JP3604973B2 - Cascade type refrigeration equipment - Google Patents

Cascade type refrigeration equipment Download PDF

Info

Publication number
JP3604973B2
JP3604973B2 JP27062499A JP27062499A JP3604973B2 JP 3604973 B2 JP3604973 B2 JP 3604973B2 JP 27062499 A JP27062499 A JP 27062499A JP 27062499 A JP27062499 A JP 27062499A JP 3604973 B2 JP3604973 B2 JP 3604973B2
Authority
JP
Japan
Prior art keywords
stage
low
condenser
refrigerant
cascade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP27062499A
Other languages
Japanese (ja)
Other versions
JP2001091074A (en
Inventor
伸央 甲元
健夫 小松原
俊行 江原
昌也 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP27062499A priority Critical patent/JP3604973B2/en
Publication of JP2001091074A publication Critical patent/JP2001091074A/en
Application granted granted Critical
Publication of JP3604973B2 publication Critical patent/JP3604973B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/12Inflammable refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/04Desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Description

【0001】
【発明の属する技術分野】
本発明は、家庭用・業務用冷蔵庫、超低温フリーザ、冷凍ショーケース、理化学機器、バイオメディカル機器等への利用が可能なカスケード式冷凍装置に関する。
【0002】
【従来の技術】
一般に、冷凍装置にはガス冷媒が用いられ、このガス冷媒を循環的に圧縮、凝縮、膨張、蒸発させてガスの気化熱を利用して冷凍する。ガス冷媒としては、従来フロンが用いられていたが、大気中に放出されると成層圏で紫外線によって分解され、塩素原子を放出してオゾン層を破壊する。このため地表に届く有害紫外線が増加するということで使用が禁止された。
フロンの代替物としては、例えばアンモニア、炭酸ガス、亜硫酸ガス、プロパン等があり、これらは単独で使用するほかプロパンと液化炭酸ガスとを所定の割合で混合して使用する例(特開平6−17040号公報)が開示されている。
【0003】
【発明が解決しようとする課題】
冷媒として炭酸ガスを単独で使用すると、作動圧(特に凝縮圧力)が極めて高くなり、循環回路を構成する要素機器の信頼性が問題となる。叉、プロパン等の可燃性ガスを単独で使用すると、庫内等の狭い閉空間にリークされて爆発の危険が伴う等の問題がある。
【0004】
本発明は、このような従来の問題を解消するためになされ、炭酸ガス単独のような高圧力の必要がなく、プロパン等の可燃ガス単独使用による爆発の危険を防止できるようにしたカスケード式冷凍装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
この目的を達成するための手段として、本発明は、高段側蒸発器と低段側凝縮器を含むカスケードコンデンサを共通とし、高段側循環回路と低段側循環回路とを形成したカスケード式冷凍装置において、前記高段側循環回路の冷媒として炭化水素系冷媒を用い、低段側循環回路の冷媒として炭酸ガス冷媒を用い、前記低段側循環回路の炭酸ガス冷媒を一定温度まで冷却するための補助コンデンサを、前記カスケードコンデンサの低段側凝縮器の手前に設置することを特徴とする。
【0006】
本発明は、高段側に炭化水素系冷媒、低段側に炭酸ガス冷媒を用いることで高圧作動の抑制と爆発の危険の問題を同時に解決することができる。又、低段側カスケードコンデンサの前に補助コンデンサを設置することにより、COP(成績係数)の向上を期待することができる。
【0007】
【発明の実施の形態】
次に、本発明の実施形態を添付図面に基づいて詳説する。
図1は、本発明に係るカスケード式冷凍装置を示す回路ブロック図であり、高段側(庫外)と低段側(庫内)とでそれぞれ循環回路が形成され、高段側蒸発器と低段側凝縮器とを含むカスケードコンデンサCを共通としている。
【0008】
高段側循環回路Aは、高段側圧縮機1と、高段側凝縮器2と、高段側膨張弁3と高段側蒸発器4とを直列に接続して形成され、低段側循環回路Bは、低段側圧縮機5と、低段側凝縮器6と、低段側膨張弁7と、低段側蒸発器8とを直列に接続して形成され、更に低段側圧縮機5と低段側凝縮器6との間に補助コンデンサ9を接続することが好ましい。
【0009】
このように構成されたカスケード式冷凍装置において、高段側循環回路Aには冷媒として炭化水素系冷媒が用いられ、低段側循環回路Bには冷媒として炭酸ガスが用いられる。
【0010】
冷媒として炭酸ガスを単独で使用すると作動圧が極めて高くなるが、本発明では炭酸ガスをカスケード回路の低段側に使用することにより作動圧を低く抑え、炭酸ガス特有の低温域での良好な熱交換性を有効に活用できる。又、高段側における炭化水素系冷媒を庫外で使用することにより、庫内での爆発の危険を防ぐことができる。
【0011】
カスケードコンデンサCにおいては、図示は省略したが二重配管(対向流)を介して冷媒間のみで熱交換が行われ、即ち理想状態では高段側蒸発器4と低段側凝縮器6との交換熱量は等しいものとする。図2は、圧力とエンタルピとの関係を示す図であり、ここにおいて低段側凝縮温度と高段側蒸発温度の差(以下、ΔT)が大きくなると効率即ち成績係数(COP)が落ち込むが、前記のように補助コンデンサ9を低段側カスケードコンデンサの前に設置し、冷媒を一定温度まで冷却することでCOPを向上させることが可能となる。
【0012】
図3(イ)、(ロ)に低段側蒸発温度をパラメータとしてCOP、熱量をそれぞれ計算した結果を示す。ここでは、深温領域におけるプロパンやR404Aを用いた単段回路及び補助コンデンサ9がない場合との効率比較も併せて行った。図3(イ)から分かるように、高段側の過熱度を大きくとった方が高効率を期待でき、プロパンやR404A単段回路のCOPに比べてカスケード回路のCOPは−30℃〜−55℃において劣るものの、−60℃以下の領域ではその差が殆どなく、十分に実用レベルにあると言える。叉、低段側カスケードコンデンサの手前に補助コンデンサ9を設置すると、高段側蒸発器過熱度10degの時に0.1〜015のCOP上昇が見込める。
【0013】
図4(イ)、(ロ)に前記ΔTをパラメータとした場合のCOP、熱量の計算結果を示す。図4(イ)から明らかなように、COPにはΔT=5℃近傍にピーク点の存在することが確認された。叉、高段側圧縮機1の排除容積割合を90%、80%とすると、より大きなCOPを得ることも可能であると言える。高段側圧縮機1の排除容積を減少させると、COPのピーク点はΔTの小さい領域に移動し、その絶対量は増加することがわかる。カスケード方式の上段側にプロパン、下段側に炭酸ガスを使用した自然系冷媒による冷凍回路においても、高段側圧縮機に適切な冷凍回路と同程度のCOPを得ることが可能である。
尚、本発明は、実施形態のものに限定されず、多元冷凍回路にも適用することが可能である。
【0014】
【発明の効果】
以上説明したように、本発明によれば、カスケード式冷凍装置の高段側に炭化水素系冷媒、低段側に炭酸ガス冷媒を用いることで、庫内で使用する低段側における高圧力圧縮の抑制と爆発の危険を同時に解決することができる。又、低段側循環回路における凝縮器の手前に補助コンデンサを設置することにより、炭酸ガス冷媒のCOP(成績係数)を向上させることができる。
【図面の簡単な説明】
【図1】本発明に係るカスケード式冷凍装置の一例を示す回路ブロック図
【図2】圧力とエンタルピとの関係図
【図3】低段側蒸発温度をパラメータとした解析結果であって、(イ)は低段側蒸発温度とCOPとの関係図、(ロ)は低段側蒸発温度と熱量との関係図
【図4】低段側凝縮温度と高段側蒸発温度との差(ΔT)をパラメータとした解析結果であって、(イ)はΔTとCOPとの関係図、(ロ)はΔTと熱量との関係図
【符号の説明】
1…高段側圧縮機
2…高段側凝縮器
3…高段側膨張弁
4…高段側蒸発器
5…低段側圧縮機
6…低段側凝縮器
7…低段側膨張弁
8…低段側蒸発器
9…補助コンデンサ
A…高段側循環回路
B…低段側循環経路
C…カスケードコンデンサ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a cascade-type refrigeration apparatus that can be used for home / business refrigerators, ultra-low-temperature freezers, freezing showcases, physicochemical equipment, biomedical equipment, and the like.
[0002]
[Prior art]
Generally, a gas refrigerant is used in a refrigerating apparatus, and the gas refrigerant is cyclically compressed, condensed, expanded, and evaporated, and is frozen using heat of vaporization of the gas. Conventionally, CFCs have been used as a gas refrigerant, but when released into the atmosphere, they are decomposed by ultraviolet rays in the stratosphere, releasing chlorine atoms and destroying the ozone layer. For this reason, the use of harmful ultraviolet rays reaching the surface of the earth was banned because it increased.
As alternatives to CFCs, there are, for example, ammonia, carbon dioxide, sulfur dioxide, propane and the like. These can be used alone or in a mixture of propane and liquefied carbon dioxide at a predetermined ratio. No. 17040).
[0003]
[Problems to be solved by the invention]
When carbon dioxide gas is used alone as a refrigerant, the operating pressure (particularly, the condensing pressure) becomes extremely high, and the reliability of the component devices constituting the circulation circuit becomes a problem. In addition, when a flammable gas such as propane is used alone, there is a problem in that the gas leaks into a narrow closed space such as the inside of a refrigerator, which may cause an explosion.
[0004]
The present invention has been made to solve such a conventional problem, and does not require a high pressure such as carbon dioxide gas alone, and can prevent the danger of explosion due to the use of a flammable gas alone such as propane. It is intended to provide a device.
[0005]
[Means for Solving the Problems]
As a means for achieving this object, the present invention relates to a cascade type condenser having a common cascade condenser including a high-stage evaporator and a low-stage condenser, and forming a high-stage circulation circuit and a low-stage circulation circuit. In the refrigeration apparatus, a hydrocarbon-based refrigerant is used as the refrigerant in the high-stage circulation circuit, a carbon dioxide gas refrigerant is used as the refrigerant in the low-stage circulation circuit, and the carbon dioxide gas refrigerant in the low-stage circulation circuit is cooled to a certain temperature. An auxiliary condenser is provided before the low-stage condenser of the cascade condenser.
[0006]
The present invention can simultaneously solve the problem of the suppression of high-pressure operation and the danger of explosion by using a hydrocarbon-based refrigerant on the high stage side and a carbon dioxide gas refrigerant on the low stage side. Further, by providing an auxiliary capacitor before the low-stage cascade capacitor, an improvement in COP (coefficient of performance) can be expected.
[0007]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, embodiments of the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a circuit block diagram showing a cascade refrigeration apparatus according to the present invention. A circulation circuit is formed on each of a high-stage side (outside the refrigerator) and a low-stage side (inside the refrigerator). The cascade condenser C including the low-stage condenser is common.
[0008]
The high-stage circulation circuit A is formed by connecting a high-stage compressor 1, a high-stage condenser 2, a high-stage expansion valve 3, and a high-stage evaporator 4 in series. The circulation circuit B is formed by connecting a low-stage compressor 5, a low-stage condenser 6, a low-stage expansion valve 7, and a low-stage evaporator 8 in series. Preferably, an auxiliary condenser 9 is connected between the unit 5 and the low-stage condenser 6.
[0009]
In the cascade refrigeration apparatus thus configured, a hydrocarbon-based refrigerant is used as the refrigerant in the high-stage circulation circuit A, and carbon dioxide gas is used as the refrigerant in the low-stage circulation circuit B.
[0010]
The working pressure becomes extremely high when carbon dioxide is used alone as a refrigerant. Heat exchange can be effectively utilized. Further, by using the hydrocarbon-based refrigerant on the high-stage side outside the refrigerator, the danger of explosion inside the refrigerator can be prevented.
[0011]
In the cascade condenser C, although not shown, heat exchange is performed only between the refrigerants via a double pipe (counterflow), that is, in an ideal state, the heat exchange between the high-stage evaporator 4 and the low-stage condenser 6 is performed. The heat exchange quantity is assumed to be equal. FIG. 2 is a diagram showing the relationship between pressure and enthalpy. Here, when the difference between the low-stage condensation temperature and the high-stage evaporation temperature (hereinafter ΔT) increases, the efficiency, that is, the coefficient of performance (COP) decreases. As described above, the COP can be improved by installing the auxiliary condenser 9 before the low-stage cascade condenser and cooling the refrigerant to a certain temperature.
[0012]
FIGS. 3A and 3B show the results of calculating the COP and the calorific value, respectively, using the low-stage evaporation temperature as a parameter. Here, the efficiency was compared with a single-stage circuit using propane or R404A in the deep temperature region and the case where the auxiliary capacitor 9 was not provided. As can be seen from FIG. 3 (b), higher efficiency can be expected by increasing the degree of superheat on the high-stage side. Although it is inferior in ℃, there is almost no difference in the region below -60 ℃, and it can be said that it is sufficiently practical. If the auxiliary condenser 9 is installed before the low-stage cascade condenser, a COP increase of 0.1 to 015 can be expected when the superheat degree of the high-stage evaporator is 10 deg.
[0013]
FIGS. 4 (a) and 4 (b) show the calculation results of the COP and the amount of heat when ΔT is used as a parameter. As is clear from FIG. 4A, it was confirmed that the COP had a peak point near ΔT = 5 ° C. Further, when the excluded volume ratio of the high-stage compressor 1 is set to 90% or 80%, it can be said that a larger COP can be obtained. It can be seen that when the displacement volume of the high-stage compressor 1 is reduced, the peak point of COP moves to the region where ΔT is small, and the absolute amount increases. Even in a refrigeration circuit using a natural refrigerant using propane in the upper stage and carbon dioxide gas in the lower stage in the cascade system, it is possible to obtain a COP equivalent to that of a refrigeration circuit suitable for the high-stage compressor.
Note that the present invention is not limited to the embodiment, and can be applied to a multi-refrigeration circuit.
[0014]
【The invention's effect】
As described above, according to the present invention, by using a hydrocarbon-based refrigerant on the high-stage side and a carbon dioxide gas refrigerant on the low-stage side of the cascade refrigeration system, high-pressure compression on the low-stage side used in the refrigerator is performed. Control and explosion danger can be solved at the same time. Further, by installing an auxiliary condenser before the condenser in the low-stage side circulation circuit, the COP (coefficient of performance) of the carbon dioxide gas refrigerant can be improved.
[Brief description of the drawings]
FIG. 1 is a circuit block diagram showing an example of a cascade refrigeration apparatus according to the present invention. FIG. 2 is a diagram showing a relationship between pressure and enthalpy. FIG. (A) is a diagram showing the relationship between the lower stage evaporation temperature and the COP, and (b) is a diagram showing the relationship between the lower stage evaporation temperature and the amount of heat. [FIG. 4] The difference between the lower stage condensation temperature and the higher stage evaporation temperature (ΔT ) Is a parameter, and (a) is a diagram showing the relationship between ΔT and COP, and (b) is a diagram showing the relationship between ΔT and the amount of heat.
DESCRIPTION OF SYMBOLS 1 ... High stage compressor 2 ... High stage condenser 3 ... High stage expansion valve 4 ... High stage evaporator 5 ... Low stage compressor 6 ... Low stage condenser 7 ... Low stage expansion valve 8 ... Low-stage evaporator 9 ... Auxiliary condenser A ... High-stage circulation circuit B ... Low-stage circulation path C ... Cascade condenser

Claims (1)

高段側蒸発器と低段側凝縮器を含むカスケードコンデンサを共通とし、高段側循環回路と低段側循環回路とを形成したカスケード式冷凍装置において、前記高段側循環回路の冷媒として炭化水素系冷媒を用い、低段側循環回路の冷媒として炭酸ガス冷媒を用い、前記低段側循環回路の炭酸ガス冷媒を一定温度まで冷却するための補助コンデンサを、前記カスケードコンデンサの低段側凝縮器の手前に設置することを特徴とするカスケード式冷凍装置。In a cascade refrigeration system in which a cascade condenser including a high-stage evaporator and a low-stage condenser is shared and a high-stage circulation circuit and a low-stage circulation circuit are formed, carbonization is performed as a refrigerant of the high-stage circulation circuit. Using a hydrogen-based refrigerant, using a carbon dioxide gas refrigerant as a refrigerant in the low-stage side circulation circuit, an auxiliary condenser for cooling the carbon dioxide gas refrigerant in the low-stage side circulation circuit to a certain temperature, the low-stage side condensation of the cascade condenser A cascade-type refrigeration system, which is installed in front of a vessel .
JP27062499A 1999-09-24 1999-09-24 Cascade type refrigeration equipment Expired - Fee Related JP3604973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27062499A JP3604973B2 (en) 1999-09-24 1999-09-24 Cascade type refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27062499A JP3604973B2 (en) 1999-09-24 1999-09-24 Cascade type refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2001091074A JP2001091074A (en) 2001-04-06
JP3604973B2 true JP3604973B2 (en) 2004-12-22

Family

ID=17488693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27062499A Expired - Fee Related JP3604973B2 (en) 1999-09-24 1999-09-24 Cascade type refrigeration equipment

Country Status (1)

Country Link
JP (1) JP3604973B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066763A1 (en) 2010-11-15 2012-05-24 三菱電機株式会社 Freezer
JP2012112617A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Refrigeration device
WO2014181399A1 (en) 2013-05-08 2014-11-13 三菱電機株式会社 Binary refrigeration device
CN104180549A (en) * 2014-08-25 2014-12-03 天津商业大学 Exhaust-temperature-adjustable cascade refrigerating system and exhaust cooling device

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4294351B2 (en) * 2003-03-19 2009-07-08 株式会社前川製作所 CO2 refrigeration cycle
JP2004308972A (en) * 2003-04-03 2004-11-04 Mayekawa Mfg Co Ltd Co2 refrigerating machine
EP1701112B1 (en) * 2003-11-28 2017-11-15 Mitsubishi Denki Kabushiki Kaisha Freezer and air conditioner
KR100565257B1 (en) * 2004-10-05 2006-03-30 엘지전자 주식회사 Secondary refrigerant cycle using compressor and air conditioner having the same
JP4973872B2 (en) 2005-10-17 2012-07-11 株式会社前川製作所 CO2 refrigerator
JP2007198693A (en) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd Cascade type heat pump system
WO2007122685A1 (en) 2006-04-14 2007-11-01 Mitsubishi Denki Kabushiki Kaisha Heat exchanger and refrigeration air conditioner
WO2008130412A1 (en) * 2007-04-23 2008-10-30 Carrier Corporation Co2 refrigerant system with booster circuit
EP2223021B1 (en) 2007-11-13 2016-11-02 Carrier Corporation Refrigerating system and method for refrigerating
JP2011067125A (en) * 2009-09-25 2011-04-07 Hachiyo Engneering Kk Ice cream producing apparatus
WO2012002248A1 (en) * 2010-06-28 2012-01-05 三洋電機株式会社 Refrigeration apparatus
JP5323023B2 (en) * 2010-10-19 2013-10-23 三菱電機株式会社 Refrigeration equipment
CN102121758A (en) * 2010-11-18 2011-07-13 吴植仁 Cascade refrigerating circulating system with fine separator and automatic antiflaming function by carbon dioxide
JP5693247B2 (en) * 2011-01-11 2015-04-01 三菱電機株式会社 Refrigeration cycle apparatus and refrigerant discharge apparatus
JP2013002737A (en) * 2011-06-16 2013-01-07 Mitsubishi Electric Corp Refrigeration cycle device
CN102706031B (en) * 2012-01-05 2016-05-25 王全龄 The split type wind energy heat pump air-conditioning of a kind of ultralow temperature multimachine
CN102563969A (en) * 2012-02-10 2012-07-11 山东美琳达再生能源开发有限公司 Double-system heat pump device capable of realizing circular heating and heating method
JP2013190154A (en) * 2012-03-13 2013-09-26 Fuji Electric Co Ltd Refrigeration apparatus
KR101260900B1 (en) * 2012-12-10 2013-05-06 주식회사 이지플러스원 Ventilating system having heat pump with two cycles capable of mixing room air and ouside air
KR101232660B1 (en) * 2012-12-10 2013-02-13 주식회사 폴리텍에너지 Ventilating system having heat pump with two cycles
CN105980794B (en) * 2014-03-17 2019-06-25 三菱电机株式会社 The control method of refrigerating plant and refrigerating plant
JP2015178919A (en) 2014-03-19 2015-10-08 サンデンホールディングス株式会社 Refrigeration device
CN105276848A (en) * 2014-06-26 2016-01-27 舟山金瀛制冷科技有限公司 Refrigerating system and refrigerating technique
CN105588357B (en) * 2015-12-16 2019-04-16 珠海格力电器股份有限公司 A kind of heat pump system
RU2659839C1 (en) * 2017-04-27 2018-07-04 Артем Фролович Порутчиков Low-temperature refrigeration machine on carbon dioxide
JP7045195B2 (en) * 2017-04-28 2022-03-31 株式会社前川製作所 Heat exchanger
CN111795423B (en) * 2020-03-26 2021-09-03 同济大学 Carbon dioxide heat pump heating system based on three-fluid heat exchanger
CN114109475A (en) * 2021-11-17 2022-03-01 中煤科工集团沈阳研究院有限公司 Two-stage compression refrigeration type nitrogen low-temperature cooling system for underground coal mine and control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012066763A1 (en) 2010-11-15 2012-05-24 三菱電機株式会社 Freezer
US9599395B2 (en) 2010-11-15 2017-03-21 Mitsubishi Electric Corporation Refrigerating apparatus
JP2012112617A (en) * 2010-11-26 2012-06-14 Mitsubishi Electric Corp Refrigeration device
WO2014181399A1 (en) 2013-05-08 2014-11-13 三菱電機株式会社 Binary refrigeration device
CN104180549A (en) * 2014-08-25 2014-12-03 天津商业大学 Exhaust-temperature-adjustable cascade refrigerating system and exhaust cooling device
CN104180549B (en) * 2014-08-25 2016-05-11 天津商业大学 The folding type cooling system of adjustable delivery temperature and exhaust cooling device

Also Published As

Publication number Publication date
JP2001091074A (en) 2001-04-06

Similar Documents

Publication Publication Date Title
JP3604973B2 (en) Cascade type refrigeration equipment
WO2012066763A1 (en) Freezer
US20040123608A1 (en) Non-azeotropic refrigerant mixture, refrigerating cycle and refrigerating device
JPH10259962A (en) Freezing device, freezer, air-cooled condenser unit for freezing device and compressor unit
KR20070042067A (en) Refrigerating apparatus
JP2000249413A (en) Refrigeration unit
JP2009300000A (en) Refrigerator-freezer and cooling storage
JP4841288B2 (en) Refrigeration equipment
WO2006027330A1 (en) Co2 compression refrigeration apparatus for low temperature applications
JP2004286289A (en) Refrigerant cycle device
JP4841287B2 (en) Refrigeration equipment
JP5506638B2 (en) Refrigeration equipment
KR102380369B1 (en) Cryocooler
KR102319331B1 (en) Cryogenic rapid refrigeration system
JP3819979B2 (en) Refrigeration cycle equipment
JP2008267732A (en) Air-conditioning device
JP6991866B2 (en) Steam compression refrigerator
JP2002168536A (en) Air conditioner
JP4722963B2 (en) refrigerator
KR100550581B1 (en) Refrigerator with a deep freezer
KR102446555B1 (en) Refrigerator for super-freezing a storing chamber
KR20070025332A (en) Refrigerating system
JP2009156563A (en) Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same
JPH05302763A (en) Method and device for operating binary refrigerating apparatus
KR100693188B1 (en) Ultra-freezing refrigerator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040415

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040716

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040825

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040914

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040930

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081008

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091008

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101008

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111008

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121008

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131008

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees