JP5618326B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5618326B2
JP5618326B2 JP2010208835A JP2010208835A JP5618326B2 JP 5618326 B2 JP5618326 B2 JP 5618326B2 JP 2010208835 A JP2010208835 A JP 2010208835A JP 2010208835 A JP2010208835 A JP 2010208835A JP 5618326 B2 JP5618326 B2 JP 5618326B2
Authority
JP
Japan
Prior art keywords
refrigerant
valve
flow path
condenser
outside air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010208835A
Other languages
Japanese (ja)
Other versions
JP2012063102A (en
Inventor
毅 坂井
毅 坂井
Original Assignee
中野冷機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中野冷機株式会社 filed Critical 中野冷機株式会社
Priority to JP2010208835A priority Critical patent/JP5618326B2/en
Publication of JP2012063102A publication Critical patent/JP2012063102A/en
Application granted granted Critical
Publication of JP5618326B2 publication Critical patent/JP5618326B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B6/00Compression machines, plants or systems, with several condenser circuits
    • F25B6/02Compression machines, plants or systems, with several condenser circuits arranged in parallel

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Conditioning Control Device (AREA)

Description

本発明は、冷凍装置に関し、詳しくは、各種店舗において商品を冷凍する冷凍装置に関する。   The present invention relates to a refrigeration apparatus, and more particularly to a refrigeration apparatus that freezes products in various stores.

スーパーマーケットやコンビニエンスストア等の各種店舗においては、冷蔵食品や冷凍食品、生鮮食品等の商品陳列のため、ショーケースや冷蔵庫等の冷凍装置が用いられている。この冷凍装置は、通常、圧縮機や凝縮器、蒸発器等を備えており、冷媒による熱交換によって各種商品を冷凍する(例えば、特許文献1参照)。   In various stores such as supermarkets and convenience stores, refrigeration apparatuses such as showcases and refrigerators are used for displaying refrigerated foods, frozen foods, fresh foods, and the like. This refrigeration apparatus usually includes a compressor, a condenser, an evaporator, and the like, and freezes various products by heat exchange using a refrigerant (see, for example, Patent Document 1).

このような冷凍装置において、夏期等の外気温度が高い時期には、凝縮器での凝縮圧力が上昇し、その凝縮圧力まで冷媒を高圧にする必要が生じることから、圧縮機によるエネルギー消費が増加してしまう。そこで、エネルギー消費の増加を防止するため、凝縮器の大型化、すなわち凝縮器(冷媒回路)の増設が行われる。これにより、凝縮器全体の冷媒容積が増え、凝縮圧力の上昇が抑えられるので、省エネルギー化を実現することができる。   In such a refrigeration system, when the outside air temperature is high, such as in summer, the condensation pressure in the condenser rises, and it is necessary to increase the refrigerant to the condensation pressure, so the energy consumption by the compressor increases. Resulting in. Therefore, in order to prevent an increase in energy consumption, the size of the condenser is increased, that is, the addition of a condenser (refrigerant circuit) is performed. Thereby, the refrigerant volume of the whole condenser is increased and the increase in the condensation pressure is suppressed, so that energy saving can be realized.

特開平11−206014号公報JP-A-11-206014

しかしながら、前述のように凝縮器(冷媒回路)が増設された場合には、冬期等、外気温度が低くなると、凝縮器での凝縮圧力が下がり過ぎるため、冷媒の寝込み、すなわち凝縮器内に冷媒が液化して溜る現象が生じ、この現象から冷媒不足が発生してしまう。   However, when a condenser (refrigerant circuit) is added as described above, if the outside air temperature becomes low, such as in winter, the condensation pressure in the condenser is too low. Liquefies and accumulates, and this phenomenon causes a shortage of refrigerant.

本発明は上記を鑑みてなされたものであり、その目的は、凝縮器の増設による省エネルギー化を実現しつつ、外気温度の低下に起因する冷媒不足を抑止することができる冷凍装置を提供することである。   The present invention has been made in view of the above, and an object of the present invention is to provide a refrigeration apparatus capable of suppressing a refrigerant shortage caused by a decrease in outside air temperature while realizing energy saving by adding a condenser. It is.

本発明に係る第1の特徴は、冷凍装置において、冷媒を圧縮する圧縮機、圧縮された冷媒を凝縮する並列状態の複数の凝縮器、凝縮された冷媒を減圧する膨張弁及び減圧された冷媒を蒸発させる蒸発器を接続し、冷媒を循環させる冷媒循環流路と、前記冷媒循環流路における前記複数の凝縮器の各々の冷媒流入口側に設けられ、前記複数の凝縮器に対する冷媒の流入を制御する複数の開閉弁と、前記冷媒循環流路における前記開閉弁の下流側であって前記複数の凝縮器のうち少なくとも一つの冷媒流入口側と、前記圧縮機の冷媒流入口側とを接続する第1の冷媒流路と、前記第1の冷媒流路に設けられ、その第1の冷媒流路を開閉する第1の開閉弁と、前記第1の冷媒流路に設けられ、その第1の冷媒流路を流れる冷媒を減圧する減圧部と、前記外気温度が所定値より低くなったことを検出し、前記外気温度が所定値より低くなったことを検出した場合、前記第1の冷媒流路に連通する前記凝縮器の冷媒流入口側に設けられた前記開閉弁を閉じ、前記第1の開閉弁を開く制御部とを備えることである。   According to a first aspect of the present invention, in the refrigeration apparatus, a compressor that compresses the refrigerant, a plurality of condensers in parallel that condense the compressed refrigerant, an expansion valve that decompresses the condensed refrigerant, and a decompressed refrigerant An evaporator for evaporating the refrigerant, and a refrigerant circulation passage for circulating the refrigerant; and a refrigerant inflow side of each of the plurality of condensers in the refrigerant circulation passage. A plurality of on-off valves for controlling the at least one refrigerant inlet side of the plurality of condensers on the downstream side of the on-off valve in the refrigerant circulation passage, and the refrigerant inlet side of the compressor A first refrigerant channel to be connected; a first on-off valve provided in the first refrigerant channel; for opening and closing the first refrigerant channel; and provided in the first refrigerant channel; A decompression section for decompressing the refrigerant flowing through the first refrigerant flow path; When it is detected that the outside air temperature has become lower than a predetermined value, and when it has been detected that the outside air temperature has become lower than the predetermined value, the outside air temperature on the refrigerant inlet side of the condenser communicating with the first refrigerant flow path And a controller that closes the provided on-off valve and opens the first on-off valve.

本発明に係る第2の特徴は、前述の第1の特徴に係る冷凍装置において、前記複数の凝縮器として、第1の凝縮器、前記第1の冷媒流路に連通する第2の凝縮器、及び、第3の凝縮器と、前記受液器の冷媒流出口側と、前記冷媒循環流路における前記開閉弁の下流側であって前記複数の凝縮器のうち前記第3の凝縮器の冷媒流入口側とを接続する第2の冷媒流路と、前記第2の冷媒流路に設けられ、その第2の冷媒流路を開閉する第2の開閉弁と、前記第3の凝縮器の冷媒流出口側と前記膨張弁の冷媒流入口側とを接続する第3の冷媒流路と、前記第3の冷媒流路に設けられ、その第3の冷媒流路を開閉する第3の開閉弁とを備え、前記制御部は、前記外気温度が所定値より低くなったことを検出した場合、前記第3の凝縮器の冷媒流入口側に設けられた前記開閉弁を閉じ、前記第2の開閉弁及び前記第3の開閉弁を開くことである。   According to a second aspect of the present invention, in the refrigeration apparatus according to the first aspect described above, as the plurality of condensers, a first condenser and a second condenser communicating with the first refrigerant flow path. And the third condenser, the refrigerant outlet side of the receiver, and the downstream side of the on-off valve in the refrigerant circulation channel, and the third condenser of the plurality of condensers. A second refrigerant channel connecting to the refrigerant inlet side, a second on-off valve provided in the second refrigerant channel and opening and closing the second refrigerant channel, and the third condenser A third refrigerant flow path connecting the refrigerant flow outlet side and the refrigerant flow inlet side of the expansion valve, and a third refrigerant flow path provided in the third refrigerant flow path for opening and closing the third refrigerant flow path An on-off valve, and when the control unit detects that the outside air temperature has become lower than a predetermined value, the refrigerant inlet side of the third condenser Close provided with the on-off valve is to open the second on-off valve and the third opening and closing valve.

本発明に係る第3の特徴は、前述の第2の特徴に係る冷凍装置において、前記外気温度を測定する温度測定部を備え、前記制御部は、前記温度測定部により測定された前記外気温度が所定値より低いか否かを判断することにより前記外気温度が所定値より低くなったことを検出し、その外気温度が所定値より低いと判断した場合、前記第2の凝縮器の冷媒流入口側に設けられた前記開閉弁を閉じ、前記第1の開閉弁を開き、前記第3の凝縮器の冷媒流入口側に設けられた前記開閉弁を閉じ、前記第2の開閉弁及び前記第3の開閉弁を開くことである。   A third feature according to the present invention is the refrigeration apparatus according to the second feature described above, further comprising a temperature measuring unit that measures the outside air temperature, wherein the control unit is the outside air temperature measured by the temperature measuring unit. Is determined to be lower than a predetermined value, it is detected that the outside air temperature is lower than the predetermined value, and when it is determined that the outside air temperature is lower than the predetermined value, the refrigerant flow of the second condenser is Closing the on-off valve provided on the inlet side, opening the first on-off valve, closing the on-off valve provided on the refrigerant inlet side of the third condenser, the second on-off valve and the Opening the third on-off valve.

本発明に係る第1の特徴によれば、凝縮器が増設された場合でも、外気温度が所定値より低くなると、少なくとも一つの凝縮器から冷媒が圧縮機に減圧されて戻される。これにより、外気温度の低下による冷媒の寝込み、すなわち凝縮器内に冷媒が液化して溜る現象が発生することを抑止することが可能となる。したがって、凝縮器の増設による省エネルギー化を実現しつつ、外気温度の低下に起因する冷媒不足を抑止することができる。   According to the first feature of the present invention, even when the number of condensers is increased, when the outside air temperature becomes lower than a predetermined value, the refrigerant is decompressed and returned to the compressor from at least one condenser. As a result, it is possible to suppress the stagnation of the refrigerant due to the decrease in the outside air temperature, that is, the phenomenon that the refrigerant liquefies and accumulates in the condenser. Accordingly, it is possible to suppress the refrigerant shortage due to the decrease in the outside air temperature while realizing energy saving by adding the condenser.

本発明に係る第2の特徴によれば、外気温度が所定値より低くなると、受液器内の冷媒が少なくとも一つの凝縮器に供給されるため、その凝縮器が過冷却熱交換器として機能することになる。これにより、外気温度が所定値より低くなった場合に冷媒の過冷却度が得られずフラッシュ状態、すなわち液冷媒が蒸発器に到達する前に蒸発して冷媒不足となる状態が発生することを抑止することが可能となる。したがって、外気温度の低下に起因する冷媒不足をより確実に抑止することができる。   According to the second feature of the present invention, when the outside air temperature becomes lower than a predetermined value, the refrigerant in the liquid receiver is supplied to at least one condenser, so that the condenser functions as a supercooling heat exchanger. Will do. As a result, when the outside air temperature becomes lower than the predetermined value, the degree of supercooling of the refrigerant cannot be obtained, and a flash state occurs, that is, a state where the liquid refrigerant evaporates before reaching the evaporator and the refrigerant becomes insufficient. It becomes possible to deter. Therefore, it is possible to more reliably suppress a refrigerant shortage due to a decrease in the outside air temperature.

本発明に係る第3の特徴によれば、外気温度が所定値より低くなったことが自動的に検出されるので、店員等の操作者が温度計により外気温度を確認し、スイッチ等により外気温度が所定値より低くなったことを入力する場合に比べ、作業性及び利便性を向上させることができる。   According to the third feature of the present invention, since it is automatically detected that the outside air temperature has become lower than a predetermined value, an operator such as a store clerk confirms the outside air temperature with a thermometer, and the outside air with a switch or the like. Compared with the case where the fact that the temperature has become lower than the predetermined value is input, workability and convenience can be improved.

本発明の実施の一形態に係る冷凍装置の概略構成を示す図である。It is a figure which shows schematic structure of the freezing apparatus which concerns on one Embodiment of this invention. 図1に示す冷凍装置が行う冷媒循環処理の流れを示すフローチャートである。It is a flowchart which shows the flow of the refrigerant | coolant circulation process which the refrigeration apparatus shown in FIG. 1 performs. 図2に示す冷媒循環処理において外気温度が所定値以上である場合の冷媒循環動作を説明するための説明図である。It is explanatory drawing for demonstrating refrigerant | coolant circulation operation | movement in case the outside temperature is more than predetermined value in the refrigerant | coolant circulation process shown in FIG. 図2に示す冷媒循環処理において外気温度が所定値より低い場合の一台の凝縮器による冷媒戻し動作及び冷媒過冷却動作を説明するための説明図である。FIG. 3 is an explanatory diagram for explaining a refrigerant return operation and a refrigerant subcooling operation by a single condenser when the outside air temperature is lower than a predetermined value in the refrigerant circulation process shown in FIG. 2. 図2に示す冷媒循環処理において外気温度が所定値より低い場合の二台の凝縮器による冷媒戻し動作を説明するための説明図である。It is explanatory drawing for demonstrating the refrigerant | coolant return operation | movement by two condensers when outside temperature is lower than predetermined value in the refrigerant | coolant circulation process shown in FIG.

本発明の実施の一形態について図面を参照して説明する。   An embodiment of the present invention will be described with reference to the drawings.

図1に示すように、本発明の実施形態に係る冷凍装置1は、冷媒を圧縮する圧縮機2と、圧縮された冷媒を凝縮する複数の凝縮器3a、3b、3cと、凝縮された冷媒を貯留する受液器4と、冷媒を減圧する膨張弁5と、減圧された冷媒を蒸発させる蒸発器6と、それらの各部を接続して冷媒を循環させる冷媒循環流路7と、各種制御を行う制御部8とを備えている。   As shown in FIG. 1, a refrigeration apparatus 1 according to an embodiment of the present invention includes a compressor 2 that compresses a refrigerant, a plurality of condensers 3a, 3b, and 3c that condense the compressed refrigerant, and a condensed refrigerant. , An expansion valve 5 that decompresses the refrigerant, an evaporator 6 that evaporates the decompressed refrigerant, a refrigerant circulation passage 7 that circulates the refrigerant by connecting these parts, and various controls The control part 8 which performs is provided.

冷媒循環流路7は、圧縮機2、各凝縮器3a、3b、3c、受液器4、膨張弁5及び蒸発器6を接続して冷媒を循環させる流路であり、例えば、各部を接続する接続管(配管)により構成されている。この冷媒循環流路7に対して、各凝縮器3a、3b、3cは並列に接続されている。なお、凝縮器3aが第1の凝縮器であり、凝縮器3bが第2の凝縮器であり、凝縮器3cが第3の凝縮器である。   The refrigerant circulation passage 7 is a passage through which the refrigerant is circulated by connecting the compressor 2, the condensers 3 a, 3 b, 3 c, the liquid receiver 4, the expansion valve 5, and the evaporator 6. It consists of connecting pipes (piping). The condensers 3a, 3b, and 3c are connected in parallel to the refrigerant circulation passage 7. The condenser 3a is a first condenser, the condenser 3b is a second condenser, and the condenser 3c is a third condenser.

冷媒循環流路7には、第1の冷媒流路7a、第2の冷媒流路7b及び第3の冷媒流路7cが接続されており、さらに、複数の開閉弁9a〜9i及び複数の逆止弁10a〜10fが設けられている。各開閉弁9a〜9iとしては、例えば、電磁弁が用いられる。また、各凝縮器3a、3b、3cには、共通の送風用のファン11や外気温度を測定する温度測定部12が設けられており、さらに、蒸発器6には、送風用のファン13が設けられている。   The refrigerant circulation channel 7 is connected to a first refrigerant channel 7a, a second refrigerant channel 7b, and a third refrigerant channel 7c, and further includes a plurality of on-off valves 9a to 9i and a plurality of reverse valves. Stop valves 10a to 10f are provided. As each on-off valve 9a-9i, an electromagnetic valve is used, for example. Each of the condensers 3a, 3b, and 3c is provided with a common blowing fan 11 and a temperature measuring unit 12 that measures the outside air temperature. Further, the evaporator 6 includes a blowing fan 13. Is provided.

ここで、冷媒は圧縮、凝縮、膨張及び蒸発の四工程を繰り返しながら冷媒循環流路7を循環する。詳述すると、圧縮機2により圧縮された高温高圧のガス冷媒は各凝縮器3a、3b、3cに流入し、これらの凝縮器3a、3b、3cにより冷却され、凝縮熱を放出して液化し、受液器4に貯留される。この受液器4は、負荷変動による蒸発器6内の冷媒量の変動を吸収する。   Here, the refrigerant circulates in the refrigerant circulation passage 7 while repeating the four steps of compression, condensation, expansion and evaporation. More specifically, the high-temperature and high-pressure gas refrigerant compressed by the compressor 2 flows into each of the condensers 3a, 3b, and 3c, is cooled by these condensers 3a, 3b, and 3c, and liquefies by releasing heat of condensation. And stored in the liquid receiver 4. The liquid receiver 4 absorbs fluctuations in the refrigerant amount in the evaporator 6 due to load fluctuations.

その後、受液器4に貯留された常温高圧の液冷媒は膨張弁5に流入し、その膨張弁5により減圧されて沸点が下げられた状態となる。この状態の低温低圧の液冷媒は蒸発器6により沸騰蒸発し、周囲の熱を奪って冷凍を行う。蒸発した低圧ガス冷媒は圧縮機2に流入し、圧縮機2により圧縮されて常温の空気により液化可能な高温高圧のガス冷媒となり、再び各凝縮器3a、3b、3cに流入する。   Thereafter, the normal temperature and high pressure liquid refrigerant stored in the liquid receiver 4 flows into the expansion valve 5 and is decompressed by the expansion valve 5 so that the boiling point is lowered. The low-temperature and low-pressure liquid refrigerant in this state is boiled and evaporated by the evaporator 6 and refrigerates after taking away the surrounding heat. The evaporated low-pressure gas refrigerant flows into the compressor 2, is compressed by the compressor 2, becomes a high-temperature high-pressure gas refrigerant that can be liquefied by room temperature air, and flows into the condensers 3a, 3b, and 3c again.

冷媒循環流路7中の各開閉弁9a、9b、9cは、冷媒循環流路7における各凝縮器3a、3b、3cの各々の冷媒流入口側に設けられている。これらの開閉弁9a、9b、9cは、制御部8による制御に応じて各凝縮器3a、3b、3cに対する冷媒の流入を制御する。各開閉弁9a、9b、9cが開状態にされると、圧縮機2により圧縮された高温高圧のガス冷媒が各凝縮器3a、3b、3cに流入する。   Each on-off valve 9a, 9b, 9c in the refrigerant circulation channel 7 is provided on the refrigerant inlet side of each of the condensers 3a, 3b, 3c in the refrigerant circulation channel 7. These on-off valves 9a, 9b, and 9c control the inflow of refrigerant to the condensers 3a, 3b, and 3c in accordance with control by the control unit 8. When each on-off valve 9a, 9b, 9c is opened, the high-temperature and high-pressure gas refrigerant compressed by the compressor 2 flows into each condenser 3a, 3b, 3c.

第1の冷媒流路7aは、冷媒循環流路7における開閉弁9bの下流側であって凝縮器3bの冷媒流入口側及び開閉弁9cの下流側であって凝縮器3cの冷媒流入口側と、圧縮機2の冷媒流入口側とを接続する。この第1の冷媒流路7aには、その第1の冷媒流路7aを開閉する2つの開閉弁9d、9e、さらに、その第1の冷媒流路7aを流れる冷媒を減圧する減圧部14が設けられている。この減圧部14としては、例えば、キャピラリ管が用いられる。   The first refrigerant flow path 7a is downstream of the on-off valve 9b in the refrigerant circulation flow path 7 and on the refrigerant inlet side of the condenser 3b and downstream of the on-off valve 9c and on the refrigerant inlet side of the condenser 3c. And the refrigerant inlet side of the compressor 2 are connected. The first refrigerant flow path 7a includes two on-off valves 9d and 9e that open and close the first refrigerant flow path 7a, and a decompression unit 14 that depressurizes the refrigerant flowing through the first refrigerant flow path 7a. Is provided. For example, a capillary tube is used as the decompression unit 14.

各開閉弁9d、9eは、制御部8による制御に応じて第1の冷媒流路7aを開閉し、圧縮機2の上流側に対する冷媒の流入を制御する第1の開閉弁として機能する。これらの開閉弁9d、9eが開状態にされると、各凝縮器3b、3c内の冷媒が第1の冷媒流路7a及び減圧部14を介して圧縮機2の上流側に戻される。なお、このとき、各開閉弁9b、9cは閉状態になっている。   Each of the on-off valves 9 d and 9 e functions as a first on-off valve that opens and closes the first refrigerant flow path 7 a according to control by the control unit 8 and controls the inflow of refrigerant to the upstream side of the compressor 2. When these on-off valves 9d and 9e are opened, the refrigerant in the condensers 3b and 3c is returned to the upstream side of the compressor 2 via the first refrigerant flow path 7a and the decompression unit 14. At this time, the on-off valves 9b and 9c are closed.

第2の冷媒流路7bは、受液器4の冷媒流出口側と、冷媒循環流路7における開閉弁9cの下流側であって凝縮器3cの冷媒流入口側とを接続する。この第2の冷媒流路7bには、その第2の冷媒流路7bを開閉する開閉弁9fが設けられている。この開閉弁9fは、制御部8による制御に応じて第2の冷媒流路7bを開閉し、凝縮器3cの上流側に対する冷媒の流入を制御する第2の開閉弁として機能する。   The second refrigerant channel 7b connects the refrigerant outlet side of the liquid receiver 4 to the refrigerant inlet side of the condenser 3c on the downstream side of the on-off valve 9c in the refrigerant circulation channel 7. The second refrigerant channel 7b is provided with an opening / closing valve 9f that opens and closes the second refrigerant channel 7b. The on-off valve 9f functions as a second on-off valve that opens and closes the second refrigerant flow path 7b in accordance with control by the control unit 8 and controls the inflow of refrigerant to the upstream side of the condenser 3c.

なお、受液器4の冷媒流出口側と膨張弁5の冷媒流入口側との間には、開閉弁9gが設けられている。この開閉弁9gは、受液器4内の冷媒が膨張弁5に直接流入しないように、すなわち第2の冷媒流路7bに流れるように制御される。詳しくは、開閉弁9gが閉状態にされると、開閉弁9fが開状態にされ、受液器4内の冷媒が第2の冷媒流路7bを介して凝縮器3cに流入する。なお、このとき、各開閉弁9c、9eは閉状態になっている。   An on-off valve 9g is provided between the refrigerant outlet side of the liquid receiver 4 and the refrigerant inlet side of the expansion valve 5. The on-off valve 9g is controlled so that the refrigerant in the liquid receiver 4 does not directly flow into the expansion valve 5, that is, flows into the second refrigerant flow path 7b. Specifically, when the opening / closing valve 9g is closed, the opening / closing valve 9f is opened, and the refrigerant in the liquid receiver 4 flows into the condenser 3c via the second refrigerant flow path 7b. At this time, the on-off valves 9c and 9e are closed.

第3の冷媒流路7cは、凝縮器3cの冷媒流出口側と膨張弁5の冷媒流入口側とを接続する。この第3の冷媒流路7cには、その第3の冷媒流路7cを開閉する開閉弁9hが設けられている。この開閉弁9hは、制御部8による制御に応じて第3の冷媒流路7cを開閉し、膨張弁5に対する冷媒の流入を制御する第3の開閉弁として機能する。   The third refrigerant flow path 7c connects the refrigerant outlet side of the condenser 3c and the refrigerant inlet side of the expansion valve 5. The third refrigerant channel 7c is provided with an open / close valve 9h for opening and closing the third refrigerant channel 7c. The on-off valve 9 h functions as a third on-off valve that opens and closes the third refrigerant flow path 7 c in accordance with control by the control unit 8 and controls the inflow of refrigerant to the expansion valve 5.

なお、凝縮器3cの冷媒流出口側と受液器4の冷媒流入口側との間には、凝縮器3c側に寄せて開閉弁9iが設けられている。この開閉弁9iは、凝縮器3cを通過した冷媒が受液器4側に流れないように、すなわち第3の冷媒流路7cに流れるように制御される。詳しくは、開閉弁9iが閉状態にされると、開閉弁9hが開状態にされ、凝縮器3c内の冷媒が第3の冷媒流路7cを介して膨張弁5に流入する。   An opening / closing valve 9i is provided between the refrigerant outlet side of the condenser 3c and the refrigerant inlet side of the liquid receiver 4 so as to approach the condenser 3c side. The on-off valve 9i is controlled so that the refrigerant that has passed through the condenser 3c does not flow to the liquid receiver 4 side, that is, flows into the third refrigerant flow path 7c. Specifically, when the on-off valve 9i is closed, the on-off valve 9h is opened, and the refrigerant in the condenser 3c flows into the expansion valve 5 through the third refrigerant flow path 7c.

制御部8は、各部を集中的に制御するマイクロコンピュータと、各種情報や各種プログラム等を記憶する記憶部と、操作者からの操作を受け付ける操作部とを備えている。なお、記憶部としては、メモリやハードディスクドライブ(HDD)等が用いられる。この制御部8は、圧縮機2及び各ファン11、13に加え、各開閉弁9a〜9iを制御する。この制御部8には、温度測定部12が電気的に接続されている。この温度測定部12は外気温度を測定し、測定した外気温度(温度信号)を制御部8に出力する。この温度測定部12としては、様々なタイプの温度測定器が用いられる。   The control unit 8 includes a microcomputer that centrally controls each unit, a storage unit that stores various types of information and various programs, and an operation unit that receives operations from an operator. Note that a memory, a hard disk drive (HDD), or the like is used as the storage unit. The controller 8 controls the on-off valves 9a to 9i in addition to the compressor 2 and the fans 11 and 13. A temperature measuring unit 12 is electrically connected to the control unit 8. The temperature measuring unit 12 measures the outside air temperature and outputs the measured outside temperature (temperature signal) to the control unit 8. Various types of temperature measuring devices are used as the temperature measuring unit 12.

次に、前述の冷凍装置1が行う冷媒循環処理(冷媒戻し動作及び冷媒過冷却動作を含む冷媒循環動作)について説明する。なお、冷凍装置1の制御部8が各種プログラムに基づいて冷媒循環処理を実行する。   Next, the refrigerant circulation process (refrigerant circulation operation including the refrigerant return operation and the refrigerant subcooling operation) performed by the refrigeration apparatus 1 described above will be described. In addition, the control part 8 of the freezing apparatus 1 performs a refrigerant | coolant circulation process based on various programs.

図2に示すように、まず、制御部8は、温度測定部12により測定された外気温度が第1の所定値より低いか否かを判断する(ステップS1)。これにより、外気温度が第1の所定値より低くなったことを検出することが可能となる。なお、第1の所定値は予め設定されており、制御部8の記憶部に記憶されている。   As shown in FIG. 2, the control unit 8 first determines whether or not the outside air temperature measured by the temperature measuring unit 12 is lower than a first predetermined value (step S1). This makes it possible to detect that the outside air temperature has become lower than the first predetermined value. The first predetermined value is set in advance and is stored in the storage unit of the control unit 8.

外気温度が第1の所定値より低くない、すなわち第1の所定値以上であると判断した場合には(ステップS1のNO)、外気温度が高いため、三つの凝縮器3a、3b、3cによる冷媒凝縮を行う制御を実行する(ステップS2)。   When it is determined that the outside air temperature is not lower than the first predetermined value, that is, not less than the first predetermined value (NO in Step S1), the outside air temperature is high, and therefore, the three condensers 3a, 3b, and 3c are used. Control for performing refrigerant condensation is executed (step S2).

すなわち、制御部8は、図3に示すように、各開閉弁9a、9b、9c、9g、9iを開き、各開閉弁9d、9e、9f、9hを閉じる。これにより、各開閉弁9a、9b、9c、9g、9iが開状態となり、各開閉弁9d、9e、9f、9hが閉状態となるので、冷媒は圧縮機2から3つの凝縮器3a、3b、3cを通過して受液器4に到達し、その後、受液器4から膨張弁5及び蒸発器6を通過して再び圧縮機2に戻る。   That is, as shown in FIG. 3, the control unit 8 opens the on-off valves 9a, 9b, 9c, 9g, 9i and closes the on-off valves 9d, 9e, 9f, 9h. As a result, the on-off valves 9a, 9b, 9c, 9g, 9i are opened, and the on-off valves 9d, 9e, 9f, 9h are closed, so that the refrigerant is supplied from the compressor 2 to the three condensers 3a, 3b. 3c, and reaches the liquid receiver 4, and then passes from the liquid receiver 4 through the expansion valve 5 and the evaporator 6 to return to the compressor 2 again.

なお、図3においては、開状態の開閉弁は白であり、閉状態の開閉弁は黒で示されており、冷媒の流れは太線(矢印は冷媒の流れ方向)で示されている。以下、図4及び図5においても同様に、開状態の開閉弁は白であり、閉状態の開閉弁は黒で示されており、冷媒の流れは太線(矢印は冷媒の流れ方向)で示されている。   In FIG. 3, the open / close valve in the open state is white, the open / close valve in the closed state is shown in black, and the flow of the refrigerant is shown by a bold line (the arrow indicates the flow direction of the refrigerant). Similarly, in FIG. 4 and FIG. 5, the open / close valve in the open state is white, the open / close valve in the closed state is shown in black, and the refrigerant flow is indicated by a bold line (the arrow indicates the refrigerant flow direction). Has been.

図2のステップS1において、外気温度が第1の所定値より低いと判断した場合には(ステップS1のYES)、再度、外気温度が前述の第1の所定値より小さい第2の所定値より低いか否かを判断する(ステップS3)。これにより、外気温度が第2の所定値より低くなったことを検出することが可能となる。なお、第2の所定値も予め設定されており、制御部8の記憶部に記憶されている。   In step S1 of FIG. 2, when it is determined that the outside air temperature is lower than the first predetermined value (YES in step S1), the outside air temperature is again lower than the second predetermined value smaller than the first predetermined value. It is determined whether it is low (step S3). This makes it possible to detect that the outside air temperature has become lower than the second predetermined value. The second predetermined value is also set in advance and stored in the storage unit of the control unit 8.

外気温度が第2の所定値より低いと判断した場合には(ステップS3のYES)、一つの凝縮器3b内の冷媒を圧縮機2の上流側に戻す制御を行い(ステップS4)、さらに、冷媒を過冷却する制御を行い(ステップS5)、その後、処理をステップS1に戻す。   When it is determined that the outside air temperature is lower than the second predetermined value (YES in step S3), control is performed to return the refrigerant in one condenser 3b to the upstream side of the compressor 2 (step S4). Control which supercools a refrigerant | coolant is performed (step S5), and a process is returned to step S1 after that.

すなわち、制御部8は、図4に示すように、まず、開閉弁9bを閉じ、次いで、開閉弁9dを開ける。これにより、開閉弁9bが閉状態となり、開閉弁9dが開状態となるので、凝縮器3b内の冷媒は第1の冷媒流路7a及び減圧部14を介して圧縮機2の上流側に戻される。この冷媒戻し動作により、凝縮器3b内の冷媒の寝込み、すなわち凝縮器3b内に冷媒が液化して溜る現象が発生することを抑止することが可能となる。   That is, as shown in FIG. 4, the control unit 8 first closes the on-off valve 9b and then opens the on-off valve 9d. As a result, the on-off valve 9b is closed and the on-off valve 9d is opened, so that the refrigerant in the condenser 3b is returned to the upstream side of the compressor 2 via the first refrigerant flow path 7a and the decompression unit 14. It is. By this refrigerant return operation, it is possible to suppress the stagnation of the refrigerant in the condenser 3b, that is, the phenomenon that the refrigerant liquefies and accumulates in the condenser 3b.

さらに、制御部8は、図4に示すように、各開閉弁9c、9g、9iを閉じ、各開閉弁9f、9hを開ける。これにより、各開閉弁9c、9g、9iが開状態となり、各開閉弁9f、9hが閉状態となるので、冷媒は圧縮機2から凝縮器3aを通過して受液器4に到達し、その後、第2の冷媒流路7bを介して凝縮器3cの上流側に流入して凝縮器3cに供給される。その冷媒は凝縮器3c内の冷媒回路を通過して第3の冷媒流路7cを介して膨張弁5に供給され、膨張弁5及び蒸発器6を通過して再び圧縮機2に戻る。したがって、凝縮器3aを通過した冷媒は再び凝縮器3cを通過するので、その凝縮器3cが過冷却熱交換器として機能することになる。これにより、冷媒の過冷却度が得られずフラッシュ状態、すなわち液冷媒が蒸発器6に到達する前に蒸発して冷媒不足となる状態が発生することを抑止することが可能となる。   Further, as shown in FIG. 4, the control unit 8 closes the on-off valves 9c, 9g, 9i and opens the on-off valves 9f, 9h. As a result, the on-off valves 9c, 9g, 9i are opened, and the on-off valves 9f, 9h are closed, so that the refrigerant passes through the condenser 3a from the compressor 2 and reaches the liquid receiver 4. Thereafter, the refrigerant flows into the upstream side of the condenser 3c via the second refrigerant flow path 7b and is supplied to the condenser 3c. The refrigerant passes through the refrigerant circuit in the condenser 3c, is supplied to the expansion valve 5 through the third refrigerant flow path 7c, passes through the expansion valve 5 and the evaporator 6, and returns to the compressor 2 again. Therefore, since the refrigerant that has passed through the condenser 3a passes through the condenser 3c again, the condenser 3c functions as a supercooling heat exchanger. As a result, it is possible to suppress the occurrence of a flash state in which the degree of supercooling of the refrigerant cannot be obtained, that is, a state in which the liquid refrigerant evaporates before reaching the evaporator 6 and the refrigerant becomes insufficient.

また、図2のステップS3において、外気温度が第2の所定値より低くない、すなわち第2の所定値以上であると判断した場合には(ステップS3のNO)、二つの凝縮器3b、3c内の冷媒を圧縮機2の上流側に戻す制御を行い(ステップS2)、その後、処理をステップS1に戻す。   When it is determined in step S3 of FIG. 2 that the outside air temperature is not lower than the second predetermined value, that is, not less than the second predetermined value (NO in step S3), the two condensers 3b, 3c Control is performed to return the internal refrigerant to the upstream side of the compressor 2 (step S2), and then the process returns to step S1.

すなわち、制御部8は、図5に示すように、まず、開閉弁9b、9cを閉じ、次いで、開閉弁9d、9eを開ける。これにより、開閉弁9b、9cが閉状態となり、開閉弁9d、9eが開状態となるので、二つの凝縮器3b、3c内の冷媒は第1の冷媒流路7a及び減圧部14を介して圧縮機2の上流側に戻される。この冷媒戻し動作により、各凝縮器3b、3c内の冷媒の寝込み、すなわち各凝縮器3b、3c内に冷媒が液化して溜る現象の発生を抑止することが可能となる。   That is, as shown in FIG. 5, the control unit 8 first closes the on-off valves 9b and 9c, and then opens the on-off valves 9d and 9e. As a result, the on-off valves 9b and 9c are closed and the on-off valves 9d and 9e are opened, so that the refrigerant in the two condensers 3b and 3c passes through the first refrigerant flow path 7a and the decompression unit 14. It is returned to the upstream side of the compressor 2. By this refrigerant return operation, it is possible to suppress the stagnation of the refrigerant in each of the condensers 3b and 3c, that is, the phenomenon that the refrigerant liquefies and accumulates in each of the condensers 3b and 3c.

ここで、前述のステップS5又はステップS6の処理後、ステップS1において、外気温度が第1の所定値より低くない、すなわち第1の所定値以上であると判断した場合には(ステップS1のNO)、外気温度が高くなったとして、ステップS2の処理を行い、三つの凝縮器3a、3b、3cによる冷媒凝縮を行う制御を実行する。なお、前述の冷媒循環処理(図2参照)において、ステップS3以下の処理であるステップS4及びステップS5の処理と、ステップS6の処理とを逆にしても良い。   Here, after the process of step S5 or step S6 described above, if it is determined in step S1 that the outside air temperature is not lower than the first predetermined value, that is, not less than the first predetermined value (NO in step S1). ) Assuming that the outside air temperature has increased, the process of step S2 is performed, and control is performed to condense the refrigerant by the three condensers 3a, 3b, and 3c. In the above-described refrigerant circulation process (see FIG. 2), the processes in step S4 and step S5, which are processes after step S3, and the process in step S6 may be reversed.

以上説明したように、本発明の実施形態によれば、並列状態の凝縮器3b及び凝縮器3cの各冷媒流入口側と圧縮機2の冷媒流入口側とが第1の冷媒流路7aにより接続され、その第1の冷媒流路7aを開閉する各開閉弁9d、9eが制御部8により制御される。したがって、外気温度が所定値より低くなると、凝縮器3b及び凝縮器3cのどちらか一方あるいは両方から冷媒が圧縮機2に減圧されて戻される。これにより、外気温度の低下による冷媒の寝込み、すなわち凝縮器3b、3c内に冷媒が液化して溜る現象が発生することを抑止することが可能となる。したがって、凝縮器(冷媒回路)の増設による省エネルギー化を実現しつつ、外気温度の低下に起因する冷媒不足を抑止することができる。   As described above, according to the embodiment of the present invention, the condenser 3b in parallel and the refrigerant inlet side of the condenser 3c and the refrigerant inlet side of the compressor 2 are connected by the first refrigerant flow path 7a. The controller 8 controls the on-off valves 9d and 9e that are connected and open and close the first refrigerant flow path 7a. Therefore, when the outside air temperature becomes lower than the predetermined value, the refrigerant is decompressed and returned to the compressor 2 from one or both of the condenser 3b and the condenser 3c. As a result, it is possible to suppress the stagnation of the refrigerant due to a decrease in the outside air temperature, that is, the phenomenon that the refrigerant is liquefied and accumulated in the condensers 3b and 3c. Therefore, it is possible to suppress a shortage of refrigerant due to a decrease in the outside air temperature while realizing energy saving by adding a condenser (refrigerant circuit).

さらに、外気温度が所定値より低くなると、受液器4内の冷媒が少なくとも一つの凝縮器3cに供給されるため、その凝縮器3cが過冷却熱交換器として機能することになる。これにより、外気温度が所定値より低くなった場合に冷媒の過冷却度が得られずフラッシュ状態、すなわち液冷媒が蒸発器6に到達する前に蒸発して冷媒不足となる状態が発生することを抑止することが可能となるので、外気温度の低下に起因する冷媒不足をより確実に抑止することができる。   Further, when the outside air temperature becomes lower than a predetermined value, the refrigerant in the liquid receiver 4 is supplied to at least one condenser 3c, so that the condenser 3c functions as a supercooling heat exchanger. As a result, when the outside air temperature becomes lower than a predetermined value, the degree of supercooling of the refrigerant cannot be obtained, and a flash state occurs, that is, a state where the liquid refrigerant evaporates before reaching the evaporator 6 and the refrigerant becomes insufficient. Therefore, it is possible to more reliably prevent a refrigerant shortage caused by a decrease in the outside air temperature.

また、外気温度が所定値より低くなったことが自動的に検出されるので、店員等の操作者が温度計により外気温度を確認し、スイッチ等により外気温度が所定値より低くなったことを入力する場合に比べ、作業性及び利便性を向上させることができる。   Further, since it is automatically detected that the outside air temperature has become lower than the predetermined value, an operator such as a store clerk confirms the outside air temperature with a thermometer, and confirms that the outside air temperature has become lower than the predetermined value with a switch or the like. Compared with input, workability and convenience can be improved.

ここで、各凝縮器3a、3b、3cは必ずしも同じ容積(大きさ)の必要はない。例えば、凝縮器3cを最小サイズ(各凝縮器3a、3bで夏期通常の高圧となるサイズの凝縮器)とすれば、冷媒サイクル上で冷媒封入量が極端に多くなることは無く、凝縮器3c分の高圧低下を実現することができる。なお、サイズとしては、凝縮器3a>凝縮器3b>凝縮器3cが望ましい。   Here, each condenser 3a, 3b, 3c does not necessarily need the same volume (size). For example, if the condenser 3c is a minimum size (a condenser having a size that is normally high in summer in each of the condensers 3a and 3b), the amount of refrigerant filled in the refrigerant cycle does not become extremely large, and the condenser 3c A high pressure drop can be achieved. In addition, as a size, condenser 3a> condenser 3b> condenser 3c is desirable.

また、2つの凝縮器3a、3bが既設の凝縮器であっても、凝縮器3c、第1の冷媒流路7a、第2の冷媒流路7b及び第3の冷媒流路7cを増設することにより、前述の実施形態に係る効果を得ることができる。既設の凝縮器は、経年で汚れやアルミフィン等の劣化から、当初の凝縮能力を発揮することができなくなる場合が多い。特に、近年の夏期の温度上昇により、経年凝縮器を使ったシステムでは、高圧カットを起こす例も増加しており、経年設備の対策として、凝縮器3c及び付帯の配管を増設することは有効である。   Even if the two condensers 3a and 3b are existing condensers, the condenser 3c, the first refrigerant flow path 7a, the second refrigerant flow path 7b, and the third refrigerant flow path 7c should be added. Thereby, the effect which concerns on the above-mentioned embodiment can be acquired. Existing condensers often fail to exhibit their original condensing capacity due to deterioration of dirt, aluminum fins, etc. over time. In particular, due to the temperature rise in summer in recent years, systems that use aged condensers are increasing the number of cases that cause high-pressure cuts. It is effective to add condenser 3c and auxiliary piping as a countermeasure for aged equipment. is there.

なお、本発明は、前述の実施形態に限るものではなく、その要旨を逸脱しない範囲において種々変更可能である。例えば、前述の実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態に亘る構成要素を適宜組み合わせてもよい。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, some components may be deleted from all the components shown in the above-described embodiment. Furthermore, you may combine the component covering different embodiment suitably.

例えば、凝縮器の個数は前述の三個に限るものではなく、複数個存在すれば良く、詳しくは、冷媒循環流路7に対して並列に並ぶ複数の冷媒回路(凝縮器)が存在すれば良い。   For example, the number of condensers is not limited to the above-described three, and it is sufficient if there are a plurality of condensers. Specifically, if there are a plurality of refrigerant circuits (condensers) arranged in parallel with the refrigerant circulation passage 7. good.

また、前述の実施形態においては、制御部8は、温度測定部12により測定された外気温度が所定値より低いか否かを判断することによって、外気温度が所定値より低くなったことを検出しているが、これに限るものではなく、例えば、操作部が備えるボタンが押されたか否かを判断することによって、外気温度が所定値より低くなったことを検出するようにしても良い。この場合には、店員等の操作者が店舗内の温度等を温度計により確認し、その温度が所定値よりも低くなっていた場合、操作部のボタンを押す。   Further, in the above-described embodiment, the control unit 8 detects that the outside air temperature has become lower than the predetermined value by determining whether or not the outside air temperature measured by the temperature measuring unit 12 is lower than the predetermined value. However, the present invention is not limited to this. For example, it may be detected that the outside air temperature has become lower than a predetermined value by determining whether or not a button included in the operation unit has been pressed. In this case, an operator such as a store clerk checks the temperature in the store with a thermometer, and when the temperature is lower than a predetermined value, presses a button on the operation unit.

1 冷凍装置
2 圧縮機
3a〜3c 凝縮器
4 受液器
5 膨張弁
6 蒸発器
7 冷媒循環流路
7a 第1の冷媒流路
7b 第2の冷媒流路
7c 第3の冷媒流路
8 制御部
9a〜9i 開閉弁
10a〜10f 逆止弁
11 ファン
12 温度測定部
13 ファン
14 減圧部
DESCRIPTION OF SYMBOLS 1 Refrigeration apparatus 2 Compressor 3a-3c Condenser 4 Liquid receiver 5 Expansion valve 6 Evaporator 7 Refrigerant circulation flow path 7a 1st refrigerant flow path 7b 2nd refrigerant flow path 7c 3rd refrigerant flow path 8 Control part 9a-9i On-off valve 10a-10f Check valve 11 Fan 12 Temperature measuring unit 13 Fan 14 Depressurizing unit

Claims (2)

冷媒を圧縮する圧縮機、圧縮された冷媒を凝縮する並列状態の複数の凝縮器、凝縮された冷媒を減圧する膨張弁及び減圧された冷媒を蒸発させる蒸発器を接続し、冷媒を循環させる冷媒循環流路と、
前記冷媒循環流路における前記複数の凝縮器の各々の冷媒流入口側に設けられ、前記複数の凝縮器に対する冷媒の流入を制御する複数の開閉弁と、
前記冷媒循環流路における前記開閉弁の下流側であって前記複数の凝縮器のうち少なくとも一つの冷媒流入口側と前記圧縮機の冷媒流入口側とを接続する第1の冷媒流路と、
前記第1の冷媒流路に設けられ、その第1の冷媒流路を開閉する第1の開閉弁と、
前記第1の冷媒流路に設けられ、その第1の冷媒流路を流れる冷媒を減圧する減圧部と、
前記外気温度が所定値より低くなったことを検出し、前記外気温度が所定値より低くなったことを検出した場合、前記第1の冷媒流路に連通する前記凝縮器の冷媒流入口側に設けられた前記開閉弁を閉じ、前記第1の開閉弁を開く制御部と、
前記複数の凝縮器として、第1の凝縮器、前記第1の冷媒流路に連通する第2の凝縮器、及び、第3の凝縮器と、
前記受液器の冷媒流出口側と、前記冷媒循環流路における前記開閉弁の下流側であって前記複数の凝縮器のうち前記第3の凝縮器の冷媒流入口側とを接続する第2の冷媒流路と、
前記第2の冷媒流路に設けられ、その第2の冷媒流路を開閉する第2の開閉弁と、
前記第3の凝縮器の冷媒流出口側と前記膨張弁の冷媒流入口側とを接続する第3の冷媒流路と、
前記第3の冷媒流路に設けられ、その第3の冷媒流路を開閉する第3の開閉弁と、
を備え
前記制御部は、前記外気温度が所定値より低くなったことを検出した場合、前記第3の凝縮器の冷媒流入口側に設けられた前記開閉弁を閉じ、前記第2の開閉弁及び前記第3の開閉弁を開くことを特徴とする冷凍装置。
A refrigerant that circulates a refrigerant by connecting a compressor that compresses the refrigerant, a plurality of condensers in parallel to condense the compressed refrigerant, an expansion valve that decompresses the condensed refrigerant, and an evaporator that evaporates the decompressed refrigerant A circulation channel;
A plurality of on-off valves that are provided on the refrigerant inlet side of each of the plurality of condensers in the refrigerant circulation flow path and control the inflow of refrigerant to the plurality of condensers;
A first refrigerant flow path downstream of the on-off valve in the refrigerant circulation flow path and connecting at least one refrigerant flow inlet side of the plurality of condensers and a refrigerant flow inlet side of the compressor;
A first on-off valve provided in the first refrigerant flow path for opening and closing the first refrigerant flow path;
A pressure reducing unit provided in the first refrigerant flow path and depressurizing a refrigerant flowing through the first refrigerant flow path;
When it is detected that the outside air temperature has become lower than a predetermined value and it has been detected that the outside air temperature has become lower than a predetermined value, a refrigerant inlet side of the condenser communicating with the first refrigerant flow path is provided. A controller that closes the provided on-off valve and opens the first on-off valve;
As the plurality of condensers, a first condenser, a second condenser communicating with the first refrigerant flow path, and a third condenser,
A second connecting the refrigerant outlet side of the liquid receiver and a refrigerant inlet side of the third condenser among the plurality of condensers on the downstream side of the on-off valve in the refrigerant circulation passage. Refrigerant flow path,
A second on-off valve provided in the second refrigerant flow path for opening and closing the second refrigerant flow path;
A third refrigerant flow path connecting the refrigerant outlet side of the third condenser and the refrigerant inlet side of the expansion valve;
A third on-off valve provided in the third refrigerant flow path for opening and closing the third refrigerant flow path;
Equipped with a,
When the control unit detects that the outside air temperature is lower than a predetermined value, the control unit closes the on-off valve provided on the refrigerant inlet side of the third condenser, and the second on-off valve and the second on-off valve A refrigeration apparatus characterized by opening a third on-off valve .
前記外気温度を測定する温度測定部を備え、
前記制御部は、前記温度測定部により測定された前記外気温度が所定値より低いか否かを判断することにより前記外気温度が所定値より低くなったことを検出し、その外気温度が所定値より低いと判断した場合、前記第2の凝縮器の冷媒流入口側に設けられた前記開閉弁を閉じ、前記第1の開閉弁を開き、前記第3の凝縮器の冷媒流入口側に設けられた前記開閉弁を閉じ、前記第2の開閉弁及び前記第3の開閉弁を開くことを特徴とする請求項1記載の冷凍装置。
A temperature measuring unit for measuring the outside air temperature;
The control unit detects whether the outside air temperature is lower than a predetermined value by determining whether the outside air temperature measured by the temperature measuring unit is lower than a predetermined value, and the outside air temperature is a predetermined value. If it is determined that the value is lower, the on-off valve provided on the refrigerant inlet side of the second condenser is closed, the first on-off valve is opened, and provided on the refrigerant inlet side of the third condenser. The refrigeration apparatus according to claim 1 , wherein the opened on-off valve is closed and the second on-off valve and the third on-off valve are opened .
JP2010208835A 2010-09-17 2010-09-17 Refrigeration equipment Active JP5618326B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010208835A JP5618326B2 (en) 2010-09-17 2010-09-17 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010208835A JP5618326B2 (en) 2010-09-17 2010-09-17 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2012063102A JP2012063102A (en) 2012-03-29
JP5618326B2 true JP5618326B2 (en) 2014-11-05

Family

ID=46058993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010208835A Active JP5618326B2 (en) 2010-09-17 2010-09-17 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5618326B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966813A (en) * 2019-09-29 2020-04-07 广东申菱环境系统股份有限公司 Condensation pressure control method of air-cooled water chiller under wide temperature working condition
EP4015938A1 (en) * 2020-12-18 2022-06-22 Carrier Corporation Air-cooled chiller with heat recovery system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102853595A (en) * 2012-10-12 2013-01-02 天津商业大学 Refrigeration system
JP6495053B2 (en) * 2015-03-03 2019-04-03 三菱重工業株式会社 Refrigeration system, refrigeration system operation method, and refrigeration system design method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2557577B2 (en) * 1991-06-25 1996-11-27 株式会社日立製作所 Air conditioner
JPH0755280A (en) * 1993-08-20 1995-03-03 Sanyo Electric Co Ltd Air conditioning system
JP2004003691A (en) * 2002-05-30 2004-01-08 Sanyo Electric Co Ltd Air-conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110966813A (en) * 2019-09-29 2020-04-07 广东申菱环境系统股份有限公司 Condensation pressure control method of air-cooled water chiller under wide temperature working condition
EP4015938A1 (en) * 2020-12-18 2022-06-22 Carrier Corporation Air-cooled chiller with heat recovery system

Also Published As

Publication number Publication date
JP2012063102A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
CN110290730B (en) Control, diagnostics and architecture for micro-booster supermarket refrigeration systems
JP6125000B2 (en) Dual refrigeration equipment
JP5196452B2 (en) Transcritical refrigerant vapor compression system with charge control
JP5040975B2 (en) Leakage diagnostic device
US9068765B2 (en) Refrigeration storage in a refrigerant vapor compression system
JP6292480B2 (en) Refrigeration equipment
JP4069947B2 (en) Refrigeration equipment
CA2829246C (en) Thermal energy system and method of operation
JP2010525294A (en) Refrigerant vapor compression system with two-line economizer circuit
JP6134477B2 (en) Refrigeration equipment and refrigerator unit
JP5323023B2 (en) Refrigeration equipment
JP6878612B2 (en) Refrigeration cycle equipment
JP6479181B2 (en) Air conditioner
JP6888068B2 (en) Refrigeration cycle device and air conditioner equipped with it
JPWO2018008139A1 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP5618326B2 (en) Refrigeration equipment
JP6712766B2 (en) Dual refrigeration system
JP2006250440A (en) Air conditioning system
JP6715655B2 (en) Cooling system
JP2009186033A (en) Two-stage compression type refrigerating device
JP2009236428A (en) Compression type refrigerating machine
JP5496161B2 (en) Refrigeration cycle system
JP5995326B2 (en) Environmental test equipment and cooling equipment
JP4292525B2 (en) Refrigerant amount detection method for vapor compression refrigeration cycle
JP6555584B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140616

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140910

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140910

R150 Certificate of patent or registration of utility model

Ref document number: 5618326

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250