JP2010151376A - Air conditioner and air conditioning system - Google Patents

Air conditioner and air conditioning system Download PDF

Info

Publication number
JP2010151376A
JP2010151376A JP2008330049A JP2008330049A JP2010151376A JP 2010151376 A JP2010151376 A JP 2010151376A JP 2008330049 A JP2008330049 A JP 2008330049A JP 2008330049 A JP2008330049 A JP 2008330049A JP 2010151376 A JP2010151376 A JP 2010151376A
Authority
JP
Japan
Prior art keywords
air
evaporator
heat exchanger
flow path
air flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008330049A
Other languages
Japanese (ja)
Other versions
JP4835688B2 (en
Inventor
Masaki Toyoshima
正樹 豊島
Takashi Fukui
孝史 福井
Fumitake Unezaki
史武 畝崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008330049A priority Critical patent/JP4835688B2/en
Publication of JP2010151376A publication Critical patent/JP2010151376A/en
Application granted granted Critical
Publication of JP4835688B2 publication Critical patent/JP4835688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Central Air Conditioning (AREA)
  • Drying Of Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an outside air treating air conditioner of high dehumidifying/humidifying capacity and high efficiency, dispensing with a dew condensation treating structure of a heat exchanger and switching operation on the air circuit side. <P>SOLUTION: The air conditioner has: a total heat exchanger for exchanging heat between air flowing in an outside air lead-in line A and air flowing in an exhaust release line B; a refrigerant circuit composed of a compressor, a four way valve, an expansion valve, a condenser and a plurality of evaporators; and a moisture adsorbing means. The total heat exchanger, the condenser, a regeneration area of the moisture adsorbing means, and the evaporators, are arranged in sequence from the windward side of the exhaust release line B toward the leeward side. The total heat exchanger, the condenser, the regeneration area of the moisture adsorbing means, and the evaporators are arranged in sequence from the windward side of the outside air lead-in line A toward the leeward side by switching the refrigerant circuit. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、デシカントを使用した空気調和装置、空調システムに関するものである。   The present invention relates to an air conditioning apparatus and an air conditioning system using a desiccant.

従来、全熱交換器とヒートポンプとデシカントとを組み合わせて、外気処理や換気空調を行う空調システムが知られている。従来の発明の構成は、全熱交換器の後段にヒートポンプとデシカントとを配置して、外気と室内空気とを全熱交換器に導入して全熱交換させた後に、ヒートポンプへ送り込み、さらにデシカントで調湿する風路構造となっている(例えば、特許文献1、2参照)。   2. Description of the Related Art Conventionally, air conditioning systems that perform external air processing and ventilation air conditioning by combining a total heat exchanger, a heat pump, and a desiccant are known. In the configuration of the conventional invention, a heat pump and a desiccant are arranged after the total heat exchanger, the outside air and the room air are introduced into the total heat exchanger to exchange the total heat, and then sent to the heat pump. The air path structure adjusts the humidity (for example, see Patent Documents 1 and 2).

特開平10−197011号公報(第3−4頁、図2)Japanese Patent Laid-Open No. 10-197011 (page 3-4, FIG. 2) 特開平10−205820号公報(図1)Japanese Patent Laid-Open No. 10-205820 (FIG. 1)

しかし、従来の発明では、凝縮器をデシカントの再生側上流に配置して、蒸発器をデシカントの吸着側下流に配置した構造であるから、例えば、冷房運転時においては、デシカントの再生排熱がそのまま排気として室外に排出されるため、前記再生排熱が有効利用されていないといった問題があった(例えば特許文献1、2)。   However, in the conventional invention, the condenser is disposed upstream of the desiccant regeneration side, and the evaporator is disposed downstream of the desiccant adsorption side. For example, during cooling operation, the regeneration exhaust heat of the desiccant is not generated. Since the exhaust gas is discharged as it is to the outside as it is, there is a problem that the regeneration exhaust heat is not effectively used (for example, Patent Documents 1 and 2).

また、デシカントの吸脱着能力を増大させるためには、再生空気温度を高くする必要があるが、そのためにはヒートポンプの高圧側冷媒凝縮温度を上げる必要があり、ヒートポンプの負荷が増大するため、効率が低下するといった問題があった。   In addition, in order to increase the desiccant adsorption / desorption capability, it is necessary to increase the regeneration air temperature. For this purpose, it is necessary to increase the high-pressure side refrigerant condensation temperature of the heat pump, which increases the load of the heat pump. There has been a problem of lowering.

また、従来の発明では、凝縮器をデシカントの再生側上流に配置して、蒸発器をデシカントの再生側下流に配置した構造であるから、デシカントの吸着側上流に蒸発器が配置されず、吸着側空気はなりゆきで流入するため、デシカントの吸脱着能力の大小が吸着側流入空気の状態に大きく影響を受けるといった問題があった(例えば特許文献1、2)。   In the conventional invention, the condenser is disposed upstream of the regeneration side of the desiccant, and the evaporator is disposed downstream of the regeneration side of the desiccant. Therefore, the evaporator is not disposed upstream of the adsorption side of the desiccant. Since the side air flows freely, there is a problem that the capacity of the desiccant to absorb and desorb is greatly influenced by the state of the suction side inflow air (for example, Patent Documents 1 and 2).

さらに、従来の発明においては、室内を除湿する運転と加湿する運転の切替えに際して空気風路側の回路を切替えずに冷媒回路側の回路を切替えることにより対応していたが、冷媒−空気の熱交換器(4個)に対し、除湿加湿それぞれの運転に必要な熱交換器(2個)以外は停止しているため、他の熱交換器(2個)が有効に利用されていないという課題があった(例えば特許文献2)。また、蒸発器における結露処理のためのドレンが発生せず、かつ、デシカントにおける除加湿性能が高い空気調和装置は存在しなかったといった問題があった。   Further, in the conventional invention, when switching between the operation for dehumidifying the room and the operation for humidification, the circuit on the refrigerant circuit side is switched without switching the circuit on the air air passage side, but the refrigerant-air heat exchange is performed. Since the heat exchangers (4) are stopped except for the heat exchangers (2) required for each operation of dehumidification / humidification, the other heat exchanger (2) is not effectively used. (For example, Patent Document 2). Further, there has been a problem that there is no air conditioning apparatus that does not generate drain for the condensation treatment in the evaporator and has high dehumidifying / humidifying performance in the desiccant.

本発明は、前記問題を解決するためになされたものであり、デシカントにおける除加湿性能が高く、かつ、効率の良い空気調和装置および空調システムを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object thereof is to provide an air conditioning apparatus and an air conditioning system that have high desiccant / humidifying performance in a desiccant and are efficient.

本発明に係る空気調和装置は、室外から室内へ向かう空気の流れを形成する第1の空気流路と、室内から室外に向かう空気の流れを形成する第2の空気流路と、第1の空気流路と第2の空気流路とに跨がって配置され、第1の空気流路および第2の空気流路の何れか一方に位置するときに吸着除湿し、いずれか他方に位置するときに加熱再生されるとともに、第1の空気流路および第2の空気流路にて行われる吸着除湿および加熱再生の動作を交互に繰り返す水分吸着手段と、第1の空気流路と第2の空気流路の空気の流れに配置され水分吸着手段のそれぞれの上流側と下流側に設けられた複数の熱交換器と、圧縮機にて複数の熱交換器に冷媒を循環させるとともに、第1の空気流路と第2の空気流路に設けられ水分吸着手段の両方の空気の流れの上流側に配置された熱交換器の一方を凝縮器とし他方を第1の蒸発器とするように絞り装置および冷媒の流れを切り替える四方弁とを有する冷媒回路と、凝縮器から第1の蒸発器へ流れる冷媒を、第1の空気流路と第2の空気流路の両方に配置された前記水分吸着手段のそれぞれの下流側に配置された熱交換器へ分岐する回路であって、凝縮器の下流側を第2の蒸発器とし第1の蒸発器の下流側を第3の蒸発器として動作させ圧縮機へ戻す冷媒分岐回路と、を備えたものである。   An air conditioner according to the present invention includes a first air flow path that forms a flow of air from the outdoor to the indoors, a second air flow path that forms a flow of air from the indoors to the outdoor, Arranged across the air flow path and the second air flow path, dehumidifying when located in either one of the first air flow path or the second air flow path, and located in either one A moisture adsorbing means that is regenerated by heating, and alternately repeats the adsorption dehumidification and heating regeneration operations performed in the first air flow path and the second air flow path, and the first air flow path and the first air flow path. A plurality of heat exchangers disposed on the upstream side and the downstream side of each of the moisture adsorbing means arranged in the air flow of the two air flow paths, and circulating a refrigerant to the plurality of heat exchangers in the compressor, Provided in the first air flow path and the second air flow path, A refrigerant circuit having a throttling device and a four-way valve for switching the flow of refrigerant so that one of the heat exchangers arranged upstream of this is a condenser and the other is a first evaporator; A circuit for branching the refrigerant flowing to the evaporator to a heat exchanger disposed on the downstream side of each of the moisture adsorbing means disposed in both the first air flow path and the second air flow path. And a refrigerant branch circuit that operates the downstream side of the condenser as the second evaporator and the downstream side of the first evaporator as the third evaporator and returns it to the compressor.

本発明に係る空気調和装置は、水分吸着手段(デシカントに同じ)の再生側の上流に凝縮器を配置すると共に、下流側に蒸発器を配置している。そのため、再生側の上流では、凝縮器における冷媒の温熱放出が促進され、水分吸着手段に流入する空気が加熱される。一方、再生側の下流では、圧縮機に吸引される冷媒が水分吸着手段を通過した空気によって温められ、水分吸着手段を通過した空気は冷却されるなど、水分吸着手段(デシカント)の除加湿性能を高くし、ヒートポンプの効率を向上させることができる空気調和装置を得ることができる。   In the air conditioner according to the present invention, a condenser is disposed upstream of the regeneration side of the moisture adsorbing means (same as the desiccant), and an evaporator is disposed downstream. Therefore, upstream of the regeneration side, the release of warm heat of the refrigerant in the condenser is promoted, and the air flowing into the moisture adsorbing means is heated. On the other hand, at the downstream side of the regeneration side, the refrigerant sucked by the compressor is warmed by the air that has passed through the moisture adsorbing means, and the air that has passed through the moisture adsorbing means is cooled. It is possible to obtain an air conditioner that can increase the efficiency of the heat pump and improve the efficiency of the heat pump.

実施の形態1.
《システム構成》
図1〜図4は本発明の実施の形態1に係る空気調和装置を説明するものであって、図1は冷房除湿運転モードの風路構成を模式的に示す構成図、図3は暖房加湿運転モードの風路構成を模式的に示す構成図、図2の(a)は冷房除湿時の外気導入経路Aにおける作動状態の動きを示す湿り空気線図、図2の(b)は冷房除湿時の排気放出経路Bにおける作動状態の動きを示す湿り空気線図である。図4の(a)は暖房加湿時の外気導入経路Aにおける作動状態の動きを示す湿り空気線図、図4の(b)は暖房加湿時の排気放出経路Bにおける作動状態の動きを示す湿り空気線図である。なお、図2、図4において、縦軸は絶対湿度、横軸は乾球温度である。また、空気状態を示す状態1〜状態10は、図2、図4における丸で囲った数字1〜10にそれぞれ対応している。
Embodiment 1 FIG.
"System configuration"
1 to 4 illustrate the air-conditioning apparatus according to Embodiment 1 of the present invention. FIG. 1 is a configuration diagram schematically showing an air path configuration in a cooling and dehumidifying operation mode, and FIG. FIG. 2A is a block diagram schematically showing the air path configuration in the operation mode, FIG. 2A is a humid air line diagram showing the movement of the operating state in the outside air introduction path A during cooling dehumidification, and FIG. It is a humid air line figure which shows the movement of the operating state in the exhaust discharge path | route B at the time. 4A is a wet air diagram showing the movement of the operating state in the outside air introduction path A during heating humidification, and FIG. 4B is the wetness showing the movement of the operating state in the exhaust discharge path B during heating humidification. It is an air diagram. 2 and 4, the vertical axis represents absolute humidity, and the horizontal axis represents dry bulb temperature. Moreover, the states 1 to 10 indicating the air state correspond to the numbers 1 to 10 circled in FIGS. 2 and 4, respectively.

図1、図3において、空気調和装置は、圧縮機1、四方弁2a、膨張弁3a、3b、3c、逆止弁4a、4b、第1の熱交換器5a、第2の熱交換器5b、第3の熱交換器5c、第4の熱交換器5dで構成される冷媒回路と、室外から室内への外気導入経路である風路Aと室内から室外への排気放出経路である風路Bとにまたがって配置され両方の風路の顕熱と潜熱を相互に熱交換する全熱交換器10と、両方の風路にまたがって配置され例えば回転するデシカントロータを有して水分の吸着と放出(再生)を繰り返す水分吸着手段20とを有している。また各熱交換器の下流側に温度と湿度を検出できるセンサ7を設け、各熱交換器における冷媒温度を検出できるセンサ6を設けている。   1 and 3, the air conditioner includes a compressor 1, a four-way valve 2a, expansion valves 3a, 3b, and 3c, check valves 4a and 4b, a first heat exchanger 5a, and a second heat exchanger 5b. A refrigerant circuit composed of the third heat exchanger 5c and the fourth heat exchanger 5d, an air path A that is an outdoor air introduction path from the outdoor to the indoor, and an air path that is an exhaust discharge path from the indoor to the outdoor Moisture adsorption with a total heat exchanger 10 arranged across B and exchanging sensible heat and latent heat of both air paths with each other and a rotating desiccant rotor arranged over both air paths, for example. And a moisture adsorption means 20 that repeats release (regeneration). Moreover, the sensor 7 which can detect temperature and humidity is provided in the downstream of each heat exchanger, and the sensor 6 which can detect the refrigerant | coolant temperature in each heat exchanger is provided.

第1の熱交換器5aは膨張弁3aを介して第2の熱交換器5bと直列に接続されており、冷房除湿運転時には第1の熱交換器5aが凝縮器、第2の熱交換器5bが第1の蒸発器として動作し(図1)、暖房加湿運転時には第2の熱交換器5bが凝縮器、第1の熱交換器5aが第1の蒸発器として動作するように構成されている(図3)。そして、第1の蒸発器と並列接続となるように、膨張弁3bと第3の熱交換器と膨張弁3cと第4の熱交換器とがそれぞれ設けられており、冷房除湿運転時には第3の熱交換器5cが第2の蒸発器、第4の熱交換器5dが第3の蒸発器として動作し(図1)、暖房加湿運転時には第3の熱交換器5cが第3の蒸発器、第4の熱交換器5dが第2の蒸発器として動作するように構成されている(図3)。なお、本実施例では、冷房除湿運転と暖房加湿運転とで役割を変える3個の蒸発器の役割を、各運転モードにおいて、水分吸着手段20に対して吸着側風上に位置する蒸発器を第1の蒸発器、再生側風下に位置する蒸発器を第2の蒸発器、吸着側風下に位置する蒸発器を第3の蒸発器として定義している。   The first heat exchanger 5a is connected in series with the second heat exchanger 5b via the expansion valve 3a, and the first heat exchanger 5a is a condenser and a second heat exchanger during the cooling and dehumidifying operation. 5b operates as a first evaporator (FIG. 1), and is configured so that the second heat exchanger 5b operates as a condenser and the first heat exchanger 5a operates as a first evaporator during the heating and humidifying operation. (FIG. 3). An expansion valve 3b, a third heat exchanger, an expansion valve 3c, and a fourth heat exchanger are provided so as to be connected in parallel with the first evaporator, respectively. The heat exchanger 5c operates as a second evaporator and the fourth heat exchanger 5d operates as a third evaporator (FIG. 1). During the heating and humidifying operation, the third heat exchanger 5c is operated as the third evaporator. The fourth heat exchanger 5d is configured to operate as a second evaporator (FIG. 3). In this embodiment, the role of the three evaporators whose roles are changed between the cooling and dehumidifying operation and the heating and humidifying operation is as follows. The first evaporator, the evaporator located on the regeneration side leeward is defined as the second evaporator, and the evaporator located on the adsorption side leeward is defined as the third evaporator.

逆止弁4a,4bは、第1の熱交換器5aと膨張弁3aの間に逆止弁4aの入口側が、第2の熱交換器5bと膨張弁3aの間に逆止弁4bの入口側が設けられている。そして、それぞれの出口側は一旦合流した後、膨張弁3bと3cへ分岐接続されている。さらに、膨張弁3bの下流には第3の熱交換器5cが、膨張弁3cの下流には第4の熱交換器5dが接続されており、第3の熱交換器5cと第4の熱交換器5dの出口側は合流して圧縮機1の吸入側に接続されている。   The check valves 4a and 4b have an inlet side of the check valve 4a between the first heat exchanger 5a and the expansion valve 3a, and an inlet of the check valve 4b between the second heat exchanger 5b and the expansion valve 3a. A side is provided. And after each outlet side merges once, it branch-connects to the expansion valves 3b and 3c. Further, a third heat exchanger 5c is connected downstream of the expansion valve 3b, and a fourth heat exchanger 5d is connected downstream of the expansion valve 3c, and the third heat exchanger 5c and the fourth heat exchanger are connected. The outlet side of the exchanger 5d joins and is connected to the suction side of the compressor 1.

水分吸着手段20は、例えばデシカントロータなどである。デシカントロータは、軸方向に通気性を有するハニカム構造のロータであり、モータ等の回転機構を有する。ロータの空気と接する表面には吸着材が担持され、水分の吸着と放出とを繰り返すことが可能である。なお、同様な役割を果たす機構が備えられていれば、この形式に限定されものではない。デシカントロータは吸着材として、例えばゼオライト、シリカゲル、活性炭等を用い、多孔質のロータ基材に塗布あるいは表面処理あるいは含浸されたものを使用する。ロータへの吸着剤の坦持はロータ全体でも良いし、一部にとどめ残りは通風だけにしても良い。   The moisture adsorption means 20 is, for example, a desiccant rotor. The desiccant rotor is a honeycomb-structured rotor having air permeability in the axial direction, and has a rotating mechanism such as a motor. An adsorbent is supported on the surface of the rotor in contact with the air, and moisture adsorption and release can be repeated. In addition, as long as the mechanism which plays the same role is provided, it is not limited to this form. The desiccant rotor uses, for example, zeolite, silica gel, activated carbon or the like as an adsorbent, and is applied, surface-treated or impregnated on a porous rotor base material. The adsorbent may be supported on the rotor by the entire rotor, or only a part of the rotor may be ventilated.

なお、水分吸着手段20における吸着側領域と再生側領域の割合は本発明においては1:1としているが、任意の割合に変更してもよい。   In addition, although the ratio of the adsorption | suction side area | region in the moisture adsorption means 20 and the reproduction | regeneration side area | region is set to 1: 1 in this invention, you may change into arbitrary ratios.

冷媒回路において使用される冷媒は、限定するものではなく、二酸化炭素、炭化水素、ヘリウムのような自然冷媒、HFC410A、HFC407Cなどの塩素を含まない冷媒、もしくは既存の製品に使用されているR22、R134aなどのフロン系冷媒などである。そして、かかる冷媒を循環させる圧縮機などの流体機器は、レシプロ、ロータリー、スクロール、スクリューなどの各種タイプが適用可能である。   Refrigerant used in the refrigerant circuit is not limited, natural refrigerants such as carbon dioxide, hydrocarbons, helium, refrigerants not containing chlorine such as HFC410A, HFC407C, or R22 used in existing products, Fluorocarbon refrigerant such as R134a. And various types, such as a reciprocating machine, a rotary, a scroll, a screw, are applicable to fluid apparatuses, such as a compressor which circulates this refrigerant | coolant.

空気調和装置には、外気(図中、符号「OA」にて示す)を室内導入空気(図中、符号「SA」にて示す)として室内に導入する外気導入経路A(第1の空気流路に相当する)と、室内空気(図中、符号「RA」にて示す)を室外に排気(図中、符号「EA」にて示す)として排出する排気放出経路B(第2の空気流路に相当する)とが交差して設けられている。外気導入経路Aと排気放出経路Bと(以下、まとめた又は一方を空気経路や空気流路と称する場合がある)には、それぞれ例えばファンのような送風手段(図示せず)が設けられ、空気経路のそれぞれにおいて空気を流す。両方の空気経路にまたがって全熱交換器10と水分吸着手段20とが設けられ、水分吸着手段20の吸脱着を補助促進する熱源として冷媒回路が設けられている。
《冷媒回路の動作説明》
In the air conditioner, the outside air introduction path A (first air flow) for introducing outside air (indicated by the symbol “OA” in the figure) into the room as indoor introduction air (indicated by the symbol “SA” in the figure). And an exhaust discharge path B (second air flow) that discharges indoor air (indicated by the symbol “RA” in the figure) to the outside as exhaust (indicated by the symbol “EA” in the figure). (Corresponding to the road). The outside air introduction path A and the exhaust discharge path B (hereinafter, collectively or one may be referred to as an air path or an air flow path) are each provided with a blowing means (not shown) such as a fan, for example. Air flows in each of the air paths. The total heat exchanger 10 and the moisture adsorption means 20 are provided across both air paths, and a refrigerant circuit is provided as a heat source for assisting and promoting the adsorption and desorption of the moisture adsorption means 20.
<Operation description of refrigerant circuit>

次に、冷媒回路の冷房除湿運転と暖房加湿運転の運転切替え動作について説明する。冷房除湿運転と暖房加湿運転の運転切替えは、四方弁2aの切替え、及び逆止弁4a、bの動作により行っている。   Next, the operation switching operation between the cooling / dehumidifying operation and the heating / humidifying operation of the refrigerant circuit will be described. Switching between the cooling and dehumidifying operation and the heating and humidifying operation is performed by switching the four-way valve 2a and the check valves 4a and 4b.

(冷房除湿運転モード)
冷房除湿運転(図1)では、四方弁2aを圧縮機1の吐出側と第1の熱交換器5aが接続される設定とする。第1の熱交換器5aは凝縮器として動作し膨張弁3aを経た冷媒は低温低圧に減圧された後に第2の熱交換器へと流入する。ここで第2の熱交換器は第1の蒸発器として動作する。このとき、膨張弁3a前後では大きな差圧が発生するため、逆止弁4bには逆方向に差圧が働き「閉」となり、逆止弁4aには順方向に差圧が発生するため「開」となる。そして、逆止弁4aを経た高温高圧の冷媒は2分岐されて膨張弁3c,3dで減圧されて低温低圧となり、それぞれ第3の熱交換器、第4の熱交換器へと流入する。ここで、第3の熱交換器は第2の蒸発器として、第4の熱交換器は第3の蒸発器として動作する。各蒸発器を経た冷媒は圧縮機1の吸入側に戻る。
(Cooling and dehumidifying operation mode)
In the cooling and dehumidifying operation (FIG. 1), the four-way valve 2a is set to be connected to the discharge side of the compressor 1 and the first heat exchanger 5a. The first heat exchanger 5a operates as a condenser, and the refrigerant that has passed through the expansion valve 3a is depressurized to a low temperature and a low pressure and then flows into the second heat exchanger. Here, the second heat exchanger operates as a first evaporator. At this time, since a large differential pressure is generated before and after the expansion valve 3a, the differential pressure acts on the check valve 4b in the reverse direction to be “closed”, and a differential pressure is generated in the check valve 4a in the forward direction. Open ". Then, the high-temperature and high-pressure refrigerant that has passed through the check valve 4a is branched into two, is decompressed by the expansion valves 3c and 3d, becomes low-temperature and low-pressure, and flows into the third heat exchanger and the fourth heat exchanger, respectively. Here, the third heat exchanger operates as a second evaporator, and the fourth heat exchanger operates as a third evaporator. The refrigerant that has passed through each evaporator returns to the suction side of the compressor 1.

(暖房加湿運転モード)
暖房加湿運転(図3)では、四方弁2aを圧縮機1の吐出側と第2の熱交換器5bが接続される設定とする。第2の熱交換器5bは凝縮器として動作し膨張弁3aを経た冷媒は低温低圧に減圧された後に第1の熱交換器5aへと流入する。ここで第1の熱交換器は第1の蒸発器として動作する。このとき、膨張弁3a前後では大きな差圧が発生するため、逆止弁4aには逆方向に差圧が働き「閉」となり、逆止弁4bには順方向に差圧が発生するため「開」となる。そして、逆止弁4bを経た高温高圧の冷媒は2分岐されて膨張弁3c,3dで減圧されて低温低圧となり、それぞれ第3の熱交換器、第4の熱交換器へと流入する。ここで、第3の熱交換器は第3の蒸発器として、第4の熱交換器は第2の蒸発器として動作する。各蒸発器を経た冷媒は圧縮機1の吸入側に戻る。
《空気側回路の動作説明》
続いて、各運転モードにおける空気側回路の動作について説明する。
(冷房除湿運転モード)
冷房除湿運転(図1、図2)において、空気調和装置の外気導入経路Aでは、外気OAより導入された導入空気が全熱交換器10で除湿された後、第2の熱交換器5b(第1の蒸発器)に送り込まれる。ここで導入空気は第1の蒸発器と熱交換して冷却される。このとき、冷却された空気は80〜100%RH程度と相対湿度が高くなるため、吸着材は水分を吸着しやすくなる(空気と吸着材の相対湿度差が大きくなる)。冷却された導入空気が水分吸着手段20における吸着側領域に流入し、吸着材により水分が吸着・除湿される。さらに除湿された導入空気は第4の熱交換器5d(第3の蒸発器)と熱交換して冷却され、室内導入空気SAとなり、供給される。一方、排気放出経路Bでは、室内空気RAより導入された導入空気が全熱交換器10で加湿された後、第1の熱交換器5a(凝縮器)に送り込まれる。ここで導入空気は凝縮器と熱交換して加熱される。このとき、加熱された空気は5〜25%RH程度と相対湿度が低くなるため、吸着材は水分を脱着(放出)しやすくなる(空気と吸着材の相対湿度差が大きくなる)。加熱された導入空気が水分吸着手段20における再生側領域に流入し、吸着材により水分が脱着・加湿される。そして、加湿された導入空気は第3の熱交換器5c(第2の蒸発器)と熱交換して冷却され、排気EAとなり、室外へ排出される。このとき第3の熱交換器5cでは高温の排気から排熱を回収しており、冷媒回路側の蒸発温度を高めることにより、冷凍サイクル運転効率を高めている。
(Heating and humidifying operation mode)
In the heating and humidifying operation (FIG. 3), the four-way valve 2a is set to be connected to the discharge side of the compressor 1 and the second heat exchanger 5b. The second heat exchanger 5b operates as a condenser, and the refrigerant that has passed through the expansion valve 3a is depressurized to a low temperature and a low pressure, and then flows into the first heat exchanger 5a. Here, the first heat exchanger operates as a first evaporator. At this time, since a large differential pressure is generated before and after the expansion valve 3a, the differential pressure acts in the reverse direction on the check valve 4a to be “closed”, and the differential pressure is generated in the forward direction on the check valve 4b. Open ". Then, the high-temperature and high-pressure refrigerant that has passed through the check valve 4b is bifurcated and depressurized by the expansion valves 3c and 3d to become low-temperature and low-pressure, and flows into the third heat exchanger and the fourth heat exchanger, respectively. Here, the third heat exchanger operates as a third evaporator, and the fourth heat exchanger operates as a second evaporator. The refrigerant that has passed through each evaporator returns to the suction side of the compressor 1.
《Explanation of air side circuit operation》
Next, the operation of the air side circuit in each operation mode will be described.
(Cooling and dehumidifying operation mode)
In the cooling and dehumidifying operation (FIGS. 1 and 2), in the outside air introduction path A of the air conditioner, after the introduced air introduced from the outside air OA is dehumidified by the total heat exchanger 10, the second heat exchanger 5b ( First evaporator). Here, the introduced air is cooled by exchanging heat with the first evaporator. At this time, since the cooled air has a relative humidity as high as about 80 to 100% RH, the adsorbent easily adsorbs moisture (the relative humidity difference between the air and the adsorbent increases). The cooled introduced air flows into the adsorption side area of the moisture adsorption means 20, and moisture is adsorbed and dehumidified by the adsorbent. Further, the dehumidified introduced air is cooled by exchanging heat with the fourth heat exchanger 5d (third evaporator) to be supplied as indoor introduced air SA. On the other hand, in the exhaust discharge path B, the introduced air introduced from the room air RA is humidified by the total heat exchanger 10 and then sent to the first heat exchanger 5a (condenser). Here, the introduced air is heated by exchanging heat with the condenser. At this time, since the heated air has a relative humidity as low as about 5 to 25% RH, the adsorbent easily desorbs (releases) moisture (the relative humidity difference between the air and the adsorbent increases). The heated introduced air flows into the regeneration side region of the moisture adsorbing means 20, and moisture is desorbed and humidified by the adsorbent. The humidified introduced air is cooled by exchanging heat with the third heat exchanger 5c (second evaporator), becomes exhaust EA, and is discharged outside the room. At this time, the third heat exchanger 5c collects exhaust heat from the high-temperature exhaust gas, and raises the evaporating temperature on the refrigerant circuit side, thereby increasing the refrigeration cycle operation efficiency.

(暖房運転モード)
暖房加湿運転(図3、図4)において、空気調和装置の外気導入経路Aでは、外気OAより導入された導入空気が全熱交換器10で加湿された後、第2の熱交換器5b(凝縮器)に送り込まれる。ここで導入空気は凝縮器と熱交換して加熱される。このとき、加熱された空気は5〜25%RH程度と相対湿度が低くなるため、吸着材は水分を脱着(放出)しやすくなる(空気と吸着材の相対湿度差が大きくなる)。加熱された導入空気が水分吸着手段20における再生側領域に流入し、吸着材により水分が脱着・加湿される。そして、加湿された導入空気は第4の熱交換器5d(第2の蒸発器)と熱交換して冷却され、室内導入空気SAとなり、室内へ供給される。このとき第4の熱交換器5dでは高温の空気から熱を回収しており、冷媒回路側の蒸発温度を高めることにより、冷凍サイクル運転効率を高めている。また、熱を回収した後のSAは室内設定温度よりも高い温度になるように第4の熱交換器5dにおける熱交換量を制御することにより暖房効果(顕熱加熱)も得ることができ、SAの暖房加熱効果と熱回収による加湿量増大効果の両方を得ることができる。一方、排気放出経路Bでは、室内空気RAより導入された導入空気が全熱交換器10で除湿された後、第1の熱交換器5a(第1の蒸発器)に送り込まれる。ここで導入空気は第1の蒸発器と熱交換して冷却される。このとき、冷却された空気は80〜100%RH程度と相対湿度が高くなるため、吸着材は水分を吸着しやすくなる(空気と吸着材の相対湿度差が大きくなる)。冷却された導入空気が水分吸着手段20における吸着側領域に流入し、吸着材により水分が吸着・除湿される。さらに除湿された導入空気は第3の熱交換器5c(第3の蒸発器)と熱交換して冷却され、排気EAとなり、室外へ排出される。
(Heating operation mode)
In the heating and humidifying operation (FIGS. 3 and 4), in the outside air introduction path A of the air conditioner, after the introduced air introduced from the outside air OA is humidified by the total heat exchanger 10, the second heat exchanger 5b ( Sent to the condenser). Here, the introduced air is heated by exchanging heat with the condenser. At this time, since the heated air has a relative humidity as low as about 5 to 25% RH, the adsorbent easily desorbs (releases) moisture (the relative humidity difference between the air and the adsorbent increases). The heated introduced air flows into the regeneration side region of the moisture adsorbing means 20, and moisture is desorbed and humidified by the adsorbent. The humidified introduced air is cooled by exchanging heat with the fourth heat exchanger 5d (second evaporator), becomes indoor introduced air SA, and is supplied indoors. At this time, the fourth heat exchanger 5d recovers heat from high-temperature air, and raises the evaporating temperature on the refrigerant circuit side, thereby improving the refrigeration cycle operation efficiency. Further, the heating effect (sensible heat heating) can be obtained by controlling the amount of heat exchange in the fourth heat exchanger 5d so that the SA after recovering the heat is higher than the indoor set temperature. It is possible to obtain both the SA heating effect and the humidification increase effect by heat recovery. On the other hand, in the exhaust discharge path B, the introduced air introduced from the room air RA is dehumidified by the total heat exchanger 10 and then sent to the first heat exchanger 5a (first evaporator). Here, the introduced air is cooled by exchanging heat with the first evaporator. At this time, since the cooled air has a relative humidity as high as about 80 to 100% RH, the adsorbent easily adsorbs moisture (the relative humidity difference between the air and the adsorbent increases). The cooled introduced air flows into the adsorption side area of the moisture adsorption means 20, and moisture is adsorbed and dehumidified by the adsorbent. Furthermore, the dehumidified introduced air is cooled by exchanging heat with the third heat exchanger 5c (third evaporator), becomes exhaust EA, and is discharged outside the room.

図5は水分吸着手段20に担持する吸着材の吸着特性の一例である。横軸に相対湿度[%]、縦軸に水蒸気吸着量[wt%]を取ると、図5のように、ある相対湿度を境に急激に水蒸気吸着量が増加し立ち上がる特性を示している。   FIG. 5 is an example of the adsorption characteristics of the adsorbent carried on the moisture adsorption means 20. When the relative humidity [%] is taken on the horizontal axis and the water vapor adsorption amount [wt%] is taken on the vertical axis, the water vapor adsorption amount suddenly increases and rises at a certain relative humidity as shown in FIG.

水分吸着手段20の吸着側領域上流に冷却用の蒸発器(第1の蒸発器)を配置することで、水分吸着手段20の吸着空気となる導入空気の相対湿度を80〜100%RH近くまで上昇させることが可能となる。また、水分吸着手段20の再生側領域上流に加熱用の凝縮器を配置することで、水分吸着手段20の再生空気となる導入空気の相対湿度を5〜25%RH程度まで低下させることが可能となる。これにより、吸着空気と再生空気との相対湿度差ΔRHが大きくなるため、水分吸着手段20における吸着材の吸脱着能力Δqが増大し、大きな除加湿能力を得ることが可能となる。以上の効果は、特に図5に示すような水蒸気吸着量がある相対湿度を境に急激に立上がる特性の吸着材を用いた場合に、より大きな効果を確実に奏することが可能となる。   By disposing a cooling evaporator (first evaporator) upstream of the adsorption side region of the moisture adsorbing means 20, the relative humidity of the introduced air serving as the adsorbed air of the moisture adsorbing means 20 is close to 80 to 100% RH. It can be raised. Further, by arranging a condenser for heating upstream of the regeneration side region of the moisture adsorbing means 20, it is possible to reduce the relative humidity of the introduced air that is the regeneration air of the moisture adsorbing means 20 to about 5 to 25% RH. It becomes. As a result, the relative humidity difference ΔRH between the adsorbed air and the regenerated air is increased, so that the adsorption / desorption capability Δq of the adsorbent in the moisture adsorption means 20 is increased, and a large dehumidifying / humidifying capability can be obtained. The above effects can be surely exerted more reliably when an adsorbent having a characteristic of rising rapidly with a relative humidity having a water vapor adsorption amount as shown in FIG. 5 is used.

《システム動作による作用の説明》
図2、図4の空気線図を用いてシステム動作を説明する。
(冷房除湿運転モード)
図2の(a)において、空気調和装置の冷房除湿時における外気導入経路Aでは、外気OAから導入された導入空気(状態1)が、全熱交換器10において室内空気RAより導入された排出空気(状態6)と全熱交換して、全熱交換器の公知の状態変化過程の通り、状態1と状態2を結ぶ直線上に沿って状態変化して、エンタルピが減少し、温度および絶対湿度が低下する(状態2)。エンタルピが減少し、除湿冷却された導入空気(状態2)は第2の熱交換器5b(第1の蒸発器)に送り込まれ、冷却されることにより相対湿度が上昇する(状態3)。相対湿度が上昇した導入空気(状態3)が水分吸着手段20の吸着領域に流入し、等エンタルピ過程で水分を吸着され、絶対湿度が低下する(状態4)。絶対湿度が低下した導入空気(状態4)はデシカント(吸着材)の吸着熱により温度が上昇しているため、第4の熱交換器5d(第3の蒸発器)に送り、再び冷却する(状態5)。この冷却された導入空気(状態5)が室内導入空気SAとして室内空間に供給される。
<< Explanation of the effects of system operation >>
The system operation will be described with reference to the air diagrams of FIGS.
(Cooling and dehumidifying operation mode)
In (a) of FIG. 2, in the outside air introduction path A during the cooling and dehumidification of the air conditioner, the introduction air (state 1) introduced from the outside air OA is discharged from the room air RA in the total heat exchanger 10. After total heat exchange with air (state 6), as the known state change process of the total heat exchanger, the state changes along the straight line connecting state 1 and state 2, enthalpy decreases, temperature and absolute Humidity decreases (state 2). The enthalpy is reduced and the introduced air (state 2) dehumidified and cooled is sent to the second heat exchanger 5b (first evaporator), and the relative humidity increases by being cooled (state 3). The introduced air with increased relative humidity (state 3) flows into the adsorption region of the moisture adsorbing means 20, moisture is adsorbed in the isoenthalpy process, and the absolute humidity decreases (state 4). Since the temperature of the introduced air (state 4) whose absolute humidity has decreased is increased by the heat of adsorption of the desiccant (adsorbent), it is sent to the fourth heat exchanger 5d (third evaporator) and cooled again ( State 5). This cooled introduction air (state 5) is supplied to the indoor space as the indoor introduction air SA.

以上のように、空気調和装置においては、水分吸着手段20の吸着側領域の下流に第4の熱交換器5d(第3の蒸発器)を配置することにより、特に冷房運転時において、導入空気における吸着材の吸着熱による温度上昇分の顕熱を除去することができ、冷房負荷を軽減させることが可能となる。また、吸着材の吸着熱を回収することにより、冷凍サイクル(冷媒回路側)の効率改善の効果も得ることができる。   As described above, in the air conditioner, by introducing the fourth heat exchanger 5d (third evaporator) downstream of the adsorption side region of the moisture adsorbing means 20, the introduced air particularly during the cooling operation. It is possible to remove the sensible heat due to the temperature rise due to the heat of adsorption of the adsorbent at, thereby reducing the cooling load. Moreover, the effect of improving the efficiency of the refrigeration cycle (refrigerant circuit side) can be obtained by collecting the adsorption heat of the adsorbent.

このようにして得られる導入空気SA(状態5)は、全熱交換器10による除湿に加え、さらにそこで残った水分をデシカント(吸着材)によってさらに除湿することが可能なため、全熱交換による除湿+デシカントによる吸着除湿というように、二重の除湿効果によって絶対湿度が大きく低下し、高い除湿効果を得ることができる。   The introduced air SA (state 5) obtained in this way can be dehumidified by the desiccant (adsorbent), in addition to dehumidification by the total heat exchanger 10, and therefore by total heat exchange. As in the case of adsorption dehumidification by dehumidification + desiccant, the absolute humidity is greatly reduced by the double dehumidification effect, and a high dehumidification effect can be obtained.

図2の(b)において、排気放出経路Bでは室内空気RAより導入された排出空気(状態6)が全熱交換器10において、外気OAから導入された導入空気(状態1)と全熱交換して、エンタルピが増加し、温度が上昇、絶対湿度が増加する(状態7)。エンタルピが増加し、加湿加熱された空気(状態7)は第1の熱交換器5a(凝縮器)に送られて、熱交換して加熱され、相対湿度は低下する(状態8)。相対湿度が低下した排出空気(状態8)は、水分吸着手段20の再生領域に流入し、等エンタルピ過程で水分を脱着され、相対湿度が上昇する(状態9)。相対湿度が上昇した排出空気(状態9)は、水分吸着手段20の再生領域下流に設置される第3の熱交換器5c(第2の蒸発器)に送られ、熱交換することにより温度が低下し、排気EAとして室外へ排出される(状態10)。   In FIG. 2B, in the exhaust discharge path B, exhaust air introduced from the room air RA (state 6) is totally exchanged with the introduced air introduced from the outside air OA (state 1) in the total heat exchanger 10. As a result, enthalpy increases, temperature rises, and absolute humidity increases (state 7). The enthalpy increases and the humidified and heated air (state 7) is sent to the first heat exchanger 5a (condenser) to be heated by heat exchange, and the relative humidity decreases (state 8). The exhausted air (state 8) having a decreased relative humidity flows into the regeneration region of the moisture adsorbing means 20, and moisture is desorbed in the isoenthalpy process, thereby increasing the relative humidity (state 9). The exhausted air (state 9) having an increased relative humidity is sent to the third heat exchanger 5c (second evaporator) installed downstream of the regeneration region of the moisture adsorption means 20, and the temperature is increased by heat exchange. It decreases and is discharged to the outside as exhaust EA (state 10).

また、排気放出経路Bにおいては、デシカントの再生に凝縮器の排熱を利用するとともに、再生後の高温空気である再生排熱を第2の蒸発器に導入して、排熱回収を行うため、冷媒回路における圧縮機1の入力を低減させることができ、省エネ効果が得られ、システムにおける高効率化につながる。   Further, in the exhaust discharge path B, the exhaust heat of the condenser is used for regeneration of the desiccant, and the regeneration exhaust heat, which is the high-temperature air after regeneration, is introduced into the second evaporator to recover the exhaust heat. The input of the compressor 1 in the refrigerant circuit can be reduced, an energy saving effect can be obtained, and the efficiency of the system can be improved.

(暖房加湿運転モード)
図4の(a)において、空気調和装置の冷房除湿時における外気導入経路Aでは、外気OAから導入された導入空気(状態1)が、全熱交換器10において室内空気RAより導入された排出空気(状態6)と全熱交換して、全熱交換器の公知の状態変化過程の通り、状態1と状態2を結ぶ直線上に沿って状態変化して、エンタルピが増加し、温度が上昇、絶対湿度が増加する(状態2)。エンタルピが増加し、加湿加熱された空気(状態2)は第2の熱交換器5b(凝縮器)に送られて、熱交換して加熱され、相対湿度は低下する(状態3)。相対湿度が低下した排出空気(状態3)は、水分吸着手段20の再生領域に流入し、等エンタルピ過程で水分を脱着され、相対湿度が上昇する(状態4)。相対湿度が上昇した排出空気(状態4)は、水分吸着手段20の再生領域下流に設置される第4の熱交換器5d(第2の蒸発器)に送られ、熱交換することにより温度が低下し(状態5)、室内導入空気SAとして室内空間に供給される。
(Heating and humidifying operation mode)
In (a) of FIG. 4, in the outside air introduction path A at the time of cooling and dehumidification of the air conditioner, the introduction air introduced from the outside air OA (state 1) is discharged from the room air RA in the total heat exchanger 10. After total heat exchange with air (state 6), the state changes along the straight line connecting state 1 and state 2 as the known state change process of the total heat exchanger, enthalpy increases and temperature rises Absolute humidity increases (state 2). The enthalpy increases and the humidified and heated air (state 2) is sent to the second heat exchanger 5b (condenser) where it is heat-exchanged and heated, and the relative humidity decreases (state 3). The exhausted air (state 3) having a decreased relative humidity flows into the regeneration region of the moisture adsorbing means 20, is desorbed with moisture in the isoenthalpy process, and the relative humidity increases (state 4). The exhausted air (state 4) having an increased relative humidity is sent to a fourth heat exchanger 5d (second evaporator) installed downstream of the regeneration region of the moisture adsorption means 20, and the temperature is increased by heat exchange. It decreases (state 5) and is supplied to the indoor space as the indoor introduction air SA.

このようにして得られる導入空気SA(状態5)は、全熱交換器10による加湿に加え、さらにデシカント(吸着材)によって加湿することが可能なため、全熱交換による加湿+デシカントによる脱着加湿というように、二重の加湿効果によって絶対湿度が大きくなり、高い加湿効果を得ることができる。また空気中の水分を全熱交換器もしくはデシカントにて吸着し、導入空気SA側に放出して空気を加湿するため、無給水加湿が可能となり、水道配管工事を不要にすることが可能となる。   The introduced air SA (state 5) thus obtained can be humidified by the desiccant (adsorbent) in addition to the humidification by the total heat exchanger 10, so that the humidification by the total heat exchange + the desorption humidification by the desiccant Thus, the absolute humidity increases due to the double humidification effect, and a high humidification effect can be obtained. In addition, moisture in the air is adsorbed by a total heat exchanger or desiccant, and is released to the introduced air SA side to humidify the air, so that it is possible to perform humidification without supplying water and eliminate the need for water pipe work. .

また、デシカントの再生に凝縮器の排熱を利用するとともに、再生後の高温空気である再生熱を第2の蒸発器に導入して、熱回収を行うため、冷媒回路における圧縮機1の入力を低減させることができ、省エネ効果が得られ、システムにおける高効率化につながる。   In addition, the exhaust heat of the condenser is used for regeneration of the desiccant, and regeneration heat, which is high-temperature air after regeneration, is introduced into the second evaporator for heat recovery, so that the input of the compressor 1 in the refrigerant circuit is performed. Can be reduced, energy saving effect can be obtained, leading to higher efficiency in the system.

図4の(b)において、排気放出経路Bでは室内空気RAより導入された排出空気(状態6)が全熱交換器10において、外気OAから導入された導入空気(状態1)と全熱交換して、エンタルピが減少し、温度および絶対湿度が低下する(状態7)。エンタルピが減少し、除湿冷却された導入空気(状態7)は第1の熱交換器5a(第1の蒸発器)に送り込まれ、冷却されることにより相対湿度が上昇する(状態8)。相対湿度が上昇した導入空気(状態8)が水分吸着手段20の吸着領域に流入し、等エンタルピ過程で水分を吸着され、絶対湿度が低下する(状態9)。絶対湿度が低下した導入空気(状態9)はデシカント(吸着材)の吸着熱により温度が上昇しているため、第3の熱交換器5d(第3の蒸発器)に送り、再び冷却する(状態10)。この冷却された排出空気(状態10)が排気EAとして室外へ排出される(状態10)。   4B, in the exhaust discharge path B, the exhaust air introduced from the room air RA (state 6) is totally exchanged with the introduced air introduced from the outside air OA (state 1) in the total heat exchanger 10. As a result, the enthalpy decreases, and the temperature and absolute humidity decrease (state 7). The enthalpy is reduced and the introduced air (state 7) dehumidified and cooled is sent to the first heat exchanger 5a (first evaporator), and the relative humidity increases by being cooled (state 8). The introduced air with increased relative humidity (state 8) flows into the adsorption region of the moisture adsorption means 20, and moisture is adsorbed in the isoenthalpy process, and the absolute humidity is reduced (state 9). Since the temperature of the introduced air (state 9) in which the absolute humidity has decreased is increased by the heat of adsorption of the desiccant (adsorbent), it is sent to the third heat exchanger 5d (third evaporator) and cooled again ( State 10). This cooled exhaust air (state 10) is exhausted to the outside as exhaust EA (state 10).

以上のように、排気放出経路Bにおける水分吸着手段20の吸着材の吸着熱を第4の熱交換器(第3の蒸発器)に回収することにより、冷凍サイクル(冷媒回路側)の効率改善の効果を得ることができる。   As described above, the efficiency of the refrigeration cycle (refrigerant circuit side) is improved by recovering the adsorption heat of the adsorbent of the moisture adsorbing means 20 in the exhaust discharge path B to the fourth heat exchanger (third evaporator). The effect of can be obtained.

《システム制御方法》
図1、図3に記載された、制御のために必要なセンサ類の説明をする。本発明の空気調和装置には、冷媒回路側に、第1の熱交換器の配管温度を検出する温度センサ6a、第2の熱交換器の配管温度を検出する温度センサ6b、第3の熱交換器の配管温度を検出する温度センサ6c、第4の熱交換器の配管温度を検出する温度センサ6dが、圧縮機1の吐出側に吐出温度検出用の温度センサ6eが設けられている。また、空気回路側には、第1の熱交換器の出口空気温度と湿度(相対湿度もしくは絶対湿度、または露点でもよい。以降、温湿度センサの湿度という記述では同様の意味を表す)を検出する温湿度センサ7a、第2の熱交換器の出口空気温度と湿度を検出する温湿度センサ7b、第3の熱交換器の出口空気温度と湿度を検出する温湿度センサ7c、第4の熱交換器の出口空気温度と湿度を検出する温湿度センサ7d、外気OAの空気温度と湿度を検出する温湿度センサ7e、室内空気RAの空気温度と湿度を検出する温湿度センサ7fが設けられている。これらの温湿度センサは、空気調和装置を制御する制御基板(図示せず)に接続される。制御基板ではこれらの温湿度情報を取得し、制御アクチュエータである圧縮機1、膨張弁3a、b、c、外気導入経路A、排気放出経路Bにそれぞれ設けられた送風ファン(図示せず)の制御を行うことが可能である。
<System control method>
The sensors necessary for the control described in FIGS. 1 and 3 will be described. In the air conditioner of the present invention, on the refrigerant circuit side, a temperature sensor 6a for detecting the pipe temperature of the first heat exchanger, a temperature sensor 6b for detecting the pipe temperature of the second heat exchanger, and a third heat A temperature sensor 6c for detecting the pipe temperature of the exchanger, a temperature sensor 6d for detecting the pipe temperature of the fourth heat exchanger, and a temperature sensor 6e for detecting the discharge temperature are provided on the discharge side of the compressor 1. On the air circuit side, the outlet air temperature and humidity of the first heat exchanger (relative humidity or absolute humidity, or dew point may be used. Hereinafter, the description of humidity of the temperature / humidity sensor indicates the same meaning). Temperature / humidity sensor 7a, temperature / humidity sensor 7b for detecting the outlet air temperature and humidity of the second heat exchanger, temperature / humidity sensor 7c for detecting the outlet air temperature and humidity of the third heat exchanger, and fourth heat A temperature / humidity sensor 7d for detecting the outlet air temperature and humidity of the exchanger, a temperature / humidity sensor 7e for detecting the air temperature and humidity of the outside air OA, and a temperature / humidity sensor 7f for detecting the air temperature and humidity of the indoor air RA are provided. Yes. These temperature and humidity sensors are connected to a control board (not shown) that controls the air conditioner. The control board obtains the temperature and humidity information, and controls the compressor 1, the expansion valves 3a, b, c, the outside air introduction path A, and the exhaust discharge path B that are control actuators. Control can be performed.

本発明の冷媒回路構成では、第1〜第3の蒸発器に対し、流量を制御する膨張弁3a〜3cをそれぞれ設けている。したがって、各蒸発器の温度もしくは各蒸発器出口の空気温湿度に基づき冷媒循環量を制御することにより、各々の蒸発器の冷却能力を制御できるため、各蒸発器において通過空気を飽和する直前まで冷却し、結露させないようにして、ドレン処理を不要にすることが可能となる。各蒸発器の冷媒温度を露点温度以上にすることで結露を防止するが、温度と湿度を計測すればこの露点温度は得られるので、各蒸発器の管温を計測してそのときの露点温度以上となる制御を行えばよい。   In the refrigerant circuit configuration of the present invention, expansion valves 3a to 3c for controlling the flow rate are provided for the first to third evaporators, respectively. Therefore, since the cooling capacity of each evaporator can be controlled by controlling the amount of refrigerant circulation based on the temperature of each evaporator or the air temperature and humidity at the outlet of each evaporator, until just before the passing air is saturated in each evaporator. It is possible to eliminate the drain treatment by cooling and preventing condensation. Condensation is prevented by setting the refrigerant temperature of each evaporator above the dew point temperature, but this dew point temperature can be obtained by measuring the temperature and humidity, so measure the tube temperature of each evaporator and the dew point temperature at that time The above control may be performed.

図6に本実施例の空気調和装置100と顕熱処理装置200を組み合わせた空調システムの例を示す。空調対象室の天井裏に本発明の空気調和装置が配置されこの風路である室内空気RAを吸い込み室外へ吹き出す風EAの吸い込み口と室外空気OAの室内への吹き出し風SAを吹き出す吹き出し口が天井に設けられている。またこれとは別の空調装置である顕熱処理装置200が同様天井に取り付けられており、室内から空気を噴出して室内の顕熱負荷を処理した空気を室内に吹き出している。本システム構成では、本発明の空気調和装置100を外気を導入し、室内空気を室外へ排気する空気調和外気処理空気調和装置として利用して外気を室内へ導入する際の湿度調整を主に行い(潜熱処理)、これとは別に顕熱処理用の空気調和装置を別の冷媒回路を設けて併設する。これにより、顕熱処理用の空気調和装置200では除湿を行う必要がないため冷媒の蒸発温度を高める運転が可能となり、圧縮機は高低差圧の少ない高効率な運転を行うことが可能となる。したがって、このような外気処理空気調和装置と顕熱処理用の空気調和装置を別置するシステム構成では空調負荷の大きな割合を占める顕熱負荷を高効率運転が可能な顕熱処理用空気調和装置で賄うことが可能となり、空調システム全体の効率を高めることが可能となる。なお、顕熱処理装置200は、天井に設けられた本体の中に室内空気を冷却する熱交換器と送風を行う送風機が内蔵されており、この熱交換器の熱を処理するヒートポンプユニットの熱源機は屋外に配置されて配管で接続されている。ただし、この顕熱処理装置は壁掛け型や床置き形でも良いし、セパレート型でなく熱源機と一体の構成でも良い。なお、空気調和装置100と顕熱処理装置200はリモコンなどで目標温度や目標湿度を設定し、この目標値が得られるように冷媒回路を流れる冷媒を絞り装置などで制御する。このとき高効率が得られるように圧縮機などの運転が行われる。   FIG. 6 shows an example of an air conditioning system in which the air conditioning apparatus 100 of this embodiment and the sensible heat treatment apparatus 200 are combined. An air conditioner according to the present invention is arranged behind the ceiling of the air-conditioning target room, and a suction port for the wind EA that sucks the indoor air RA, which is the air path, and blows the air outside the room, and a blowout port that blows the blown air SA to the room of the outdoor air OA. Located on the ceiling. Further, a sensible heat treatment apparatus 200, which is an air conditioner different from this, is similarly attached to the ceiling, and blows out air into the room by blowing out air from the room and processing the sensible heat load in the room. In this system configuration, the air conditioning apparatus 100 of the present invention is used as an air conditioning outside air processing air conditioning apparatus that introduces outside air and exhausts indoor air to the outside, and mainly performs humidity adjustment when introducing outside air into the room. (Latent heat treatment) In addition to this, an air conditioner for sensible heat treatment is provided with another refrigerant circuit. As a result, the air conditioning apparatus 200 for sensible heat treatment does not need to be dehumidified, so that the operation of increasing the evaporation temperature of the refrigerant is possible, and the compressor can be operated with high efficiency with a low differential pressure. Therefore, in such a system configuration in which the outside air treatment air conditioner and the sensible heat treatment air conditioner are separately provided, the sensible heat load occupying a large proportion of the air conditioning load is covered by the sensible heat treatment air conditioner capable of high-efficiency operation. It becomes possible to increase the efficiency of the entire air conditioning system. The sensible heat treatment apparatus 200 includes a heat exchanger that cools indoor air and a blower that blows air in a main body provided on the ceiling, and a heat source unit of a heat pump unit that processes the heat of the heat exchanger. Are arranged outdoors and connected by piping. However, this sensible heat treatment apparatus may be a wall-mounted type or a floor-standing type, or may be a structure integrated with a heat source machine instead of a separate type. The air conditioning apparatus 100 and the sensible heat treatment apparatus 200 set a target temperature and a target humidity with a remote controller or the like, and control the refrigerant flowing through the refrigerant circuit with a throttling device or the like so as to obtain the target value. At this time, the compressor is operated so as to obtain high efficiency.

冷凍サイクル運転を行う場合、冷媒は、密度の大きい高圧ガス冷媒と、これが液化凝縮された液冷媒(密度大)が流れる凝縮器に多く存在する。このため、冷凍サイクルの封入冷媒量は、凝縮器の大きさに大きく依存する。本実施例では、冷房時に第1の熱交換器5aが凝縮器、暖房時には第2の熱交換器5bが凝縮器となる回路構成であり、第1の熱交換器5aと第2の熱交換器5bの内容積を概略同等としている。したがって、冷房運転時と暖房運転時の必要冷媒量をほぼ同等とすることができるため、冷凍サイクルに液溜めなどの部品を追加することなく構成することが可能となる。これにより、回路部品の点数を少なく簡素にすることが可能となり、装置の小型・低コスト化が可能となる。   When performing the refrigeration cycle operation, a large amount of refrigerant exists in a condenser through which a high-pressure gas refrigerant having a high density and a liquid refrigerant (high density) obtained by liquefying and condensing the refrigerant are flowing. For this reason, the amount of refrigerant contained in the refrigeration cycle greatly depends on the size of the condenser. In the present embodiment, the circuit configuration is such that the first heat exchanger 5a is a condenser during cooling and the second heat exchanger 5b is a condenser during heating, and the first heat exchanger 5a and the second heat exchange. The internal volume of the vessel 5b is approximately equal. Therefore, the amount of refrigerant required during the cooling operation and the heating operation can be made substantially equal, so that it is possible to configure without adding parts such as a liquid reservoir to the refrigeration cycle. As a result, the number of circuit components can be reduced and simplified, and the apparatus can be reduced in size and cost.

図1、図3に示す空気調和装置は、内容積が大きくかつ容量がほぼ等しい第1の熱交換器5aと第2の熱交換器5bをほぼ同一厚みに、また、内容積が小さくかつ容量がほぼ等しい第3の熱交換器5cと第4の熱交換器5dについてもほぼ同一厚みにすることが可能となる。また、第3の熱交換器5cと第4の熱交換器5dについては容量が小さくて良いため薄型にすることが可能である。このように各熱交換器の厚みを設計し、図1、図3に示す順番で第1〜第4の熱交換器5a〜5dと水分吸着手段20を配置して構成することにより、熱交換器5a〜5dと水分吸着手段20で構成される部分の構成部品を無駄なスペースなく収めることが可能となり、かつ、合計厚さを薄くすることが可能となる。このような構成は、水分吸着手段20に対し空気の流れが並行で流れる機器構成のために可能となる。   In the air conditioner shown in FIGS. 1 and 3, the first heat exchanger 5a and the second heat exchanger 5b having a large internal volume and substantially the same capacity have the same thickness, and the internal volume is small and the capacity is small. It is possible to make the third heat exchanger 5c and the fourth heat exchanger 5d having substantially the same thickness substantially the same. Further, the third heat exchanger 5c and the fourth heat exchanger 5d can be thin because they may have a small capacity. By designing the thickness of each heat exchanger in this way and arranging and configuring the first to fourth heat exchangers 5a to 5d and the moisture adsorbing means 20 in the order shown in FIGS. It becomes possible to store the components of the part constituted by the containers 5a to 5d and the moisture adsorbing means 20 without wasting space, and to reduce the total thickness. Such a configuration is possible because of a device configuration in which air flows in parallel to the moisture adsorbing means 20.

また、熱交換器5a〜5dと水分吸着手段20を水平方向設置とし、かつ、垂直方向の設置の順番を、最上部に第3の熱交換器5cと第4の熱交換器5d、中間部に水分吸着手段20、最下部に第1の熱交換器5cと第2の熱交換器5dの順番として、空気の流れが熱交換器5a〜5dと水分吸着手段20に対し、垂直下方から上方へ向かう流れとする(図1、図3を上下方向逆にした構成)。これにより、熱交換器5a〜5dに対し、空気が垂直上方へ吹き上げる流れとなる。したがって、熱交換器5a〜5dが蒸発器であった場合には、熱交換器が若干結露した場合でも気流が上方へ流れるため水滴が滴下しにくい。また、風速を上げれば水滴を吹き飛ばすことも可能となり、ドレン水発生を抑制することが可能となる。   Further, the heat exchangers 5a to 5d and the moisture adsorbing means 20 are installed in the horizontal direction, and the order of installation in the vertical direction is the third heat exchanger 5c, the fourth heat exchanger 5d, and the middle part. In the order of the moisture adsorbing means 20 at the bottom and the first heat exchanger 5c and the second heat exchanger 5d at the bottom, the air flow is directed upward from below vertically with respect to the heat exchangers 5a to 5d and the moisture adsorbing means 20. (A configuration in which FIGS. 1 and 3 are reversed in the vertical direction). Thereby, it becomes the flow which air blows up perpendicularly upwards with respect to the heat exchangers 5a-5d. Therefore, in the case where the heat exchangers 5a to 5d are evaporators, even when the heat exchanger is slightly condensed, the airflow flows upward, so that it is difficult for water droplets to drip. Further, if the wind speed is increased, water droplets can be blown off, and the generation of drain water can be suppressed.

実施の形態2.
《システム構成》
図7〜図9は本発明の実施の形態2に係る空気調和装置を説明するものである。図7は冷房除湿運転モードの風路構成を模式的に示す構成図、図8は暖房加湿運転モードの風路構成を模式的に示す構成図、図9は本冷媒回路構成における冷凍サイクル運転時の動作を表すPh線図である。なお、実施の形態1と同じ部分または相当する部分については同じ符号を付し、説明を省略する。また、本実施例は冷媒回路側に特徴があり、空気回路側の湿り空気線図上の作動状態(冷房除湿運転、暖房加湿運転)は基本的に実施の形態1と同じであるため、空気線図およびこれに関する説明については省略する。
Embodiment 2. FIG.
"System configuration"
7 to 9 illustrate an air-conditioning apparatus according to Embodiment 2 of the present invention. FIG. 7 is a configuration diagram schematically showing an air path configuration in the cooling / dehumidifying operation mode, FIG. 8 is a configuration diagram schematically showing an air path configuration in the heating / humidifying operation mode, and FIG. 9 is a refrigeration cycle operation in the refrigerant circuit configuration. It is a Ph diagram showing the operation of. In addition, the same code | symbol is attached | subjected about the part same as Embodiment 1, or an equivalent part, and description is abbreviate | omitted. In addition, this embodiment is characterized by the refrigerant circuit side, and the operating state (cooling dehumidification operation, heating / humidification operation) on the humid air diagram on the air circuit side is basically the same as that of the first embodiment. The diagram and the explanation regarding this will be omitted.

図7、図8において、空気調和装置は、圧縮機1、四方弁2a、2b、膨張弁3a、3d、3e、逆止弁4a、4b、第1の熱交換器5a、第2の熱交換器5b、第3の熱交換器5c、第4の熱交換器5dで構成される冷媒回路と、全熱交換器10と、水分の吸着と放出(再生)を繰り返す水分吸着手段20とを有している。   7 and 8, the air conditioner includes a compressor 1, four-way valves 2a and 2b, expansion valves 3a, 3d and 3e, check valves 4a and 4b, a first heat exchanger 5a and a second heat exchange. A refrigerant circuit composed of a heat exchanger 5b, a third heat exchanger 5c, and a fourth heat exchanger 5d, a total heat exchanger 10, and a moisture adsorption means 20 that repeats adsorption and release (regeneration) of moisture. is doing.

第1の熱交換器5aは膨張弁3aを介して第2の熱交換器5bと直列に接続されており、冷房除湿運転時には第1の熱交換器5aが凝縮器、第2の熱交換器5bが第1の蒸発器として動作し(図7)、暖房加湿運転時には第2の熱交換器5bが凝縮器、第1の熱交換器5aが第1の蒸発器として動作するように構成されている(図8)。   The first heat exchanger 5a is connected in series with the second heat exchanger 5b via the expansion valve 3a, and the first heat exchanger 5a is a condenser and a second heat exchanger during the cooling and dehumidifying operation. 5b operates as a first evaporator (FIG. 7), and is configured so that the second heat exchanger 5b operates as a condenser and the first heat exchanger 5a operates as a first evaporator during the heating and humidifying operation. (FIG. 8).

逆止弁4a、4bは、第1の熱交換器5aと膨張弁3aの間に逆止弁4aの入口側が、第2の熱交換器5bと膨張弁3aの間に逆止弁4bの入口側が設けられている。そして、それぞれの出口側は一旦合流した後、膨張弁3eへ接続されている。膨張弁3eの下流には四方弁2bが接続される。四方弁2bは、冷房除湿運転時には第3の熱交換器5c、膨張弁3d、第4の熱交換器5d、再び四方弁2b、圧縮機1の吸入側がこの順番で回路構成(図7)され、暖房加湿運転時には第4の熱交換器5d、膨張弁3d、第3の熱交換器5c、再び四方弁2b、圧縮機1の吸入側がこの順番で回路構成(図8)されるように回路に組み込まれて動作する。冷房除湿運転時には第3の熱交換器5cが第2の蒸発器、第4の熱交換器5dが第3の蒸発器として動作し、暖房加湿運転時には第3の熱交換器5cが第3の蒸発器、第4の熱交換器5dが第2の蒸発器として動作する。なお、本実施例でも実施の形態1同様に、冷房除湿運転と暖房加湿運転とで役割を変える3個の蒸発器の役割を、各運転モードにおいて、水分吸着手段20に対して吸着側風上に位置する蒸発器を第1の蒸発器、再生側風下に位置する蒸発器を第2の蒸発器、吸着側風下に位置する蒸発器を第3の蒸発器として定義している。
《冷媒回路の動作説明》
The check valves 4a and 4b have an inlet side of the check valve 4a between the first heat exchanger 5a and the expansion valve 3a, and an inlet of the check valve 4b between the second heat exchanger 5b and the expansion valve 3a. A side is provided. And after each outlet side merges once, it is connected to the expansion valve 3e. A four-way valve 2b is connected downstream of the expansion valve 3e. In the four-way valve 2b, the circuit configuration of the third heat exchanger 5c, the expansion valve 3d, the fourth heat exchanger 5d, the four-way valve 2b, and the suction side of the compressor 1 in this order during the cooling and dehumidifying operation (FIG. 7). In the heating and humidifying operation, the circuit is configured so that the fourth heat exchanger 5d, the expansion valve 3d, the third heat exchanger 5c, the four-way valve 2b, and the suction side of the compressor 1 are configured in this order (FIG. 8). Built in to work. The third heat exchanger 5c operates as the second evaporator and the fourth heat exchanger 5d operates as the third evaporator during the cooling and dehumidifying operation, and the third heat exchanger 5c operates as the third evaporator during the heating and humidifying operation. The evaporator and the fourth heat exchanger 5d operate as the second evaporator. In the present example, as in the first embodiment, the role of the three evaporators that change roles between the cooling and dehumidifying operation and the heating and humidifying operation is the same as that of the moisture adsorbing unit 20 in each operation mode. Is defined as the first evaporator, the evaporator located on the regeneration side leeward is defined as the second evaporator, and the evaporator located on the adsorption side leeward is defined as the third evaporator.
<Operation description of refrigerant circuit>

次に、冷媒回路の冷房除湿運転と暖房加湿運転の運転切替え動作について説明する。
冷房除湿運転と暖房加湿運転の運転切替えは、四方弁2a、2bの切替え、及び逆止弁4a、bの動作により行っている。
Next, the operation switching operation between the cooling / dehumidifying operation and the heating / humidifying operation of the refrigerant circuit will be described.
Switching between the cooling and dehumidifying operation and the heating and humidifying operation is performed by switching the four-way valves 2a and 2b and by operating the check valves 4a and 4b.

(冷房除湿運転モード)
冷房除湿運転(図7)では、四方弁2aを圧縮機1の吐出側と第1の熱交換器5aが接続される設定とする。第1の熱交換器5aは凝縮器として動作し膨張弁3aを経た冷媒は低温低圧に減圧された後に第2の熱交換器へ流入する。ここで第2の熱交換器5bは第1の蒸発器として動作する。このとき、膨張弁3a前後では大きな差圧が発生するため、逆止弁4bには逆方向に差圧が働き「閉」となり、逆止弁4aには順方向に差圧が発生するため「開」となる。そして、逆止弁4aを経た高温高圧の冷媒は膨張弁3eを経て中温中圧となり、四方弁2bを経由して第3の熱交換器5cへ流入する。第3の熱交換器5cは第2の蒸発器として動作し、冷媒は膨張弁3dを経て低温低圧となり第4の熱交換器5dへ流入する。第4の熱交換器5dは第3の蒸発器として動作し、冷媒は圧縮機1の吸入側へ戻る。第2の熱交換器5bを経た冷媒も同様に圧縮機1の吸入側へ戻る。
(Cooling and dehumidifying operation mode)
In the cooling and dehumidifying operation (FIG. 7), the four-way valve 2a is set to be connected to the discharge side of the compressor 1 and the first heat exchanger 5a. The first heat exchanger 5a operates as a condenser, and the refrigerant that has passed through the expansion valve 3a is decompressed to a low temperature and a low pressure and then flows into the second heat exchanger. Here, the second heat exchanger 5b operates as a first evaporator. At this time, since a large differential pressure is generated before and after the expansion valve 3a, the differential pressure acts on the check valve 4b in the reverse direction to be “closed”, and a differential pressure is generated in the check valve 4a in the forward direction. Open ". Then, the high-temperature and high-pressure refrigerant that has passed through the check valve 4a passes through the expansion valve 3e, becomes intermediate temperature and intermediate pressure, and flows into the third heat exchanger 5c through the four-way valve 2b. The third heat exchanger 5c operates as a second evaporator, and the refrigerant becomes low-temperature and low-pressure through the expansion valve 3d and flows into the fourth heat exchanger 5d. The fourth heat exchanger 5d operates as a third evaporator, and the refrigerant returns to the suction side of the compressor 1. Similarly, the refrigerant that has passed through the second heat exchanger 5b also returns to the suction side of the compressor 1.

(暖房加湿運転モード)
暖房加湿運転(図8)では、四方弁2aを圧縮機1の吐出側と第2の熱交換器5bが接続される設定とする。第2の熱交換器5bは凝縮器として動作し膨張弁3aを経た冷媒は低温低圧に減圧された後に第1の熱交換器5aへ流入する。ここで第1の熱交換器5aは第1の蒸発器として動作する。このとき、膨張弁3a前後では大きな差圧が発生するため、逆止弁4aには逆方向に差圧が働き「閉」となり、逆止弁4bには順方向に差圧が発生するため「開」となる。そして、逆止弁4bを経た高温高圧の冷媒は膨張弁3eを経て中温中圧となり、四方弁2bを経由して第4の熱交換器5dへ流入する。第4の熱交換器5dは第2の蒸発器として動作し、冷媒は膨張弁3dを経て低温低圧となり第3の熱交換器5cへ流入する。第3の熱交換器5cは第3の蒸発器として動作し、冷媒は圧縮機1の吸入側へ戻る。第1の熱交換器5aを経た冷媒も同様に圧縮機1の吸入側へ戻る。
(Heating and humidifying operation mode)
In the heating and humidifying operation (FIG. 8), the four-way valve 2a is set to be connected to the discharge side of the compressor 1 and the second heat exchanger 5b. The second heat exchanger 5b operates as a condenser, and the refrigerant having passed through the expansion valve 3a is depressurized to a low temperature and a low pressure and then flows into the first heat exchanger 5a. Here, the first heat exchanger 5a operates as a first evaporator. At this time, since a large differential pressure is generated before and after the expansion valve 3a, the differential pressure acts in the reverse direction on the check valve 4a to be “closed”, and the differential pressure is generated in the forward direction on the check valve 4b. Open ". Then, the high-temperature and high-pressure refrigerant that has passed through the check valve 4b becomes an intermediate-temperature / intermediate pressure through the expansion valve 3e, and flows into the fourth heat exchanger 5d through the four-way valve 2b. The fourth heat exchanger 5d operates as a second evaporator, and the refrigerant becomes low-temperature and low-pressure through the expansion valve 3d and flows into the third heat exchanger 5c. The third heat exchanger 5 c operates as a third evaporator, and the refrigerant returns to the suction side of the compressor 1. Similarly, the refrigerant that has passed through the first heat exchanger 5a also returns to the suction side of the compressor 1.

(冷凍サイクル上の動作)
図9は、上記説明の冷房除湿運転もしくは暖房加湿運転における冷凍サイクル上の動作をPh線図上に表したものである。本実施例では冷媒回路にて構成される冷凍サイクルの低圧側が2系統の並列回路となっており、さらにその1系統には膨張弁3eと第2の蒸発器と、膨張弁3dと第3の蒸発器とが直列2段で接続されている。したがって、第2の蒸発器と第3の蒸発器が接続される側の系統では、膨張弁3eと3dの開度比率を変化させることにより、膨張弁3eの下流に接続される第2の蒸発器の冷媒圧力(中間圧)を調整することが可能となる。これにより、第2の蒸発器と第3の蒸発器を異なる蒸発温度で運転することが可能となる(第2の蒸発器の蒸発温度>第3の蒸発器の蒸発温度)。
(Operation on refrigeration cycle)
FIG. 9 shows the operation on the refrigeration cycle in the cooling / dehumidifying operation or the heating / humidifying operation described above on the Ph diagram. In this embodiment, the low pressure side of the refrigeration cycle constituted by the refrigerant circuit is a parallel circuit of two systems, and further, one system includes an expansion valve 3e, a second evaporator, an expansion valve 3d, and a third circuit. The evaporator is connected in two stages in series. Therefore, in the system on the side where the second evaporator and the third evaporator are connected, the second evaporation connected downstream of the expansion valve 3e by changing the opening ratio of the expansion valves 3e and 3d. It becomes possible to adjust the refrigerant pressure (intermediate pressure) of the vessel. As a result, the second evaporator and the third evaporator can be operated at different evaporation temperatures (evaporation temperature of the second evaporator> evaporation temperature of the third evaporator).

第2の蒸発器の空気回路の上流側には、水分吸着手段20の再生側が配置されている。このため、第2の蒸発器の入口空気は他の蒸発器(第1、第3)に比べて湿度が高い状態となる。上記説明のように第2の蒸発器と第3の蒸発器を直列2段構成とすることにより、結露しやすい第2の蒸発器の冷媒温度を上昇させて運転することが可能となる。例えば、第2の蒸発器の配管温度(温度センサ5cもしくは5d)を露点以上に制御して運転することにより、第2の蒸発器における結露を確実に防止することが可能となる。これにより、空気調和装置からドレンパンを排除し、装置構成を簡素化することが可能となる。また、第2の蒸発器と第3の蒸発器を異なる蒸発温度で最適に運転することにより、冷凍サイクルの効率を高めることが可能な運転切り替えが便利な実用的な装置が得られる。   On the upstream side of the air circuit of the second evaporator, the regeneration side of the moisture adsorbing means 20 is arranged. For this reason, the inlet air of the second evaporator is in a state of higher humidity than the other evaporators (first and third). As described above, the second evaporator and the third evaporator have a two-stage configuration in series, so that it is possible to operate by increasing the refrigerant temperature of the second evaporator where condensation easily occurs. For example, by controlling the piping temperature (temperature sensor 5c or 5d) of the second evaporator to a dew point or higher, it is possible to reliably prevent condensation in the second evaporator. As a result, the drain pan can be eliminated from the air conditioner, and the device configuration can be simplified. In addition, by operating the second evaporator and the third evaporator optimally at different evaporation temperatures, a practical device with convenient operation switching that can increase the efficiency of the refrigeration cycle is obtained.

実施の形態3.
《システム構成》
図10、図11は本発明の実施の形態3に係る空気調和装置を説明するものである。図10は冷房除湿運転モードの風路構成を模式的に示す構成図、図11は暖房加湿運転モードの風路構成を模式的に示す構成図である。なお、実施の形態1、2と同じ部分または相当する部分については同じ符号を付し、説明を省略する。本実施例の冷媒回路は構成が異なるが実施の形態2に等価な回路であり、その効果は実施の形態2に同じである。また、空気回路側の湿り空気線図上の作動状態(冷房除湿運転、暖房加湿運転)は基本的に実施の形態1、2と同じであるため、空気線図およびこれに関する説明については省略する。
Embodiment 3 FIG.
"System configuration"
10 and 11 illustrate an air-conditioning apparatus according to Embodiment 3 of the present invention. FIG. 10 is a configuration diagram schematically showing an air path configuration in the cooling and dehumidifying operation mode, and FIG. 11 is a configuration diagram schematically showing an air path configuration in the heating and humidifying operation mode. In addition, the same code | symbol is attached | subjected about the same part as Embodiment 1, 2, or a corresponding part, and description is abbreviate | omitted. The refrigerant circuit of the present example is a circuit equivalent to the second embodiment although the configuration is different, and the effect is the same as that of the second embodiment. In addition, since the operation state (cooling dehumidifying operation and heating / humidifying operation) on the humid air diagram on the air circuit side is basically the same as in the first and second embodiments, the air diagram and the explanation related thereto are omitted. .

図10、図11において、空気調和装置は、圧縮機1、四方弁2a、膨張弁3a、3d、3f、3g、第1の熱交換器5a、第2の熱交換器5b、第3の熱交換器5c、第4の熱交換器5d、電磁弁8a、8bで構成される冷媒回路と、全熱交換器10と、水分の吸着と放出(再生)を繰り返す水分吸着手段20とを有している。   10 and 11, the air conditioner includes a compressor 1, a four-way valve 2a, expansion valves 3a, 3d, 3f, and 3g, a first heat exchanger 5a, a second heat exchanger 5b, and a third heat. A refrigerant circuit composed of an exchanger 5c, a fourth heat exchanger 5d, and electromagnetic valves 8a and 8b, a total heat exchanger 10, and a moisture adsorption means 20 that repeats adsorption and release (regeneration) of moisture. ing.

第1の熱交換器5aは膨張弁3aを介して第2の熱交換器5bと直列に接続されており、冷房除湿運転時には第1の熱交換器5aが凝縮器、第2の熱交換器5bが第1の蒸発器として動作し(図10)、暖房加湿運転時には第2の熱交換器5bが凝縮器、第1の熱交換器5aが第1の蒸発器として動作するように構成されている(図11)。   The first heat exchanger 5a is connected in series with the second heat exchanger 5b via the expansion valve 3a, and the first heat exchanger 5a is a condenser and a second heat exchanger during the cooling and dehumidifying operation. 5b operates as a first evaporator (FIG. 10), and is configured so that the second heat exchanger 5b operates as a condenser and the first heat exchanger 5a operates as a first evaporator during the heating and humidifying operation. (FIG. 11).

膨張弁3f、3gは、第1の熱交換器5aと膨張弁3aの間に膨張弁3fの入口側が、第2の熱交換器5bと膨張弁3aの間に膨張弁3gの入口側が設けられている。そして、
膨張弁3fの出口側は第3の熱交換器5cに、膨張弁3gの出口側は第4の熱交換器5dに接続されている。冷房除湿運転時には第3の熱交換器5c、膨張弁3d、第4の熱交換器5d、電磁弁8b(開)、圧縮機1の吸入側がこの順番で回路構成され(図10)、暖房加湿運転時には第4の熱交換器5d、膨張弁3d、第3の熱交換器5c、電磁弁8a(開)、圧縮機1の吸入側がこの順番で回路構成される(図11)。冷房除湿運転時には第3の熱交換器5cが第2の蒸発器、第4の熱交換器5dが第3の蒸発器として動作し、暖房加湿運転時には第3の熱交換器5cが第3の蒸発器、第4の熱交換器5dが第2の蒸発器として動作する。なお、本実施例でも実施の形態1、2と同様に、冷房除湿運転と暖房加湿運転とで役割を変える3個の蒸発器の役割を、各運転モードにおいて、水分吸着手段20に対して吸着側風上に位置する蒸発器を第1の蒸発器、再生側風下に位置する蒸発器を第2の蒸発器、吸着側風下に位置する蒸発器を第3の蒸発器として定義している。
《冷媒回路の動作説明》
The expansion valves 3f and 3g are provided with an inlet side of the expansion valve 3f between the first heat exchanger 5a and the expansion valve 3a, and an inlet side of the expansion valve 3g between the second heat exchanger 5b and the expansion valve 3a. ing. And
The outlet side of the expansion valve 3f is connected to the third heat exchanger 5c, and the outlet side of the expansion valve 3g is connected to the fourth heat exchanger 5d. During the cooling and dehumidifying operation, the third heat exchanger 5c, the expansion valve 3d, the fourth heat exchanger 5d, the electromagnetic valve 8b (open), and the suction side of the compressor 1 are configured in this order (FIG. 10). During operation, the fourth heat exchanger 5d, the expansion valve 3d, the third heat exchanger 5c, the electromagnetic valve 8a (open), and the suction side of the compressor 1 are configured in this order (FIG. 11). The third heat exchanger 5c operates as the second evaporator and the fourth heat exchanger 5d operates as the third evaporator during the cooling and dehumidifying operation, and the third heat exchanger 5c operates as the third evaporator during the heating and humidifying operation. The evaporator and the fourth heat exchanger 5d operate as the second evaporator. In this example, as in the first and second embodiments, the role of the three evaporators that change roles in the cooling and dehumidifying operation and the heating and humidifying operation is adsorbed to the moisture adsorbing means 20 in each operation mode. The evaporator located on the side wind is defined as the first evaporator, the evaporator located on the regeneration side lee is defined as the second evaporator, and the evaporator located on the adsorption side lee is defined as the third evaporator.
<Operation description of refrigerant circuit>

次に、冷媒回路の冷房除湿運転と暖房加湿運転の運転切替え動作について説明する。
冷房除湿運転と暖房加湿運転の運転切替えは、膨張弁3f、3gの開度、及び電磁弁8a,8bの開閉動作により行っている。
Next, the operation switching operation between the cooling / dehumidifying operation and the heating / humidifying operation of the refrigerant circuit will be described.
Switching between the cooling and dehumidifying operation and the heating and humidifying operation is performed by opening the expansion valves 3f and 3g and opening and closing operations of the electromagnetic valves 8a and 8b.

(冷房除湿運転モード)
冷房除湿運転(図10)では、四方弁2aを圧縮機1の吐出側と第1の熱交換器5aが接続される設定とする。第1の熱交換器5aは凝縮器として動作し膨張弁3aを経た冷媒は低温低圧に減圧された後に第2の熱交換器5bへ流入する。ここで第2の熱交換器5bは第1の蒸発器として動作する。また、冷媒は膨張弁3fを経て中温中圧となり第3の熱交換器5cへ流入する。第3の熱交換器5cは第2の蒸発器として動作し、冷媒は膨張弁3dを経て低温低圧となり第4の熱交換器5dへ流入する。第4の熱交換器5dは第3の蒸発器として動作し、冷媒は電磁弁8b(開)を経て圧縮機1の吸入側へ戻る。第2の熱交換器5bを経た冷媒も同様に圧縮機1の吸入側へ戻る。ここで、膨張弁3gは全閉、電磁弁3aは閉であり、これらを通る配管には冷媒が流れないため、上記説明の回路が成立する。
(Cooling and dehumidifying operation mode)
In the cooling and dehumidifying operation (FIG. 10), the four-way valve 2a is set so that the discharge side of the compressor 1 and the first heat exchanger 5a are connected. The first heat exchanger 5a operates as a condenser, and the refrigerant that has passed through the expansion valve 3a is depressurized to a low temperature and a low pressure and then flows into the second heat exchanger 5b. Here, the second heat exchanger 5b operates as a first evaporator. In addition, the refrigerant passes through the expansion valve 3f, becomes intermediate temperature and intermediate pressure, and flows into the third heat exchanger 5c. The third heat exchanger 5c operates as a second evaporator, and the refrigerant becomes low-temperature and low-pressure through the expansion valve 3d and flows into the fourth heat exchanger 5d. The fourth heat exchanger 5d operates as a third evaporator, and the refrigerant returns to the suction side of the compressor 1 through the electromagnetic valve 8b (open). Similarly, the refrigerant that has passed through the second heat exchanger 5b also returns to the suction side of the compressor 1. Here, the expansion valve 3g is fully closed, and the electromagnetic valve 3a is closed. Since the refrigerant does not flow through the pipes passing through them, the circuit described above is established.

(暖房加湿運転モード)
暖房加湿運転(図11)では、四方弁2aを圧縮機1の吐出側と第2の熱交換器5bが接続される設定とする。第2の熱交換器5bは凝縮器として動作し膨張弁3aを経た冷媒は低温低圧に減圧された後に第1の熱交換器5aへ流入する。ここで第1の熱交換器5aは第1の蒸発器として動作する。また、冷媒は膨張弁3gを経て中温中圧となり第4の熱交換器5dへ流入する。第4の熱交換器5dは第2の蒸発器として動作し、冷媒は膨張弁3dを経て低温低圧となり第3の熱交換器5cへ流入する。第3の熱交換器5cは第3の蒸発器として動作し、冷媒は電磁弁8a(開)を経て圧縮機1の吸入側へ戻る。第2の熱交換器5bを経た冷媒も同様に圧縮機1の吸入側へ戻る。ここで、膨張弁3fは全閉、電磁弁3bは閉であり、これらを通る配管には冷媒が流れないため、上記説明の回路が成立する。
(Heating and humidifying operation mode)
In the heating and humidifying operation (FIG. 11), the four-way valve 2a is set to be connected to the discharge side of the compressor 1 and the second heat exchanger 5b. The second heat exchanger 5b operates as a condenser, and the refrigerant having passed through the expansion valve 3a is depressurized to a low temperature and a low pressure and then flows into the first heat exchanger 5a. Here, the first heat exchanger 5a operates as a first evaporator. In addition, the refrigerant passes through the expansion valve 3g, becomes an intermediate temperature / intermediate pressure, and flows into the fourth heat exchanger 5d. The fourth heat exchanger 5d operates as a second evaporator, and the refrigerant becomes low-temperature and low-pressure through the expansion valve 3d and flows into the third heat exchanger 5c. The third heat exchanger 5c operates as a third evaporator, and the refrigerant returns to the suction side of the compressor 1 through the electromagnetic valve 8a (open). Similarly, the refrigerant that has passed through the second heat exchanger 5b also returns to the suction side of the compressor 1. Here, the expansion valve 3f is fully closed, the electromagnetic valve 3b is closed, and the refrigerant does not flow through the piping passing through them, so the circuit described above is established.

(冷凍サイクル上の動作)
本実施例の冷媒回路構成では、実施の形態2と同様に、第2の蒸発器と第3の蒸発器を直列2段接続して運転することが可能である。このため、実施の形態2と同様の効果、すなわち、第2の蒸発器と第3の蒸発器を異なる蒸発温度で運転することが可能となり(第2の蒸発器の蒸発温度>第3の蒸発器の蒸発温度)、第2の蒸発器における結露を確実に防止することが可能となる。これにより、空気調和装置からドレンパンを排除し、装置構成を簡素化することが可能となる。また、第2の蒸発器と第3の蒸発器を異なる蒸発温度で最適に運転することにより、冷凍サイクルの効率を高めることが可能となる。図10、図11では、図7などで使用した四方弁2bの代わりに電磁弁8a、8bを使用するので小さな圧力差でも確実に閉鎖でき効率の良い実用的な装置が可能になる。
(Operation on refrigeration cycle)
In the refrigerant circuit configuration of this example, similarly to the second embodiment, the second evaporator and the third evaporator can be operated in two stages connected in series. Therefore, the same effect as in the second embodiment, that is, the second evaporator and the third evaporator can be operated at different evaporation temperatures (evaporation temperature of the second evaporator> third evaporation). It is possible to reliably prevent condensation in the second evaporator. As a result, the drain pan can be eliminated from the air conditioner, and the device configuration can be simplified. In addition, it is possible to increase the efficiency of the refrigeration cycle by optimally operating the second evaporator and the third evaporator at different evaporation temperatures. 10 and 11, the electromagnetic valves 8a and 8b are used instead of the four-way valve 2b used in FIG. 7 and the like, so that even a small pressure difference can be reliably closed, and an efficient and practical device is possible.

なお、図1、図3、図7、図8、図10、図11に示す、上記実施の形態1〜3のシステム構成において、図中では水分吸着手段に対し外気導入経路Aと外気導入経路Bの風の流れが同一方向(並行流)としているが、これに限定するものではなく、外気導入経路Aと外気導入経路Bの風の流れを逆方向とする対向流としてもよい。   1, 3, 7, 8, 10, and 11, the outside air introduction path A and the outside air introduction path with respect to the moisture adsorbing means are shown in the drawings. Although the wind flow of B is made into the same direction (parallel flow), it is not limited to this, It is good also as a counterflow which makes the wind flow of the external air introduction path | route A and the external air introduction path | route B reverse.

本発明は、デシカントの再生側の吸入風路側に凝縮器を設けるだけでなく吹き出し側に蒸発器を設け、さらにデシカントの吸着側の吹き出し風路側に蒸発器を設けるだけでなく吸入側にも蒸発器を設け、室内目標温度に近づける制御を可能にし、再生排熱を利用して冷媒回路の効率を上げ、かつ、各蒸発器の冷却能力を結露させないように調整するとともに、吸着側の吸入風路の第1蒸発器と再生側の凝縮器により吸着と再生の相対湿度差を大きくして除湿と加湿の性能を大きくする。また、上記効果を冷房除湿運転と暖房加湿運転の運転切替えにおいて、空気側回路の切替えではなく、冷媒回路側の切替えでのみ実現しているため、装置が大型化するダンパが不要となり、装置の小型簡素化が可能となる。   The present invention is not only provided with a condenser on the suction air passage side on the regeneration side of the desiccant but also provided with an evaporator on the blow-off side, and further provided with an evaporator on the blow-off air passage side on the adsorption side of the desiccant and also evaporated on the suction side. It is possible to control the temperature closer to the indoor target temperature, improve the efficiency of the refrigerant circuit by using regenerative exhaust heat, and adjust the cooling capacity of each evaporator so that it does not condense. The relative humidity difference between adsorption and regeneration is increased by the first evaporator and the condenser on the regeneration side, thereby increasing the dehumidification and humidification performance. In addition, since the above effect is realized only by switching the refrigerant circuit side, not the air side circuit, in the switching operation between the cooling and dehumidifying operation and the heating and humidifying operation, a damper that increases the size of the device is unnecessary, and Miniaturization and simplification are possible.

また、各蒸発器に対応する膨張弁を個別に設けることにより冷媒流量と冷媒温度を制御することが可能となり、冷房除湿運転時は蒸発器の結露防止、暖房加湿運転時は結露防止に加え、着霜防止の効果が得られる。   In addition, it is possible to control the refrigerant flow rate and the refrigerant temperature by individually providing an expansion valve corresponding to each evaporator, in addition to preventing condensation of the evaporator during cooling and dehumidifying operation, and preventing condensation during heating and humidifying operation, The effect of preventing frost formation is obtained.

本発明の空気調和装置は、第1の空間から第2の空間に向かう空気の流れを形成する第1の空気流路と、第2の空間から第1の空間に向かう空気の流れを形成する第2の空気流路と、第1の空気流路を流れる空気と第2の空気流路を流れる空気との間で全熱交換を行う全熱交換器と、冷媒を圧縮する圧縮機、四方弁、絞り装置、第1の熱交換器、第2の熱交換器、第3の熱交換器、第4の熱交換器から構成された冷媒回路と、第1の空気流路と第2の空気流路とに跨がって配置され、第1または第2の空気流路の何れか片方に位置する領域において吸着除湿し、該領域が他方の空気流路に移動されて加熱再生される動作を交互に繰り返す水分吸着手段とを備え、冷媒回路は、第1の熱交換器を凝縮器、第2の熱交換器を第1の蒸発器、第3の熱交換器を第2の蒸発器、第4の熱交換器を第3の蒸発器として用いる第1の冷媒回路構成と、第1の熱交換器を第1の蒸発器、第2の熱交換器を凝縮器、第3の熱交換器を第3の蒸発器、第4の熱交換器を第2の蒸発器として用いる第2の冷媒回路構成との、切替えが可能であり、第1の冷媒回路構成を用いるときには、第1の空気流路に、全熱交換器、凝縮器、水分吸着手段、第2の蒸発器が、風上側から風下側に向かって順次構成されると共に、第2の空気流路に、第1の蒸発器、水分吸着手段、第3の蒸発器が、風上側から風下側に向かって順次構成され、第2の冷媒回路構成を用いるときには、第1の空気流路に、全熱交換器、第1の蒸発器、水分吸着手段、第3の蒸発器が、風上側から風下側に向かって順次構成されると共に、第2の空気流路に、凝縮器、水分吸着手段、第2の蒸発器が、風上側から風下側に向かって順次構成されるので、空調対象空間の潜熱を効率よく処理することができるとともに、顕熱の処理も可能である。 The air conditioner of the present invention forms a first air flow path that forms a flow of air from the first space toward the second space, and a flow of air that flows from the second space toward the first space. A second air flow path, a total heat exchanger that performs total heat exchange between air flowing through the first air flow path and air flowing through the second air flow path, a compressor that compresses the refrigerant, A refrigerant circuit including a valve, a throttle device, a first heat exchanger, a second heat exchanger, a third heat exchanger, and a fourth heat exchanger, a first air flow path, and a second Arranged across the air flow path, adsorbs and dehumidifies in one of the first and second air flow paths, and the area is moved to the other air flow path for heat regeneration. And a moisture adsorbing means that repeats the operation alternately. The refrigerant circuit includes a first heat exchanger as a condenser, a second heat exchanger as a first evaporator, and a third heat exchanger. A first refrigerant circuit configuration using the exchanger as the second evaporator and the fourth heat exchanger as the third evaporator, and the first heat exchanger as the first evaporator and the second heat exchanger Can be switched to the second refrigerant circuit configuration using the first refrigerant as the condenser, the third heat exchanger as the third evaporator, and the fourth heat exchanger as the second evaporator. When the circuit configuration is used, the total heat exchanger, the condenser, the moisture adsorbing means, and the second evaporator are sequentially configured from the windward side to the leeward side in the first air flow path, When the first evaporator, the moisture adsorbing means, and the third evaporator are sequentially configured from the windward side to the leeward side in the air flow path, and the second refrigerant circuit configuration is used, the first air flow path In addition, the total heat exchanger, the first evaporator, the moisture adsorption means, and the third evaporator are sequentially configured from the leeward side to the leeward side, Since the condenser, the moisture adsorbing means, and the second evaporator are sequentially configured in the air flow path 2 from the windward side to the leeward side, the latent heat in the air-conditioning target space can be efficiently processed, Sensible heat treatment is also possible.

本発明の絞り装置は複数個から構成され、各絞り装置が前記第1から第3の蒸発器の上流側にそれぞれ対応して設けられているので、各蒸発器を露点温度以上とすることができる。各絞り装置として開度を調整可能な調整弁としても良いし、各蒸発器の冷媒温度がほぼ所定値以上が確保されるようにキャピラリチューブなどのように固定値に設定するものを使用しても良い。   Since the expansion device of the present invention is composed of a plurality, and each expansion device is provided corresponding to the upstream side of the first to third evaporators, each evaporator can be set to a dew point temperature or higher. it can. Each throttle device may be an adjustment valve whose opening degree can be adjusted, or a device that sets a fixed value, such as a capillary tube, so that the refrigerant temperature of each evaporator is ensured to be almost a predetermined value or more. Also good.

本発明の空気調和装置は、第1の蒸発器と並列に設けられた第2の蒸発器および第3の蒸発器は、この順番で直列または並列に接続することができるので、フレキシブルな運用が可能である。   In the air conditioner of the present invention, the second evaporator and the third evaporator provided in parallel with the first evaporator can be connected in series or in parallel in this order. Is possible.

本発明の、水分吸着手段の全部または一部に設けられる吸着材の相対湿度に対する水分の平衡吸着量の変化率が、第1の相対湿度と該第1の相対湿度よりも高湿度である第2の相対湿度との間の範囲において、前記第1の相対湿度よりも低湿度の範囲および前記第2の相対湿度よりも高湿度の範囲よりも、大きいようにすることで水分の吸着と脱着が効果的に行える。この場合、第1の相対湿度が略30%で、第2の相対湿度が略60%程度とすると良い。   The rate of change of the equilibrium adsorption amount of moisture relative to the relative humidity of the adsorbent provided in all or part of the moisture adsorbing means of the present invention is a first relative humidity and a humidity higher than the first relative humidity. In the range between the relative humidity of 2 and the higher relative humidity than the first relative humidity and higher than the second relative humidity, moisture adsorption and desorption Can be done effectively. In this case, it is preferable that the first relative humidity is about 30% and the second relative humidity is about 60%.

また、水分吸着手段に固体吸着材が設けられ、該固体吸着材が、1.5〜2.5ナノメートルの穴径の細孔が多数設けられたケイ素材料で構成すると水分の吸着と脱着が有効に行われる。   In addition, if the moisture adsorbing means is provided with a solid adsorbing material, and the solid adsorbing material is composed of a silicon material provided with a large number of pores having a hole diameter of 1.5 to 2.5 nanometers, moisture adsorption and desorption can be achieved. Done effectively.

本発明の、空気調和装置では、各蒸発器における冷媒蒸発温度が、蒸発器の吸込空気温度の露点以下にならないように冷媒循環量もしくは冷媒温度を制御することができ、ドレン水の処理が非常に簡単になるので装置全体が簡素化できる。   In the air conditioner according to the present invention, the refrigerant circulation amount or the refrigerant temperature can be controlled so that the refrigerant evaporation temperature in each evaporator does not fall below the dew point of the intake air temperature of the evaporator. Therefore, the entire apparatus can be simplified.

本発明の、第1の空間を空調室とし、第2の空間を室外として、該空調室を冷房除湿(前記第1の冷媒回路構成)、もしくは暖房加湿(前記第2の冷媒回路構成)することができる。また、本発明の空気調和装置を外気処理空気調和装置とし、顕熱処理用の空気調和装置を併設すすることでさらに効率の良い空気調和システムが得られる。   The first space of the present invention is an air-conditioning chamber, the second space is an outdoor space, and the air-conditioning chamber is air-cooled and dehumidified (first refrigerant circuit configuration) or heated and humidified (second refrigerant circuit configuration). be able to. Further, by using the air conditioner of the present invention as an outside air treatment air conditioner and providing an air conditioner for sensible heat treatment, a more efficient air conditioner system can be obtained.

本発明は、冷房運転時に凝縮器になる熱交換器と、暖房運転時に凝縮器になる熱交換器の内容積を概略同一とする。また複数の熱交換器の何れかに対して、空気の流れが垂直下方から上方へ流れる構成とする。   This invention makes the internal volume of the heat exchanger which becomes a condenser at the time of cooling operation and the heat exchanger which becomes a condenser at the time of heating operation substantially the same. Moreover, it is set as the structure which the flow of air flows upwards from perpendicular | vertical downward with respect to either of several heat exchangers.

本発明の実施の形態1に係る空気調和装置の冷房除湿運転時の回路構成図。The circuit block diagram at the time of the air_conditioning | cooling dehumidification driving | operation of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の図1に示す冷房除湿運転における動作状態を示す湿り空気線図。The humid air line figure which shows the operation state in the air_conditioning | cooling dehumidification driving | operation shown in FIG. 1 of this invention. 本発明の実施の形態1に係る空気調和装置の暖房加湿運転時の回路構成図。The circuit block diagram at the time of the heating humidification operation | movement of the air conditioning apparatus which concerns on Embodiment 1 of this invention. 本発明の図1に示す暖房加湿運転における動作状態を示す湿り空気線図。The humid air line figure which shows the operation state in the heating humidification driving | operation shown in FIG. 1 of this invention. 本発明の図1、3に示す空気調和装置における吸着材の吸着特性の一例を示す図。The figure which shows an example of the adsorption | suction characteristic of the adsorbent in the air conditioning apparatus shown to FIG. 本発明の実施の形態1に係る空調システム構成例の図。The figure of the example of air-conditioning system composition concerning Embodiment 1 of the present invention. 本発明の実施の形態2に係る空気調和装置の冷房除湿運転時の回路構成図。The circuit block diagram at the time of the air_conditioning | cooling dehumidification operation | movement of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る空気調和装置の暖房加湿運転時の回路構成図。The circuit block diagram at the time of the heating humidification operation | movement of the air conditioning apparatus which concerns on Embodiment 2 of this invention. 本発明の図8、9に示す空気調和装置における冷媒回路動作状態を示したph線図。The ph diagram which showed the refrigerant circuit operation state in the air conditioning apparatus shown to FIG. 8, 9 of this invention. 本発明の実施の形態3に係る空気調和装置の冷房除湿運転時の回路構成図。The circuit block diagram at the time of the air_conditioning | cooling dehumidification driving | operation of the air conditioning apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る空気調和装置の暖房加湿運転時の回路構成図。The circuit block diagram at the time of the heating humidification operation | movement of the air conditioning apparatus which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2a、b 四方弁、3a、b、c、d、f、g 膨張弁、4a、b 逆止弁、5a 第1の熱交換器、5b 第2の熱交換器、5c 第3の熱交換器、5d 第4の熱交換器、6a、b、c、d、e 温度センサ、7a、b、c、d、e、f 温湿度センサ、8a、8b 電磁弁、10 全熱交換器、20 水分吸着手段、100 空気調和装置、200 顕熱処理装置、A:外気導入経路、B:排気放出経路、OA:外気、RA:室内空気、SA:室内導入空気。   DESCRIPTION OF SYMBOLS 1 Compressor, 2a, b Four-way valve, 3a, b, c, d, f, g Expansion valve, 4a, b Check valve, 5a 1st heat exchanger, 5b 2nd heat exchanger, 5c 3rd Heat exchanger, 5d Fourth heat exchanger, 6a, b, c, d, e Temperature sensor, 7a, b, c, d, e, f Temperature / humidity sensor, 8a, 8b Solenoid valve, 10 Total heat exchange 20: moisture adsorbing means, 100 air conditioning apparatus, 200 sensible heat treatment apparatus, A: outside air introduction path, B: exhaust discharge path, OA: outside air, RA: room air, SA: room introduction air.

Claims (12)

室外から室内へ向かう空気の流れを形成する第1の空気流路と、
前記室内から前記室外に向かう空気の流れを形成する第2の空気流路と、
前記第1の空気流路と前記第2の空気流路とに跨がって配置され、前記第1の空気流路および第2の空気流路の何れか一方に位置するときに吸着除湿し、いずれか他方に位置するときに加熱再生されるとともに、前記第1の空気流路および第2の空気流路にて行われる前記吸着除湿および前記加熱再生の動作を交互に繰り返す水分吸着手段と、
前記第1の空気流路と前記第2の空気流路の空気の流れに配置され前記水分吸着手段のそれぞれの上流側と下流側に設けられた複数の熱交換器と、
圧縮機にて前記複数の熱交換器に冷媒を循環させるとともに、前記第1の空気流路と前記第2の空気流路に設けられ前記水分吸着手段の両方の空気の流れの上流側に配置された熱交換器の一方を凝縮器とし他方を第1の蒸発器とするように絞り装置および前記冷媒の流れを切り替える四方弁とを有する冷媒回路と、
前記凝縮器から前記第1の蒸発器へ流れる冷媒を、前記第1の空気流路と前記第2の空気流路の両方に配置された前記水分吸着手段のそれぞれの下流側に配置された熱交換器へ分岐する回路であって、前記凝縮器の下流側を第2の蒸発器とし前記第1の蒸発器の下流側を第3の蒸発器として動作させ前記圧縮機へ戻す冷媒分岐回路と、を備えたことを特徴とする空気調和装置。
A first air flow path that forms a flow of air from the outdoor to the indoor;
A second air flow path that forms a flow of air from the room toward the outside of the room;
Adsorption dehumidification is arranged across the first air flow path and the second air flow path, and is located in one of the first air flow path and the second air flow path. A moisture adsorbing means that is regenerated by heating when it is located at the other and alternately repeats the adsorption dehumidification and the heating regeneration operations performed in the first air flow path and the second air flow path. ,
A plurality of heat exchangers arranged on the upstream side and the downstream side of each of the moisture adsorbing means disposed in the air flow of the first air channel and the second air channel;
In the compressor, the refrigerant is circulated through the plurality of heat exchangers, and is arranged on the upstream side of the air flow of both the moisture adsorbing means provided in the first air channel and the second air channel. A refrigerant circuit having a throttling device and a four-way valve that switches the flow of the refrigerant so that one of the heat exchangers is a condenser and the other is a first evaporator;
The heat flowing from the condenser to the first evaporator is disposed downstream of each of the moisture adsorbing means disposed in both the first air flow path and the second air flow path. A circuit branching to the exchanger, wherein the downstream side of the condenser is operated as a second evaporator and the downstream side of the first evaporator is operated as a third evaporator and returned to the compressor; An air conditioner comprising:
第1の空間から第2の空間に向かう空気の流れを形成する第1の空気流路と、
前記第2の空間から前記第1の空間に向かう空気の流れを形成する第2の空気流路と、
前記第1の空気流路を流れる空気と前記第2の空気流路を流れる空気との間で全熱交換を行う全熱交換器と、
冷媒を圧縮する圧縮機、前記冷媒の流れを切り替える四方弁、前記冷媒の流れを調整する絞り装置、および前記第1の空気流路と前記第2の空気流路に流れる空気と前記冷媒との間で熱交換する第1の熱交換器、第2の熱交換器、第3の熱交換器、第4の熱交換器である複数の熱交換器を配管で接続した冷媒回路と、
前記第1の空気流路と前記第2の空気流路とに跨がって配置され、前記第1または第2の空気流路の何れか片方に位置する領域において吸着除湿し、該領域が他方の空気流路に移動されて加熱再生される動作を交互に繰り返す水分吸着手段と、
前記第1の熱交換器を凝縮器、前記第2の熱交換器を第1の蒸発器、前記第3の熱交換器を第2の蒸発器、前記第4の熱交換器を第3の蒸発器とする第1の冷媒回路の場合、
前記第1の空気流路に、前記全熱交換器、前記凝縮器、前記水分吸着手段、前記第2の蒸発器が、風上側から風下側に向かって順次配置され、
前記第2の空気流路に、前記全熱交換器、前記第1の蒸発器、前記水分吸着手段、前記第3の蒸発器が、風上側から風下側に向かって順次配置される第1の冷媒・風回路構成と、
前記第1の熱交換器を第1の蒸発器、前記第2の熱交換器を凝縮器、前記第3の熱交換器を第3の蒸発器、前記第4の熱交換器を第2の蒸発器とする第2の冷媒回路の場合、
前記第1の空気流路に、前記全熱交換器、前記第1の蒸発器、前記水分吸着手段、前記第3の蒸発器が、風上側から風下側に向かって順次配置され、
前記第2の空気流路に、前記全熱交換器、前記凝縮器、前記水分吸着手段、前記第2の蒸発器が、風上側から風下側に向かって順次配置される第2の冷媒・風回路構成と、を備え、前記第1の冷媒・風回路構成と前記第2の冷媒・風回路構成が切替えが可能であることを特徴とする空気調和装置。
A first air flow path that forms a flow of air from the first space toward the second space;
A second air flow path that forms an air flow from the second space toward the first space;
A total heat exchanger that performs total heat exchange between air flowing through the first air flow path and air flowing through the second air flow path;
A compressor that compresses the refrigerant, a four-way valve that switches the flow of the refrigerant, a throttling device that adjusts the flow of the refrigerant, and the air and the refrigerant that flow in the first air flow path and the second air flow path A refrigerant circuit in which a plurality of heat exchangers, which are a first heat exchanger, a second heat exchanger, a third heat exchanger, and a fourth heat exchanger, that exchange heat with each other are connected by piping;
The first air flow path and the second air flow path are disposed across the first air flow path and adsorbed and dehumidified in an area located on either one of the first or second air flow path. Moisture adsorption means that repeats the operation of moving to the other air flow path and regenerating by heating, and
The first heat exchanger is a condenser, the second heat exchanger is a first evaporator, the third heat exchanger is a second evaporator, and the fourth heat exchanger is a third In the case of the first refrigerant circuit as an evaporator,
In the first air flow path, the total heat exchanger, the condenser, the moisture adsorption means, and the second evaporator are sequentially arranged from the windward side to the leeward side,
In the second air flow path, the total heat exchanger, the first evaporator, the moisture adsorption means, and the third evaporator are sequentially arranged from the windward side to the leeward side. Refrigerant / wind circuit configuration,
The first heat exchanger is a first evaporator, the second heat exchanger is a condenser, the third heat exchanger is a third evaporator, and the fourth heat exchanger is a second evaporator. In the case of the second refrigerant circuit as an evaporator,
In the first air flow path, the total heat exchanger, the first evaporator, the moisture adsorbing means, and the third evaporator are sequentially arranged from the windward side to the leeward side,
In the second air flow path, the total heat exchanger, the condenser, the moisture adsorbing means, and the second evaporator are sequentially arranged from the windward side toward the leeward side. And an air conditioner that is switchable between the first refrigerant / wind circuit configuration and the second refrigerant / wind circuit configuration.
前記第1の蒸発器、前記第2の蒸発器、および前記第3の蒸発器の蒸発温度を露点温度以上になるように前記冷媒の量または温度を制御することを特徴とする請求項1または2に記載の空気調和装置。 The amount or temperature of the refrigerant is controlled so that the evaporation temperatures of the first evaporator, the second evaporator, and the third evaporator are equal to or higher than a dew point temperature. 2. The air conditioning apparatus according to 2. 前記第1の空気流路と前記第2の空気流路の両方の前記水分吸着手段の上流側に設けたそれぞれの熱交換器よりもさらに上流側に設けられ、前記第1の空気流路と前記第2の空気流路との間で全熱交換する全熱交換器と、前記冷媒分岐回路に設けられ前記冷媒の流れにおけるそれぞれの蒸発器の上流側に配置した絞り装置と、を備えたことを特徴とする請求項1または2に記載の空気調和装置。 Both the first air flow path and the second air flow path are provided further upstream than the respective heat exchangers provided on the upstream side of the moisture adsorbing means; A total heat exchanger that performs total heat exchange with the second air flow path, and a throttling device that is provided in the refrigerant branch circuit and disposed upstream of each evaporator in the refrigerant flow. The air conditioning apparatus according to claim 1 or 2, wherein 前記第1の蒸発器、前記第2の蒸発器、および前記第3の蒸発器は蒸発温度がそれぞれ異なるものとすることを特徴とする請求項1または2または3に記載の空気調和装置。 4. The air conditioner according to claim 1, wherein the first evaporator, the second evaporator, and the third evaporator have different evaporation temperatures. 5. 前記第1の空気流路と前記第2の空気流路に設けられ前記水分吸着手段の両方の空気の流れの上流側に配置された熱交換器の一方を凝縮器とし他方を第1の蒸発器とする両方の熱交換器のそれぞれの内容積をほぼ同一とすることを特徴とする請求項1または2または3に記載の空気調和装置。 One of the heat exchangers provided in the first air flow path and the second air flow path and arranged on the upstream side of the air flow of both the moisture adsorbing means is a condenser and the other is a first evaporation. The air conditioner according to claim 1, 2 or 3, wherein the internal volumes of both of the heat exchangers used as a heat exchanger are substantially the same. 前記第1の蒸発器の内容積よりも、前記第2の蒸発器および前記第3の蒸発器の内容積が小さいことを特徴とする請求項1または2または3に記載の空気調和装置。 4. The air conditioner according to claim 1, wherein the internal volume of the second evaporator and the third evaporator is smaller than the internal volume of the first evaporator. 前記水分吸着手段の表面に設けられた水分吸着剤の少なくとも一部に、ナノメートルの穴径の細孔が多数設けられていることを特徴とする請求項1または2または3に記載の空気調和装置。 4. The air conditioner according to claim 1, wherein a plurality of pores having a hole diameter of nanometer are provided in at least a part of the moisture adsorbent provided on the surface of the moisture adsorbing means. apparatus. 前記絞り装置が複数個から構成され、前記冷媒が第1の絞り装置から前記第1の蒸発器を通して前記圧縮機に戻る戻り回路と、前記冷媒が第2の絞り装置から前記第2の蒸発器と、直列または並列に、第3の絞り装置から前記第3の蒸発器を通して前記圧縮機に戻る第2の戻り回路が、並列に接続されることを特徴とする請求項1ないし8のいずれかに記載の空気調和装置。 A plurality of the throttle devices, a return circuit for returning the refrigerant from the first throttle device to the compressor through the first evaporator, and the refrigerant from the second throttle device to the second evaporator. And a second return circuit that returns from the third throttling device through the third evaporator to the compressor in series or parallel is connected in parallel. The air conditioning apparatus described in 1. 前記第1の空間を空気調和を行う室内とし、前記第2の空間を室外として、前記第1の冷媒・風回路構成にて前記室内を冷房除湿し、もしくは前記第2の冷媒・風回路構成にて前記室内を暖房加湿することを特徴とする請求項2に記載の空気調和装置。 The first space is a room for air conditioning, the second space is an outdoor space, and the room is dehumidified with the first refrigerant / wind circuit configuration, or the second refrigerant / wind circuit configuration is provided. The air conditioner according to claim 2, wherein the room is heated and humidified. 前記複数の熱交換器のいずれかは空気の流れを垂直下方から上方に流す配置とすることを特徴とする請求項1ないし8のいずれかに記載の空気調和装置。 The air conditioner according to any one of claims 1 to 8, wherein any one of the plurality of heat exchangers is arranged to flow an air flow from vertically downward to upward. 請求項1または2または3または8の何れかに記載の空気調和装置にて空気調和を行う前記室内の顕熱負荷を、別に設けた冷媒回路を有する第2の空気調和装置にて処理することを特徴とする空調システム。 A sensible heat load in the room that performs air conditioning in the air conditioning apparatus according to claim 1 or 2 or 3 or 8 is processed by a second air conditioning apparatus having a refrigerant circuit provided separately. An air conditioning system characterized by
JP2008330049A 2008-12-25 2008-12-25 Air conditioner, air conditioning system Active JP4835688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330049A JP4835688B2 (en) 2008-12-25 2008-12-25 Air conditioner, air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330049A JP4835688B2 (en) 2008-12-25 2008-12-25 Air conditioner, air conditioning system

Publications (2)

Publication Number Publication Date
JP2010151376A true JP2010151376A (en) 2010-07-08
JP4835688B2 JP4835688B2 (en) 2011-12-14

Family

ID=42570673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330049A Active JP4835688B2 (en) 2008-12-25 2008-12-25 Air conditioner, air conditioning system

Country Status (1)

Country Link
JP (1) JP4835688B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052782A (en) * 2010-08-05 2012-03-15 Chofu Seisakusho Co Ltd Desiccant type ventilation fan
JP2013145065A (en) * 2012-01-13 2013-07-25 Mitsubishi Electric Corp Air conditioning apparatus
JP2013238395A (en) * 2013-09-05 2013-11-28 Mitsubishi Electric Corp Air conditioning device and air conditioning system
JP2014153009A (en) * 2013-02-12 2014-08-25 Topre Corp Outside air treatment device
CN106051975A (en) * 2016-06-08 2016-10-26 东南大学 Frostless air source heat pump device and method based on membrane method dehumidification and indoor regeneration humidification
KR20170110377A (en) * 2016-03-23 2017-10-11 주식회사 경동나비엔 Air conditioner and the method thereof
KR20170114487A (en) * 2016-04-05 2017-10-16 주식회사 경동나비엔 Air conditioner
CN107940621A (en) * 2017-12-22 2018-04-20 广东美的制冷设备有限公司 Dehumidifier
KR20180092924A (en) * 2016-03-23 2018-08-20 주식회사 경동나비엔 Air conditioner and the method thereof
JP2018146217A (en) * 2017-03-09 2018-09-20 ダイキン工業株式会社 Humidity adjustment device
JP2018173255A (en) * 2017-03-31 2018-11-08 株式会社竹中工務店 Desiccant type humidity control device and control method for the same
CN110925902A (en) * 2019-11-22 2020-03-27 珠海格力电器股份有限公司 Low dew point composite dehumidifier
CN112923459A (en) * 2021-02-26 2021-06-08 青岛海尔空调电子有限公司 Fresh air system
CN114198829A (en) * 2021-11-26 2022-03-18 青岛海信日立空调系统有限公司 Humidity adjusting system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG10201503433XA (en) * 2015-04-30 2016-11-29 Matthias Enzenhofer Humidity Management Device And Method
CN105536451B (en) * 2016-01-28 2018-05-22 河源富马硬质合金股份有限公司 A kind of hydrogen purification drying device and its method of work

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212310A (en) * 1985-03-19 1986-09-20 Mitsubishi Heavy Ind Ltd Dehumidifying device
JPH08141353A (en) * 1994-11-25 1996-06-04 Toyo Eng Works Ltd Dehumidifier
JPH10205820A (en) * 1997-01-21 1998-08-04 Ebara Corp Air conditioner and air conditioning system
JP2001021175A (en) * 1999-07-12 2001-01-26 Ebara Corp Dehumidifying apparatus
JP2005106353A (en) * 2003-09-30 2005-04-21 Daikin Ind Ltd Air conditioner
JP2005140372A (en) * 2003-11-05 2005-06-02 Daikin Ind Ltd Air conditioner
JP2005147484A (en) * 2003-11-14 2005-06-09 Hitachi Ltd Air conditioner
JP2005195285A (en) * 2004-01-09 2005-07-21 Hitachi Ltd Air conditioner
JP2006308246A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Air conditioner
JP2008224074A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Air conditioning device and its control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61212310A (en) * 1985-03-19 1986-09-20 Mitsubishi Heavy Ind Ltd Dehumidifying device
JPH08141353A (en) * 1994-11-25 1996-06-04 Toyo Eng Works Ltd Dehumidifier
JPH10205820A (en) * 1997-01-21 1998-08-04 Ebara Corp Air conditioner and air conditioning system
JP2001021175A (en) * 1999-07-12 2001-01-26 Ebara Corp Dehumidifying apparatus
JP2005106353A (en) * 2003-09-30 2005-04-21 Daikin Ind Ltd Air conditioner
JP2005140372A (en) * 2003-11-05 2005-06-02 Daikin Ind Ltd Air conditioner
JP2005147484A (en) * 2003-11-14 2005-06-09 Hitachi Ltd Air conditioner
JP2005195285A (en) * 2004-01-09 2005-07-21 Hitachi Ltd Air conditioner
JP2006308246A (en) * 2005-04-28 2006-11-09 Mitsubishi Electric Corp Air conditioner
JP2008224074A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Air conditioning device and its control method

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012052782A (en) * 2010-08-05 2012-03-15 Chofu Seisakusho Co Ltd Desiccant type ventilation fan
JP2013145065A (en) * 2012-01-13 2013-07-25 Mitsubishi Electric Corp Air conditioning apparatus
JP2014153009A (en) * 2013-02-12 2014-08-25 Topre Corp Outside air treatment device
JP2013238395A (en) * 2013-09-05 2013-11-28 Mitsubishi Electric Corp Air conditioning device and air conditioning system
KR20180092924A (en) * 2016-03-23 2018-08-20 주식회사 경동나비엔 Air conditioner and the method thereof
KR102335411B1 (en) * 2016-03-23 2021-12-06 주식회사 경동나비엔 Air conditioner and the method thereof
WO2017164560A3 (en) * 2016-03-23 2018-01-25 주식회사 경동나비엔 Air conditioner and control method therefor
KR20170110377A (en) * 2016-03-23 2017-10-11 주식회사 경동나비엔 Air conditioner and the method thereof
JP2019512658A (en) * 2016-03-23 2019-05-16 キュンドン ナビエン シーオー.,エルティーディー. Air conditioner and control method thereof
KR102046214B1 (en) * 2016-03-23 2019-12-04 주식회사 경동나비엔 Air conditioner and the method thereof
KR20170114487A (en) * 2016-04-05 2017-10-16 주식회사 경동나비엔 Air conditioner
WO2017175983A3 (en) * 2016-04-05 2018-01-25 주식회사 경동나비엔 Air conditioner
KR101957240B1 (en) * 2016-04-05 2019-03-13 주식회사 경동나비엔 Air conditioner
CN106051975A (en) * 2016-06-08 2016-10-26 东南大学 Frostless air source heat pump device and method based on membrane method dehumidification and indoor regeneration humidification
JP2018146217A (en) * 2017-03-09 2018-09-20 ダイキン工業株式会社 Humidity adjustment device
JP2018173255A (en) * 2017-03-31 2018-11-08 株式会社竹中工務店 Desiccant type humidity control device and control method for the same
CN107940621A (en) * 2017-12-22 2018-04-20 广东美的制冷设备有限公司 Dehumidifier
CN107940621B (en) * 2017-12-22 2024-04-26 广东美的制冷设备有限公司 Dehumidifier
CN110925902A (en) * 2019-11-22 2020-03-27 珠海格力电器股份有限公司 Low dew point composite dehumidifier
CN112923459A (en) * 2021-02-26 2021-06-08 青岛海尔空调电子有限公司 Fresh air system
CN112923459B (en) * 2021-02-26 2023-04-25 青岛海尔空调电子有限公司 Fresh air system
CN114198829A (en) * 2021-11-26 2022-03-18 青岛海信日立空调系统有限公司 Humidity adjusting system
CN114198829B (en) * 2021-11-26 2023-09-29 青岛海信日立空调系统有限公司 Humidity regulating system

Also Published As

Publication number Publication date
JP4835688B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
JP4835688B2 (en) Air conditioner, air conditioning system
JP5695752B2 (en) Dehumidification system
JP5822931B2 (en) Humidity control apparatus, air conditioning system, and control method of humidity control apparatus
TWI528001B (en) Dehumidification device
JP6494765B2 (en) Air conditioning system
AU2013387944B2 (en) Dehumidifier
US7930896B2 (en) Air conditioning system
JP4321650B2 (en) Humidity control device
JP5631415B2 (en) Air conditioning system and humidity control device
JP2010107059A (en) Refrigerating and air-conditioning apparatus
TW201439477A (en) Dehumidification device
US10393393B2 (en) Dehumidifier
JP5068293B2 (en) Air conditioner
JP2001241693A (en) Air conditioner
JP5868416B2 (en) Refrigeration air conditioner and humidity control device
JP2005114294A (en) Air conditioner
JP2019199998A (en) Air conditioning device
JP4948513B2 (en) Air conditioner, its operating method and air conditioning system
JP2005195285A (en) Air conditioner
JP3742864B2 (en) Air conditioning system
JP2005315463A (en) Humidity controller
JP2019027683A (en) Humidity control device
JP7126611B2 (en) air conditioner
JP2005164220A (en) Air conditioner
JP2008224074A (en) Air conditioning device and its control method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110617

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110830

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110912

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4835688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250