JP5367100B2 - Dual refrigeration equipment - Google Patents

Dual refrigeration equipment Download PDF

Info

Publication number
JP5367100B2
JP5367100B2 JP2012021983A JP2012021983A JP5367100B2 JP 5367100 B2 JP5367100 B2 JP 5367100B2 JP 2012021983 A JP2012021983 A JP 2012021983A JP 2012021983 A JP2012021983 A JP 2012021983A JP 5367100 B2 JP5367100 B2 JP 5367100B2
Authority
JP
Japan
Prior art keywords
heat storage
refrigerant
low
source
condenser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012021983A
Other languages
Japanese (ja)
Other versions
JP2013160427A (en
Inventor
智隆 石川
宗 野本
猛 杉本
哲也 山下
隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2012021983A priority Critical patent/JP5367100B2/en
Publication of JP2013160427A publication Critical patent/JP2013160427A/en
Application granted granted Critical
Publication of JP5367100B2 publication Critical patent/JP5367100B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は二元冷凍装置に関し、特に冷熱を蓄熱する蓄熱槽を備えた二元冷凍装置に関するものである。   The present invention relates to a binary refrigeration apparatus, and more particularly to a binary refrigeration apparatus provided with a heat storage tank for storing cold energy.

従来より、マイナス数十度の低温度の冷却を行うための装置として、高温側冷媒を循環するための冷凍サイクル装置である高元冷凍サイクルと、低温側冷媒を循環するための冷凍サイクル装置である低元冷凍サイクルとを有する二元冷凍装置が使用されている。例えば、二元冷凍装置では、低元冷凍サイクルにおける低元側凝縮器と高元冷凍サイクルにおける高元側蒸発器とを熱交換できるように構成したカスケードコンデンサによって低元冷凍サイクルと高元冷凍サイクルとを連結している。   Conventionally, as a device for cooling at a low temperature of minus several tens of degrees, a high-source refrigeration cycle that is a refrigeration cycle device for circulating a high-temperature side refrigerant, and a refrigeration cycle device for circulating a low-temperature side refrigerant A binary refrigeration device having a certain low-source refrigeration cycle is used. For example, in a binary refrigeration system, a low-source refrigeration cycle and a high-source refrigeration cycle are configured by a cascade condenser configured to exchange heat between a low-source side condenser in a low-source refrigeration cycle and a high-source side evaporator in a high-source refrigeration cycle. Are linked.

また、冷却負荷が小さく低い冷凍能力しか要求されない夜間において熱源側の余剰能力を有効利用できるように、蓄熱媒体に蓄熱を可能とする構成とし、蓄熱による夜間電力の積極的使用による電力使用平準化促進とそれによる使用電力料金の低減といった効果を達成するものが提案されている(例えば、特許文献1参照)。   In addition, the heat storage medium can store heat so that the surplus capacity on the heat source side can be used effectively at night when the cooling load is low and only low refrigeration capacity is required. There has been proposed one that achieves an effect such as promotion and reduction of the power consumption rate (for example, see Patent Document 1).

特開2010−271000号公報(段落[0014])JP 2010-271000 A (paragraph [0014])

従来の二元冷凍装置では、低元冷凍サイクルと高元冷凍サイクルとをカスケードコンデンサを介して一体的に組み立て、低元冷凍サイクルを運転する際には高元冷凍サイクルも同時に運転される。このような二元冷凍装置においては、高元冷凍サイクルが故障または停電等により停止すると、低元冷凍サイクルではカスケードコンデンサ(凝縮器)における冷媒の熱交換が不十分となる。これにより、低元冷凍サイクルの冷媒圧力が、冷媒量の多い凝縮器側の周囲温度に応じた飽和圧力にまで上昇し、冷媒回路に設けた安全弁等から冷媒が大気に放出される恐れがある。このため、低元冷凍サイクルと高元冷凍サイクルとを個別に運転することができない、という問題点があった。   In the conventional binary refrigeration apparatus, a low-source refrigeration cycle and a high-source refrigeration cycle are integrally assembled via a cascade condenser, and when the low-source refrigeration cycle is operated, the high-source refrigeration cycle is also operated simultaneously. In such a binary refrigeration apparatus, when the high refrigeration cycle stops due to a failure or a power failure, the heat exchange of the refrigerant in the cascade condenser (condenser) becomes insufficient in the low refrigeration cycle. As a result, the refrigerant pressure in the low-source refrigeration cycle rises to a saturation pressure corresponding to the ambient temperature on the condenser side with a large amount of refrigerant, and the refrigerant may be released to the atmosphere from a safety valve or the like provided in the refrigerant circuit. . For this reason, there existed a problem that a low original refrigeration cycle and a high original refrigeration cycle cannot be operated separately.

また、低元冷凍サイクルに受液器を設けた場合、高元冷凍サイクルが故障等により停止すると、高温・高圧の冷媒が受液器に流入することになる。このため、受液器の温度が上昇しこれに伴い冷媒圧力が上昇する、という問題点があった。特に、低元冷凍サイクルにCO2冷媒を用いた場合、周囲温度の上昇により超臨界状態となる場合があり、受液器に流入する冷媒密度が低下する。このため、受液器に流入した冷媒圧力を設計圧以下に維持するために必要な受液器容積が過大となり、または冷媒回路の設計圧を上げる必要がある。これにより、重量の増加や、コンパクト性に欠け、製造コストが増加する、という問題点があった。 In addition, when a liquid receiver is provided in the low-source refrigeration cycle, when the high-source refrigeration cycle stops due to a failure or the like, a high-temperature and high-pressure refrigerant flows into the liquid receiver. For this reason, there has been a problem that the temperature of the liquid receiver rises and the refrigerant pressure rises accordingly. In particular, when CO 2 refrigerant is used in the low-source refrigeration cycle, a supercritical state may occur due to an increase in ambient temperature, and the density of the refrigerant flowing into the liquid receiver decreases. For this reason, the volume of the liquid receiver required for maintaining the refrigerant pressure flowing into the liquid receiver below the design pressure becomes excessive, or the design pressure of the refrigerant circuit needs to be increased. Thereby, there existed a problem that an increase in weight, lack of compactness, and a manufacturing cost increased.

本発明は、上記のような課題を解決するためになされたもので、二つの冷媒回路を結合した二元冷凍装置において、二元冷凍装置の運転停止時に周囲温度が上昇しても圧力上昇を抑制でき、信頼性を向上することができる二元冷凍装置を得るものである。   The present invention has been made to solve the above-described problems. In a binary refrigeration apparatus in which two refrigerant circuits are combined, the pressure rises even if the ambient temperature rises when the binary refrigeration apparatus is stopped. It is possible to obtain a binary refrigeration apparatus that can be suppressed and can improve reliability.

本発明に係る二元冷凍装置は、第1圧縮機、第1凝縮器、第1絞り装置、第1蒸発器、及び第1蓄熱蒸発器を配管接続し、冷媒を循環させる第1冷媒回路と、第2圧縮機、第2凝縮器、受液器、第2絞り装置、及び第2蒸発器を配管接続し、冷媒を循環させる第2冷媒回路と、前記第1蒸発器と前記第2凝縮器とにより構成され、前記第1蒸発器を流れる冷媒と前記第2凝縮器を流れる冷媒とが熱交換を行うカスケードコンデンサと、前記第1蓄熱蒸発器と前記受液器とを収容し、前記第1蓄熱蒸発器によって蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱媒体に蓄熱された冷熱により前記受液器を冷却する蓄熱槽とを備えたものである。   A binary refrigeration apparatus according to the present invention includes a first refrigerant circuit that connects a first compressor, a first condenser, a first expansion device, a first evaporator, and a first heat storage evaporator to circulate refrigerant. A second compressor, a second condenser, a liquid receiver, a second throttling device, and a second evaporator, and a second refrigerant circuit that circulates the refrigerant, the first evaporator, and the second condenser A cascade condenser that exchanges heat between the refrigerant flowing through the first evaporator and the refrigerant flowing through the second condenser, the first heat storage evaporator, and the liquid receiver, The first heat storage evaporator cools the heat storage medium to store the cold heat, and includes a heat storage tank that cools the liquid receiver by the cold heat stored in the heat storage medium.

本発明は、第1蓄熱蒸発器と受液器とを収容し、第1蓄熱蒸発器によって蓄熱媒体を冷却して冷熱を蓄熱するとともに、蓄熱媒体に蓄熱された冷熱により受液器を冷却する蓄熱槽を備えたので、受液器の温度上昇に伴う圧力上昇を抑制でき、信頼性を向上することができる。   The present invention accommodates a first heat storage evaporator and a liquid receiver, cools the heat storage medium by the first heat storage evaporator to store cold energy, and cools the liquid receiver by the cold heat stored in the heat storage medium. Since the heat storage tank is provided, it is possible to suppress an increase in pressure accompanying a temperature increase of the liquid receiver, and to improve reliability.

本発明の実施の形態1に係る二元冷凍装置の冷媒回路図である。FIG. 3 is a refrigerant circuit diagram of the binary refrigeration apparatus according to Embodiment 1 of the present invention. 本発明の実施の形態2に係る二元冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the binary refrigeration apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る二元冷凍装置の冷媒回路図である。It is a refrigerant circuit figure of the binary refrigeration apparatus which concerns on Embodiment 3 of this invention.

以下、本発明に係る二元冷凍装置の好適な実施の形態について添付図面を参照して説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of a binary refrigeration apparatus according to the invention will be described with reference to the accompanying drawings.

実施の形態1.
図1は、本発明の実施の形態1に係る二元冷凍装置の冷媒回路図である。図1において、二元冷凍装置は、低元冷凍サイクル10と高元冷凍サイクル20とを有し、それぞれ独立して冷媒を循環させる冷媒回路を構成している。また、二元冷凍装置は、当該二元冷凍装置全体の運転制御を行う制御装置33を有する。
Embodiment 1 FIG.
FIG. 1 is a refrigerant circuit diagram of a binary refrigeration apparatus according to Embodiment 1 of the present invention. In FIG. 1, the binary refrigeration apparatus includes a low-source refrigeration cycle 10 and a high-source refrigeration cycle 20, and configures a refrigerant circuit that circulates refrigerant independently of each other. Further, the binary refrigeration apparatus includes a control device 33 that performs operation control of the entire binary refrigeration apparatus.

低元冷凍サイクル10は、低元側圧縮機11と、低元側凝縮器12と、低元側受液器13と、低元側膨張弁15と、低元側蒸発器16とを順に冷媒配管で接続して冷媒回路(以下、低元側冷媒回路という)を構成している。   The low-source refrigeration cycle 10 includes a low-side compressor 11, a low-side condenser 12, a low-side liquid receiver 13, a low-side expansion valve 15, and a low-side evaporator 16 in order. A refrigerant circuit (hereinafter referred to as a low-source-side refrigerant circuit) is configured by connecting with pipes.

なお、低元冷凍サイクル10は、本発明における「第2冷媒回路」に相当する。また、低元側圧縮機11は「第2圧縮機」に相当し、低元側凝縮器12は「第2凝縮器」に相当し、低元側受液器13は「受液器」に相当し、低元側膨張弁15は「第2絞り装置」に相当し、低元側蒸発器16は「第2蒸発器」に相当する。   The low-source refrigeration cycle 10 corresponds to the “second refrigerant circuit” in the present invention. The low-side compressor 11 corresponds to a “second compressor”, the low-side condenser 12 corresponds to a “second condenser”, and the low-side receiver 13 serves as a “receiver”. The low-side expansion valve 15 corresponds to a “second throttle device”, and the low-side evaporator 16 corresponds to a “second evaporator”.

高元冷凍サイクル20は、高元側圧縮機21と、高元側凝縮器22と、高元側膨張弁23と、高元側蒸発器24と、高元側蓄熱蒸発器25とを順に冷媒配管で接続して冷媒回路(以下、高元側冷媒回路という)を構成している。   The high-source refrigeration cycle 20 includes a high-side compressor 21, a high-side condenser 22, a high-side expansion valve 23, a high-side evaporator 24, and a high-side heat storage evaporator 25 in order. A refrigerant circuit (hereinafter referred to as a high-side refrigerant circuit) is configured by connecting with pipes.

なお、高元冷凍サイクル20は、本発明における「第1冷媒回路」に相当する。また、高元側圧縮機21は「第1圧縮機」に相当し、高元側凝縮器22は「第1凝縮器」に相当し、高元側膨張弁23は「第1絞り装置」に相当し、高元側蒸発器24は「第1蒸発器」に相当し、高元側蓄熱蒸発器25は「第1蓄熱蒸発器」に相当する。   The high refrigeration cycle 20 corresponds to the “first refrigerant circuit” in the present invention. The high-end compressor 21 corresponds to a “first compressor”, the high-end condenser 22 corresponds to a “first condenser”, and the high-end expansion valve 23 corresponds to a “first throttle device”. The high-end side evaporator 24 corresponds to a “first evaporator”, and the high-end side heat storage evaporator 25 corresponds to a “first heat storage evaporator”.

また、低元側冷媒回路と高元側冷媒回路とを多段構成とするために、高元側蒸発器24と低元側凝縮器12とを、それぞれを通過する冷媒間での熱交換を可能に結合させて構成したカスケードコンデンサ30を設けている。ここで、低元側、高元側と称する構成における、温度、圧力等の高低については、特に絶対的な値との関係で高低等が定まっているものではなく、システム、装置等における状態、動作等において相対的に定まるものとする。   In addition, since the low-side refrigerant circuit and the high-side refrigerant circuit have a multi-stage configuration, heat exchange between the high-side evaporator 24 and the low-side condenser 12 can be performed between the refrigerants passing through the high-side evaporator 24 and the low-side condenser 12. A cascade capacitor 30 configured to be coupled to is provided. Here, in the configuration referred to as the low element side and the high element side, the level of temperature, pressure, etc. is not particularly determined in relation to absolute values, but the state in the system, device, etc. It shall be relatively determined in operation and the like.

低元側圧縮機11は、低元側冷媒回路を流れる冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出する。この低元側圧縮機11は、例えばインバータ回路等により回転数を制御し、冷媒の吐出量を調整できるタイプの圧縮機で構成する。   The low-side compressor 11 sucks the refrigerant flowing through the low-side refrigerant circuit, compresses the refrigerant, and discharges it in a high temperature / high pressure state. The low-side compressor 11 is formed of a compressor of a type that can control the number of revolutions by, for example, an inverter circuit and adjust the refrigerant discharge amount.

低元側凝縮器12は、冷媒を凝縮させて液状の冷媒にする(凝縮液化させる)ものである。本実施の形態では、例えばカスケードコンデンサ30において低元側冷媒回路を流れる冷媒が通過する伝熱管等により低元側凝縮器12を構成し、高元側冷媒回路を流れる冷媒との熱交換が行われるものとする。
低元側受液器13は、低元側凝縮器12の下流側に設けられ冷媒を貯留するものである。
The low-source side condenser 12 condenses the refrigerant into a liquid refrigerant (condenses and liquefies). In the present embodiment, for example, the low-condenser 12 is configured by a heat transfer tube or the like through which the refrigerant flowing in the low-side refrigerant circuit passes in the cascade capacitor 30, and heat exchange with the refrigerant flowing in the high-side refrigerant circuit is performed. Shall be.
The low source side liquid receiver 13 is provided on the downstream side of the low source side condenser 12 and stores the refrigerant.

低元側膨張弁15は、低元側冷媒回路を流れる冷媒を減圧して膨張させるものである。例えば電子式膨張弁等の流量制御手段、毛細管(キャピラリ)、感温式膨張弁等の冷媒流量調節手段等の任意の減圧装置、絞り装置等で構成する。   The low-side expansion valve 15 decompresses and expands the refrigerant flowing through the low-side refrigerant circuit. For example, it is configured by an arbitrary pressure reducing device such as a flow rate control means such as an electronic expansion valve, a capillary (capillary), a refrigerant flow rate adjusting means such as a temperature-sensitive expansion valve, or a throttling device.

低元側蒸発器16は、例えば冷却対象との熱交換により低元冷媒回路を流れる冷媒を蒸発させて気体(ガス)状の冷媒にする(蒸発ガス化させる)ものである。冷媒との熱交換により、冷却対象は、直接又は間接に冷却されることになる。   The low element side evaporator 16 evaporates the refrigerant flowing through the low element refrigerant circuit by heat exchange with the object to be cooled, for example, and converts it into a gas (gas) refrigerant (evaporated gas). The object to be cooled is cooled directly or indirectly by heat exchange with the refrigerant.

高元側圧縮機21は、高元側冷媒回路を流れる冷媒を吸入し、その冷媒を圧縮して高温・高圧の状態にして吐出する。この高元側圧縮機21は、例えばインバータ回路等を有し、冷媒の吐出量を調整できるタイプの圧縮機で構成する。   The high-end compressor 21 sucks the refrigerant flowing through the high-end refrigerant circuit, compresses the refrigerant, and discharges it in a high temperature / high pressure state. The high-end compressor 21 includes, for example, an inverter circuit and is configured with a compressor of a type that can adjust the refrigerant discharge amount.

高元側凝縮器22は、例えば、空気、ブライン等と高元側冷媒回路を流れる冷媒との間で熱交換を行い、冷媒を凝縮液化させるものである。本実施の形態では、外気と冷媒との熱交換を行うものとし、熱交換を促すための高元側凝縮器ファンを有しているものとする。高元側凝縮器ファンについても風量を調整できるタイプのファンで構成する。   The high-side condenser 22 performs heat exchange between, for example, air, brine, and the refrigerant flowing through the high-side refrigerant circuit to condense and liquefy the refrigerant. In the present embodiment, heat exchange between the outside air and the refrigerant is performed, and a high-side condenser fan is provided to promote heat exchange. The high-end condenser fan is also configured with a fan that can adjust the air volume.

高元側膨張弁23は、高元側冷媒回路を流れる冷媒を減圧して膨張させるものである。例えば電子式膨張弁等の流量制御手段、冷媒流量調節手段等、絞り量が制御可能な任意の減圧装置、絞り装置等で構成する。   The high-side expansion valve 23 decompresses and expands the refrigerant flowing through the high-side refrigerant circuit. For example, it is configured by an arbitrary pressure reducing device, a throttle device, or the like that can control the throttle amount, such as a flow rate control means such as an electronic expansion valve, a refrigerant flow rate control means, or the like.

高元側蒸発器24は、熱交換により高元側冷媒回路を流れる冷媒を蒸発ガス化するものである。本実施の形態では、例えばカスケードコンデンサ30において高元側冷媒回路を流れる冷媒が通過する伝熱管等により高元側蒸発器24を構成し、低元側冷媒回路を流れる冷媒との熱交換が行われるものとする。   The high element side evaporator 24 evaporates the refrigerant flowing through the high element side refrigerant circuit by heat exchange. In the present embodiment, for example, in the cascade condenser 30, the high-side evaporator 24 is configured by a heat transfer tube through which the refrigerant flowing through the high-side refrigerant circuit passes, and heat exchange with the refrigerant flowing through the low-side refrigerant circuit is performed. Shall be.

カスケードコンデンサ30は、高元側蒸発器24と低元側凝縮器12とにより構成され、高元側蒸発器24を流れる冷媒と低元側凝縮器12を流れる冷媒とを熱交換可能にする冷媒間熱交換器である。カスケードコンデンサ30を介して高元側冷媒回路と低元側冷媒回路とを多段構成にし、冷媒間の熱交換を行うようにすることで、独立した冷媒回路を連携させることができる。   The cascade condenser 30 includes a high-side evaporator 24 and a low-side condenser 12, and makes it possible to exchange heat between the refrigerant flowing through the high-side evaporator 24 and the refrigerant flowing through the low-side condenser 12. It is an intermediate heat exchanger. By configuring the high-side refrigerant circuit and the low-side refrigerant circuit in multiple stages via the cascade capacitor 30 and performing heat exchange between the refrigerants, independent refrigerant circuits can be linked.

また、本実施の形態の二元冷凍装置は、低元側受液器13と高元側蓄熱蒸発器25とを収容する蓄熱槽31を備えている。この蓄熱槽31内には例えばブライン、水等の蓄熱媒体32が貯留されている。蓄熱槽31は高元側蓄熱蒸発器25から授与された冷熱を蓄熱槽31内の蓄熱媒体32に蓄える機能を有している。また、蓄熱槽31は蓄熱媒体32に蓄熱された冷熱により低元側受液器13を冷却する機能を有している。   In addition, the binary refrigeration apparatus of the present embodiment includes a heat storage tank 31 that houses the low-source side liquid receiver 13 and the high-source side heat storage evaporator 25. A heat storage medium 32 such as brine or water is stored in the heat storage tank 31. The heat storage tank 31 has a function of storing the cold energy given from the high-side heat storage evaporator 25 in the heat storage medium 32 in the heat storage tank 31. In addition, the heat storage tank 31 has a function of cooling the low-source side liquid receiver 13 by the cold energy stored in the heat storage medium 32.

制御装置33には、高元側圧縮機21の吐出側の冷媒圧力を計測する高圧圧力センサ(図示せず)や、吸入側の冷媒圧力を計測する低圧圧力センサ(図示せず)、高元側蒸発器24の蒸発温度を計測する温度センサ(図示せず)、高元側蒸発器24出口の過冷却度を検出するために高元側蒸発器24の出口側温度を計測する温度センサ(図示せず)、高元側蓄熱蒸発器25出口の過冷却度を検出するために高元側蓄熱蒸発器25の出口側温度を計測する温度センサ(図示せず)など、高元冷凍サイクル20の運転制御に必要な各種の計測情報が入力される。制御装置33には、蓄熱槽31内に貯留された蓄熱媒体32の温度を計測する温度センサ(図示せず)からの計測情報が入力される。なお、高元側蒸発器24の蒸発温度は、高元側蒸発器24に設けた温度センサにより計測しても良いし、高元側冷媒回路の低圧圧力から算出しても良い。   The control device 33 includes a high pressure sensor (not shown) that measures the refrigerant pressure on the discharge side of the high-end compressor 21, a low-pressure sensor (not shown) that measures the refrigerant pressure on the suction side, A temperature sensor (not shown) for measuring the evaporation temperature of the side evaporator 24, and a temperature sensor (not shown) for measuring the outlet side temperature of the high side evaporator 24 in order to detect the degree of supercooling at the outlet of the high side evaporator 24 The high-source refrigeration cycle 20 such as a temperature sensor (not shown) that measures the outlet-side temperature of the high-side heat storage evaporator 25 to detect the degree of supercooling at the outlet of the high-side heat storage evaporator 25. Various measurement information necessary for the operation control is input. Measurement information from a temperature sensor (not shown) that measures the temperature of the heat storage medium 32 stored in the heat storage tank 31 is input to the control device 33. Note that the evaporation temperature of the high-end evaporator 24 may be measured by a temperature sensor provided in the high-end evaporator 24, or may be calculated from the low pressure of the high-end refrigerant circuit.

制御装置33は、各センサから入力された計測情報や、図示しない操作装置から使用者により指示された運転内容(設定温度等)などに基づいて、低元側圧縮機11及び高元側圧縮機21の運転周波数(容量)、高元側膨張弁23の絞り量、高元側凝縮器ファンの回転数などを制御する。   Based on the measurement information input from each sensor, the operation content (set temperature, etc.) instructed by the user from an operation device (not shown), the control device 33 is connected to the low-side compressor 11 and the high-side compressor. The operation frequency (capacity) 21, the throttle amount of the high-side expansion valve 23, the rotational speed of the high-side condenser fan, and the like are controlled.

二元冷凍装置においては、低元冷凍サイクル10の一部の機器(例えば低元側蒸発器16)を、例えばスーパーマーケット等に設置されるショーケースなどの室内の負荷装置に配置することがある。例えば、ショーケースを配置換えなどして配管の接続変更などを行って冷媒回路が開放されると、冷媒漏れが発生する可能性が多くなる。そこで、ここでは、低元冷凍サイクル10の低元側冷媒回路を循環させる冷媒として、冷媒漏れを考慮し、地球温暖化に対する影響が小さいCO2(二酸化炭素)を用いる。一方、高元冷凍サイクル20に用いる冷媒は、高元冷凍サイクル20は冷媒回路が開放されることがないため、例えば地球温暖化係数の高いHFC冷媒などを用いることができる。それでも、例えば、HFO冷媒(HFO1234yf、HFO1234ze等)、HC冷媒、CO2、アンモニア、水などの地球温暖化に対する影響が小さい冷媒を用いることが望ましい。そこで、本実施の形態では、高元冷凍サイクル20の高元側冷媒回路を循環させる冷媒としてHFO冷媒を用いる。 In the binary refrigeration apparatus, some devices (for example, the low element side evaporator 16) of the low element refrigeration cycle 10 may be arranged in an indoor load device such as a showcase installed in a supermarket or the like. For example, if the refrigerant circuit is opened by changing the connection of pipes by rearranging the showcase or the like, the possibility of refrigerant leakage increases. Therefore, here, CO 2 (carbon dioxide) having a small influence on global warming is used as the refrigerant circulating in the low-side refrigerant circuit of the low-source refrigeration cycle 10 in consideration of refrigerant leakage. On the other hand, since the refrigerant circuit used in the high refrigeration cycle 20 does not open the refrigerant circuit in the high refrigeration cycle 20, for example, an HFC refrigerant having a high global warming potential can be used. Nevertheless, it is desirable to use a refrigerant having a small influence on global warming, such as HFO refrigerant (HFO1234yf, HFO1234ze, etc.), HC refrigerant, CO 2 , ammonia, water, and the like. Therefore, in the present embodiment, an HFO refrigerant is used as a refrigerant that circulates in the high-side refrigerant circuit of the high-source refrigeration cycle 20.

(動作の概要)
次に、上記のような構成からなる二元冷凍装置の動作の概要について説明する。まず、冷凍負荷を冷却する動作に先んじ(又は同時対応でも良い)高元冷凍サイクル20の運転を行い、蓄熱槽31の蓄熱媒体32(ブライン、水等)にその冷熱を蓄える。そして、蓄熱媒体32に蓄熱された冷熱により、低元側受液器13自体および内部の冷媒が冷却される。
(Overview of operation)
Next, the outline | summary of operation | movement of the binary refrigeration apparatus which consists of the above structures is demonstrated. First, the operation of the high-source refrigeration cycle 20 is performed prior to the operation of cooling the refrigeration load (or may be performed simultaneously), and the cold energy is stored in the heat storage medium 32 (brine, water, etc.) of the heat storage tank 31. The low-source side liquid receiver 13 itself and the internal refrigerant are cooled by the cold energy stored in the heat storage medium 32.

以上のような二元冷凍装置の冷却運転における各構成機器の動作等を、各冷媒回路を循環する冷媒の流れに基づいて説明する。   The operation | movement of each component apparatus in the cooling operation of the above binary refrigeration apparatuses is demonstrated based on the flow of the refrigerant | coolant which circulates through each refrigerant circuit.

(高元冷凍サイクル20の動作)
まず、高元冷凍サイクル20の動作について説明する。高元側圧縮機21は、HFO冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は高元側凝縮器22へ流入する。高元側凝縮器22は、高元側凝縮器ファンから供給される外気とHFO冷媒との間で熱交換を行い、HFO冷媒を凝縮液化する。凝縮液化した冷媒は高元側膨張弁23を通過する。高元側膨張弁23は凝縮液化した冷媒を減圧する。減圧した冷媒は高元側蒸発器24(カスケードコンデンサ30)に流入する。高元側蒸発器24は、低元側凝縮器12を通過する冷媒との熱交換により冷媒を蒸発する。さらに、蒸発した冷媒は高元側蓄熱蒸発器25(蓄熱槽31)に流入する。高元側蓄熱蒸発器25は、蓄熱槽31に収容される蓄熱媒体32との熱交換により冷媒を蒸発、ガス化する。完全に蒸発ガス化したHFO冷媒を高元側圧縮機21が吸入する。
(Operation of high-source refrigeration cycle 20)
First, the operation of the high-source refrigeration cycle 20 will be described. The high-end compressor 21 sucks in the HFO refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the high-side condenser 22. The high-side condenser 22 exchanges heat between the outside air supplied from the high-side condenser fan and the HFO refrigerant, and condenses and liquefies the HFO refrigerant. The condensed and liquefied refrigerant passes through the high-side expansion valve 23. The high-side expansion valve 23 depressurizes the condensed and liquefied refrigerant. The decompressed refrigerant flows into the high-side evaporator 24 (cascade capacitor 30). The high-side evaporator 24 evaporates the refrigerant by heat exchange with the refrigerant passing through the low-side condenser 12. Furthermore, the evaporated refrigerant flows into the high-side heat storage evaporator 25 (heat storage tank 31). The high-source side heat storage evaporator 25 evaporates and gasifies the refrigerant by heat exchange with the heat storage medium 32 accommodated in the heat storage tank 31. The high-end compressor 21 sucks the HFO refrigerant completely evaporated and gasified.

(低元冷凍サイクル10の動作)
次に、低元冷凍サイクル10の動作について説明する。低元側圧縮機11は、CO2冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は低元側凝縮器12(カスケードコンデンサ30)へ流入する。低元側凝縮器12は、高元側蒸発器24を通過する冷媒との熱交換により冷媒を凝縮する。さらに、凝縮した冷媒は低元側受液器13(蓄熱槽31)へ流入する。低元側受液器13は、蓄熱槽31に収容される蓄熱媒体32により冷却され、内部の冷媒が凝縮する。完全に凝縮液化した冷媒は低元側膨張弁15を通過する。低元側膨張弁15は凝縮液化した冷媒を減圧する。減圧した冷媒は低元側蒸発器16に流入する。低元側蒸発器16は冷却対象との熱交換により冷媒を蒸発ガス化する。蒸発ガス化したCO2冷媒を高元側圧縮機21が吸入する。
(Operation of low-source refrigeration cycle 10)
Next, the operation of the low-source refrigeration cycle 10 will be described. The low-source compressor 11 sucks CO 2 refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the low-side condenser 12 (cascade capacitor 30). The low-side condenser 12 condenses the refrigerant by heat exchange with the refrigerant passing through the high-side evaporator 24. Furthermore, the condensed refrigerant flows into the low-source side receiver 13 (heat storage tank 31). The low-source side liquid receiver 13 is cooled by the heat storage medium 32 accommodated in the heat storage tank 31, and the internal refrigerant condenses. The completely condensed and liquefied refrigerant passes through the low-side expansion valve 15. The low-side expansion valve 15 depressurizes the condensed and liquefied refrigerant. The decompressed refrigerant flows into the low-side evaporator 16. The low-source evaporator 16 evaporates the refrigerant by exchanging heat with the object to be cooled. The high-end compressor 21 sucks the CO 2 refrigerant that has been vaporized.

(高元冷凍サイクル20が停止時における低元冷凍サイクル10の動作)
本実施の形態における二元冷凍装置は、高元冷凍サイクル20の故障などにより運転が停止している場合であっても、低元側受液器13の温度上昇に伴う圧力上昇を回避できる。このような高元冷凍サイクル20が停止時における低元冷凍サイクル10の動作について説明する。
低元側圧縮機11は、CO2冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は低元側凝縮器12(カスケードコンデンサ30)へ流入する。高元冷凍サイクル20が停止しているため低元側凝縮器12では、高元冷凍サイクル20を通過する冷媒との熱交換が十分に行われず、高温・高圧の状態で低元側受液器13(蓄熱槽31)へ流入する。CO2冷媒を用いた場合、周囲温度の上昇により超臨界状態で低元側受液器13へ流入される場合もある。低元側受液器13は、蓄熱槽31に収容される蓄熱媒体32により冷却され、低元側受液器13に流入した冷媒が冷却される。これにより、冷媒の温度上昇に伴う圧力上昇が抑制される。低元側受液器13から流出した冷媒は、低元側膨張弁15および低元側蒸発器16を経て、再び高元側圧縮機21に吸入される。
(Operation of the low refrigeration cycle 10 when the high refrigeration cycle 20 is stopped)
The binary refrigeration apparatus in the present embodiment can avoid an increase in pressure due to a temperature increase in the low-source side receiver 13 even when the operation is stopped due to a failure of the high-source refrigeration cycle 20 or the like. The operation of the low-source refrigeration cycle 10 when the high-source refrigeration cycle 20 is stopped will be described.
The low-source compressor 11 sucks CO 2 refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the low-side condenser 12 (cascade capacitor 30). Since the high-source refrigeration cycle 20 is stopped, the low-source side condenser 12 does not sufficiently exchange heat with the refrigerant passing through the high-source refrigeration cycle 20, and the low-source side receiver in a high temperature / high pressure state. 13 (heat storage tank 31). When a CO 2 refrigerant is used, it may flow into the low-source side receiver 13 in a supercritical state due to an increase in ambient temperature. The low source side liquid receiver 13 is cooled by the heat storage medium 32 accommodated in the heat storage tank 31, and the refrigerant flowing into the low source side liquid receiver 13 is cooled. Thereby, the pressure rise accompanying the temperature rise of a refrigerant | coolant is suppressed. The refrigerant that has flowed out of the low source side liquid receiver 13 passes through the low source side expansion valve 15 and the low source side evaporator 16 and is again sucked into the high source side compressor 21.

以上のように本実施の形態においては、高元側蓄熱蒸発器25と低元側受液器13とを収容し、高元側蓄熱蒸発器25によって蓄熱媒体32を冷却して冷熱を蓄熱するとともに、蓄熱媒体32に蓄熱された冷熱により低元側受液器13を冷却する蓄熱槽31を備えている。このため、高元冷凍サイクル20で蓄熱運転し、この蓄冷熱で低元側受液器13を冷却できる。このことにより、高元冷凍サイクル20が仮に故障等により停止しても、蓄熱槽31に貯蓄された冷熱によって低元側受液器13の温度上昇に伴う圧力上昇を抑制することができる。よって、二元冷凍装置の信頼性を向上することができる。また、過度に大きい受液器や高い設計圧に設定する必要がなく、コスト低減の効果も期待できる。   As described above, in the present embodiment, the high-side heat storage evaporator 25 and the low-side heat receiver 13 are accommodated, and the high-side heat storage evaporator 25 cools the heat storage medium 32 to store cold energy. At the same time, a heat storage tank 31 for cooling the low-source side liquid receiver 13 by the cold energy stored in the heat storage medium 32 is provided. For this reason, a heat storage operation is performed in the high-source refrigeration cycle 20, and the low-source side liquid receiver 13 can be cooled by the cold storage heat. Thereby, even if the high-source refrigeration cycle 20 is stopped due to a failure or the like, it is possible to suppress an increase in pressure due to the temperature increase of the low-source side liquid receiver 13 by the cold energy stored in the heat storage tank 31. Therefore, the reliability of the binary refrigeration apparatus can be improved. Further, it is not necessary to set an excessively large liquid receiver or a high design pressure, and an effect of cost reduction can be expected.

なお、高元冷凍サイクル20の運転が停止した場合には、低元冷凍サイクル10の運転も停止させるのが望ましい。このような、高元冷凍サイクル20および低元冷凍サイクル10の運転停止時に周囲温度が上昇しても、蓄熱槽31に貯蓄された冷熱によって低元側受液器13の温度上昇に伴う圧力上昇を抑制することができる。よって、二元冷凍装置の信頼性を向上することができる。また、過度に大きい受液器や高い設計圧に設定する必要がなく、コスト低減の効果も期待できる。   In addition, when the operation of the high-source refrigeration cycle 20 is stopped, it is desirable that the operation of the low-source refrigeration cycle 10 is also stopped. Even if the ambient temperature rises when the operation of the high-source refrigeration cycle 20 and the low-source refrigeration cycle 10 is stopped, the pressure rise accompanying the temperature rise of the low-source side receiver 13 due to the cold stored in the heat storage tank 31. Can be suppressed. Therefore, the reliability of the binary refrigeration apparatus can be improved. Further, it is not necessary to set an excessively large liquid receiver or a high design pressure, and an effect of cost reduction can be expected.

実施の形態2.
図2は、本発明の実施の形態2に係る二元冷凍装置の冷媒回路図である。図2において、上記実施の形態1の構成に加え、低元冷凍サイクル10は、低元側受液器13と低元側膨張弁15との間に、低元側蓄熱凝縮器14を備えている。
本実施の形態の蓄熱槽31には、低元側受液器13と低元側蓄熱凝縮器14と高元側蓄熱蒸発器25とが収容されており、高元側蓄熱蒸発器25から授与された冷熱を蓄熱槽31内の蓄熱媒体32に蓄え、この蓄熱媒体32に蓄熱された冷熱により低元側受液器13と低元側蓄熱凝縮器14とを冷却する。なお、低元側蓄熱凝縮器14は「第2蓄熱蒸発器」に相当する。
Embodiment 2. FIG.
FIG. 2 is a refrigerant circuit diagram of the binary refrigeration apparatus according to Embodiment 2 of the present invention. In FIG. 2, in addition to the configuration of the first embodiment, the low-source refrigeration cycle 10 includes a low-source side heat storage condenser 14 between the low-source side receiver 13 and the low-source side expansion valve 15. Yes.
In the heat storage tank 31 of the present embodiment, a low-source side receiver 13, a low-source-side heat storage condenser 14, and a high-source-side heat storage evaporator 25 are accommodated and given from the high-source-side heat storage evaporator 25. The stored cold heat is stored in the heat storage medium 32 in the heat storage tank 31, and the low-source side liquid receiver 13 and the low-source side heat storage condenser 14 are cooled by the cold heat stored in the heat storage medium 32. The low-source-side heat storage condenser 14 corresponds to a “second heat storage evaporator”.

本実施の形態における二元冷凍装置は、高元冷凍サイクル20と低元冷凍サイクル10で使用する冷媒により蓄熱槽31内の蓄熱媒体32を介して低温側の冷熱を高温側に移動させるものである。この間の運転効率は蓄熱媒体32(ブライン、水等)を介するため、カスケードコンデンサ30の直接熱交換に比べ冷媒間の温度差が大きくなり運転効率が低くなる。しかし、夜間などの蓄熱運転により冷却負荷平準化が可能となり、安定運転による冷凍サイクルの運転効率は向上し、蓄熱槽31内の熱交換による運転効率の低下を補って余りある。   The binary refrigeration apparatus in the present embodiment moves the cold on the low temperature side to the high temperature side via the heat storage medium 32 in the heat storage tank 31 by the refrigerant used in the high refrigeration cycle 20 and the low refrigeration cycle 10. is there. Since the operation efficiency during this time is via the heat storage medium 32 (brine, water, etc.), the temperature difference between the refrigerants is larger than that in the direct heat exchange of the cascade condenser 30 and the operation efficiency is lowered. However, it is possible to level the cooling load by heat storage operation such as at night, and the operation efficiency of the refrigeration cycle by stable operation is improved, which more than compensates for the decrease in operation efficiency due to heat exchange in the heat storage tank 31.

冷却負荷平準化による安定運転の効果について補足する。冷凍機は定格環境条件である外気32℃において使用される場合に最大運転効率となるように設計される。定格条件から外れた環境での使用は、著しい性能低下を招く恐れがある。具体的には、高外気温度時の圧縮機動作は高圧縮比、高回転となり、低外気温度時は低圧縮比、低回転となる。特に、二元冷凍装置においては圧縮機を2台用いるため、圧縮過程が分割され通常冷凍機より低圧縮比による性能低下が危惧される。このため、夜間など低外気時の蓄熱運転、または昼間などの高外気時の蓄熱利用運転による冷却負荷平準化によって圧縮比、回転数が安定し、運転効率低下を回避できる。   It supplements about the effect of stable operation by cooling load leveling. The refrigerator is designed to have a maximum operating efficiency when used at a rated environmental condition of 32 ° C. outside air. Use in environments outside the rated conditions can lead to significant performance degradation. Specifically, the compressor operation at a high outside air temperature has a high compression ratio and high rotation, and at a low outside air temperature, the compressor has a low compression ratio and low rotation. In particular, in the two-stage refrigeration apparatus, since two compressors are used, the compression process is divided, and there is a concern that the performance may be deteriorated due to a lower compression ratio than a normal refrigerator. For this reason, the compression ratio and the rotational speed are stabilized by the heat load leveling operation by the heat storage operation at the time of low outside air such as nighttime or the heat storage use operation at the time of the high outside air such as daytime, and the reduction of the operation efficiency can be avoided.

本実施の形態の二元冷凍装置は、高元側と低元側の独立性を可能とし、冷凍機設計、設置容量の独立性やサービスの独立性が推進される。   The binary refrigeration apparatus of the present embodiment enables independence between the high unit side and the low unit side, and the independence of the refrigerator design, installation capacity, and service is promoted.

高元冷凍サイクル20をヒートポンプとし低元側凝縮器12の冷媒熱を利用できるよう切り換え接続すれば、暖房あるいは給湯の熱源として冷凍、冷蔵熱の熱回収運転も可能となる。   If the high-source refrigeration cycle 20 is used as a heat pump and switched so that the refrigerant heat of the low-side condenser 12 can be used, a heat recovery operation of refrigeration and refrigeration heat can be performed as a heat source for heating or hot water supply.

例えば、冷媒がアンモニアの場合、毒性のため、現地での在人空間までの冷媒配管接続は好ましくない。炭化水素(HC)も可燃ガスのためチャージ量の使用制限がある。フロン(HFC)は温暖化ガスであり、ガス漏れを防止するため、これらの冷媒はできるだけ現地配管は避けるべきである。本実施の形態は、高元冷媒回路(アンモニア、HC、HFCなど)とはカスケードコンデンサ30で分離してあり、在人空間においては、低元冷媒回路に炭酸ガス(CO2など)を用いれば安全である。 For example, when the refrigerant is ammonia, the refrigerant piping connection to the manned space at the site is not preferable because of toxicity. Since hydrocarbon (HC) is also a flammable gas, there are restrictions on the amount of charge used. Fluorocarbon (HFC) is a warming gas and these refrigerants should avoid local piping as much as possible to prevent gas leakage. In the present embodiment, the high-source refrigerant circuit (ammonia, HC, HFC, etc.) is separated from the cascade condenser 30. In manned space, carbon dioxide (CO 2, etc.) is used for the low-source refrigerant circuit. It is safe.

このような構成の二元冷凍装置においては、低元冷凍サイクル10の一部の機器(例えば低元側蒸発器16)を、例えばスーパーマーケット等に設置されるショーケースなどの室内の負荷装置に配置することがある。例えば、ショーケースを配置換えなどして配管の接続変更などを行って冷媒回路が開放されると、冷媒漏れが発生する可能性が多くなる。そこで、ここでは、低元冷凍サイクル10の低元側冷媒回路を循環させる冷媒として、冷媒漏れを考慮し、地球温暖化に対する影響が小さいCO2(二酸化炭素)を用いる。一方、高元冷凍サイクル20に用いる冷媒は、高元冷凍サイクル20は冷媒回路が開放されることがないため、例えば地球温暖化係数の高いHFC冷媒などを用いることができる。それでも、例えば、HFO冷媒(HFO1234yf、HFO1234ze等)、HC冷媒、CO2、アンモニア、水などの地球温暖化に対する影響が小さい冷媒を用いることが望ましい。そこで、本実施の形態では、高元冷凍サイクル20の高元側冷媒回路を循環させる冷媒としてHFO冷媒を用いる。 In the binary refrigeration apparatus having such a configuration, a part of the low refrigeration cycle 10 (for example, the low original evaporator 16) is disposed in an indoor load device such as a showcase installed in a supermarket or the like. There are things to do. For example, if the refrigerant circuit is opened by changing the connection of pipes by rearranging the showcase or the like, the possibility of refrigerant leakage increases. Therefore, here, CO 2 (carbon dioxide) having a small influence on global warming is used as the refrigerant circulating in the low-side refrigerant circuit of the low-source refrigeration cycle 10 in consideration of refrigerant leakage. On the other hand, since the refrigerant circuit used in the high refrigeration cycle 20 does not open the refrigerant circuit in the high refrigeration cycle 20, for example, an HFC refrigerant having a high global warming potential can be used. Nevertheless, it is desirable to use a refrigerant having a small influence on global warming, such as HFO refrigerant (HFO1234yf, HFO1234ze, etc.), HC refrigerant, CO 2 , ammonia, water, and the like. Therefore, in the present embodiment, an HFO refrigerant is used as a refrigerant that circulates in the high-side refrigerant circuit of the high-source refrigeration cycle 20.

以上のような二元冷凍装置の冷却運転における各構成機器の動作等を、各冷媒回路を循環する冷媒の流れに基づいて説明する。   The operation | movement of each component apparatus in the cooling operation of the above binary refrigeration apparatuses is demonstrated based on the flow of the refrigerant | coolant which circulates through each refrigerant circuit.

(高元冷凍サイクル20の動作)
まず、高元冷凍サイクル20の動作について説明する。高元側圧縮機21は、HFO冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は高元側凝縮器22へ流入する。高元側凝縮器22は、高元側凝縮器ファンから供給される外気とHFO冷媒との間で熱交換を行い、HFO冷媒を凝縮液化する。凝縮液化した冷媒は高元側膨張弁23を通過する。高元側膨張弁23は凝縮液化した冷媒を減圧する。減圧した冷媒は高元側蒸発器24(カスケードコンデンサ30)に流入する。高元側蒸発器24は、低元側凝縮器12を通過する冷媒との熱交換により冷媒を蒸発する。さらに、蒸発した冷媒は高元側蓄熱蒸発器25(蓄熱槽31)に流入する。高元側蓄熱蒸発器25は、蓄熱槽31に収容される蓄熱媒体32との熱交換により冷媒を蒸発、ガス化する。完全に蒸発ガス化したHFO冷媒を高元側圧縮機21が吸入する。
(Operation of high-source refrigeration cycle 20)
First, the operation of the high-source refrigeration cycle 20 will be described. The high-end compressor 21 sucks in the HFO refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the high-side condenser 22. The high-side condenser 22 exchanges heat between the outside air supplied from the high-side condenser fan and the HFO refrigerant, and condenses and liquefies the HFO refrigerant. The condensed and liquefied refrigerant passes through the high-side expansion valve 23. The high-side expansion valve 23 depressurizes the condensed and liquefied refrigerant. The decompressed refrigerant flows into the high-side evaporator 24 (cascade capacitor 30). The high-side evaporator 24 evaporates the refrigerant by heat exchange with the refrigerant passing through the low-side condenser 12. Furthermore, the evaporated refrigerant flows into the high-side heat storage evaporator 25 (heat storage tank 31). The high-source side heat storage evaporator 25 evaporates and gasifies the refrigerant by heat exchange with the heat storage medium 32 accommodated in the heat storage tank 31. The high-end compressor 21 sucks the HFO refrigerant completely evaporated and gasified.

(低元冷凍サイクル10の動作)
次に、低元冷凍サイクル10の動作について説明する。低元側圧縮機11は、CO2冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は低元側凝縮器12(カスケードコンデンサ30)へ流入する。低元側凝縮器12は、高元側蒸発器24を通過する冷媒との熱交換により冷媒を凝縮する。凝縮した冷媒は低元側受液器13に貯留され、低元側蓄熱凝縮器14(蓄熱槽31)へ流入する。低元側蓄熱凝縮器14は、蓄熱槽31に収容される蓄熱媒体32との熱交換により冷媒を凝縮する。完全に凝縮液化した冷媒は低元側膨張弁15を通過する。低元側膨張弁15は凝縮液化した冷媒を減圧する。減圧した冷媒は低元側蒸発器16に流入する。低元側蒸発器16は冷却対象との熱交換により冷媒を蒸発ガス化する。蒸発ガス化したCO2冷媒を高元側圧縮機21が吸入する。
(Operation of low-source refrigeration cycle 10)
Next, the operation of the low-source refrigeration cycle 10 will be described. The low-source compressor 11 sucks CO 2 refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the low-side condenser 12 (cascade capacitor 30). The low-side condenser 12 condenses the refrigerant by heat exchange with the refrigerant passing through the high-side evaporator 24. The condensed refrigerant is stored in the low-source side receiver 13 and flows into the low-source side heat storage condenser 14 (heat storage tank 31). The low-source-side heat storage condenser 14 condenses the refrigerant by heat exchange with the heat storage medium 32 accommodated in the heat storage tank 31. The completely condensed and liquefied refrigerant passes through the low-side expansion valve 15. The low-side expansion valve 15 depressurizes the condensed and liquefied refrigerant. The decompressed refrigerant flows into the low-side evaporator 16. The low-source evaporator 16 evaporates the refrigerant by exchanging heat with the object to be cooled. The high-end compressor 21 sucks the CO 2 refrigerant that has been vaporized.

(冷却負荷に応じた運転動作)
本実施の形態の二元冷凍装置では、例えば、高元側圧縮機21において、駆動するモータの周波数を制御し、高元冷凍サイクル20における冷却能力を制御することにより低元側冷媒回路における吐出側の圧力(低元側高圧)を調節する。カスケードコンデンサ30において、低元側凝縮器12の凝縮温度(低元側凝縮温度)と高元側蒸発器24の蒸発温度(高元側蒸発温度)との温度差ΔTが生じるものとする。温度差ΔTはカスケードコンデンサ30の熱交換量によって変化するが、ここでは例えば5℃程度とする。ある運転状態から高元側圧縮機21の運転周波数を上げて高元側の冷却能力を増大させると、高元側蒸発温度が低下する。低下した高元側蒸発温度に伴い低元側凝縮温度(低元側高圧)も低下する。逆に、高元側の冷却能力が低減すれば低元側高圧も上昇する。
(Operation according to the cooling load)
In the binary refrigeration apparatus of the present embodiment, for example, in the high-side compressor 21, the frequency of the motor to be driven is controlled, and the cooling capacity in the high-side refrigeration cycle 20 is controlled, thereby discharging in the low-side refrigerant circuit. Adjust the side pressure (low source side high pressure). In the cascade capacitor 30, a temperature difference ΔT between the condensation temperature of the low-source side condenser 12 (low-source-side condensation temperature) and the evaporation temperature of the high-side evaporator 24 (high-source-side evaporation temperature) occurs. Although the temperature difference ΔT varies depending on the heat exchange amount of the cascade capacitor 30, it is set to about 5 ° C. here, for example. If the operating frequency of the high-side compressor 21 is increased from a certain operating state to increase the high-side cooling capacity, the high-side evaporation temperature decreases. Along with the reduced high element side evaporation temperature, the low element side condensation temperature (low element side high pressure) also decreases. Conversely, if the cooling capacity on the high element side is reduced, the low element side high pressure is also increased.

本実施の形態の二元冷凍装置では、外気温度に応じて冷却負荷が変化し、冷却負荷に対して冷凍能力(低元冷凍サイクル10側の蒸発能力に相当)を決定している。そして、必要とする冷凍能力を得られるように低元側圧縮機11により冷媒流量を制御している。   In the dual refrigeration apparatus of the present embodiment, the cooling load changes according to the outside air temperature, and the refrigeration capacity (corresponding to the evaporation capacity on the low-source refrigeration cycle 10 side) is determined with respect to the cooling load. And the refrigerant | coolant flow volume is controlled by the low-source side compressor 11 so that the required refrigerating capacity can be obtained.

以下、冷却負荷の大きさ別に、通常運転モード、蓄熱運転モード、蓄熱利用運転モードの各運転動作について説明する。   Hereinafter, each operation operation of the normal operation mode, the heat storage operation mode, and the heat storage use operation mode will be described according to the size of the cooling load.

<冷却負荷:通常>
冷却負荷が通常時(中間期など)の場合、蓄熱槽31への蓄熱または利用を行わない通常運転モードを実施する。この通常運転モードでは、冷媒間で直接熱交換するカスケードコンデンサ30を用いて高効率運転を行う。本実施の形態においては、高元側冷媒回路は冷媒がカスケードコンデンサ30から蓄熱槽31の順に流れるように接続し、低元側冷媒回路は冷媒がカスケードコンデンサ30から蓄熱槽31の順に流れるように接続しているため、熱交換の大部分をカスケードコンデンサ30で行う。
<Cooling load: Normal>
When the cooling load is normal (such as an intermediate period), the normal operation mode in which the heat storage tank 31 is not stored or used is performed. In this normal operation mode, high-efficiency operation is performed using a cascade capacitor 30 that directly exchanges heat between refrigerants. In the present embodiment, the high-source side refrigerant circuit is connected so that the refrigerant flows in the order from the cascade capacitor 30 to the heat storage tank 31, and the low-source side refrigerant circuit is set so that the refrigerant flows in the order from the cascade capacitor 30 to the heat storage tank 31. Since they are connected, most of the heat exchange is performed by the cascade capacitor 30.

制御装置33は、カスケードコンデンサ30(高元側蒸発器24)出口の冷媒過熱度が所定値(例えば2℃程度)となるように、高元側膨張弁23の絞り量を制御する。これにより、カスケードコンデンサ30出口の高元側冷媒回路の冷媒は完全に蒸発する。これに伴い、低元側冷媒回路の冷媒もカスケードコンデンサ30(低元側凝縮器12)により完全に凝縮する。このため、より確実にカスケードコンデンサ30にて必要とする熱交換を実施できる。   The control device 33 controls the throttle amount of the high-side expansion valve 23 so that the refrigerant superheat degree at the outlet of the cascade condenser 30 (high-side evaporator 24) becomes a predetermined value (for example, about 2 ° C.). As a result, the refrigerant in the high-end refrigerant circuit at the outlet of the cascade capacitor 30 is completely evaporated. Accordingly, the refrigerant in the low-side refrigerant circuit is also completely condensed by the cascade condenser 30 (low-side condenser 12). For this reason, the heat exchange required by the cascade condenser 30 can be implemented more reliably.

また、制御装置33は、高元側蒸発器24の蒸発温度が蓄熱媒体32の温度とほぼ同等となるように、高元側圧縮機21の容量を制御する。これにより、高元側蓄熱蒸発器25を通過する高元側冷媒回路の冷媒温度と蓄熱媒体32の温度がほぼ一致し、高元側冷媒回路の冷媒と蓄熱媒体32との間で熱交換が行われない。一方、上述したように本実施の形態においては、低元側凝縮温度と高元側蒸発温度とに温度差ΔT(例えば5℃程度)が生じている。このため、低元側凝縮温度が高元側蒸発温度より高いが、低元側蓄熱凝縮器14出口の液過冷却度が0℃(飽和液)から2℃程度となるように冷媒封入量を調節することにより、低元側蓄熱凝縮器14を通過する低元側冷媒回路の冷媒温度と蓄熱媒体32の温度とがほぼ一致し、低元側冷媒回路と蓄熱媒体32との間で熱交換が行われない。したがって、通常運転モードでは、蓄熱槽31において蓄熱媒体32を介した熱交換を行わず、カスケードコンデンサ30による熱交換を実施できるため、高効率運転が可能となる。   Further, the control device 33 controls the capacity of the high-side compressor 21 so that the evaporation temperature of the high-side evaporator 24 is substantially equal to the temperature of the heat storage medium 32. As a result, the refrigerant temperature of the high-side refrigerant circuit passing through the high-side heat storage evaporator 25 substantially matches the temperature of the heat storage medium 32, and heat exchange is performed between the refrigerant of the high-side refrigerant circuit and the heat storage medium 32. Not done. On the other hand, as described above, in the present embodiment, there is a temperature difference ΔT (for example, about 5 ° C.) between the low-side condensation temperature and the high-side evaporation temperature. For this reason, the amount of refrigerant filled is set so that the low-side condensation temperature is higher than the high-side evaporation temperature, but the liquid supercooling degree at the outlet of the low-side heat storage condenser 14 is about 0 ° C. (saturated liquid) to about 2 ° C. By adjusting, the refrigerant temperature of the low-side refrigerant circuit passing through the low-side heat storage condenser 14 and the temperature of the heat storage medium 32 substantially match, and heat is exchanged between the low-side refrigerant circuit and the heat storage medium 32. Is not done. Therefore, in the normal operation mode, heat exchange through the heat storage medium 32 is not performed in the heat storage tank 31, and heat exchange by the cascade capacitor 30 can be performed, so that highly efficient operation is possible.

なお、蓄熱槽31に収納した低元側受液器13を蓄熱媒体32の冷熱により冷却することで、低元側受液器13に貯留される冷媒の液過冷却度を拡大することができ、さらなる冷凍効果を得ることができ運転効率を向上することが可能となる。   In addition, the liquid subcooling degree of the refrigerant | coolant stored by the low source side liquid receiver 13 can be expanded by cooling the low source side liquid receiver 13 accommodated in the heat storage tank 31 with the cold of the heat storage medium 32. Further, it is possible to obtain a further refrigeration effect and to improve the operation efficiency.

<冷却負荷:小さい>
冷却負荷が小さい場合(冬期、夜間など)、高元側冷媒回路(高元側蓄熱蒸発器25)によって蓄熱媒体32を冷却して冷熱を蓄熱する蓄熱運転モードを実施する。この蓄熱運転モードでは、冷媒間で直接熱交換するカスケードコンデンサ30を用いて高効率運転を行いつつ、高元側蓄熱蒸発器25によって蓄熱媒体32を冷却して冷熱を蓄熱する蓄熱運転を行う。冷却負荷が小さいときはカスケードコンデンサ30の熱交換量が減少するため、高元側冷媒回路の冷却能力が冷却負荷より過剰となる。このため、高元側冷媒回路の冷媒はカスケードコンデンサ30(高元側蒸発器24)において完全には蒸発せず、残った冷熱は高元側蓄熱蒸発器25において蓄熱媒体32への蓄熱分として消費される。
<Cooling load: small>
When the cooling load is small (in winter, at night, etc.), a heat storage operation mode is performed in which the heat storage medium 32 is cooled by the high-source side refrigerant circuit (high-source side heat storage evaporator 25) to store cold energy. In this heat storage operation mode, while performing high efficiency operation using the cascade condenser 30 that directly exchanges heat between the refrigerants, the heat storage operation is performed in which the heat storage medium 32 is cooled by the high-source side heat storage evaporator 25 to store the cold energy. When the cooling load is small, the heat exchange amount of the cascade condenser 30 is reduced, so that the cooling capacity of the high-source side refrigerant circuit becomes excessive as compared with the cooling load. For this reason, the refrigerant in the high-end side refrigerant circuit does not completely evaporate in the cascade capacitor 30 (the high-end side evaporator 24), and the remaining cold heat is stored in the high-end side heat storage evaporator 25 as heat storage to the heat storage medium 32. Is consumed.

さらに、制御装置33は、蓄熱槽31出口(高元側蓄熱蒸発器25出口)の冷媒過熱度が所定値(例えば2℃程度)となるように、高元側膨張弁23の絞り量を制御する。これにより、カスケードコンデンサ30と蓄熱槽31の熱交換により、高元側蓄熱蒸発器25出口の高元側冷媒回路の冷媒は完全に蒸発し、効率よく蓄熱することが可能となる。   Further, the control device 33 controls the throttle amount of the high-side expansion valve 23 so that the refrigerant superheat degree at the outlet of the heat storage tank 31 (high-side heat storage evaporator 25 outlet) becomes a predetermined value (for example, about 2 ° C.). To do. Thereby, by the heat exchange between the cascade capacitor 30 and the heat storage tank 31, the refrigerant in the high-side refrigerant circuit at the outlet of the high-side heat storage evaporator 25 is completely evaporated and heat can be stored efficiently.

また、制御装置33は、高元側蒸発器24の蒸発温度が蓄熱媒体32の温度より所定温度(例えば5℃程度)低くなるように、高元側圧縮機21の容量を制御する。これにより、高元側蓄熱蒸発器25を通過する高元側冷媒回路の冷媒温度と蓄熱媒体32の温度とに適度な温度差が生じ、効率よく蓄熱することが可能となる。このとき、低元側冷媒回路の冷媒はカスケードコンデンサ30(低元側凝縮器12)により完全に凝縮し、蓄熱媒体32の温度とほぼ一致するため、熱交換を行わない。このため、高元側冷媒回路の冷媒による蓄熱が効率よく行うことができる。   In addition, the control device 33 controls the capacity of the high-end compressor 21 so that the evaporation temperature of the high-end evaporator 24 is lower than the temperature of the heat storage medium 32 by a predetermined temperature (for example, about 5 ° C.). Thereby, an appropriate temperature difference arises between the refrigerant temperature of the high-side refrigerant circuit passing through the high-side heat storage evaporator 25 and the temperature of the heat storage medium 32, and heat can be stored efficiently. At this time, the refrigerant in the low-side refrigerant circuit is completely condensed by the cascade capacitor 30 (low-side condenser 12) and substantially matches the temperature of the heat storage medium 32, so heat exchange is not performed. For this reason, the heat storage by the refrigerant | coolant of a high-source side refrigerant circuit can be performed efficiently.

<冷却負荷:大きい>
冷却負荷が大きい場合(夏期、昼間など)、蓄熱媒体32に蓄熱された冷熱を利用して低元側蓄熱凝縮器14を冷却する蓄熱利用運転モードを実施する。この蓄熱利用運転モードでは、冷媒間で直接熱交換するカスケードコンデンサ30を用いて高効率運転を行いつつ、蓄熱媒体32に蓄熱された冷熱により低元側蓄熱凝縮器14を冷却する蓄熱利用運転を行う。冷却負荷が大きいときはカスケードコンデンサ30の熱交換量が増大するため、高元側冷媒回路の冷却能力が冷却負荷より不足となる。このため、低元側冷媒回路の冷媒はカスケードコンデンサ30(低元側凝縮器12)において完全には凝縮せず、残った放熱量は低元側蓄熱凝縮器14において蓄熱媒体32の蓄冷熱により処理する。
<Cooling load: large>
When the cooling load is large (summer, daytime, etc.), a heat storage use operation mode is performed in which the low heat storage condenser 14 is cooled using the cold stored in the heat storage medium 32. In this heat storage use operation mode, the heat storage use operation for cooling the low-source-side heat storage condenser 14 by the cold heat stored in the heat storage medium 32 while performing the high-efficiency operation using the cascade capacitor 30 that directly exchanges heat between the refrigerants. Do. When the cooling load is large, the heat exchange amount of the cascade condenser 30 increases, so that the cooling capacity of the high-source side refrigerant circuit becomes insufficient compared to the cooling load. For this reason, the refrigerant in the low-side refrigerant circuit is not completely condensed in the cascade capacitor 30 (low-side condenser 12), and the remaining heat dissipation amount is caused by the cold storage heat of the heat storage medium 32 in the low-side heat storage condenser 14. To process.

制御装置33は、カスケードコンデンサ30(高元側蒸発器24)出口の冷媒過熱度が所定値(例えば2℃程度)となるように、高元側膨張弁23の絞り量を制御する。これにより、カスケードコンデンサ30出口の高元側冷媒回路の冷媒は完全に蒸発する。これにより、より確実にカスケードコンデンサ30にて高元側冷媒回路の冷却能力を出力することができる。   The control device 33 controls the throttle amount of the high-side expansion valve 23 so that the refrigerant superheat degree at the outlet of the cascade condenser 30 (high-side evaporator 24) becomes a predetermined value (for example, about 2 ° C.). As a result, the refrigerant in the high-end refrigerant circuit at the outlet of the cascade capacitor 30 is completely evaporated. As a result, the cooling capacity of the high-side refrigerant circuit can be output more reliably by the cascade capacitor 30.

また、制御装置33は、高元側蒸発器24の蒸発温度が蓄熱媒体32の温度とほぼ同等となるように、高元側圧縮機21の容量を制御する。これにより、高元側蓄熱蒸発器25を通過する高元側冷媒回路の冷媒温度と蓄熱媒体32の温度がほぼ一致し、高元側冷媒回路の冷媒と蓄熱媒体32との間で熱交換が行われない。一方、低元側凝縮温度と蓄熱媒体32の温度に適度な温度差(例えば5℃)が生じ、効率よく蓄熱利用することが可能となる。   Further, the control device 33 controls the capacity of the high-side compressor 21 so that the evaporation temperature of the high-side evaporator 24 is substantially equal to the temperature of the heat storage medium 32. As a result, the refrigerant temperature of the high-side refrigerant circuit passing through the high-side heat storage evaporator 25 substantially matches the temperature of the heat storage medium 32, and heat exchange is performed between the refrigerant of the high-side refrigerant circuit and the heat storage medium 32. Not done. On the other hand, an appropriate temperature difference (for example, 5 ° C.) is generated between the low-side condensation temperature and the temperature of the heat storage medium 32, so that the heat can be efficiently used.

(冷却負荷の検知)
ここで、冷却負荷の検知方法の一例について説明する。前述したように、冷却負荷に対して冷凍能力決定し、必要とする冷凍能力を得るために低元側圧縮機11により冷媒流量を制御している。すなわち、必要とされる冷凍能力を出力し、低元側蒸発温度を一定に保つことにより、接続される冷却対象の温度(例えばショーケースの庫内温度)を一定に保つ。具体的には、冷却負荷が高まれば冷却対象の温度(庫内温度)が上昇し、低元側蒸発温度が上昇するため、低元側圧縮機11の回転数を増大させ、所定の低元側蒸発温度とする。冷却負荷が小さくなれば低元側蒸発温度が低下するため、低元側圧縮機11の回転数を減少させ、所定の低元側蒸発温度とする。
(Cooling load detection)
Here, an example of a method for detecting the cooling load will be described. As described above, the refrigeration capacity is determined for the cooling load, and the refrigerant flow rate is controlled by the low-side compressor 11 in order to obtain the required refrigeration capacity. That is, by outputting the required refrigeration capacity and keeping the low-side evaporation temperature constant, the temperature of the connected cooling target (for example, the interior temperature of the showcase) is kept constant. Specifically, if the cooling load increases, the temperature of the object to be cooled (internal temperature) rises and the low-side evaporation temperature rises. Therefore, the rotational speed of the low-side compressor 11 is increased, and a predetermined low Let it be the side evaporation temperature. If the cooling load is reduced, the low-side evaporation temperature is lowered. Therefore, the rotational speed of the low-side compressor 11 is decreased to a predetermined low-side evaporation temperature.

このため、冷却負荷は低元側圧縮機11の回転数によって判断することができる。そこで、本実施の形態における制御装置33は、低元側圧縮機11の回転数から当該二元冷凍装置の冷却負荷を検知する。そして、検知した冷却負荷に応じて上記の蓄熱運転モード、蓄熱利用運転モード、または通常運転モードを実施することで、冷却負荷に応じた適切な運転モードを実施できるため、効率的な運転が可能となる。   For this reason, the cooling load can be determined by the rotational speed of the low-source compressor 11. Therefore, the control device 33 in the present embodiment detects the cooling load of the binary refrigeration apparatus from the rotational speed of the low-source compressor 11. And, by implementing the above heat storage operation mode, heat storage use operation mode, or normal operation mode according to the detected cooling load, it is possible to implement an appropriate operation mode according to the cooling load, enabling efficient operation It becomes.

具体的には、制御装置33は、冷却負荷が第1所定値よりも小さい場合、即ち、低元側圧縮機11の回転数が第1回転数よりも小さい場合、冷却負荷が小さいと判断して、蓄熱運転モードを実施する。また、冷却負荷が第1所定値よりも大きい第2所定値を超えた場合、即ち、低元側圧縮機11の回転数が第1回転数よりも大きい第2回転数を超えた場合、冷却負荷が大きいと判断して、蓄熱利用運転モードを実施する。また、冷却負荷が第1所定値を超え第2所定値以下の場合、即ち、低元側圧縮機11の回転数が第1回転数を超え第2回転数以下の場合、冷却負荷が通常であると判断して、通常運転モードを実施する。   Specifically, the control device 33 determines that the cooling load is small when the cooling load is smaller than the first predetermined value, that is, when the rotational speed of the low-source compressor 11 is smaller than the first rotational speed. And implement the heat storage operation mode. Further, when the cooling load exceeds a second predetermined value that is larger than the first predetermined value, that is, when the rotational speed of the low-source compressor 11 exceeds the second rotational speed that is larger than the first rotational speed, cooling is performed. It is determined that the load is large, and the heat storage use operation mode is performed. When the cooling load exceeds the first predetermined value and is equal to or less than the second predetermined value, that is, when the rotation speed of the low-source compressor 11 exceeds the first rotation speed and is equal to or less than the second rotation speed, the cooling load is normal. It is determined that there is a normal operation mode.

冷却負荷の検知方法はこれに限るものではなく、外気温度や冷却対象の温度により冷却負荷の大小を判断しても良い。また、例えば夜間や昼間、冬期や夏期など、時刻や時期により、冷却負荷の大小を想定して、上記運転モードを切り替えるようにしても良い。   The method of detecting the cooling load is not limited to this, and the size of the cooling load may be determined based on the outside air temperature or the temperature of the cooling target. Further, for example, the operation mode may be switched on the basis of the time and time, such as nighttime, daytime, winter, and summer, assuming the magnitude of the cooling load.

(高元冷凍サイクル20が停止時における低元冷凍サイクル10の動作)
本実施の形態における二元冷凍装置は、高元冷凍サイクル20の運転状態によらず、低元冷凍サイクル10の運転の起動が可能である。即ち本実施の形態の二元冷凍装置においては、低元冷凍サイクル10が蓄熱槽31に貯蓄された冷熱を利用するため、低元冷凍サイクル10の運転を起動させたあとに高元冷凍サイクル20の運転を起動してもよいし、高元冷凍サイクル20の運転から起動しても、または各サイクルの運転を同時に起動してもよい。
ここで、高元冷凍サイクル20が停止時において低元冷凍サイクル10の運転を起動した場合の動作について説明する。なお、高元冷凍サイクル20から起動する場合または同時に起動する場合は、上述した動作となる。
(Operation of the low refrigeration cycle 10 when the high refrigeration cycle 20 is stopped)
The binary refrigeration apparatus in the present embodiment can start the operation of the low-source refrigeration cycle 10 regardless of the operating state of the high-source refrigeration cycle 20. That is, in the binary refrigeration apparatus of the present embodiment, the low-source refrigeration cycle 10 uses the cold energy stored in the heat storage tank 31, and therefore, after the low-source refrigeration cycle 10 is activated, the high-source refrigeration cycle 20 is activated. May be activated, may be activated from the operation of the high-source refrigeration cycle 20, or may be activated simultaneously.
Here, the operation when the operation of the low-source refrigeration cycle 10 is started when the high-source refrigeration cycle 20 is stopped will be described. In addition, when starting from the high original refrigerating cycle 20, or when starting simultaneously, it becomes the operation | movement mentioned above.

低元側圧縮機11は、CO2冷媒を吸入し、圧縮して高温・高圧の状態にして吐出する。吐出した冷媒は低元側凝縮器12(カスケードコンデンサ30)へ流入する。高元冷凍サイクル20が停止しているため低元側凝縮器12では、高元冷凍サイクル20を通過する冷媒との熱交換が十分に行われず、高温・高圧の状態で低元側受液器13(蓄熱槽31)へ流入する。CO2冷媒を用いた場合、周囲温度の上昇により超臨界状態で低元側受液器13へ流入される場合もある。低元側受液器13は、蓄熱槽31に収容される蓄熱媒体32により冷却され、低元側受液器13に流入した冷媒が冷却される。これにより、冷媒の温度上昇に伴う圧力上昇が抑制される。低元側受液器13から流出した冷媒は低元側蓄熱凝縮器14(蓄熱槽31)へ流入する。低元側蓄熱凝縮器14は、蓄熱槽31に収容される蓄熱媒体32との熱交換により冷媒を凝縮する。凝縮液化した冷媒は低元側膨張弁15を通過する。低元側膨張弁15は凝縮液化した冷媒を減圧する。減圧した冷媒は低元側蒸発器16に流入する。低元側蒸発器16は冷却対象との熱交換により冷媒を蒸発ガス化する。蒸発ガス化したCO2冷媒を高元側圧縮機21が吸入する。 The low-source compressor 11 sucks CO 2 refrigerant, compresses it, and discharges it in a high temperature / high pressure state. The discharged refrigerant flows into the low-side condenser 12 (cascade capacitor 30). Since the high-source refrigeration cycle 20 is stopped, the low-source side condenser 12 does not sufficiently exchange heat with the refrigerant passing through the high-source refrigeration cycle 20, and the low-source side receiver in a high temperature / high pressure state. 13 (heat storage tank 31). When a CO 2 refrigerant is used, it may flow into the low-source side receiver 13 in a supercritical state due to an increase in ambient temperature. The low source side liquid receiver 13 is cooled by the heat storage medium 32 accommodated in the heat storage tank 31, and the refrigerant flowing into the low source side liquid receiver 13 is cooled. Thereby, the pressure rise accompanying the temperature rise of a refrigerant | coolant is suppressed. The refrigerant that has flowed out of the low source side liquid receiver 13 flows into the low source side heat storage condenser 14 (heat storage tank 31). The low-source-side heat storage condenser 14 condenses the refrigerant by heat exchange with the heat storage medium 32 accommodated in the heat storage tank 31. The condensed and liquefied refrigerant passes through the low-side expansion valve 15. The low-side expansion valve 15 depressurizes the condensed and liquefied refrigerant. The decompressed refrigerant flows into the low-side evaporator 16. The low-source evaporator 16 evaporates the refrigerant by exchanging heat with the object to be cooled. The high-end compressor 21 sucks the CO 2 refrigerant that has been vaporized.

このように本実施の形態における二元冷凍装置は、蓄熱槽31に貯蓄された冷熱を利用することで、高元冷凍サイクル20の運転状態によらず、低元冷凍サイクル10の運転の起動が可能である。   Thus, the binary refrigeration apparatus in the present embodiment uses the cold energy stored in the heat storage tank 31 so that the operation of the low-source refrigeration cycle 10 can be started regardless of the operating state of the high-source refrigeration cycle 20. Is possible.

従来の二元冷凍装置では、低元冷凍サイクルと高元冷凍サイクルとをカスケードコンデンサを介して一体的に組み立て、低元冷凍サイクルを運転するためには必ず高元冷凍サイクルの同時運転をしなければならない。一方、本実施の形態における二元冷凍装置は、上述したように、高元冷凍サイクル20の運転状態によらず、低元冷凍サイクル10を運転することができ、各冷凍サイクルの運転の独立性を可能とし、各冷凍サイクルの装置設計、設置容量の独立性やサービスの独立性を推進することが可能となる。   In a conventional dual refrigeration system, the low refrigeration cycle and the high refrigeration cycle are assembled together via a cascade capacitor, and the low refrigeration cycle must be operated simultaneously. I must. On the other hand, as described above, the binary refrigeration apparatus in the present embodiment can operate the low refrigeration cycle 10 regardless of the operating state of the high refrigeration cycle 20, and the independence of the operation of each refrigeration cycle. It is possible to promote device design of each refrigeration cycle, installation capacity independence and service independence.

また、本実施の形態における二元冷凍装置は、蓄熱槽31を備えたことにより、高元冷凍サイクル20の容量(冷凍能力)と、低元冷凍サイクル10の容量(冷凍能力)の一体的整合性は不要となる。例えば、高元冷凍サイクル20の容量が、低元冷凍サイクル10の容量以下であっても運転時間を考慮することにより高元側と低元側の負荷の整合性を図ることができる。   In addition, since the binary refrigeration apparatus in the present embodiment includes the heat storage tank 31, the capacity of the high-source refrigeration cycle 20 (refrigeration capacity) and the capacity of the low-source refrigeration cycle 10 (refrigeration capacity) are integrated. The sex becomes unnecessary. For example, even if the capacity of the high-source refrigeration cycle 20 is less than or equal to the capacity of the low-source refrigeration cycle 10, the load consistency between the high-source side and the low-source side can be achieved by considering the operation time.

即ち、下記式を満たすように、高元冷凍サイクル20の冷凍能力に運転時間を乗算した値が、低元冷凍サイクル10の冷凍能力に運転時間を乗算した値以上となるように、高元冷凍サイクル20及び低元冷凍サイクル10の運転を起動又は停止させる制御を行う。   That is, the high-source refrigeration is performed so that the value obtained by multiplying the refrigeration capacity of the high-source refrigeration cycle 20 by the operation time is equal to or greater than the value obtained by multiplying the refrigeration capacity of the low-source refrigeration cycle 10 by the operation time so as to satisfy the following formula. Control for starting or stopping the operation of the cycle 20 and the low-source refrigeration cycle 10 is performed.

高元側冷凍サイクルの冷凍能力×運転時間≧低元側冷凍サイクルの冷凍能力×運転時間   Refrigeration capacity of the high refrigeration cycle x operation time ≥ Refrigeration capacity of the low refrigeration cycle x operation time

なお、各冷凍サイクルの冷凍能力は公知の演算方法を用いることで求めることができる。例えば圧縮機の出力と、冷媒温度・圧力から換算したエンタルピーとを用いて、演算により算出することができる。
制御装置33は、各冷凍サイクルの冷凍能力を逐次算出し、運転時間を乗算する。そして、上記式を満たすように、高元冷凍サイクル20及び低元冷凍サイクル10の運転を起動又は停止させる制御を行う。例えば、高元冷凍サイクル20による蓄熱運転を行ったあと、高元冷凍サイクル20を停止し、低元冷凍サイクル10のみを運転した場合、上記式の右辺が左辺より大きくなった場合、制御装置33は、高元冷凍サイクル20の運転を起動し、上記式を満たすように制御する。
The refrigeration capacity of each refrigeration cycle can be obtained by using a known calculation method. For example, it can be calculated by calculation using the output of the compressor and the enthalpy converted from the refrigerant temperature and pressure.
The control device 33 sequentially calculates the refrigeration capacity of each refrigeration cycle and multiplies the operation time. And control which starts or stops operation of high original refrigeration cycle 20 and low original refrigeration cycle 10 is performed so that the above-mentioned formula may be satisfied. For example, after the heat storage operation by the high-source refrigeration cycle 20 is performed, when the high-source refrigeration cycle 20 is stopped and only the low-source refrigeration cycle 10 is operated, when the right side of the above formula becomes larger than the left side, the control device 33 Starts the operation of the high refrigeration cycle 20 and controls to satisfy the above equation.

以上のように本実施の形態においては、高元冷凍サイクル20の運転状態によらず、低元冷凍サイクル10を運転することができる。即ち、低元冷凍サイクル10から起動しても、高元冷凍サイクル20から起動しても、または各冷凍サイクルを同時に起動してもよい。特に、負荷装置に接続される低元冷凍サイクル10から起動すれば、例えばショーケースなどの負荷装置において起動後即座に冷却が行われるため、急速冷却が可能となり、ユーザー要求に適している。   As described above, in the present embodiment, the low-source refrigeration cycle 10 can be operated regardless of the operating state of the high-source refrigeration cycle 20. That is, starting from the low-source refrigeration cycle 10, starting from the high-source refrigeration cycle 20, or each refrigeration cycle may be started simultaneously. In particular, when starting from the low-source refrigeration cycle 10 connected to the load device, for example, the load device such as a showcase performs cooling immediately after the start-up, so that rapid cooling is possible, which is suitable for user requests.

また本実施の形態においては、冷却負荷の変動に対応して、カスケードコンデンサ30による高効率運転を行いつつ、蓄熱運転または蓄熱利用運転を行うことが可能となる。また、蓄熱以外の通常運転において高効率運転を達成し、蓄熱運転による冷却負荷平準化もまた実現できる。よって、常時省エネルギー化が可能となり、蓄熱運転による冷却負荷平準化によって使用電力料金の低減と、高効率となる動作点において安定運転できることから、さらなる省エネルギー化を図ることができる。   In the present embodiment, it is possible to perform a heat storage operation or a heat storage use operation while performing a high-efficiency operation by the cascade capacitor 30 in response to a change in cooling load. Further, high efficiency operation can be achieved in normal operation other than heat storage, and cooling load leveling by heat storage operation can also be realized. Therefore, it is possible to save energy at all times, and it is possible to achieve further energy saving because it is possible to reduce the amount of electric power used by cooling load leveling by heat storage operation and to stably operate at an operating point with high efficiency.

実施の形態3.
図3は、本発明の実施の形態3に係る二元冷凍装置の冷媒回路図である。図3において、上記実施の形態2の構成に加え、高元冷凍サイクル20は、高元側蓄熱蒸発器25をバイパスする高元側蓄熱バイパス管26を備え、低元冷凍サイクル10は、低元側蓄熱凝縮器14をバイパスする低元側蓄熱バイパス管17を備えている。
Embodiment 3 FIG.
FIG. 3 is a refrigerant circuit diagram of the binary refrigeration apparatus according to Embodiment 3 of the present invention. In FIG. 3, in addition to the configuration of the second embodiment, the high-source refrigeration cycle 20 includes a high-source side heat storage bypass pipe 26 that bypasses the high-source side heat storage evaporator 25, and the low-source refrigeration cycle 10 includes a low-source refrigeration cycle 10. A low-source side heat storage bypass pipe 17 that bypasses the side heat storage condenser 14 is provided.

高元側蓄熱バイパス管26には、冷媒流路を遮断または開放する開閉弁が設けられており、この開閉弁を遮断または開放することで、高元側蒸発器24から流出した冷媒が、高元側蓄熱蒸発器25を経て高元側圧縮機21へと至る流路と、高元側蓄熱蒸発器25をバイパスして高元側圧縮機21へと至る流路とが切り替えられる。また、低元側蓄熱バイパス管17には、冷媒流路を遮断または開放する開閉弁が設けられており、この開閉弁を遮断または開放することで、低元側凝縮器12から流出した冷媒が、低元側蓄熱凝縮器14を経て低元側膨張弁15へと至る流路と、低元側蓄熱凝縮器14をバイパスして低元側膨張弁15へと至る流路とが切り替えられる。   The high-source side heat storage bypass pipe 26 is provided with an on-off valve that shuts off or opens the refrigerant flow path. By shutting off or opening this on-off valve, the refrigerant flowing out of the high-end side evaporator 24 The flow path leading to the high-end side compressor 21 via the main-side heat storage evaporator 25 and the flow path leading to the high-end side compressor 21 by bypassing the high-end side heat storage evaporator 25 are switched. Further, the low-side heat storage bypass pipe 17 is provided with an on-off valve that shuts off or opens the refrigerant flow path. By shutting off or opening this on-off valve, the refrigerant that has flowed out of the low-side condenser 12 is discharged. The flow path leading to the low-source side expansion valve 15 via the low-element side heat storage condenser 14 and the flow path leading to the low-element side heat storage condenser 14 and bypassing the low-element side heat storage condenser 14 are switched.

さらに、高元冷凍サイクル20は、高元側蓄熱蒸発器25の上流側、即ち、高元側蒸発器24と高元側蓄熱蒸発器25との間に、高元側蓄熱膨張弁27を備えている。高元側蓄熱膨張弁27は、高元側蒸発器24から流出した冷媒を減圧して膨張させるものである。例えば電子式膨張弁等の流量制御手段等の任意の減圧装置、絞り装置等で構成する。   Further, the high-source refrigeration cycle 20 includes a high-source side heat storage expansion valve 27 upstream of the high-source side heat storage evaporator 25, that is, between the high-source side evaporator 24 and the high-source side heat storage evaporator 25. ing. The high-side heat storage expansion valve 27 decompresses the refrigerant flowing out from the high-side evaporator 24 and expands it. For example, an arbitrary pressure reducing device such as a flow rate control means such as an electronic expansion valve, a throttling device or the like is used.

上記のような構成により本実施の形態では、高元側冷媒回路において、蓄熱媒体32への蓄熱及び利用を行わない通常運転モード時には、高元側蓄熱バイパス管26の流路を開放し、一方の蓄熱槽31へ接続する配管は遮断する。このため、通常運転モードにおいては確実にカスケードコンデンサ30にて冷却能力を出力することができ、さらに蓄熱槽31において熱交換を一切行わないため、高効率な運転を実施できる。
また、蓄熱を行う蓄熱運転モード時には、高元側蓄熱バイパス管26の流路を遮断し、一方の蓄熱槽31へ接続する配管を開放する。この場合は、上述した実施の形態2と同様の動作となる。
With this configuration, in the present embodiment, in the high-side refrigerant circuit, in the normal operation mode in which heat storage and utilization to the heat storage medium 32 are not performed, the flow path of the high-side heat storage bypass pipe 26 is opened. The piping connected to the heat storage tank 31 is cut off. For this reason, in the normal operation mode, the cooling capacity can be surely output by the cascade capacitor 30, and furthermore, no heat exchange is performed in the heat storage tank 31, so that highly efficient operation can be performed.
Moreover, at the time of the heat storage operation mode in which heat storage is performed, the flow path of the high-source side heat storage bypass pipe 26 is shut off, and the pipe connected to the one heat storage tank 31 is opened. In this case, the operation is the same as that of the second embodiment described above.

また、本実施の形態では、高元側蓄熱膨張弁27を設置している。このため、蓄熱槽31に流入する高元側冷媒回路の冷媒の蒸発温度を独立して制御できるようになる。このため、当該二元冷凍装置の運転動作に関係なく確実に蓄熱に必要な蒸発温度とすることができる。また、高元側蓄熱バイパス管26を設置している場合は、同様に冷凍装置の運転動作に関係なく確実に蓄熱に必要な冷媒流量、すなわち蓄冷能力を確保することができる。   Moreover, in this Embodiment, the high-source side thermal storage expansion valve 27 is installed. For this reason, it becomes possible to independently control the evaporation temperature of the refrigerant in the high-side refrigerant circuit flowing into the heat storage tank 31. For this reason, it can be reliably set as the evaporation temperature required for heat storage irrespective of the driving | operation operation | movement of the said binary refrigeration apparatus. Moreover, when the high-source side heat storage bypass pipe 26 is installed, similarly, the refrigerant flow rate necessary for heat storage, that is, the cold storage capacity can be ensured regardless of the operation of the refrigeration apparatus.

低元側冷媒回路において、蓄熱媒体32への蓄熱及び利用を行わない通常運転モード時には、低元側蓄熱バイパス管17の流路を開放し、一方の蓄熱槽31へ接続する配管は遮断する。このため、通常運転モードにおいては確実にカスケードコンデンサ30にて凝縮液化することができ、さらに蓄熱槽31において熱交換を一切行わないため、高効率な運転を実施できる。
また、蓄熱を行う蓄熱運転モード時には、低元側蓄熱バイパス管17の流路を遮断し、一方の蓄熱槽31へ接続する配管を開放する。この場合は、上述した実施の形態2と同様の動作となる。
In the low operation side refrigerant circuit, in the normal operation mode in which the heat storage medium 32 is not stored and used, the flow path of the low supply side heat storage bypass pipe 17 is opened, and the pipe connected to the one heat storage tank 31 is shut off. For this reason, in the normal operation mode, it is possible to reliably condense and condense in the cascade condenser 30, and furthermore, since heat exchange is not performed in the heat storage tank 31, highly efficient operation can be performed.
Moreover, at the time of the heat storage operation mode in which heat storage is performed, the flow path of the low-source side heat storage bypass pipe 17 is shut off, and the pipe connected to one heat storage tank 31 is opened. In this case, the operation is the same as that of the second embodiment described above.

なお、上記実施の形態1〜3における二元冷凍装置は、例えばショーケースなどを冷却対象とすると、低元側蒸発温度は−10℃から−40℃で用いられることが想定される。このとき、二元冷凍装置の運転効率が最適となる高元側蒸発温度は−10℃以上10℃以下の温度となる。この温度帯で蓄熱利用を行える蓄熱媒体32は、例えば0℃で相変化する氷などが最適な媒体となる。   In the binary refrigeration apparatus in the first to third embodiments, for example, when a showcase or the like is a cooling target, it is assumed that the low source side evaporation temperature is used at −10 ° C. to −40 ° C. At this time, the high-side evaporation temperature at which the operation efficiency of the binary refrigeration apparatus is optimal is a temperature of −10 ° C. or higher and 10 ° C. or lower. As the heat storage medium 32 that can use the heat storage in this temperature range, for example, ice whose phase changes at 0 ° C. is an optimal medium.

本発明の二元冷凍装置は、冷媒のノンフロン化やフロン冷媒の削減、機器の省エネルギー化が要求されるショーケースや業務用冷凍冷蔵庫、自動販売機等の冷蔵・冷凍機器にも広く適用できる。   The binary refrigeration apparatus of the present invention can be widely applied to refrigeration and refrigeration equipment such as showcases, commercial refrigeration refrigerators, and vending machines that require non-CFC refrigerants, CFC refrigerant reduction, and equipment energy saving.

10 低元冷凍サイクル、11 低元側圧縮機、12 低元側凝縮器、13 低元側受液器、14 低元側蓄熱凝縮器、15 低元側膨張弁、16 低元側蒸発器、17 低元側蓄熱バイパス管、20 高元冷凍サイクル、21 高元側圧縮機、22 高元側凝縮器、23 高元側膨張弁、24 高元側蒸発器、25 高元側蓄熱蒸発器、26 高元側蓄熱バイパス管、27 高元側蓄熱膨張弁、30 カスケードコンデンサ、31 蓄熱槽、32 蓄熱媒体、33 制御装置。   10 Low-source refrigeration cycle, 11 Low-source side compressor, 12 Low-source side condenser, 13 Low-source-side receiver, 14 Low-source-side heat storage condenser, 15 Low-source-side expansion valve, 16 Low-source-side evaporator, 17 Low original side heat storage bypass pipe, 20 High original refrigeration cycle, 21 High original side compressor, 22 High original side condenser, 23 High original side expansion valve, 24 High original side evaporator, 25 High original side heat storage evaporator, 26 high-side heat storage bypass pipe, 27 high-side heat storage expansion valve, 30 cascade condenser, 31 heat storage tank, 32 heat storage medium, 33 control device.

Claims (6)

第1圧縮機、第1凝縮器、第1絞り装置、第1蒸発器、及び第1蓄熱蒸発器を配管接続し、冷媒を循環させる第1冷媒回路と、
第2圧縮機、第2凝縮器、受液器、第2絞り装置、及び第2蒸発器を配管接続し、冷媒を循環させる第2冷媒回路と、
前記第1蒸発器と前記第2凝縮器とにより構成され、前記第1蒸発器を流れる冷媒と前記第2凝縮器を流れる冷媒とが熱交換を行うカスケードコンデンサと、
前記第1蓄熱蒸発器と前記受液器とを収容し、前記第1蓄熱蒸発器によって蓄熱媒体を冷却して冷熱を蓄熱するとともに、前記蓄熱媒体に蓄熱された冷熱により前記受液器を冷却する蓄熱槽とを備えた
ことを特徴とする二元冷凍装置。
A first refrigerant circuit that connects the first compressor, the first condenser, the first expansion device, the first evaporator, and the first heat storage evaporator, and circulates the refrigerant;
A second refrigerant circuit that connects the second compressor, the second condenser, the liquid receiver, the second throttling device, and the second evaporator, and circulates the refrigerant;
A cascade condenser configured by the first evaporator and the second condenser, wherein the refrigerant flowing through the first evaporator and the refrigerant flowing through the second condenser exchange heat;
The first heat storage evaporator and the liquid receiver are accommodated, the heat storage medium is cooled by the first heat storage evaporator to store cold energy, and the liquid receiver is cooled by the cold heat stored in the heat storage medium. A two-stage refrigeration apparatus comprising a heat storage tank.
前記第2冷媒回路は、前記受液器と前記第2絞り装置との間に、第2蓄熱凝縮器を備え、
前記蓄熱槽は、前記第2蓄熱凝縮器を収容し、前記蓄熱媒体に蓄熱された冷熱により前記第2蓄熱凝縮器を冷却する
ことを特徴とする請求項1記載の二元冷凍装置。
The second refrigerant circuit includes a second heat storage condenser between the liquid receiver and the second expansion device,
2. The binary refrigeration apparatus according to claim 1, wherein the heat storage tank accommodates the second heat storage condenser and cools the second heat storage condenser by cold energy stored in the heat storage medium.
前記第1冷媒回路の運転状態によらず、前記第2冷媒回路の運転の起動が可能である
ことを特徴とする請求項1又は2記載の二元冷凍装置。
The binary refrigeration apparatus according to claim 1 or 2, wherein the operation of the second refrigerant circuit can be started regardless of the operation state of the first refrigerant circuit.
前記第2冷媒回路の運転を起動させたあと、前記第1冷媒回路の運転を起動させる
ことを特徴とする請求項1〜3の何れか一項に記載の二元冷凍装置。
The binary refrigeration apparatus according to any one of claims 1 to 3, wherein the operation of the first refrigerant circuit is activated after the operation of the second refrigerant circuit is activated.
前記第1冷媒回路の冷凍能力と当該第1冷媒回路の運転時間とを乗算した値が、前記第2冷媒回路の冷凍能力と当該第2冷媒回路の運転時間とを乗算した値以上となるように、
前記第1及び第2冷媒回路の運転を起動又は停止させる
ことを特徴とする請求項1〜4の何れか一項に記載の二元冷凍装置。
A value obtained by multiplying the refrigeration capacity of the first refrigerant circuit by the operation time of the first refrigerant circuit is equal to or greater than a value obtained by multiplying the refrigeration capacity of the second refrigerant circuit and the operation time of the second refrigerant circuit. In addition,
The binary refrigeration apparatus according to any one of claims 1 to 4, wherein the operation of the first and second refrigerant circuits is started or stopped.
前記第2冷媒回路の前記冷媒として、二酸化炭素を用いた
ことを特徴とする請求項1〜5の何れか一項に記載の二元冷凍装置。
The binary refrigeration apparatus according to any one of claims 1 to 5, wherein carbon dioxide is used as the refrigerant in the second refrigerant circuit.
JP2012021983A 2012-02-03 2012-02-03 Dual refrigeration equipment Active JP5367100B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021983A JP5367100B2 (en) 2012-02-03 2012-02-03 Dual refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021983A JP5367100B2 (en) 2012-02-03 2012-02-03 Dual refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2013160427A JP2013160427A (en) 2013-08-19
JP5367100B2 true JP5367100B2 (en) 2013-12-11

Family

ID=49172826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021983A Active JP5367100B2 (en) 2012-02-03 2012-02-03 Dual refrigeration equipment

Country Status (1)

Country Link
JP (1) JP5367100B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103486754B (en) * 2013-08-26 2015-12-23 安徽亿瑞深冷能源科技有限公司 A kind of energy-conservation middle temperature cold-producing medium/middle temperature cold-producing medium cascade refrigeration system
EP3267131B1 (en) * 2013-12-17 2019-03-06 Mayekawa Mfg. Co., Ltd. Refrigeration apparatus and cooling unit with a defrost system
CN105980794B (en) * 2014-03-17 2019-06-25 三菱电机株式会社 The control method of refrigerating plant and refrigerating plant
JP6463470B2 (en) * 2015-05-19 2019-02-06 三菱電機株式会社 Refrigeration equipment
CN107631507B (en) * 2017-11-02 2023-06-20 珠海格力电器股份有限公司 Air conditioner and control method of refrigeration house system
JP7201912B2 (en) * 2019-09-30 2023-01-11 ダイキン工業株式会社 refrigeration cycle equipment
CN112594954B (en) * 2021-01-18 2022-11-01 北京天意能科技有限公司 Full-working-condition double-cold-storage warm air conditioning system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09280668A (en) * 1996-04-16 1997-10-31 Mitsubishi Electric Corp Composite refrigerant circuit equipment
JP3882056B2 (en) * 2001-06-27 2007-02-14 株式会社日立製作所 Refrigeration air conditioner
JP3162988U (en) * 2010-07-13 2010-09-24 株式会社岩谷冷凍機製作所 Refrigeration system

Also Published As

Publication number Publication date
JP2013160427A (en) 2013-08-19

Similar Documents

Publication Publication Date Title
JP5367100B2 (en) Dual refrigeration equipment
EP2545332B1 (en) Refrigerant distribution apparatus and methods for transport refrigeration system
GB2518559B (en) Binary refrigeration apparatus
JP5595245B2 (en) Refrigeration equipment
JP5627417B2 (en) Dual refrigeration equipment
JP6125000B2 (en) Dual refrigeration equipment
EP2905559B1 (en) Cascade refrigeration equipment
JP4167196B2 (en) Natural circulation combined use air conditioner and natural circulation combined use air conditioner control method
WO2012128229A1 (en) Binary refrigeration cycle device
JP5791716B2 (en) Refrigeration air conditioner and control method of refrigeration air conditioner
JP5323023B2 (en) Refrigeration equipment
JP2007278686A (en) Heat pump water heater
JP5367059B2 (en) Dual refrigeration equipment
CN103635761A (en) Refrigeration device
JP2007003169A (en) Refrigeration, hot water supply, and heating system using carbon dioxide as refrigerant, and condensing system used therein
JP5854751B2 (en) Cooling system
JP2008002759A (en) Binary refrigerating system and cold storage
JP2015148407A (en) Refrigeration device
JP6388260B2 (en) Refrigeration equipment
JP2011137557A (en) Refrigerating apparatus
KR102477314B1 (en) A method for reducing the temperature of the coolant in the receiver of the refrigeration cycle system and improving the cooling performance of the evaporator
JP4999531B2 (en) Air conditioner
JP2006189176A (en) Refrigeration/freezing facility and its control method
JP6094859B2 (en) Refrigeration equipment
JP6206787B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130813

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130910

R150 Certificate of patent or registration of utility model

Ref document number: 5367100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250