知すると、空気冷却用熱交換器6へ液体冷媒を供給し、試験片配置室3内の温度を低下させる。空気冷却用熱交換器6への冷媒供給によって試験片配置室3内の温度が低下すると、飽和水蒸気量が減少するから、相対的に湿度が上昇することとなる。この湿度上昇を湿度検知センサー12が検知すると湿度調節回路30の乾式除湿装置31が起動される。その結果、恒温恒湿槽2内(試験片配置室3)の空気が湿度調節回路30に入り、乾式除湿装置31の回転部材35を通過して恒温恒湿槽2(空調通路5)に戻される。ここで回転部材35の中には固形乾燥剤が充填されているので、恒温恒湿槽(所定空間)2に戻された空気は除湿されている。従って恒温恒湿槽2内の過剰な水蒸気が除去され、湿度が低下する。
In the present embodiment, the humidity in the test piece arrangement chamber 3 is adjusted by the humidity adjustment circuit 30.
That is, in the present embodiment, as described above, when the indoor temperature detection sensor 11 detects a temperature higher than the target temperature, the liquid refrigerant is supplied to the air cooling heat exchanger 6, and the inside of the test piece arrangement chamber 3. Reduce temperature. When the temperature in the test piece arrangement chamber 3 decreases due to the refrigerant supply to the air cooling heat exchanger 6, the amount of saturated water vapor decreases, so that the humidity increases relatively. When the humidity sensor 12 detects this increase in humidity, the dry dehumidifier 31 of the humidity adjustment circuit 30 is activated. As a result, the air in the constant temperature and humidity chamber 2 (test piece placement chamber 3) enters the humidity control circuit 30, passes through the rotating member 35 of the dry dehumidifier 31 and returns to the constant temperature and humidity chamber 2 (air conditioning passage 5). It is. Here, since the rotary member 35 is filled with the solid desiccant, the air returned to the constant temperature and humidity chamber (predetermined space) 2 is dehumidified. Therefore, excessive water vapor in the thermostatic chamber 2 is removed, and the humidity is lowered.

回転部材35中の固形乾燥剤は水分を含んで能力が低下するが、本実施形態では、回転部材35が回転するものであり、回転部材35の新たな面が次々と現れるので、除湿能力は維持される。即ち恒温恒湿槽2内の空気は、往き側処理空気通路36aの端部から回転部材35に供給され、往き側処理空気通路36aは回転部材35の一領域に面して開口しているに過ぎないが、回転部材35が常時回転しているので、往き側処理空気通路36aと対向する位置に、回転部材35の新たな面が次々と現れ、除湿能力は維持される。また前記した様に、再生空気導通路37に設けられたファン41及びヒータ45が常時起動しているので、水分を含んだ部位が回転によって再生空気導通路37の部位に至ると、加熱昇温された空気が通風されて固形乾燥剤が再生する。   The capacity of the solid desiccant in the rotating member 35 is reduced by containing moisture. However, in this embodiment, the rotating member 35 rotates, and new surfaces of the rotating member 35 appear one after another. Maintained. That is, the air in the constant temperature and humidity chamber 2 is supplied to the rotating member 35 from the end of the outward processing air passage 36 a, and the outward processing air passage 36 a is open to face a region of the rotating member 35. However, since the rotating member 35 is constantly rotating, new surfaces of the rotating member 35 appear one after another at positions facing the forward processing air passage 36a, and the dehumidifying ability is maintained. Further, as described above, since the fan 41 and the heater 45 provided in the regeneration air conduction path 37 are always activated, when the moisture-containing part reaches the part of the regeneration air conduction path 37 by rotation, The generated air is ventilated to regenerate the solid desiccant.

前記した図1を参照しつつ従来技術の場合と比較すると、従来技術の恒温恒湿装置では、破線の様に一旦ポイントCの環境となり、湿度が大きく低下したのに対し、本実形態の恒温恒湿装置1では、実線の様により直線的にポイントAからポイントBに向かう。そのため水蒸気の凝縮が極めて少なく、潜熱を低下させるのに要する無駄なエネルギーが少ない。   Compared with the case of the prior art with reference to FIG. 1 described above, in the constant temperature and humidity device of the prior art, the environment of the point C is once changed as indicated by the broken line, and the humidity is greatly reduced. In the humidity control apparatus 1, the point A moves from the point A to the point B linearly as indicated by a solid line. For this reason, the condensation of water vapor is very small, and there is little wasted energy required to reduce the latent heat.

上述した実施形態では冷媒タンク23に液体冷媒温度検知センサー28を設け、冷媒タンク23内の冷媒の温度が設定環境の露点近傍となる様に制御したが、空気冷却用熱交換器6の表面温度を検知し、当該温度が露点近傍となる様に制御してもよい。
図5は、本発明の第二実施形態の恒温恒湿装置の概念図である。図6は、図5に示す恒温恒湿装置の制御装置のブロック図である。
図5に示す恒温恒湿装置60では、空気冷却用熱交換器6の表面に、温度センサー61が取り付けられており、当該温度センサー61によって空気冷却用熱交換器6の表面温度が直接的に検出される。
そして当該表面温度センサー61の信号は、図6に示すように温度制御装置70に入力される。本実施形態では、空気冷却用熱交換器6の表面温度Tsが設定環境における露点の近傍となる様に一次冷却器の圧縮器をオンオフ制御する。
即ち本実施形態では、表面温度センサー61が検知する空気冷却用熱交換器6の表面温度Tsが次の式を満足する目標値となる様に圧縮器がオンオフ制御される。
In the embodiment described above, the liquid refrigerant temperature detection sensor 28 is provided in the refrigerant tank 23 and controlled so that the temperature of the refrigerant in the refrigerant tank 23 is close to the dew point of the set environment. However, the surface temperature of the air-cooling heat exchanger 6 is controlled. And the temperature may be controlled to be in the vicinity of the dew point.
FIG. 5 is a conceptual diagram of the constant temperature and humidity device of the second embodiment of the present invention. FIG. 6 is a block diagram of the control device of the constant temperature and humidity device shown in FIG.
In the constant temperature and humidity device 60 shown in FIG. 5, a temperature sensor 61 is attached to the surface of the air cooling heat exchanger 6, and the surface temperature of the air cooling heat exchanger 6 is directly adjusted by the temperature sensor 61. Detected.
And the signal of the said surface temperature sensor 61 is input into the temperature control apparatus 70, as shown in FIG. In the present embodiment, the compressor of the primary cooler is on / off controlled so that the surface temperature Ts of the air cooling heat exchanger 6 is close to the dew point in the set environment.
That is, in this embodiment, the compressor is on / off controlled so that the surface temperature Ts of the air cooling heat exchanger 6 detected by the surface temperature sensor 61 becomes a target value that satisfies the following equation.

Figure 0004783048
Figure 0004783048

本実施形態によっても、水蒸気の凝縮が極めて少なく、潜熱を低下させるのに要する無駄なエネルギーが少ない。   Also according to this embodiment, the condensation of water vapor is extremely small, and there is little wasted energy required to reduce latent heat.

上記した各実施形態では、加熱ヒータ7と加湿器8を設けたが、これらは必須ではなく、省略しても構わない。   In each embodiment described above, the heater 7 and the humidifier 8 are provided, but these are not essential and may be omitted.

飽和水蒸気曲線と、庫内温度及び庫内湿度の変化を示すグラフである。It is a graph which shows the change of a saturated water vapor curve, and the internal temperature and internal humidity. 本発明の実施形態の恒温恒湿装置の概念図である。It is a conceptual diagram of the constant temperature and humidity apparatus of embodiment of this invention. 乾式乾燥装置の概念図である。It is a conceptual diagram of a dry-type drying apparatus. 本実施形態の恒温恒湿装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the constant temperature and humidity apparatus of this embodiment. 本発明の第二実施形態の恒温恒湿装置の概念図であるIt is a conceptual diagram of the constant temperature and humidity apparatus of 2nd embodiment of this invention. 図5に示す恒温恒湿装置の制御装置のブロック図である。It is a block diagram of the control apparatus of the constant temperature and humidity apparatus shown in FIG. 本発明の実施形態の恒温恒湿装置の参考概念図である。It is a reference conceptual diagram of the constant temperature and humidity apparatus of the embodiment of the present invention.

2 恒温恒湿漕
3 試験片配置室
5 空調通路
6 空気冷却用熱交換器
7 加熱ヒータ
8 加湿器
11 室内温度検知センサー
12 湿度検知センサー
20 冷却装置
26 3方弁
30 湿度調節回路
31 乾式除湿装置
35 回転部材
36 処理空気導通路
37 再生空気導通路
40 ファン
41 ファン
2 Constant Temperature and Humidity 3 Specimen Placement Room 5 Air Conditioning Passage 6 Air Cooling Heat Exchanger 7 Heater 8 Humidifier 11 Indoor Temperature Sensor 12 Humidity Sensor 20 Cooling Device 26 Three-way Valve 30 Humidity Control Circuit 31 Dry Dehumidifier 35 Rotating member 36 Process air conduction path 37 Regeneration air conduction path 40 Fan 41 Fan

Claims (6)

温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の空気が循環し、当該所定空間内の環境が目標とする温度(To)及び目標とする湿度となる様に調整可能な恒温恒湿装置において、乾式除湿装置を備え、湿度検知手段によって所定空間内の湿度が監視され、湿度検知手段が目標とする絶対湿度より高いことを検知すると、前記乾式除湿装置が起動して前記所定空間内の空気が乾式除湿装置を通過して所定空間内に戻され、冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し、前記所定空間内の温度を低下させる際に冷却手段の前記熱交換器の温度を、目標とする前記温度(To)未満であって、目標とする前記温度(To)及び前記目標とする湿度の環境における露点Dp以上に制御することを特徴とする恒温恒湿装置。 A temperature detecting means, a humidity detecting means, and a cooling means are provided, and the air in the predetermined space circulates, and the environment in the predetermined space can be adjusted so that the target temperature (To) and the target humidity become the target humidity. In the humidity device, a dry dehumidifier is provided, the humidity in the predetermined space is monitored by the humidity detection means, and when the humidity detection means detects that the humidity is higher than the target absolute humidity, the dry dehumidification device is activated and the predetermined space is detected. The inside air passes through the dry dehumidifier and is returned to the predetermined space, and the cooling means has a heat exchanger for exchanging heat with the air in the space, and is cooled when the temperature in the predetermined space is lowered. The temperature of the heat exchanger of the means is less than the target temperature (To), and is controlled to be equal to or higher than the dew point Dp in the environment of the target temperature (To) and the target humidity. Constant temperature and humidity device 温度検知手段と湿度検知手段と冷却手段を備え、所定空間内の環境が目標とする温度(To)及び目標とする湿度となる様に調整可能な恒温恒湿装置において、乾式除湿装置を備え、湿度検知手段によって所定空間内の湿度が監視され、湿度検知手段が目標とする絶対湿度より高いことを検知すると、前記乾式除湿装置が起動して前記所定空間内の空気が乾式除湿装置を通過して所定空間内に戻され、冷却手段は前記空間内の空気と熱交換を行う熱交換器を有し、前記所定空間内の温度を低下させる際に、冷却手段の前記熱交換器の温度Tsが下記の式を満足する目標値となる様に制御されることを特徴とする恒温恒湿装置。
Figure 0004783048
A constant temperature and humidity device that includes a temperature detection means, a humidity detection means, and a cooling means, and can be adjusted so that the environment in the predetermined space has a target temperature (To) and a target humidity, and includes a dry dehumidification device, When humidity in the predetermined space is monitored by the humidity detecting means and the humidity detecting means detects that the humidity is higher than the target absolute humidity, the dry dehumidifier is activated and the air in the predetermined space passes through the dry dehumidifier. The cooling means has a heat exchanger that exchanges heat with the air in the space, and when the temperature in the predetermined space is lowered, the temperature Ts of the heat exchanger of the cooling means Is controlled so as to be a target value satisfying the following formula.
Figure 0004783048
前記所定空間内の温度を低下させる際に、乾式除湿装置で所定空間内の水蒸気を必要な量だけ除去することを特徴とする請求項1又は2に記載の恒温恒湿装置。   3. The constant temperature and humidity device according to claim 1, wherein when the temperature in the predetermined space is lowered, a necessary amount of water vapor in the predetermined space is removed by a dry dehumidifying device. 冷却手段は熱交換器に液体冷媒を循環させるものであり、前記所定空間内の温度を低下させる際に、前記液体冷媒の温度が所定の温度となる様に制御することによって熱交換器の温度を制御するものであることを特徴とする請求項1乃至3のいずれかに記載の恒温恒湿装置。   The cooling means circulates the liquid refrigerant in the heat exchanger, and when the temperature in the predetermined space is lowered, the temperature of the heat exchanger is controlled by controlling the temperature of the liquid refrigerant to be a predetermined temperature. The constant temperature and humidity device according to any one of claims 1 to 3, wherein the constant temperature and humidity device is controlled. 冷却手段は、熱交換器に液体冷媒が流れる二次冷却回路と、相変化する冷媒が流れて当該液体冷媒を冷却する一次冷却回路とを備え、前記二次冷却回路は冷媒タンクと3方弁を有し、3方弁の一つの開口は空気冷却用熱交換器に接続され、別の一つの開口は冷媒タンクに接続されており、温度検知手段により検知された温度が設定環境の温度より低い場合は、3方弁を冷媒タンク側に切り換え、温度検知手段により検知された温度が設定環境の温度より高い場合は、3方弁を空気冷却用熱交換器側に切り換えて空気冷却用熱交換器に流れる液体冷媒を断続することが可能であることを特徴とする請求項1乃至4のいずれかに記載の恒温恒湿装置。   The cooling means includes a secondary cooling circuit through which liquid refrigerant flows in the heat exchanger, and a primary cooling circuit through which phase-changing refrigerant flows to cool the liquid refrigerant, and the secondary cooling circuit includes a refrigerant tank and a three-way valve. One opening of the three-way valve is connected to the air cooling heat exchanger, and the other opening is connected to the refrigerant tank, and the temperature detected by the temperature detecting means is higher than the temperature of the set environment. When the temperature is low, the three-way valve is switched to the refrigerant tank side, and when the temperature detected by the temperature detecting means is higher than the set environment temperature, the three-way valve is switched to the air cooling heat exchanger side to The constant temperature and humidity device according to any one of claims 1 to 4, wherein the liquid refrigerant flowing in the exchanger can be intermittently connected. 乾式除湿装置は、固形乾燥剤が充填され通気可能な回転部材と、処理空気導通路と再生空気導通路を備え、前記処理空気導通路及び再生空気導通路は、回転部材の一部を流路の一部に含み、前記処理空気導通路には前記所定空間内の空気が導入され、再生空気導通路には高温の空気又は低湿度の空気が導入されるか、或いは高温であって且つ低湿度の空気が導入されることを特徴とする請求項1乃至5のいずれかに記載の恒温恒湿装置。   The dry-type dehumidifying device includes a rotating member that is filled with a solid desiccant and can be ventilated, a processing air conduction path, and a regeneration air conduction path. The processing air conduction path and the regeneration air conduction path flow through a part of the rotation member. The air in the predetermined space is introduced into the processing air conduction path, and high-temperature air or low-humidity air is introduced into the regeneration air conduction path, or high temperature and low. The constant temperature and humidity device according to any one of claims 1 to 5, wherein air of humidity is introduced.
JP2005102426A 2005-03-31 2005-03-31 Constant temperature and humidity device Active JP4783048B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005102426A JP4783048B2 (en) 2005-03-31 2005-03-31 Constant temperature and humidity device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005102426A JP4783048B2 (en) 2005-03-31 2005-03-31 Constant temperature and humidity device

Publications (2)

Publication Number Publication Date
JP2006285454A JP2006285454A (en) 2006-10-19
JP4783048B2 true JP4783048B2 (en) 2011-09-28

Family

ID=37407340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005102426A Active JP4783048B2 (en) 2005-03-31 2005-03-31 Constant temperature and humidity device

Country Status (1)

Country Link
JP (1) JP4783048B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106227268A (en) * 2016-08-15 2016-12-14 深圳市清时捷科技有限公司 A kind of thermostatically-controlled equipment and control method thereof

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5341008B2 (en) * 2010-04-15 2013-11-13 エスペック株式会社 COOLING DEVICE AND ENVIRONMENTAL TEST DEVICE HAVING THE SAME
JP5341009B2 (en) * 2010-04-15 2013-11-13 エスペック株式会社 COOLING DEVICE AND ENVIRONMENTAL TEST DEVICE HAVING THE SAME
JP5427120B2 (en) * 2010-06-17 2014-02-26 エスペック株式会社 Environmental test equipment
JP5726485B2 (en) * 2010-11-12 2015-06-03 エスペック株式会社 Temperature control device and constant temperature and humidity device
CN102566615B (en) * 2010-12-31 2014-07-09 新疆蓝山屯河新材料有限公司 Styrene tank constant temperature control device
TWI669492B (en) * 2015-06-05 2019-08-21 日商伸和控制工業股份有限公司 Environmental test device
JP6537986B2 (en) 2016-01-26 2019-07-03 伸和コントロールズ株式会社 Temperature control system
CN112050304A (en) * 2020-09-04 2020-12-08 珠海格力电器股份有限公司 Constant temperature and humidity system and control method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62139015A (en) * 1985-12-13 1987-06-22 Hitachi Ltd Cooling method for electronic equipment
JPH043874A (en) * 1990-04-20 1992-01-08 Teruo Kawai Maintaining method of constant humidity in casing
JP2603408B2 (en) * 1992-09-04 1997-04-23 タバイエスペック株式会社 Constant temperature and humidity
JP2003038928A (en) * 2000-10-05 2003-02-12 Mitsubishi Paper Mills Ltd Heating regeneration type organic rotor member and method for manufacturing the same
JP2004324973A (en) * 2003-04-24 2004-11-18 Mitsubishi Electric Corp Air conditioner and operating method of air conditioner
JP2005049059A (en) * 2003-07-31 2005-02-24 Daikin Ind Ltd Air-conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106227268A (en) * 2016-08-15 2016-12-14 深圳市清时捷科技有限公司 A kind of thermostatically-controlled equipment and control method thereof

Also Published As

Publication number Publication date
JP2006285454A (en) 2006-10-19

Similar Documents

Publication Publication Date Title
JP4783048B2 (en) Constant temperature and humidity device
EP2647416B1 (en) Dehumidifier
US7437884B2 (en) Air conditioner
US6311511B1 (en) Dehumidifying air-conditioning system and method of operating the same
WO2013008570A1 (en) Humidity adjustment device
US20100243749A1 (en) Humidity control apparatus
JP4795709B2 (en) Constant temperature and humidity device
JP2010151376A (en) Air conditioner and air conditioning system
JP7113659B2 (en) air conditioner
JP5868416B2 (en) Refrigeration air conditioner and humidity control device
EP2990092B1 (en) Dehumidifying device
CN106573195A (en) Dehumidifying device
WO2015125250A1 (en) Air-conditioning device and method for controlling air-conditioning device
JP6626424B2 (en) Environmental test equipment and air conditioner
JP2008116076A (en) Air conditioning device
JP2010054135A (en) Dry type desiccant device and air heat source heat pump device
JP2009109116A (en) Humidity conditioner
JP5355501B2 (en) Air conditioning system
KR102242190B1 (en) Low dew point dehumidifier for refrigerator
JP6141508B2 (en) Air conditioner and control method of air conditioner
JP7126611B2 (en) air conditioner
JP6555710B2 (en) Refrigeration / refrigeration system
JP2019174087A (en) Environment forming device and environment forming method
JP2023144542A (en) Ventilation device
WO2021005657A1 (en) Air-conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110401

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110513

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110630

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110708

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4783048

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250