JP5323023B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP5323023B2
JP5323023B2 JP2010234298A JP2010234298A JP5323023B2 JP 5323023 B2 JP5323023 B2 JP 5323023B2 JP 2010234298 A JP2010234298 A JP 2010234298A JP 2010234298 A JP2010234298 A JP 2010234298A JP 5323023 B2 JP5323023 B2 JP 5323023B2
Authority
JP
Japan
Prior art keywords
low
source
refrigeration cycle
pressure
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010234298A
Other languages
Japanese (ja)
Other versions
JP2012087978A (en
Inventor
智隆 石川
哲也 山下
隆 池田
宗 野本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2010234298A priority Critical patent/JP5323023B2/en
Publication of JP2012087978A publication Critical patent/JP2012087978A/en
Application granted granted Critical
Publication of JP5323023B2 publication Critical patent/JP5323023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

本発明は、二元冷凍システムを用いた冷凍装置に関するものである。   The present invention relates to a refrigeration apparatus using a binary refrigeration system.

近年、冷凍システムに使用される冷媒の地球温暖化に対する影響を削減する要求が高まっており、地球温暖化に対する影響が小さい自然冷媒として、例えばCO2 を使用した冷凍システムが提案されている。
しかし、高圧が超臨界サイクルとなる冷凍サイクルにおいては、超臨界域での冷媒密度変化が連続的となり、運転条件の違いにより発生する余剰冷媒を、高圧側受液器で処理することが困難となる。
In recent years, there has been an increasing demand for reducing the influence of refrigerants used in refrigeration systems on global warming, and refrigeration systems using, for example, CO 2 have been proposed as natural refrigerants that have little influence on global warming.
However, in a refrigeration cycle in which high pressure becomes a supercritical cycle, the change in refrigerant density in the supercritical region becomes continuous, and it is difficult to treat surplus refrigerant generated due to differences in operating conditions with a high-pressure side receiver. Become.

例えば、ヒートポンプ式給湯装置は超臨界冷媒のCO2 を使用した冷媒サイクルが多く使われる。このようなヒートポンプ式給湯装置は、外気温度が上昇するなどの環境条件の違いにより、凝縮側及び蒸発側の負荷変動が生じ、この負荷変動により安定する冷媒サイクルも変動する。そのため、各環境条件において必要とする冷媒量はそれぞれ異なり、ある環境条件に合わせて冷媒を充填したとしても、他の環境条件では冷媒量に過不足が生じて、適切な冷媒サイクルを維持することができなくなるおそれがあるという課題があった。 For example, a heat pump type hot water supply apparatus often uses a refrigerant cycle using CO 2 which is a supercritical refrigerant. In such a heat pump hot water supply apparatus, load fluctuations on the condensation side and evaporation side occur due to differences in environmental conditions such as an increase in the outside air temperature, and the stable refrigerant cycle also fluctuates due to this load fluctuation. Therefore, the amount of refrigerant required in each environmental condition is different, and even if the refrigerant is filled according to a certain environmental condition, the amount of refrigerant will be excessive or insufficient in other environmental conditions to maintain an appropriate refrigerant cycle. There was a problem that there is a risk that it may become impossible.

上記の課題を解決するための冷凍装置として、例えば「圧縮機15と放熱器16とレシーバ18と膨張弁19と蒸発器20とを備える。冷媒に超臨界で使用する超臨界冷媒を用いた冷媒回路である。レシーバ18の上流側に、放熱器16から流出した冷媒を冷却する冷却部17を設ける。蒸発器20の一部を空気熱交換器として機能させてこれを冷却部17とする。冷却部17が蒸発器20の出口側の冷媒と熱交換を行う。」というものがある(特許文献1参照)。   As a refrigeration apparatus for solving the above-mentioned problems, for example, “a compressor 15, a radiator 16, a receiver 18, an expansion valve 19, and an evaporator 20. A refrigerant using a supercritical refrigerant used in a supercritical state as a refrigerant. A cooling unit 17 is provided on the upstream side of the receiver 18. The cooling unit 17 cools the refrigerant flowing out of the radiator 16. A part of the evaporator 20 functions as an air heat exchanger, and the cooling unit 17 is used. The cooling unit 17 performs heat exchange with the refrigerant on the outlet side of the evaporator 20 ”(see Patent Document 1).

特開2005−127711号公報(要約、図2、図4)Japanese Patent Laying-Open No. 2005-127711 (Abstract, FIGS. 2 and 4)

しかしながら、特許文献1においては、冷却部の冷却温度には限度があり、密度変化幅が小さいため、負荷変動の大きい冷凍システムでは冷媒を適切な体積となるまで冷却できない場合があるという課題があった。   However, in Patent Document 1, there is a limit to the cooling temperature of the cooling section, and since the density change width is small, there is a problem that in a refrigeration system with a large load fluctuation, the refrigerant may not be cooled until it reaches an appropriate volume. It was.

本発明は、上記のような課題を解決するためになされたもので、負荷変動の大きい冷凍システムにおいても適切な冷媒の体積を維持することができる冷凍装置を提供することである。   The present invention has been made to solve the above-described problems, and provides a refrigeration apparatus capable of maintaining an appropriate refrigerant volume even in a refrigeration system with a large load fluctuation.

本発明における冷凍装置は、低元圧縮機、低元凝縮器、低元減圧手段、低元蒸発器低元受液器、前記低元受液器と前記低元減圧手段との間に配置される開閉弁、及び前記低元圧縮機と前記低元凝縮器との間に配置される逆止弁を有し、COを冷媒として用いて循環させる低元冷凍サイクルと、高元圧縮機、高元凝縮器、高元減圧手段及び高元蒸発器を有し、高元側冷媒を循環させる高元冷凍サイクルと、前記低元凝縮器と前記高元蒸発器とを有し、前記COと前記高元側冷媒との熱交換を行うカスケードコンデンサと、を備え、前記低元冷凍サイクルでは、前記低元凝縮器において前記COが冷却され、冷却された前記COを前記低元減圧手段を介して前記低元蒸発器へ流入させ、前記低元蒸発器において前記COを気化させることにより対象物を冷却し、また、前記カスケードコンデンサにおける前記高元側の冷媒との熱交換により、前記COの圧力が、COの臨界圧力よりも小さくなるように前記高元冷凍サイクルの前記高元圧縮機を制御し、前記低元冷凍サイクルの前記低元圧縮機が停止する場合、前記開閉弁を閉状態にすることで前記CO を前記開閉弁と前記逆止弁との間に集め、その所定時間後又は前記低元冷凍サイクルの低圧側圧力が所定値以下となった場合に前記低元圧縮機を停止させるものである。 The refrigeration apparatus according to the present invention is arranged between a low-source compressor, a low-source condenser, a low-source decompression unit, a low-source evaporator, a low-source receiver, and the low-source receiver and the low-source decompression unit. On-off valve, a low-source refrigeration cycle that has a check valve disposed between the low-source compressor and the low-source condenser, and circulates using CO 2 as a refrigerant, and a high-source compressor A high-source condenser, a high-source decompression means, and a high-source evaporator, a high-source refrigeration cycle for circulating a high-source-side refrigerant, the low-source condenser and the high-source evaporator, and the CO 2 and a cascade condenser for performing heat exchange between the high-side refrigerant, the low-stage refrigeration cycle, the low in the original condenser the CO 2 is cooled, the low-stage-cooled the CO 2 through said pressure reducing means is flowed into the low-stage evaporator, vaporizing of the CO 2 in the low-stage evaporator The object is cooled by Rukoto, also by heat exchange with the refrigerant of the high stage-side in the cascade condenser, the pressure of the CO 2 is the high-stage refrigeration cycle to be smaller than the critical pressure of CO 2 When the low-source compressor of the low-source refrigeration cycle is controlled and the on-off valve is closed, the CO 2 is controlled between the on-off valve and the check valve. The low-source compressor is stopped after a predetermined time or when the low-pressure side pressure of the low-source refrigeration cycle becomes a predetermined value or less .

本発明により、低元冷凍サイクルの動作圧力を前記冷媒の臨界圧力以下としたため、受液器内の冷媒が超臨界とならず、負荷変動の大きい冷凍システムにおいても適切な冷媒の体積を維持することができる冷凍装置を得ることができる。   According to the present invention, since the operating pressure of the low-source refrigeration cycle is set to be equal to or lower than the critical pressure of the refrigerant, the refrigerant in the receiver is not supercritical, and an appropriate refrigerant volume is maintained even in a refrigeration system with large load fluctuations. Can be obtained.

本発明の実施の形態1における冷凍装置の冷媒回路図である。It is a refrigerant circuit diagram of the refrigeration apparatus in Embodiment 1 of the present invention. 本発明の実施の形態2における冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus in Embodiment 2 of this invention. 本発明の実施の形態3における冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the freezing apparatus in Embodiment 3 of this invention.

以下、本発明における冷凍装置の例について、図面を用いて詳細に説明する。   Hereinafter, an example of the refrigeration apparatus in the present invention will be described in detail with reference to the drawings.

実施の形態1.
図1は、本発明の実施の形態1における冷凍装置の冷媒回路図である。
図1に示すように、本実施の形態1における冷凍装置は、高元冷凍サイクル20と低元冷凍サイクル10の二つの冷媒サイクルを有する二元冷凍システムが用いられる。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of the refrigeration apparatus in Embodiment 1 of the present invention.
As shown in FIG. 1, the refrigeration apparatus in the first embodiment uses a two-way refrigeration system having two refrigerant cycles of a high-source refrigeration cycle 20 and a low-source refrigeration cycle 10.

低元冷凍サイクル10は、低元圧縮機11、低元凝縮器12、低元膨張弁13(本発明における低元減圧手段に相当)、低元蒸発器14、低元受液器15から構成される。そして、低元冷凍サイクル10の低元蒸発器14が冷熱源として使用される。また、冷媒としてはCO2 が用いられる。
高元冷凍サイクル20は、高元圧縮機21、高元凝縮器22、高元膨張弁23(本発明における高元減圧手段に相当)、高元蒸発器24から構成される。なお、高元圧縮機21は能力可変式であるものとする。
そして、低元凝縮器12及び高元蒸発器24は、カスケードコンデンサ31に内蔵されており、低元冷凍サイクル10の冷媒と高元冷凍サイクル20の冷媒との熱交換が行われる構造とする。
The low element refrigeration cycle 10 includes a low element compressor 11, a low element condenser 12, a low element expansion valve 13 (corresponding to a low element decompression unit in the present invention), a low element evaporator 14, and a low element receiver 15. Is done. And the low element evaporator 14 of the low element refrigerating cycle 10 is used as a cold heat source. In addition, CO 2 is used as the refrigerant.
The high-source refrigeration cycle 20 includes a high-source compressor 21, a high-source condenser 22, a high-source expansion valve 23 (corresponding to a high-source decompression unit in the present invention), and a high-source evaporator 24. It is assumed that the high-source compressor 21 is a variable capacity type.
And the low element condenser 12 and the high element evaporator 24 are built in the cascade condenser 31, and it is set as the structure where the heat exchange with the refrigerant | coolant of the low original refrigeration cycle 10 and the refrigerant | coolant of the high original refrigeration cycle 20 is performed.

なお、高元冷凍サイクル20は、高元蒸発器24がカスケードコンデンサ31に内蔵されており開放されることがないので、冷媒漏れ量が少ない。そのため、高元冷凍サイクル20の冷媒は、従来の地球温暖化係数が高いが高効率なHFC系冷媒、又はHC系冷媒等を用いることで環境への影響が少なく、かつ高効率な冷凍装置とすることができる。しかし、より環境への影響を重視する場合、地球温暖化に対する影響が小さい冷媒、即ちHC系冷媒、CO2 、水などを用いてもよい。ここで高効率な冷媒とは、例えばCOPが高い冷媒を意味する。 Note that the high-source refrigeration cycle 20 has a small amount of refrigerant leakage because the high-source evaporator 24 is built in the cascade condenser 31 and is not opened. For this reason, the refrigerant of the high refrigeration cycle 20 has a high global warming potential, but has high environmental efficiency by using a high-efficiency HFC refrigerant, HC refrigerant, or the like, and a high-efficiency refrigeration apparatus. can do. However, when the influence on the environment is emphasized more, a refrigerant having a small influence on global warming, that is, an HC refrigerant, CO 2 , water, or the like may be used. Here, the highly efficient refrigerant means a refrigerant having a high COP, for example.

また、高元冷凍サイクル20は、HFC系冷媒のような臨界点が高い冷媒を用いた場合は、高圧側に受液器を設置することにより余剰冷媒処理を行うことが望ましい。また、CO2 冷媒のような臨界点が低い冷媒を用いた場合は、低圧側にアキュムレーターを設置することにより余剰冷媒処理を行うことが望ましい。
また、低元冷凍サイクル10において、膨張弁の開度は低元蒸発器14出口の過熱度(5℃〜10℃)を制御している。そのため、低圧側のアキュームレーターに液冷媒を貯留することができず、高圧側に低元受液器15を設置している。
In the high-source refrigeration cycle 20, when a refrigerant having a high critical point such as an HFC refrigerant is used, it is desirable to perform surplus refrigerant processing by installing a liquid receiver on the high-pressure side. In addition, when a refrigerant having a low critical point such as a CO 2 refrigerant is used, it is desirable to perform surplus refrigerant processing by installing an accumulator on the low pressure side.
In the low-source refrigeration cycle 10, the opening degree of the expansion valve controls the degree of superheat (5 ° C. to 10 ° C.) at the outlet of the low-source evaporator 14. Therefore, the liquid refrigerant cannot be stored in the low-pressure side accumulator, and the low-source receiver 15 is installed on the high-pressure side.

次に、本実施の形態1の冷凍装置の動作について説明する。
低元冷凍サイクル10において、低元圧縮機11で圧縮されて吐出された冷媒は、カスケードコンデンサ31内の低元凝縮器12で冷却された後、低元膨張弁13で減圧される。そして、低元蒸発器14で蒸発し、吸入管を介して低元圧縮機11へ還流する。
また、高元冷凍サイクル20において、高元圧縮機21で圧縮されて吐出された冷媒は、空気熱交換器の高元凝縮器22で放熱し、凝縮された後、高元膨張弁23で減圧される。そして、カスケードコンデンサ31内の高元蒸発器24において、低元凝縮器12の冷媒と熱交換しながら蒸発し、高元圧縮機21へ還流する。
Next, operation | movement of the freezing apparatus of this Embodiment 1 is demonstrated.
In the low element refrigeration cycle 10, the refrigerant compressed and discharged by the low element compressor 11 is cooled by the low element condenser 12 in the cascade condenser 31 and then decompressed by the low element expansion valve 13. And it evaporates with the low element evaporator 14, and recirculate | refluxs to the low element compressor 11 via a suction pipe.
In the high-source refrigeration cycle 20, the refrigerant compressed and discharged by the high-source compressor 21 radiates heat in the high-source condenser 22 of the air heat exchanger and is condensed, and then decompressed by the high-source expansion valve 23. Is done. Then, in the high-source evaporator 24 in the cascade condenser 31, the refrigerant evaporates while exchanging heat with the refrigerant of the low-source condenser 12, and returns to the high-source compressor 21.

ここで、高元圧縮機21は、低元冷凍サイクル10の冷媒が高元冷凍サイクル20の冷媒と熱交換して放熱することで、低元受液器15における冷媒圧力を臨界圧力以下となるように制御される。これにより、低元受液器15内のCO2 冷媒は、液体とガスの飽和状態となる。
具体的には、高元冷凍サイクル20の高元圧縮機21は、冷却負荷が増加した場合には容量を大きくし、冷却負荷が減少した場合に容量を減少させる。これにより、冷却負荷が変動した場合でも、上記のように低元受液器15の圧力を臨界圧力以下に維持することができる。
Here, the high-source compressor 21 causes the refrigerant in the low-source refrigeration cycle 10 to have a refrigerant pressure equal to or lower than the critical pressure by exchanging heat with the refrigerant in the high-source refrigeration cycle 20 to dissipate heat. To be controlled. As a result, the CO 2 refrigerant in the low-source receiver 15 becomes saturated with liquid and gas.
Specifically, the high-source compressor 21 of the high-source refrigeration cycle 20 increases the capacity when the cooling load increases, and decreases the capacity when the cooling load decreases. Thereby, even when a cooling load fluctuates, the pressure of the low original receiver 15 can be maintained below the critical pressure as described above.

また、低元冷凍サイクル10の低元受液器15を臨界圧力以下に維持するために、低元冷凍サイクル10の高圧部、例えばカスケードコンデンサ31の出口に低元高圧圧力センサー16を設置してもよい。そして、低元高圧圧力センサー16の検知する圧力がCO2 の臨界圧力、即ち7.4MPaを超えないように、制御装置30は能力可変式の高元圧縮機21の冷却能力を制御する。 Further, in order to maintain the low-source receiver 15 of the low-source refrigeration cycle 10 below the critical pressure, a low-source high-pressure sensor 16 is installed at the high-pressure portion of the low-source refrigeration cycle 10, for example, at the outlet of the cascade condenser 31. Also good. The control device 30 controls the cooling capacity of the variable capacity high-source compressor 21 so that the pressure detected by the low-source high-pressure sensor 16 does not exceed the critical pressure of CO 2 , that is, 7.4 MPa.

また、上記の高元圧縮機21の冷却能力の制御をするために、例えば低元冷凍サイクル10の低圧側、例えば低元圧縮機11の吸入部分に低元低圧圧力センサー17を設置してもよい。
そして、低元高圧圧力センサー16が検知する低元冷凍サイクル10の高圧が、CO2 の臨界圧力と低元低圧圧力センサー17が検知する低元冷凍サイクル10の低圧との相乗平均値となるように高元圧縮機21の冷却能力を制御させる。
これにより、低元冷凍サイクル10の高圧は、低元冷凍サイクル10の低圧とCO2 臨界圧力の中間圧力となるため、臨界圧力以下を保つことが可能となると同時に、低元圧縮機11の吐出温度を抑制することができる。
Further, in order to control the cooling capacity of the high-source compressor 21, the low-source low-pressure sensor 17 may be installed on the low-pressure side of the low-source refrigeration cycle 10, for example, on the suction portion of the low-source compressor 11. Good.
The high pressure of the low-source refrigeration cycle 10 detected by the low-source high-pressure sensor 16 is a geometric mean value of the critical pressure of CO 2 and the low-pressure of the low-source refrigeration cycle 10 detected by the low-source low-pressure sensor 17. To control the cooling capacity of the high-compressor 21.
As a result, the high pressure of the low-source refrigeration cycle 10 becomes an intermediate pressure between the low-pressure of the low-source refrigeration cycle 10 and the CO 2 critical pressure, so that the critical pressure or less can be maintained, and at the same time, the discharge of the low-source compressor 11 Temperature can be suppressed.

また、本実施の形態1の冷凍装置は、低元冷凍サイクル10にCO2 冷媒を用いるため、低元冷凍サイクル10において、低元圧縮機11は動力が大きく、低効率である。よって、低元冷凍サイクル10の高圧部分の圧力を所定量低下させ、高元冷凍サイクル20の高元圧縮機21の圧縮比を高くした方が、運転効率が高くなり、省エネルギーとなる。特に、高元冷凍サイクル20で用いる冷媒を高効率なHFC系冷媒等とした場合、省エネルギー効果が大きくなる。 Further, since the refrigeration apparatus of the first embodiment uses a CO 2 refrigerant in the low-source refrigeration cycle 10, the low-source compressor 11 in the low-source refrigeration cycle 10 has large power and low efficiency. Therefore, when the pressure of the high-pressure portion of the low-source refrigeration cycle 10 is reduced by a predetermined amount and the compression ratio of the high-source compressor 21 of the high-source refrigeration cycle 20 is increased, the operation efficiency becomes higher and energy is saved. In particular, when the refrigerant used in the high-source refrigeration cycle 20 is a highly efficient HFC refrigerant or the like, the energy saving effect is increased.

具体的には、外気32℃において低元蒸発器14の蒸発温度を−10℃から−40℃の範囲で使用される場合に、高元冷凍サイクル20に用いる冷媒を、例えば高効率なHFC系冷媒のR410Aとする。そして、上記に示した制御方法により、低元冷凍サイクル10の高圧側圧力が、CO2 の臨界圧力と低元低圧圧力センサー17が検知する低元冷凍サイクル10の低圧との相乗平均値となるように制御した場合に、運転効率は略最大となる。これにより、省エネルギー性に優れた冷凍装置を得ることができる。 Specifically, when the evaporation temperature of the low-evaporator 14 is used in the range of −10 ° C. to −40 ° C. in the outside air of 32 ° C., the refrigerant used in the high-source refrigeration cycle 20 is, for example, a high-efficiency HFC system The refrigerant is R410A. And by the control method shown above, the high-pressure side pressure of the low-source refrigeration cycle 10 becomes the geometric mean value of the critical pressure of CO 2 and the low-pressure of the low-source refrigeration cycle 10 detected by the low-source low-pressure sensor 17. In this way, the driving efficiency is substantially maximized. Thereby, the refrigeration apparatus excellent in energy saving property can be obtained.

以上により、低元受液器15内のCO2 冷媒を液体とガスの飽和状態とすることができるため、冷却負荷が変動し、余剰冷媒が生じた場合でも、低元受液器15内の液冷媒が増加するが貯留しておくことができる。このため、負荷変動に対して低元受液器15の液面変化のみで冷媒量を調節可能となり、冷媒回路内における適切な冷媒量を容易に維持することができるので、故障等の少ない、信頼性の高い冷凍装置を得ることができる。 As described above, the CO 2 refrigerant in the low-source receiver 15 can be saturated with the liquid and gas, so that even if the cooling load fluctuates and surplus refrigerant is generated, Although liquid refrigerant increases, it can be stored. For this reason, it becomes possible to adjust the amount of refrigerant only by changing the liquid level of the low-source receiver 15 with respect to load fluctuations, and an appropriate amount of refrigerant in the refrigerant circuit can be easily maintained, so there are few failures, A highly reliable refrigeration apparatus can be obtained.

また、本発明の実施の形態における冷凍装置は、運転効率向上と信頼性向上を図ることができ、冷媒のノンフロン化やフロン冷媒の削減、機器の省エネルギー化が要求されるショーケース、業務用冷凍冷蔵庫及び自動販売機等の冷蔵機器又は冷凍機器にも広く適用できる。   In addition, the refrigeration apparatus according to the embodiment of the present invention can improve operational efficiency and reliability, showcases that require non-fluorocarbons, reduction of fluorocarbon refrigerants, and energy saving of equipment, and commercial refrigeration. It can be widely applied to refrigeration equipment and refrigeration equipment such as refrigerators and vending machines.

実施の形態2.
図2は、本発明の実施の形態2における冷凍装置の冷媒回路図である。
図2において、高元冷凍サイクル20は、冷却手段25を有している。冷却手段25は例えば高元冷凍サイクル20の配管であり、その配管を低元受液器15内を通るように設置することで低元受液器15内の冷媒を冷却する。
また、低元冷凍サイクル10は、低元受液器15と低元膨張弁13との間に電磁弁18を備えており、低元圧縮機11と低元凝縮器12との間に逆止弁19を備えている。
なお、その他の構成については実施の形態1の図1で示したものと同様であるため、説明は省略する。
Embodiment 2. FIG.
FIG. 2 is a refrigerant circuit diagram of the refrigeration apparatus in Embodiment 2 of the present invention.
In FIG. 2, the high-source refrigeration cycle 20 has a cooling means 25. The cooling means 25 is, for example, a pipe of the high-source refrigeration cycle 20, and the refrigerant in the low-source receiver 15 is cooled by installing the pipe so as to pass through the low-source receiver 15.
Further, the low-source refrigeration cycle 10 includes a solenoid valve 18 between the low-source receiver 15 and the low-source expansion valve 13, and a check is provided between the low-source compressor 11 and the low-source condenser 12. A valve 19 is provided.
Since other configurations are the same as those shown in FIG. 1 of the first embodiment, description thereof is omitted.

次に、本実施の形態2の冷凍装置の動作について説明する。
本実施の形態2において、通常運転時は、実施の形態1と同様に低元冷凍サイクル10および高元冷凍サイクル20が並行して運転している。しかし、温度制御等の関係で低元圧縮機11が断続運転されている場合など、低元圧縮機11が運転を停止する場合がある。
この場合、低元圧縮機11を停止する前に、電磁弁18を閉止することで、低元冷凍サイクル10内の冷媒を低元冷凍サイクル10の電磁弁18と逆止弁19との間の高圧部分、特に低元受液器15に貯留させる。
Next, operation | movement of the freezing apparatus of this Embodiment 2 is demonstrated.
In the second embodiment, during normal operation, the low-source refrigeration cycle 10 and the high-source refrigeration cycle 20 are operated in parallel as in the first embodiment. However, there are cases where the low-source compressor 11 stops operating, such as when the low-source compressor 11 is intermittently operated due to temperature control or the like.
In this case, the solenoid valve 18 is closed before the low-source compressor 11 is stopped, so that the refrigerant in the low-source refrigeration cycle 10 flows between the solenoid valve 18 and the check valve 19 in the low-source refrigeration cycle 10. It is stored in the high pressure portion, particularly in the low original liquid receiver 15.

そして、電磁弁18の閉止後、所定時間後又は低圧側圧力が所定値以下となった場合に、低元圧縮機11を停止させる。本実施の形態2では、例えば低圧側圧力の下限値(本発明の所定値に相当)を蒸発温度である−55℃とし、その値を下回った場合は、低元圧縮機11を停止させる。
仮に電磁弁18を閉じたまま低元圧縮機11を運転し続けると、低圧側冷媒がなくなり低圧圧力が低下して、ほぼ真空状態となる。このとき、低元圧縮機11のモーターを冷却する冷媒を吸入できなくなるため、故障の要因となる。そのため、上記のように低圧側の圧力の下限値を設けて圧縮機を停止させる保護制御を導入している。
Then, after the solenoid valve 18 is closed, the low-source compressor 11 is stopped after a predetermined time or when the low-pressure side pressure becomes a predetermined value or less. In the second embodiment, for example, the lower limit value of the low-pressure side pressure (corresponding to the predetermined value of the present invention) is set to −55 ° C. which is the evaporation temperature, and when the value falls below that value, the low-source compressor 11 is stopped.
If the low-pressure compressor 11 is continuously operated with the solenoid valve 18 closed, the low-pressure side refrigerant disappears and the low-pressure pressure is reduced, so that a vacuum state is obtained. At this time, the refrigerant that cools the motor of the low-order compressor 11 cannot be sucked, which causes a failure. For this reason, as described above, a protection control is provided in which the lower limit value of the pressure on the low pressure side is provided to stop the compressor.

そして、低元圧縮機11が停止中であっても、高元圧縮機21は運転させる。これにより、低元凝縮器12内の冷媒は、カスケードコンデンサ31において高元蒸発器24によって冷却されるため、例えば外気温度が上昇しても、低元冷凍サイクル10内の冷媒密度を高く保ち、圧力上昇を抑制できる。   And even if the low original compressor 11 is stopped, the high original compressor 21 is operated. Thereby, since the refrigerant in the low element condenser 12 is cooled by the high element evaporator 24 in the cascade condenser 31, for example, even if the outside air temperature rises, the refrigerant density in the low element refrigeration cycle 10 is kept high, Pressure rise can be suppressed.

更に、低元受液器15を冷却する冷却手段25により、多くの冷媒を貯留する低元受液器15を冷却できれば、効率的に冷媒を冷却することが可能なため、より圧力上昇を抑制できるという効果を得られる。   Furthermore, if the low-source receiver 15 that stores a large amount of refrigerant can be cooled by the cooling means 25 that cools the low-source receiver 15, the refrigerant can be efficiently cooled, and thus the pressure rise is further suppressed. The effect that you can do it.

以上により、本実施の形態2においては、低元圧縮機11が停止中であっても低元冷凍サイクル10内の圧力上昇を抑制できるため、冷媒回路内における適切な冷媒量を容易に維持することができる。   As described above, in the second embodiment, since the pressure increase in the low-source refrigeration cycle 10 can be suppressed even when the low-source compressor 11 is stopped, an appropriate refrigerant amount in the refrigerant circuit is easily maintained. be able to.

実施の形態3.
図3は、本発明の実施の形態3における冷凍装置の冷媒回路図である。
図3において、低元受液器15aは、後述するように圧力が臨界圧力以下であったら冷媒を貯留可能な所定の容量としたものである。また、本実施の形態3においても、図2で示した冷却手段25を備えていてもよい。
なお、その他の構成については実施の形態2の図2で示したものと同様であるため、説明は省略する。
Embodiment 3 FIG.
FIG. 3 is a refrigerant circuit diagram of the refrigeration apparatus in Embodiment 3 of the present invention.
In FIG. 3, as will be described later, the low-source receiver 15a has a predetermined capacity capable of storing the refrigerant when the pressure is equal to or lower than the critical pressure. Also in the third embodiment, the cooling means 25 shown in FIG. 2 may be provided.
Since other configurations are the same as those shown in FIG. 2 of the second embodiment, description thereof is omitted.

高元冷凍サイクル20において、例えば高元圧縮機21が故障により運転停止した場合、低元冷凍サイクル10の放熱手段がなくなるため、低元冷凍サイクル10の圧力が上昇し、運転不可能となる。このため、実施の形態2と同様に、電磁弁18を閉止することで低元冷凍サイクル10内の冷媒を低元冷凍サイクル10の高圧部分、特に低元受液器15aに集めた後、低元圧縮機11を停止する。   In the high-source refrigeration cycle 20, for example, when the operation of the high-source compressor 21 is stopped due to a failure, the heat radiating means of the low-source refrigeration cycle 10 is lost, so that the pressure of the low-source refrigeration cycle 10 increases and the operation becomes impossible. For this reason, after collecting the refrigerant in the low-source refrigeration cycle 10 in the high-pressure portion of the low-source refrigeration cycle 10, particularly in the low-source receiver 15 a by closing the solenoid valve 18 as in the second embodiment, The original compressor 11 is stopped.

ここで、電磁弁18の閉止後、所定時間後又は低圧側圧力が所定値以下となった場合に、低元圧縮機11を停止させる。実施の形態2と同様に、この所定値は蒸発温度である−55℃とし、その値を下回った場合は、低元圧縮機11を停止させる。   Here, after the solenoid valve 18 is closed, the low-source compressor 11 is stopped after a predetermined time or when the low-pressure side pressure becomes a predetermined value or less. As in the second embodiment, this predetermined value is set to −55 ° C., which is the evaporation temperature, and when the value falls below that value, the low-order compressor 11 is stopped.

そして、低元受液器15aは、低元受液器15a内の圧力が臨界圧力以下の場合に、液体として冷媒を貯留したときに全ての冷媒を貯留しても満液とならない容量とする。
具体的には、低元冷凍サイクル10に封入される総冷媒量と、想定される周囲の最大温度から貯留される液冷媒の最大体積を求める。そして、冷媒貯留部分の容積、即ち逆止弁19から電磁弁18までの容積が、液冷媒の最大体積以上となるように低元受液器15aの容量を設定する。なお、冷媒貯留部は、気液二相の飽和状態となるため、圧力は温度から求められる。
And the low original liquid receiver 15a is set as the capacity | capacitance which does not become full even if it stores all the refrigerant | coolants when the refrigerant | coolant is stored as a liquid, when the pressure in the low original liquid receiver 15a is below a critical pressure. .
Specifically, the maximum volume of the liquid refrigerant stored is determined from the total refrigerant amount sealed in the low-source refrigeration cycle 10 and the assumed maximum ambient temperature. And the capacity | capacitance of the low original receiver 15a is set so that the volume of a refrigerant | coolant storage part, ie, the volume from the non-return valve 19 to the solenoid valve 18, may become more than the maximum volume of a liquid refrigerant. In addition, since a refrigerant | coolant storage part will be in a gas-liquid two phase saturation state, a pressure is calculated | required from temperature.

また、低元受液器15内の圧力が臨界圧力以上である場合、低元受液器15a内は超臨界状態となる。このとき、低元受液器15a内の圧力は、冷媒貯留部の容積、即ち逆止弁19から電磁弁18までの容積と、貯留する冷媒量と、温度とによって決まる。低元冷凍サイクル10に封入される総冷媒量と、想定される周囲の最大温度において、冷媒貯留部が圧力上限値を超えないような容積となるように低元受液器15aの容量を設定してもよい。
なお、一般的に、周囲の最大温度をCO2 の臨界温度31.1℃以上と想定する。
Further, when the pressure in the low-source receiver 15 is equal to or higher than the critical pressure, the low-source receiver 15a is in a supercritical state. At this time, the pressure in the low-source receiver 15a is determined by the volume of the refrigerant reservoir, that is, the volume from the check valve 19 to the solenoid valve 18, the amount of refrigerant to be stored, and the temperature. The capacity of the low-source receiver 15a is set so that the refrigerant reservoir has a volume that does not exceed the upper pressure limit at the total amount of refrigerant sealed in the low-source refrigeration cycle 10 and the assumed maximum ambient temperature. May be.
In general, the maximum ambient temperature is assumed to be a critical temperature of CO 2 of 31.1 ° C. or higher.

本実施の形態3により、高元冷凍サイクル20の高元圧縮機21が停止しても、低元冷凍サイクル10の高圧が圧力上限値、例えば設計圧を超えることがなく、圧力の上昇による故障等の少ない、信頼性の高い冷凍装置を得ることができる。   According to the third embodiment, even when the high-source compressor 21 of the high-source refrigeration cycle 20 is stopped, the high-pressure of the low-source refrigeration cycle 10 does not exceed the pressure upper limit value, for example, the design pressure, and the failure due to the pressure increase Thus, a highly reliable refrigeration apparatus can be obtained.

10 低元冷凍サイクル、11 低元圧縮機、12 低元凝縮器、13 低元膨張弁、14 低元蒸発器、15、15a 低元受液器、16 低元高圧圧力センサー、17 低元低圧圧力センサー、18 電磁弁、19 逆止弁、20 高元冷凍サイクル、21 高元圧縮機、22 高元凝縮器、23 高元膨張弁、24 高元蒸発器、25 冷却手段、30 制御装置、31 カスケードコンデンサ。   10 Low original refrigeration cycle, 11 Low original compressor, 12 Low original condenser, 13 Low original expansion valve, 14 Low original evaporator, 15, 15a Low original receiver, 16 Low original high pressure sensor, 17 Low original low pressure Pressure sensor, 18 Solenoid valve, 19 Check valve, 20 High-source refrigeration cycle, 21 High-source compressor, 22 High-source condenser, 23 High-source expansion valve, 24 High-source evaporator, 25 Cooling means, 30 Controller, 31 Cascade capacitor.

Claims (9)

低元圧縮機、低元凝縮器、低元減圧手段、低元蒸発器低元受液器、前記低元受液器と前記低元減圧手段との間に配置される開閉弁、及び前記低元圧縮機と前記低元凝縮器との間に配置される逆止弁を有し、COを冷媒として用いて循環させる低元冷凍サイクルと、
高元圧縮機、高元凝縮器、高元減圧手段及び高元蒸発器を有し、高元側冷媒を循環させる高元冷凍サイクルと、
前記低元凝縮器と前記高元蒸発器とを有し、前記COと前記高元側冷媒との熱交換を行うカスケードコンデンサと、
を備え、
前記低元冷凍サイクルでは、前記低元凝縮器において前記CO2が冷却され、冷却された前記COを前記低元減圧手段を介して前記低元蒸発器へ流入させ、前記低元蒸発器において前記COを気化させることにより対象物を冷却し、
また、前記カスケードコンデンサにおける前記高元側の冷媒との熱交換により、前記COの圧力が、COの臨界圧力よりも小さくなるように前記高元冷凍サイクルの前記高元圧縮機を制御し、
前記低元冷凍サイクルの前記低元圧縮機が停止する場合、前記開閉弁を閉状態にすることで前記CO を前記開閉弁と前記逆止弁との間に集め、その所定時間後又は前記低元冷凍サイクルの低圧側圧力が所定値以下となった場合に前記低元圧縮機を停止させることを特徴とする冷凍装置。
Low original compressor, low original condenser, low original decompression means, low original evaporator , low original receiver , on-off valve arranged between the low original receiver and the low original decompressor, and A low-source refrigeration cycle having a check valve disposed between a low-source compressor and the low-source condenser, and circulating using CO 2 as a refrigerant;
A high-source refrigeration cycle that has a high-source compressor, a high-source condenser, a high-source decompression means, and a high-source evaporator,
A cascade condenser that includes the low-order condenser and the high-order evaporator, and performs heat exchange between the CO 2 and the high-side refrigerant;
With
The low-stage refrigeration cycle, wherein the said CO2 is cooled in the low-condenser, the cooled the CO 2 via the low-stage pressure reducing unit to flow into the low-stage evaporator, the in the low-stage evaporator the object is cooled by vaporizing the CO 2,
Further, the by heat exchange with the refrigerant of the high stage-side in the cascade condenser, the pressure of the CO 2 is to control the high original compressor of the high-stage refrigeration cycle to be smaller than the critical pressure of CO 2 ,
When the low-source compressor of the low-source refrigeration cycle is stopped, the CO 2 is collected between the on-off valve and the check valve by closing the on-off valve, and after a predetermined time or A refrigeration apparatus that stops the low-source compressor when the low-pressure side pressure of the low-source refrigeration cycle becomes a predetermined value or less .
前記低元冷凍サイクルの前記低元受液器は、臨界圧力以下における前記COの最大体積を収容可能な容量であことを特徴とする請求項に記載の冷凍装置。 Wherein the low-receiver low-stage refrigeration cycle, the refrigeration apparatus according to claim 1, wherein the Ru capacity Der capable of accommodating the largest volume of the CO 2 at the critical pressure or less. 前記低元冷凍サイクルは、The low original refrigeration cycle is:
前記高元冷凍サイクルの前記高元圧縮機が停止した場合、前記開閉弁を閉状態にすることで前記COWhen the high-source compressor of the high-source refrigeration cycle is stopped, the CO valve is closed by closing the on-off valve. 2 を前記開閉弁と前記逆止弁との間に集め、その後前記低元圧縮機を停止させることを特徴とする請求項1又は請求項2に記載の冷凍装置。The refrigeration apparatus according to claim 1, wherein the low-source compressor is stopped after collecting the gas between the on-off valve and the check valve.
低元圧縮機、低元凝縮器、低元減圧手段、低元蒸発器低元受液器、前記低元受液器と前記低元減圧手段との間に配置される開閉弁、及び前記低元圧縮機と前記低元凝縮器との間に配置される逆止弁を有し、COを冷媒として用いて循環させる低元冷凍サイクルと、
高元圧縮機、高元凝縮器、高元減圧手段及び高元蒸発器を有し、高元側冷媒を循環させる高元冷凍サイクルと、
前記低元凝縮器と前記高元蒸発器とを有し、前記COと前記高元側冷媒との熱交換を行うカスケードコンデンサと、
を備え、
前記低元冷凍サイクルでは、前記低元凝縮器において前記COが冷却され、冷却された前記COを前記低元減圧手段を介して前記低元蒸発器へ流入させ、前記低元蒸発器において前記COを気化させることにより対象物を冷却し、
また、前記カスケードコンデンサにおける前記高元側の冷媒との熱交換により、前記COの圧力が、COの臨界圧力よりも小さくなるように前記高元冷凍サイクルの前記高元圧縮機を制御し、
前記低元冷凍サイクルの前記低元受液器は、臨界圧力以下における前記CO の最大体積を収容可能な容量であり、
前記低元冷凍サイクルは、
前記高元冷凍サイクルの前記高元圧縮機が停止した場合、前記開閉弁を閉状態にすることで前記CO を前記開閉弁と前記逆止弁との間に集め、その所定時間後又は前記低元冷凍サイクルの低圧側圧力が所定値以下となった場合に前記低元圧縮機を停止させることを特徴とする冷凍装置。
Low original compressor, low original condenser, low original decompression means, low original evaporator , low original receiver , on-off valve arranged between the low original receiver and the low original decompressor, and A low-source refrigeration cycle having a check valve disposed between a low-source compressor and the low-source condenser, and circulating using CO 2 as a refrigerant;
A high-source refrigeration cycle that has a high-source compressor, a high-source condenser, a high-source decompression means, and a high-source evaporator,
A cascade condenser that includes the low-order condenser and the high-order evaporator, and performs heat exchange between the CO 2 and the high-side refrigerant;
With
In the low element refrigeration cycle, the CO 2 is cooled in the low element condenser, and the cooled CO 2 is caused to flow into the low element evaporator via the low element decompression unit, and in the low element evaporator Cooling the object by evaporating the CO 2 ;
Further, the by heat exchange with the refrigerant of the high stage-side in the cascade condenser, the pressure of the CO 2 is to control the high original compressor of the high-stage refrigeration cycle to be smaller than the critical pressure of CO 2 ,
The low-source receiver of the low-source refrigeration cycle has a capacity capable of accommodating the maximum volume of the CO 2 below a critical pressure ,
The low original refrigeration cycle is:
When the high-source compressor of the high-source refrigeration cycle is stopped, the CO 2 is collected between the on-off valve and the check valve by closing the on-off valve, and after a predetermined time or A refrigeration apparatus , wherein the low-source compressor is stopped when a low-pressure side pressure of a low-source refrigeration cycle becomes a predetermined value or less .
前記高元冷凍サイクルの前記高元圧縮機は、
冷却負荷が増加した場合には容量が増加し、冷却負荷が減少した場合に容量が減少するように制御されることを特徴とする請求項1〜請求項4のいずれかに記載の冷凍装置。
The high-source compressor of the high-source refrigeration cycle is
The refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigeration apparatus is controlled such that the capacity increases when the cooling load increases and the capacity decreases when the cooling load decreases.
前記低元冷凍サイクルは、
高圧側の圧力を測定する低元高圧圧力センサーと、
低圧側の圧力を測定する低元低圧圧力センサーと、
を有し、
前記高元圧縮機は、
前記低元高圧圧力センサーで測定された圧力が、前記COの臨界圧力と低元低圧圧力センサーで測定された圧力との相乗平均値となるように制御されることを特徴とする請求項1〜請求項5のいずれかに記載の冷凍装置。
The low original refrigeration cycle is:
A low original high pressure sensor that measures the pressure on the high pressure side,
A low-source low-pressure sensor that measures the pressure on the low-pressure side;
Have
The high-source compressor is
The pressure measured by the low original high pressure sensor is controlled so as to be a geometric mean value of the critical pressure of the CO 2 and the pressure measured by the low original low pressure sensor. The refrigeration apparatus according to claim 5 .
前記低元圧縮機が停止中であっても、前記高元圧縮機を動作させることを特徴とする請求項1〜請求項のいずれかに記載の冷凍装置。 The refrigeration apparatus according to any one of claims 1 to 6 , wherein the high-order compressor is operated even when the low-order compressor is stopped. 前記高元冷凍サイクルは、
前記低元受液器内の冷媒を冷却する冷却手段を有し、
前記低元冷凍サイクルは、
前記冷却手段により前記COが冷却されることを特徴とする請求項1〜請求項7のいずれかに記載の冷凍装置。
The high-source refrigeration cycle is
Cooling means for cooling the refrigerant in the low-source receiver,
The low original refrigeration cycle is:
The refrigeration apparatus according to any one of claims 1 to 7, wherein the CO 2 is cooled by the cooling means.
前記高元冷凍サイクルは、
前記低元冷凍サイクルに用いられる前記COよりも運転効率を高められる冷媒が用いられることを特徴とする請求項1〜請求項8のいずれかに記載の冷凍装置。
The high-source refrigeration cycle is
The refrigerating apparatus according to any one of claims 1 to 8, wherein a refrigerant capable of operating more efficiently than the CO 2 used in the low-source refrigeration cycle is used.
JP2010234298A 2010-10-19 2010-10-19 Refrigeration equipment Active JP5323023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010234298A JP5323023B2 (en) 2010-10-19 2010-10-19 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010234298A JP5323023B2 (en) 2010-10-19 2010-10-19 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2012087978A JP2012087978A (en) 2012-05-10
JP5323023B2 true JP5323023B2 (en) 2013-10-23

Family

ID=46259781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010234298A Active JP5323023B2 (en) 2010-10-19 2010-10-19 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5323023B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520657A (en) * 2012-08-06 2015-04-15 三菱电机株式会社 Cascade refrigeration equipment
JP7299395B1 (en) 2022-09-09 2023-06-27 コベルコ・コンプレッサ株式会社 refrigeration equipment

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575191B2 (en) * 2012-08-06 2014-08-20 三菱電機株式会社 Dual refrigeration equipment
WO2014030238A1 (en) * 2012-08-23 2014-02-27 三菱電機株式会社 Refrigeration device
JP5800994B2 (en) * 2012-09-21 2015-10-28 三菱電機株式会社 Refrigeration apparatus and control method thereof
CN206055994U (en) * 2014-03-07 2017-03-29 三菱电机株式会社 Refrigerating circulatory device
JP2020201011A (en) * 2019-06-12 2020-12-17 ダイキン工業株式会社 air conditioner
CN117716185A (en) * 2021-08-05 2024-03-15 三菱电机株式会社 Refrigeration cycle device and control method for refrigeration cycle device
CN115289705B (en) * 2022-06-23 2024-03-15 北京京仪自动化装备技术股份有限公司 Temperature control system and temperature control method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938656U (en) * 1982-09-06 1984-03-12 株式会社東芝 Ultra-low temperature equipment
JP3604973B2 (en) * 1999-09-24 2004-12-22 三洋電機株式会社 Cascade type refrigeration equipment
JP2003004346A (en) * 2001-06-26 2003-01-08 Sanyo Electric Co Ltd Cooling equipment
JP4377634B2 (en) * 2003-09-02 2009-12-02 幸信 池本 Operation method of cooling system
JP2007278666A (en) * 2006-04-11 2007-10-25 Daikin Ind Ltd Binary refrigerating device
JP4730318B2 (en) * 2007-02-02 2011-07-20 ダイキン工業株式会社 Refrigeration equipment

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104520657A (en) * 2012-08-06 2015-04-15 三菱电机株式会社 Cascade refrigeration equipment
CN104520657B (en) * 2012-08-06 2016-07-06 三菱电机株式会社 Binary refrigeration device
JP7299395B1 (en) 2022-09-09 2023-06-27 コベルコ・コンプレッサ株式会社 refrigeration equipment
WO2024053121A1 (en) * 2022-09-09 2024-03-14 コベルコ・コンプレッサ株式会社 Refrigeration device
JP2024039427A (en) * 2022-09-09 2024-03-22 コベルコ・コンプレッサ株式会社 Refrigeration device

Also Published As

Publication number Publication date
JP2012087978A (en) 2012-05-10

Similar Documents

Publication Publication Date Title
JP5323023B2 (en) Refrigeration equipment
JP6125000B2 (en) Dual refrigeration equipment
JP5367100B2 (en) Dual refrigeration equipment
WO2012066763A1 (en) Freezer
JP2011521194A (en) Filling management in refrigerant vapor compression systems.
RU2620609C2 (en) Condenser evaporative system (versions) and method of its use
JP2011052884A (en) Refrigerating air conditioner
WO2013031591A1 (en) Supercritical cycle and heat pump hot-water supplier using same
JP2016056966A (en) Turbo refrigerator
EP2910872B1 (en) Freezing device
US20050132742A1 (en) Vapor compression systems using an accumulator to prevent over-pressurization
JP2015148406A (en) Refrigeration device
JPWO2014045394A1 (en) Refrigeration equipment
US20160178244A1 (en) Carbon Dioxide Based Auxiliary Cooling System
JP2015148407A (en) Refrigeration device
JP5367059B2 (en) Dual refrigeration equipment
JP5759076B2 (en) Refrigeration equipment
JP6388260B2 (en) Refrigeration equipment
US11512880B2 (en) Refrigeration cycle device
JP6253370B2 (en) Refrigeration cycle equipment
KR102477314B1 (en) A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator
JP2013053757A (en) Refrigerant circuit system
US20180259232A1 (en) Cooling system and cooling method
EP2525168B1 (en) Supercritical steam compression heat pump and hot-water supply unit
TWI568984B (en) Gas - liquid heat exchange type refrigeration device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130618

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130716

R150 Certificate of patent or registration of utility model

Ref document number: 5323023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250