JP2007198693A - Cascade type heat pump system - Google Patents

Cascade type heat pump system Download PDF

Info

Publication number
JP2007198693A
JP2007198693A JP2006019821A JP2006019821A JP2007198693A JP 2007198693 A JP2007198693 A JP 2007198693A JP 2006019821 A JP2006019821 A JP 2006019821A JP 2006019821 A JP2006019821 A JP 2006019821A JP 2007198693 A JP2007198693 A JP 2007198693A
Authority
JP
Japan
Prior art keywords
condenser
compressor
heat medium
evaporator
pump system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006019821A
Other languages
Japanese (ja)
Inventor
Takayoshi Muraki
隆芳 村木
Takanori Kudo
孝典 工藤
Shinjiro Akaboshi
信次郎 赤星
Kensuke Matsuki
健輔 松木
Yoichi Hiraga
曜一 平賀
Masaki Kataoka
昌樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mayekawa Manufacturing Co
Original Assignee
Mayekawa Manufacturing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mayekawa Manufacturing Co filed Critical Mayekawa Manufacturing Co
Priority to JP2006019821A priority Critical patent/JP2007198693A/en
Publication of JP2007198693A publication Critical patent/JP2007198693A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump system, capable of creating a heat source having a large temperature difference between an inlet and an outlet to a cooling system while further reducing power consumption, and also easily creating a heat source of a desired temperature in a wide temperature range. <P>SOLUTION: In this cascade type heat pump system comprising a plurality of independent refrigeration cycles R1 and R2 each including a compressor 9, 10, an expander 11, 12 and an evaporators 7, 8 in which each refrigeration cycle shares freezing performance, refrigerant suction pressure and refrigerant discharge pressure in each compressor 3, 4 are set stepwise, and a passage for secondary-side heat medium 1, 2 is serially connected to each evaporator 7, 8 or condenser 9, 10 to successively perform heat exchange with the secondary heat medium in the evaporator or condenser, and the temperature of the secondary heat medium is changed stepwise, whereby cold heat or hot heat of a target temperature is obtained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、独立した複数の冷凍サイクルを並設し、各冷凍サイクルで冷凍能力を分担することにより、動力低減と成績係数の向上を図ったヒートポンプシステムにおいて、2次側熱媒体を複数の冷凍サイクルの蒸発器群又は凝縮器群により段階的に冷却又は加熱することにより、目標とする温度の冷熱又は温熱を得るようにしたカスケード型ヒートポンプシステムに関する。   In the heat pump system in which a plurality of independent refrigeration cycles are arranged in parallel and the refrigeration capacity is shared by each refrigeration cycle, thereby reducing power and improving the coefficient of performance, The present invention relates to a cascade type heat pump system in which cooling or heating at a target temperature is obtained by cooling or heating in stages by an evaporator group or a condenser group of a cycle.

ビール工場等の冷凍設備等において、多種の冷却負荷が存在し、冷却温度も数種類に分類される。また各々の冷却負荷は、時間帯によってその大きさと全体負荷におけるその割合が変化する。
従来このような多温度、多種の冷却負荷を賄う冷却システムが、例えば特許文献1(特許第2545162号公報)に開示されている。
In a refrigeration facility such as a beer factory, various cooling loads exist, and cooling temperatures are classified into several types. In addition, each cooling load changes its size and its ratio in the total load depending on the time zone.
Conventionally, such a cooling system that covers various temperatures and various cooling loads is disclosed in, for example, Patent Document 1 (Japanese Patent No. 2545162).

この冷却システムは、各冷凍サイクル専用の圧縮機、凝縮器、膨張弁及び凝縮器を有した複数の独立した冷凍サイクルによる冷却システムであって、圧縮機吸入側に蒸発温度別に設けられた複数の蒸発温度別ラインから、該ラインに設けられた弁の開閉又は絞り度を選択することにより、各圧縮機に最も適合する蒸発温度別ラインから各圧縮機の最高蒸発温度にて冷媒を吸入し、もって各冷凍サイクルの消費動力を低減するとともに、各冷凍サイクル間で最適負荷を分配することによ冷凍機消費電力の低減を図ったものである。   This cooling system is a cooling system by a plurality of independent refrigeration cycles having a compressor, a condenser, an expansion valve and a condenser dedicated to each refrigeration cycle, and a plurality of cooling systems provided for each evaporation temperature on the compressor suction side. By selecting the opening / closing or throttling degree of the valve provided in the line from the line for each evaporation temperature, the refrigerant is sucked in from the line for each evaporation temperature that best suits each compressor at the maximum evaporation temperature of each compressor, Thus, the power consumption of each refrigeration cycle is reduced, and the power consumption of the refrigerator is reduced by distributing the optimum load among the refrigeration cycles.

特許第2545162号公報Japanese Patent No. 2545162

しかるに特許文献1に開示された冷却システムは、冷凍機消費動力を低減することはできるが、各冷凍サイクルがそれぞれ独立して対応する冷却負荷に最適の蒸発温度を選定するため、システム全体としての熱効率向上を図ったものではなく、また冷却システムへの入口温度と出口温度の差が大きい冷熱源をつくり出すことが困難である。
また圧縮機吸入側に蒸発温度別に複数の蒸発温度別ラインを設けるとともに、これら複数の蒸発温度別ラインと複数の圧縮機との間に一つの圧縮機につき複数の吸入ラインを設け、さらにこの複数の吸入ラインにそれぞれ開閉弁を設ける必要があり、設備が大掛かりになり、高コストになるという問題がある。
However, although the cooling system disclosed in Patent Document 1 can reduce the power consumption of the refrigerator, each refrigeration cycle independently selects the optimal evaporation temperature for the corresponding cooling load, so that the entire system is It is not intended to improve thermal efficiency, and it is difficult to create a cold heat source having a large difference between the inlet temperature and the outlet temperature to the cooling system.
In addition, a plurality of evaporation temperature lines for each evaporation temperature are provided on the compressor suction side, and a plurality of suction lines are provided for each compressor between the plurality of evaporation temperature lines and the plurality of compressors. It is necessary to provide an on-off valve in each of the suction lines, which causes a problem that the equipment becomes large and the cost is high.

本発明は、かかる従来技術の課題に鑑み、消費動力のさらなる低減を図るとともに、ヒートポンプシステムの入口温度と出口温度の差が大きい熱源をつくり出すことを可能とし、かつ幅広い温度範囲の中で所望の温度の熱源を容易につくり出すことができるヒートポンプシステムを実現することを目的とする。
また冷凍サイクルを構成する機器類の配置、施工をモジュール化して簡素化し、低コストとすることを目的とする。
In view of the problems of the prior art, the present invention can further reduce the power consumption, and can create a heat source having a large difference between the inlet temperature and the outlet temperature of the heat pump system, and is desired in a wide temperature range. The object is to realize a heat pump system that can easily create a heat source of temperature.
Another object of the present invention is to simplify the arrangement and construction of the equipment constituting the refrigeration cycle by modularizing it and reducing the cost.

かかる目的を達成するため、本発明のカスケード型ヒートポンプシステムの第1の構成は、
それぞれ圧縮機、凝縮器、膨張器及び蒸発器を備えた複数の冷凍サイクルを並列に配置したカスケード型ヒートポンプシステムにおいて、
前記複数の冷凍サイクルを構成する蒸発器群に一側より最終段に向けて2次側熱媒体の流路を直列に接続し、
各圧縮機の冷媒吸入圧を一側から最終段に向けて順次異ならせて設定し、
前記2次側熱媒体流路に2次側熱媒体を蒸発圧力の高い蒸発器から蒸発圧力の低い蒸発器に向けて順に流すように構成したことを特徴とする。
In order to achieve such an object, the first configuration of the cascade heat pump system of the present invention includes:
In a cascade heat pump system in which a plurality of refrigeration cycles each having a compressor, a condenser, an expander and an evaporator are arranged in parallel,
The flow path of the secondary side heat medium is connected in series from one side to the final stage to the evaporator group constituting the plurality of refrigeration cycles,
Set the refrigerant suction pressure of each compressor in order from one side to the last stage,
The secondary side heat medium is configured to flow in order from the evaporator having a high evaporation pressure toward the evaporator having a low evaporation pressure in the secondary side heat medium flow path.

本発明のヒートポンプシステムでは、複数の冷凍サイクルの各圧縮機の冷媒吸入圧を一側から最終段に向けて順次階段状に設定した上で、これら複数の冷凍サイクルに冷凍能力を分担させる。これによって1個の冷凍サイクルで構成した場合と比べて、個々の冷凍サイクルの圧縮比を低減させることができるため、総合して各冷凍サイクル全体の消費動力を削減することができる。   In the heat pump system of the present invention, the refrigerant suction pressures of the compressors of the plurality of refrigeration cycles are set in a stepped manner from one side toward the final stage, and the refrigeration capacity is assigned to the plurality of refrigeration cycles. As a result, the compression ratio of each refrigeration cycle can be reduced as compared with the case where it is constituted by one refrigeration cycle, so that the overall power consumption of each refrigeration cycle can be reduced.

また複数の冷凍サイクルの各蒸発器に2次側熱媒体の流路を高い蒸発圧力(即ち圧縮機吸入圧)に設定された蒸発器の順に直列に接続して、2次側熱媒体を蒸発圧力の高い蒸発器から蒸発圧力の低い蒸発器に向けて順に流し、該蒸発器群で2次側熱媒体と順々に熱交換させ、2次側熱媒体を階段状に温度降下させるようにする。
このため単一の冷凍サイクルで2次側熱媒体を最終温度で取り出す消費動力に比べ、例えば2台で約1/2ずつ分担して冷却すると、蒸発圧力の高い1台目の消費動力は、全体の消費電力の1/2より少ない消費電力で運転する事が可能となる。
また2次側熱媒体が利用したい温度となったところで取り出すことで、任意の温度の2次側熱媒体(冷熱)をつくり出すことが可能になる。
In addition, the flow path of the secondary heat medium is connected to each evaporator of a plurality of refrigeration cycles in series in the order of the evaporator set to a high evaporation pressure (ie, compressor suction pressure), and the secondary heat medium is evaporated. It is made to flow in order from an evaporator having a high pressure toward an evaporator having a low evaporation pressure, and in this group of evaporators, heat exchange is sequentially performed with the secondary side heat medium so that the temperature of the secondary side heat medium is lowered stepwise. To do.
For this reason, compared to the power consumption for taking out the secondary heat medium at the final temperature in a single refrigeration cycle, for example, when cooling by sharing about 1/2 by two units, the power consumption of the first unit with a high evaporation pressure is It is possible to operate with less power consumption than 1/2 of the total power consumption.
Moreover, it becomes possible to produce the secondary side heat medium (cold heat) of arbitrary temperature by taking out when the secondary side heat medium becomes the temperature which wants to utilize.

また本発明のカスケード型ヒートポンプシステムの第2の構成は、
それぞれ圧縮機、凝縮器、膨張器及び蒸発器を備えた複数の冷凍サイクルを並列に配置したカスケード型ヒートポンプシステムにおいて、
前記複数の冷凍サイクルを構成する凝縮器群に一側より最終段に向けて2次側熱媒体の流路を直列に接続し、
各圧縮機の冷媒吐出圧を一側から最終段に向けて順次異ならせて設定し、
前記2次側熱媒体流路に2次側熱媒体を凝縮圧力の低い凝縮器から凝縮圧力の高い凝縮器に向けて順に流すように構成したことを特徴とする。
The second configuration of the cascade heat pump system of the present invention is as follows.
In a cascade heat pump system in which a plurality of refrigeration cycles each having a compressor, a condenser, an expander and an evaporator are arranged in parallel,
The flow path of the secondary side heat medium is connected in series from one side to the final stage to the condenser group constituting the plurality of refrigeration cycles,
Set the refrigerant discharge pressure of each compressor in order from the one side to the final stage,
The secondary-side heat medium is configured to flow in order from the condenser having a low condensation pressure toward the condenser having a high condensation pressure in the secondary-side heat medium flow path.

本発明の第2の構成は、複数の冷凍サイクルを構成する凝縮器群に一側より最終段に向けて2次側熱媒体の流路を直列に接続し、2次側熱媒体を凝縮圧力の低い凝縮器から凝縮圧力の高い凝縮器に向けて順に流し、該凝縮器群で2次側熱媒体と順々に熱交換させ、2次側熱媒体を階段状に温度上昇させるようにする。
このため単一の冷凍サイクルで2次側熱媒体を最終温度で取り出す消費動力に比べ、例えば2台で約1/2ずつ分担して放熱(加熱)すると、凝縮圧力の低い1台目の消費動力は、全体の消費電力の1/2より少ない消費電力で運転する事が可能となる。
また2次側熱媒体が利用したい温度となったところで取り出すことで、任意の温度の2次側熱媒体(温熱)をつくり出すことが可能になる。
In the second configuration of the present invention, the flow path of the secondary heat medium is connected in series from one side to the final stage to the condenser group constituting the plurality of refrigeration cycles, and the secondary heat medium is condensed to the condensing pressure. From the low-condenser condenser to the high-condenser pressure condenser, and the condenser group sequentially heat-exchanges with the secondary heat medium so that the temperature of the secondary heat medium rises stepwise. .
For this reason, compared to the power consumption for taking out the secondary heat medium at the final temperature in a single refrigeration cycle, for example, if the heat is radiated (heated) by sharing about 1/2 by two units, the consumption of the first unit with a low condensing pressure The power can be operated with less power consumption than 1/2 of the total power consumption.
Moreover, it becomes possible to produce the secondary side heat medium (warm heat) of arbitrary temperature by taking out when the secondary side heat medium becomes temperature to use.

また本発明の第3の構成は、
複数の冷凍サイクルを構成する蒸発器群及び凝縮器群にそれぞれ一側より最終段に向けて2次側熱媒体の流路を直列に接続し、
各圧縮機の冷媒吸入圧を一側から最終段に向けて順次異ならせて設定し、
前記蒸発器に接続した2次側熱媒体流路に2次側熱媒体を蒸発圧力の高い蒸発器から蒸発圧力の低い蒸発器に向けて順に流すとともに、前記凝縮器に接続した2次側熱媒体流路に2次側熱媒体を凝縮圧力の低い凝縮器から凝縮圧力の高い凝縮器に向けて順に流すように構成したことを特徴とする。
The third configuration of the present invention is as follows.
The flow path of the secondary side heat medium is connected in series from the one side to the final stage to the evaporator group and the condenser group constituting the plurality of refrigeration cycles,
Set the refrigerant suction pressure of each compressor in order from one side to the last stage,
The secondary side heat medium flows in the secondary side heat medium flow path connected to the evaporator in order from an evaporator having a high evaporation pressure to an evaporator having a low evaporation pressure, and the secondary side heat medium connected to the condenser. The secondary heat medium is configured to flow in the medium flow path in order from a condenser having a low condensation pressure to a condenser having a high condensation pressure.

第3の構成においては、蒸発器及び凝縮器の両方に2次側熱媒体流路を接続する場合は、蒸発器においては圧縮機吸入圧の高いほうを入口とし、凝縮器においては圧縮機吐出圧の低いほうを入口として順々に接続していく。
これによって本発明のヒートポンプシステムの入口と出口との間で冷却システムへの入口温度と出口温度の差が大きい2次側熱媒体をつくり出すことができる。また蒸発器又は凝縮器間に接続された流路で階段状に温度上昇又は温度降下される2次側熱媒体を、目的の温度となった時点で該流路から取り出すことにより、幅広い温度範囲の中で所望の温度の2次側熱媒体(冷熱及び温熱)をつくり出し、各種熱負荷に供給することができる。
In the third configuration, when the secondary heat medium flow path is connected to both the evaporator and the condenser, the evaporator has the higher inlet pressure of the compressor as the inlet, and the compressor discharges the compressor. Connect the lower pressure one after another as an inlet.
As a result, it is possible to create a secondary heat medium having a large difference between the inlet temperature and the outlet temperature to the cooling system between the inlet and the outlet of the heat pump system of the present invention. A secondary heat medium whose temperature rises or falls stepwise in a flow path connected between the evaporator or the condenser is taken out from the flow path when the target temperature is reached, thereby providing a wide temperature range. The secondary side heat medium (cold heat and warm heat) having a desired temperature can be produced and supplied to various heat loads.

また本発明においては、個々の冷凍サイクルでは低圧縮比となり、かつ個々の冷凍サイクルで冷媒充填量を減らすことができるため、圧縮機動力を従来のように1段冷凍サイクルで行なう場合よりも低減でき、従って成績係数COPを従来方式より向上することができる。
また個々の冷凍サイクルにおいて冷媒充填量が減りかつ圧縮比が低減されるので、プロパン、プロピレン、イソブタン又はディメチルエチルエータル等可燃性があるHC(炭化水素)系冷媒を使用してもより安全性高く使用することができる。また他の自然系冷媒としてCO、アンモニア等を使用可能できるが、熱物性の良いアンモニアを使用すれば、さらにCOPを向上させることができる。
Further, in the present invention, each refrigeration cycle has a low compression ratio, and the refrigerant charging amount can be reduced in each refrigeration cycle. Therefore, the compressor power is reduced as compared with the case where the compressor refrigeration cycle is performed conventionally. Therefore, the coefficient of performance COP can be improved over the conventional method.
In addition, since the refrigerant charge is reduced and the compression ratio is reduced in each refrigeration cycle, it is safer to use HC (hydrocarbon) refrigerants such as propane, propylene, isobutane, or dimethylethyl ether. Can be used highly. Further, CO 2 , ammonia and the like can be used as other natural refrigerants, but COP can be further improved by using ammonia with good thermophysical properties.

本発明によれば、従来非共沸混合冷媒を用い、混合冷媒の液化又は気化の速度勾配と温度変化速度を一致させることにより高効率を達成できるローレンツサイクルと同様の高熱効率を単一の自然系冷媒で達成することができる。しかも単一の冷媒を使用するため、非共沸混合冷媒を使用する場合のように熱交換器が大型化するという欠点がない。   According to the present invention, a conventional non-azeotropic refrigerant mixture is used, and a high thermal efficiency similar to that of the Lorentz cycle, which can achieve high efficiency by matching the liquefaction or vaporization speed gradient of the mixed refrigerant with the temperature change rate, is achieved in a single natural manner. This can be achieved with a system refrigerant. And since a single refrigerant | coolant is used, there is no fault that a heat exchanger becomes large like the case where a non-azeotropic mixed refrigerant | coolant is used.

また本発明において、圧縮機にはスクリュー式、レシプロ式又はスクロール式等が使用可能である。また本発明では、複数冷凍サイクルの蒸発器群及び凝縮器群の両方にそれぞれ2次側熱媒体の流路を接続して熱交換することが最良の熱効率を得ることができるが、蒸発器群又は凝縮器群のどちらか一方で熱交換を行なってもよい。   In the present invention, a screw type, a reciprocating type, a scroll type, or the like can be used for the compressor. Further, in the present invention, it is possible to obtain the best thermal efficiency by exchanging heat by connecting the flow path of the secondary heat medium to both the evaporator group and the condenser group of the multiple refrigeration cycles. Alternatively, heat exchange may be performed in either of the condenser groups.

図1の(a)は、本発明の第1の構成にかかる一形態を模式的に示したものである。図1(a)において、3台の冷凍サイクルR1〜R3が並列に設けられ、それぞれの冷凍サイクルで独立した圧縮機C、膨張弁F及び蒸発器Eを備えており、凝縮器は、冷凍サイクルR1〜R3に共通した一体型凝縮器Dに構成されている。
各圧縮機の吸入圧(蒸発圧力)は、C1が0.56MPa、C2が0.46MPa、C3が0.36MPaと階段状に異ならせて設定され、2次側熱媒体Bの流路が蒸発器E1からE3に直列に接続され、2次側熱媒体Bが蒸発圧力が高いほうの蒸発器E1から順に低いほうに向かって流れている。
FIG. 1A schematically shows one form according to the first configuration of the present invention. In FIG. 1A, three refrigeration cycles R1 to R3 are provided in parallel, and each of the refrigeration cycles includes an independent compressor C, an expansion valve F, and an evaporator E. The condenser is a refrigeration cycle. The integrated condenser D is common to R1 to R3.
The suction pressure (evaporation pressure) of each compressor is set in a stepwise manner such that C1 is 0.56 MPa, C2 is 0.46 MPa, and C3 is 0.36 MPa. The flow path of the secondary heat medium B evaporates. The secondary-side heat medium B is connected in series from the evaporators E1 to E3 to the lower one from the evaporator E1 having the higher evaporation pressure.

凝縮器Dの凝縮圧力、凝縮器温度及び各蒸発器E1〜E3での入口及び出口温度は図示のとおりであり、各蒸発器E1〜E3の出口で種々の温度の2次側熱媒体Bを取り出すことができるとともに、蒸発器E1の入口と蒸発器E3の出口間で温度差の大きい冷熱を取り出すことができる。また一方凝縮器Dの出口で37℃の2次側熱媒体Aを取り出すことができる。
また凝縮器Dを一体型としたことにより圧縮機C1、C2及びC3の圧縮差圧が低減され、これによって圧縮機の消費動力が低減される。また各冷凍サイクルの圧縮機、蒸発器をユニット化することにより、それらの設計、製造及び施工に要する時間、コストを低減することができる。
The condensing pressure of the condenser D, the condenser temperature, and the inlet and outlet temperatures at each of the evaporators E1 to E3 are as shown in the figure, and the secondary side heat medium B having various temperatures is supplied at the outlet of each of the evaporators E1 to E3. In addition to being able to take out, it is possible to take out cold heat having a large temperature difference between the inlet of the evaporator E1 and the outlet of the evaporator E3. On the other hand, the secondary heat medium A at 37 ° C. can be taken out at the outlet of the condenser D.
Further, by integrating the condenser D, the compression differential pressures of the compressors C1, C2, and C3 are reduced, thereby reducing the power consumption of the compressor. In addition, by unitizing the compressor and evaporator of each refrigeration cycle, the time and cost required for designing, manufacturing, and construction thereof can be reduced.

図1の(b)に従来の1段冷凍サイクルを示すが、かかる従来の冷凍サイクルの高低圧力差(ΔP=1.1MPa)と比べて、本発明のほうが圧力差を低減でき(圧縮機C1でΔP=0.69MPa、圧縮機C2でΔP=0.79MPa、圧縮機C3でΔP=0.89MPa)、圧縮機動力を低減することができる。これによって成績係数COPを従来方式と比べて向上することができる。   FIG. 1 (b) shows a conventional one-stage refrigeration cycle. The pressure difference can be reduced by the present invention (compressor C1) compared to the high-low pressure difference (ΔP = 1.1 MPa) of the conventional refrigeration cycle. ΔP = 0.69 MPa, ΔP = 0.79 MPa for the compressor C 2, ΔP = 0.89 MPa for the compressor C 3), and the compressor power can be reduced. As a result, the coefficient of performance COP can be improved as compared with the conventional method.

図2の(a)は、本発明の第2の構成にかかる一形態を模式的に示したものであり、(b)は、1段冷凍サイクルd構成された従来方式を示したものである。図2(a)の形態は、並列に配置された3段の冷凍サイクルR1〜R3において、凝縮器を各個独立した凝縮器D1〜D3で構成し、各凝縮器の凝縮圧力(圧縮機吐出圧)は、凝縮器D1が1.18MPa、D2が1.59MPa、D3が1.83MPaと階段状に異ならせて設定され、一方蒸発器Eを各冷凍サイクルR1〜R3に共通した一体型としたものである。   FIG. 2 (a) schematically shows an embodiment according to the second configuration of the present invention, and FIG. 2 (b) shows a conventional method in which a one-stage refrigeration cycle d is configured. . In the form of FIG. 2A, in the three-stage refrigeration cycles R1 to R3 arranged in parallel, each of the condensers is composed of independent condensers D1 to D3, and the condensation pressure (compressor discharge pressure) of each condenser is configured. ), The condenser D1 is set to 1.18 MPa, D2 is 1.59 MPa, and D3 is set to be different from each other in a stepped manner, while the evaporator E is an integrated type common to the refrigeration cycles R1 to R3. Is.

かかる形態においては、各凝縮器D1〜D3の出口で種々の温度の2次側熱媒体Aを取り出すことができ、また凝縮器D3の入口と凝縮器D1の出口との間で温度差の大きい温熱を取り出すことができる。また蒸発器Eを一体とすることにより、冷凍サイクルR3の高低圧力差(ΔP=0.82MPa)及び冷凍サイクルR3の高低圧力差(ΔP=1.23MPa)を低減でき、図1の(b)に示す従来の1段冷凍サイクルRの高低圧力差(ΔP=1.47MPa)と比べて圧縮比を低減することができ、これによってCOPを従来方式より向上することができる。   In such a form, the secondary side heat medium A having various temperatures can be taken out at the outlets of the condensers D1 to D3, and a large temperature difference exists between the inlet of the condenser D3 and the outlet of the condenser D1. Heat can be taken out. Further, by integrating the evaporator E, the high / low pressure difference (ΔP = 0.82 MPa) of the refrigeration cycle R3 and the high / low pressure difference (ΔP = 1.23 MPa) of the refrigeration cycle R3 can be reduced, and FIG. Compared with the high-low pressure difference (ΔP = 1.47 MPa) of the conventional one-stage refrigeration cycle R shown in (1), the compression ratio can be reduced, whereby the COP can be improved over the conventional method.

図3に示すように、冷凍サイクルにおいては、冷媒の温度が低下し、蒸発圧力が低くなると、蒸発工程で冷媒が希薄となり、成績係数COPが低下する。例えば冷媒温度が0℃ではCOPが約5〜6であるのに対し、−100℃になると、1以下に低下する。本発明では、複数段の冷凍サイクルを構成し、各冷凍サイクルで蒸発圧力を階段状に設定することにより、低温度側の蒸発圧力が低い冷凍サイクルの冷媒量を低減できるため、COP低下の影響を抑えることができる。   As shown in FIG. 3, in the refrigeration cycle, when the temperature of the refrigerant decreases and the evaporation pressure decreases, the refrigerant becomes diluted in the evaporation step, and the coefficient of performance COP decreases. For example, the COP is about 5 to 6 when the refrigerant temperature is 0 ° C., but when it reaches −100 ° C., it drops to 1 or less. In the present invention, the refrigerant amount of the refrigeration cycle having a low evaporating pressure on the low temperature side can be reduced by configuring a multi-stage refrigeration cycle and setting the evaporating pressure stepwise in each refrigeration cycle. Can be suppressed.

また本発明では、冷凍サイクルを複数に分割しているため、個々の冷凍サイクルの圧縮機の容量制御を各熱負荷に応じて別々に行なうことができるので、二次側負荷変動による
温度変化及び2次側熱媒体の流量変動による温度変化への対応等が容易にできる。また2次側熱媒体は、水等の液体、または空気等の気体を使用することができる。
また複数の圧縮機、凝縮器、蒸発器をモジュール化すれば、それらの設計、製造が容易であり、また汎用一体型ユニットとすれば、設計、製造及び施工を大幅に低減することができる。
Further, in the present invention, since the refrigeration cycle is divided into a plurality of parts, the capacity control of the compressors of the individual refrigeration cycles can be performed separately according to each heat load. It is possible to easily cope with temperature changes due to flow rate fluctuations of the secondary side heat medium. Moreover, liquids, such as water, or gas, such as air, can be used for a secondary side heat carrier.
If a plurality of compressors, condensers, and evaporators are modularized, their design and manufacture can be facilitated. If a general-purpose integrated unit is used, design, manufacture and construction can be greatly reduced.

また本発明の一つの実施形態として、図1に示すように、凝縮器群を一体に構成し、内部容積比可変型の圧縮機を用いた場合において、各圧縮機の軸動力を均一化させる方向に各圧縮機の内部容積比を一側から最終段に向けて異ならしめるように構成すれば、駆動用電動機の単一の駆動軸に複数の圧縮機を連結した場合、最適な圧縮比に基づく動力削減が可能になり、また負荷バランスを良好に保ち、該電動機のトルク変動が少なくなる利点がある。   As an embodiment of the present invention, as shown in FIG. 1, when a condenser group is integrally formed and a variable internal volume ratio type compressor is used, the shaft power of each compressor is made uniform. If the internal volume ratio of each compressor is made to vary in the direction from one side to the final stage, the optimum compression ratio can be achieved when multiple compressors are connected to a single drive shaft of the drive motor. Accordingly, there is an advantage that the power reduction based on the motor can be performed, the load balance is kept good, and the torque fluctuation of the electric motor is reduced.

図4は、単一の駆動軸に3台の圧縮機を連結した場合の圧縮比と内部容積比の例を示す。操作条件に適した内部容積比の圧縮機を採用することにより動力低減が図れる。圧縮比が各冷凍サイクルの蒸発温度で異なるため、同じ内部容積比の圧縮機では過圧縮や圧縮不足のためロスが生じ、3台にカスケードで構成したメリットが相殺される。そのため各圧縮機での最適内部容積比を選定することが重要となる。   FIG. 4 shows an example of the compression ratio and the internal volume ratio when three compressors are connected to a single drive shaft. By adopting a compressor with an internal volume ratio suitable for operating conditions, power can be reduced. Since the compression ratio differs depending on the evaporation temperature of each refrigeration cycle, a compressor with the same internal volume ratio loses due to over-compression or under-compression, and the merits of three cascades are offset. Therefore, it is important to select the optimum internal volume ratio for each compressor.

また本発明において、好ましくは、単機二段圧縮機として一体型となった低段圧縮機と高段圧縮機を各々単段機として、カスケード利用するとよい。これによってカップリング、歯車等構成部品を削減でき、もって全体構造をコンパクトにすることができる。
さらには隣り合う2台の圧縮機を向かい合わせ、それらの圧縮機の間に駆動用電動機を配置し、該駆動用電動機の単一の駆動軸の両軸端にこれら2台の圧縮機を連結すれば、同様に省スペース化を達成できる。
In the present invention, preferably, a low-stage compressor and a high-stage compressor integrated as a single-stage two-stage compressor may be cascaded as single-stage machines. As a result, components such as couplings and gears can be reduced, and the overall structure can be made compact.
Furthermore, two adjacent compressors face each other, a drive motor is arranged between the compressors, and these two compressors are connected to both ends of a single drive shaft of the drive motor. Then, space saving can be achieved similarly.

図5及び図6は、上記のように隣り合う2台の圧縮機を単機二段圧縮機としてあるいは向かい合わせに単一の駆動軸に連結した場合の動力削減状況を示すための図である。
2台の圧縮機を連結した場合、1st(1台目)、2nd(2台目)の容量比が図5に示すように各種組み合わせで考えられる。TE1で7、TE2で3を分担すると、簡略的にに考えると、面積S=3×7=21となり、動力の削減部分に擬似される。
FIG. 5 and FIG. 6 are diagrams for illustrating a power reduction situation when two adjacent compressors are connected to a single drive shaft as a single-unit or two-stage compressor as described above.
When two compressors are connected, the capacity ratio of 1st (first unit) and 2nd (second unit) can be considered in various combinations as shown in FIG. If 7 is shared by TE1 and 3 is shared by TE2, when considered simply, the area S = 3 × 7 = 21, which is simulated as a reduced power portion.

その結果、図5に示すように、1st:5が削減面積最大であることがわかり、2台でカスケード構成する場合の容量は、1st=5、2nd=5となり、1:1が最適となる。また図5からわかるように、1stと2ndとの容量比が3:7から7:3の場合に動力削減が著しいことがわかる。   As a result, as shown in FIG. 5, it can be seen that 1st: 5 is the maximum reduction area, and the capacity when two units are cascaded is 1st = 5, 2nd = 5, and 1: 1 is optimal. . Further, as can be seen from FIG. 5, it is found that the power reduction is remarkable when the capacity ratio between 1st and 2nd is from 3: 7 to 7: 3.

また一体型凝縮器の一実施形態として、散水槽を形成する容器本体を一体にした一体型蒸発式凝縮器で構成し、該容器本体の散水領域に前記冷凍サイクルの冷媒配管を別々に配置すれば、凝縮器として一般的な冷却塔を使用する場合と比べて凝縮温度を下げることができ、これによって冷凍サイクルの成績係数COPを向上することができる。
また複数の冷凍サイクルの各々単一の凝縮器を使用することにより、冷媒としてアンモニア等の自然冷媒を使用した場合、万一アンモニアの漏洩が生じても大量漏洩しない構造とすることができ、また可燃性のHC系冷媒を用いた場合でも、1台のファンで容易に換気することができる。
Further, as one embodiment of the integrated condenser, an integrated evaporative condenser in which a container main body forming a sprinkling tank is integrated, and the refrigerant pipe of the refrigeration cycle is separately disposed in the watering region of the container main body. For example, it is possible to lower the condensation temperature as compared with the case where a general cooling tower is used as the condenser, thereby improving the coefficient of performance COP of the refrigeration cycle.
In addition, by using a single condenser for each of a plurality of refrigeration cycles, when a natural refrigerant such as ammonia is used as a refrigerant, it can be structured to prevent a large amount of leakage even if ammonia leaks. Even when a flammable HC refrigerant is used, it can be easily ventilated with a single fan.

また本発明の他の実施形態として、複数の冷凍サイクルの少なくともひとつが、高温側の高元冷媒が流れる高元冷凍サイクルと低温側の低元冷媒が流れる低元冷凍サイクルとが低元冷媒が高元冷媒によって蒸発潜熱を吸収されて冷却、液化するカスケード凝縮器で組み合わされた多元冷凍サイクルで構成するようにしてもよい。   As another embodiment of the present invention, at least one of the plurality of refrigeration cycles includes a high-source refrigeration cycle in which a high-source refrigerant on a high-temperature side flows and a low-source refrigeration cycle in which a low-source refrigerant on a low-temperature side flows. You may make it comprise the multi-component refrigeration cycle combined with the cascade condenser which absorbs latent heat of evaporation by a high original refrigerant, cools and liquefies.

図7は、この構成を模式的に示す説明図である。図7において、M1は、高温側の高元冷媒が流れる高元冷凍サイクルH1と、低温側の低元冷媒が流れる低元冷凍サイクルL1とがカスケード凝縮器G1で組み合わされた多元冷凍サイクルであり、カスケード凝縮器G1では、低元冷凍サイクルL1の低元冷媒が高元冷凍サイクルH1の高元冷媒によって蒸発潜熱を吸収されて冷却、液化する。多元冷凍サイクルM2及びM3も同様の構成を有する。   FIG. 7 is an explanatory diagram schematically showing this configuration. In FIG. 7, M1 is a multi-component refrigeration cycle in which a high-source refrigeration cycle H1 in which a high-temperature-side high-source refrigerant flows and a low-source refrigeration cycle L1 in which a low-temperature-side low-source refrigerant flows are combined in a cascade condenser G1. In the cascade condenser G1, the low-source refrigerant of the low-source refrigeration cycle L1 absorbs latent heat of evaporation by the high-source refrigerant of the high-source refrigeration cycle H1, and cools and liquefies. The multi-source refrigeration cycles M2 and M3 have the same configuration.

かかる構成とすれば、蒸発器E1〜E3を結ぶ2次側熱媒体流路で−60℃の2次側熱媒体を−100℃付近の極低温に冷却可能となり、極低温の冷熱を製造可能であるとともに、凝縮器D1〜D3を結ぶ2次側熱媒体流路で例えば30〜45℃の温熱を同時にかつ高効率で製造することができる。またカスケード凝縮器G1〜G3の低元冷媒から−40℃〜−30℃の冷熱をとり出すこともできる。
このように本発明では、独立に並列配置された複数の冷凍サイクルのうち、その一部を多元冷凍サイクルとして、極低温から高温までの広い温度幅の間で所望の温度の熱源を自在に取り出すことができ、またそれによって高効率なヒートポンプサイクルを実現することができる。
With this configuration, the secondary side heat medium flow path connecting the evaporators E1 to E3 can cool the secondary side heat medium at −60 ° C. to a cryogenic temperature around −100 ° C., and can produce cryogenic heat. In addition, for example, heat of 30 to 45 ° C. can be simultaneously and efficiently manufactured in the secondary heat medium flow path connecting the condensers D1 to D3. Moreover, the cold heat of -40 degreeC--30 degreeC can also be taken out from the low original refrigerant | coolant of cascade condenser G1-G3.
As described above, in the present invention, among a plurality of refrigeration cycles independently arranged in parallel, a part of them is a multi-source refrigeration cycle, and a heat source at a desired temperature can be freely taken out over a wide temperature range from a very low temperature to a high temperature. And thereby a highly efficient heat pump cycle can be realized.

本発明の第1構成によれば、複数の冷凍サイクルを構成する蒸発器群を一側より最終段に向けて2次側熱媒体の流路を直列に接続し、各圧縮機の冷媒吸入圧を一側から最終段に向けて順次異ならせて設定し、2次側熱媒体流路に2次側熱媒体を蒸発圧力の高い蒸発器から蒸発圧力の低い蒸発器に向けて順に流すように構成したことにより、幅広い温度範囲の多種の冷却負荷に対して最適温度の冷熱を供給することができるとともに、各圧縮機の圧縮比を低減することができるので、圧縮機動力を低減できて、COPを向上させることができる。   According to the first configuration of the present invention, the evaporator group constituting the plurality of refrigeration cycles is connected in series with the flow path of the secondary heat medium from one side to the final stage, and the refrigerant suction pressure of each compressor Are set to be sequentially different from the one side to the final stage, and the secondary side heat medium is made to flow in order from the evaporator having a high evaporation pressure to the evaporator having a low evaporation pressure in the secondary heat medium flow path. By configuring it, it is possible to supply cold heat of optimum temperature to various cooling loads in a wide temperature range, and it is possible to reduce the compression ratio of each compressor, so that the compressor power can be reduced, COP can be improved.

また本発明の第2の構成によれば、複数の冷凍サイクルを構成する凝縮器群を一側より最終段に向けて2次側熱媒体の流路を直列に接続し、各圧縮機の冷媒吐出圧を一側から最終段に向けて順次異ならせて設定し、2次側熱媒体流路に2次側熱媒体を凝縮圧力の低い凝縮器から凝縮圧力の高い凝縮器に向けて順に流すように構成したことにより、幅広い温度範囲の多種の加熱負荷に対して最適温度の温熱を供給することができるとともに、各圧縮機の圧縮比を低減することができるので、圧縮機動力を低減できて、COPを向上させることができる。   Further, according to the second configuration of the present invention, the condenser group constituting the plurality of refrigeration cycles is connected in series with the flow path of the secondary heat medium from one side to the final stage, and the refrigerant of each compressor The discharge pressure is set to be sequentially changed from one side toward the final stage, and the secondary side heat medium is sequentially flowed from the condenser having a low condensing pressure to the condenser having a high condensing pressure in the secondary heat medium flow path. With this configuration, it is possible to supply the heat at the optimum temperature to various heating loads in a wide temperature range, and it is possible to reduce the compression ratio of each compressor, thereby reducing the compressor power. COP can be improved.

また本発明の第3の構成によれば、複数の冷凍サイクルを構成する蒸発器群及び凝縮器群をそれぞれ一側より最終段に向けて2次側熱媒体の流路を直列に接続し、各圧縮機の冷媒吸入圧を一側から最終段に向けて順次異ならせて設定し、前記蒸発器に接続した2次側熱媒体流路に2次側熱媒体を蒸発圧力の高い蒸発器から蒸発圧力の低い蒸発器に向けて順に流すとともに、前記凝縮器に接続した2次側熱媒体流路に2次側熱媒体を凝縮圧力の低い凝縮器から凝縮圧力の高い凝縮器に向けて順に流すように構成したことにより、幅広い温度範囲の多種の冷却負荷及び加熱負荷に対して最適温度の冷熱及び温熱を供給することができるとともに、複数の冷凍サイクルの全部で各圧縮機の圧縮比を低減して圧縮機動力を低減することができ、これによってCOPをさらに向上させることができる。   Further, according to the third configuration of the present invention, the evaporator group and the condenser group constituting the plurality of refrigeration cycles are respectively connected in series from the one side toward the final stage, and the flow path of the secondary side heat medium is connected. The refrigerant suction pressure of each compressor is set to be sequentially changed from one side toward the final stage, and the secondary side heat medium is transferred from the evaporator having a high evaporation pressure to the secondary side heat medium flow path connected to the evaporator. While flowing sequentially toward the evaporator having a low evaporation pressure, the secondary heat medium is sequentially transferred from the condenser having a low condensation pressure to the condenser having a high condensation pressure in the secondary heat medium flow path connected to the condenser. By being configured to flow, it is possible to supply cooling and heating at the optimum temperature to various cooling loads and heating loads in a wide temperature range, and the compression ratio of each compressor can be adjusted in all of the plurality of refrigeration cycles. To reduce the compressor power, It is possible to further improve the COP me.

単一の駆動源に連結された単機二段圧縮の低段側圧縮機と高段側圧縮機を、各々単段機として機能させるように構成すれば、複数台の圧縮機をあたかも1台の圧縮機として一体型ユニット構造にまとめることができるため、容積で約10〜30%の省スペース化が可能となり、またこれら複数の圧縮機を一体型ユニット化することにより、設計、製造及び施工に要する時間又は費用を大幅に削減することができる。   If a single-stage two-stage compression low-stage compressor and a high-stage compressor connected to a single drive source are configured to function as single-stage machines, a plurality of compressors are treated as if they were one unit. Since it can be integrated into a unitary unit structure as a compressor, it is possible to save about 10-30% of space in volume, and by designing these units into a unitary unit, designing, manufacturing and construction The time or cost required can be greatly reduced.

また凝縮器群を一体に構成し、内部容積比可変型の圧縮機を用いた場合において、各圧縮機の軸動力を均一化させる方向に各圧縮機の内部容積比を一側から最終段に向けて異ならしめるように構成すれば、駆動用電動機の単一の駆動軸に複数の圧縮機を連結した場合、最適な圧縮比に基づく動力削減が可能になり、また負荷バランスを良好に保ち、該電動機のトルク変動が少なくなる利点がある。   In addition, when the condenser group is configured integrally and a variable internal volume ratio type compressor is used, the internal volume ratio of each compressor is changed from one side to the final stage in a direction to equalize the shaft power of each compressor. If it is configured to be different from each other, when a plurality of compressors are connected to a single drive shaft of a drive motor, power reduction based on an optimal compression ratio is possible, and a good load balance is maintained. There is an advantage that torque fluctuation of the electric motor is reduced.

また凝縮器群を散水槽を形成する容器本体を一体にした一体型蒸発式凝縮器で構成し、該容器本体の散水領域に前記冷凍サイクルの冷媒配管を別々に配置すれば、一般的な冷却塔を使用する場合に比べて凝縮温度を下げることができ、これによって冷凍サイクルのCOPを低減することができるとともに、一体化することにより、コンパクトにまとめることができ、設計、製造が容易になる。 In addition, if the condenser group is composed of an integral-type evaporative condenser in which the container body forming the watering tank is integrated, and the refrigerant pipe of the refrigeration cycle is separately arranged in the watering area of the container body, a general cooling can be performed. Condensation temperature can be lowered compared to the case of using a tower, thereby reducing the COP of the refrigeration cycle, and by integrating it, it can be compactly integrated, and designing and manufacturing are facilitated. .

また一体型の蒸発式凝縮器とすることにより、自然系冷媒であるアンモニアを冷媒として使用し万一漏洩した場合でも散水により除害しやすく、かつ一体型のため、構造的に漏れ箇所を少なくすることができ、漏れ防止対策を採り易くなる利点がある。
また2台の圧縮機を単一の駆動軸に連結した場合、両圧縮機への容量分配を3:7から7:3にすることにより大きな動力削減を達成できる。
In addition, by using an integrated evaporative condenser, ammonia, which is a natural refrigerant, is used as a refrigerant. There is an advantage that it is easy to take a leakage prevention measure.
In addition, when two compressors are connected to a single drive shaft, a large power reduction can be achieved by changing the capacity distribution to both compressors from 3: 7 to 7: 3.

また好ましくは、複数の冷凍サイクルの少なくともひとつを、高温側の高元冷媒が流れる高元冷凍サイクルと低温側の低元冷媒が流れる低元冷凍サイクルとが低元冷媒が高元冷媒によって蒸発潜熱を吸収されて冷却、液化するカスケード凝縮器で組み合わされた多元冷凍サイクルで構成すれば、マイナス60℃からマイナス100℃の極低温の2次側熱媒体を製造可能となるとともに、高温側2次側熱媒体として例えば30〜45℃の温熱を同時にかつ高効率で製造することができる。   Preferably, at least one of the plurality of refrigeration cycles is divided into a high-source refrigeration cycle in which a high-temperature-side high-source refrigerant flows and a low-source refrigeration cycle in which a low-temperature-side low-source refrigerant flows. If a multi-component refrigeration cycle is combined with a cascade condenser that absorbs and cools and liquefies, it becomes possible to produce a very low temperature secondary heat medium of minus 60 ° C. to minus 100 ° C. As the side heat medium, for example, heat of 30 to 45 ° C. can be produced simultaneously and with high efficiency.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明をそれのみに限定する趣旨ではない。
図8は本発明の第1実施例を示す構成図、図9は、本発明の第2実施例を示す構成図、図10は、本発明の第3実施例を示す構成図、図11は、本発明の第4実施例を示す構成図である。
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the present invention to that only, unless otherwise specified.
FIG. 8 is a block diagram showing the first embodiment of the present invention, FIG. 9 is a block diagram showing the second embodiment of the present invention, FIG. 10 is a block diagram showing the third embodiment of the present invention, and FIG. FIG. 5 is a configuration diagram showing a fourth embodiment of the present invention.

本発明の第1実施例は、同軸で駆動される単機二段圧縮機を使用した2段階のカスケード型ヒートポンプシステムチラーユニットに係り、図8において、圧縮機3および圧縮機4は、駆動源(電動機等)5の単一の駆動軸に連結されて同時運転する同軸一体型単機二段圧縮機ユニット6を形成する。圧縮機4、凝縮器10、膨張弁11、蒸発器7は、冷媒循環流路13で接続される、単一の独立した第1冷凍サイクルR1を構成し、蒸発器7により流路1を流れる冷却二次側熱媒体(例えば水)から吸熱し、凝縮器10により流路2を流れる加熱(放熱)二次側熱媒体へ凝縮熱を排出する。   The first embodiment of the present invention relates to a two-stage cascade heat pump system chiller unit using a single-stage two-stage compressor driven coaxially. In FIG. 8, the compressor 3 and the compressor 4 are driven sources ( An electric motor or the like) is connected to a single drive shaft of 5 to form a coaxial integrated single-unit two-stage compressor unit 6 that operates simultaneously. The compressor 4, the condenser 10, the expansion valve 11, and the evaporator 7 constitute a single independent first refrigeration cycle R <b> 1 connected by the refrigerant circulation flow path 13, and flow through the flow path 1 by the evaporator 7. Heat is absorbed from the cooling secondary heat medium (for example, water), and the condensation heat is discharged to the heating (heat radiation) secondary heat medium flowing through the flow path 2 by the condenser 10.

同時に圧縮機3、凝縮器9、膨張弁12、蒸発器8は、冷媒循環流路14で接続される、単一の独立した第2冷凍サイクルR2を構成し、蒸発器8により、流路1を流れる冷却二次側媒体(例えば水)から吸熱し、凝縮器9により流路2を流れる加熱二次側熱媒体へ凝縮熱を排出する。
冷却二次側熱媒体は蒸発器7により一段階目の冷却がなされた後、その流路1が直列に配置された蒸発器8によりさらに二段階目の冷却が施される。
At the same time, the compressor 3, the condenser 9, the expansion valve 12, and the evaporator 8 constitute a single independent second refrigeration cycle R <b> 2 connected by the refrigerant circulation flow path 14. Heat is absorbed from the cooling secondary medium (for example, water) that flows through the condenser 9, and the condensation heat is discharged to the heated secondary heat medium that flows through the flow path 2 by the condenser 9.
The cooling secondary heat medium is cooled in the first stage by the evaporator 7 and then further cooled in the second stage by the evaporator 8 in which the flow path 1 is arranged in series.

一方、加熱二次側熱媒体は、冷却二次側媒体1の流れとは逆の方向で、凝縮器9により一段階目の凝縮熱を受熱し、その後その流路2が直列に配置された凝縮器10により二段階目の凝縮熱を受熱する。
以上の構成を有する各機器は、一体型チラーユニット15として一体的に製造される。
On the other hand, the heating secondary heat medium receives the first stage condensation heat by the condenser 9 in the direction opposite to the flow of the cooling secondary medium 1, and then the flow path 2 is arranged in series. The condenser 10 receives the second stage condensation heat.
Each device having the above configuration is integrally manufactured as an integrated chiller unit 15.

かかる構成の第1実施例によれば、単段圧縮機で単一の冷凍サイクルを構成した従来のヒートポンプチラーユニットに比べ、駆動源(電動機等)5の単一の駆動軸に駆動される単機二段圧縮機を用いることにより、圧縮機+駆動源組み合わせの2台別置きの配置が、あたかも1台の圧縮機として一体型ユニット構造にまとめられるため、容積比で概略1〜3割の省スペースが可能となる。   According to the first embodiment having such a configuration, a single machine driven by a single drive shaft of a drive source (such as an electric motor) 5 as compared with a conventional heat pump chiller unit in which a single refrigeration cycle is constituted by a single stage compressor. By using a two-stage compressor, the separate arrangement of two compressors and drive source combinations can be combined into a single unit structure as a single compressor. Space becomes possible.

さらに単機二段圧縮機を一体型ユニット化することにより、汎用一体型ユニットとして製造、施工することができ、製造、施工に要する時間及び設備費が大幅に削減される。
また本実施例は、冷却二次側熱媒体(水)1の冷却温度差例Δt=10℃〜30℃の冷熱と加熱二次側熱媒体(水)2の加熱温度差例Δt=10〜30℃の温熱とを同時製造可能であるとともに、本実施例のカスケードヒートポンプチラーを汎用機化することにより、空調用、その他の加熱・冷却負荷、特に産業用冷温熱プロセスのプラス〜マイナス温度の幅広い温度域の熱源をつくり出す場合に、従来よりCOPを約20〜50%向上させることが可能となる。
Further, by making the single-unit two-stage compressor into an integrated unit, it can be manufactured and constructed as a general-purpose integrated unit, and the time and equipment cost required for manufacturing and construction are greatly reduced.
Further, in this example, the cooling temperature difference example Δt = 10 ° C. to 30 ° C. of the cooling secondary side heat medium (water) 1 and the heating temperature difference example Δt = 10 to 10 ° C. to 30 ° C. It is possible to produce 30 ° C heat at the same time, and by making the cascade heat pump chiller of this embodiment a general-purpose machine, it can be used for air conditioning and other heating / cooling loads, especially industrial cold / hot process plus-minus temperature When producing a heat source in a wide temperature range, it is possible to improve the COP by about 20 to 50% compared to the prior art.

例えば温度差20℃で2次側熱媒体(水)を1段冷凍機で加温及び冷却する場合の従来方式と本発明との冷却の場合のCOPを比較した場合を図12に示す。図中、(a)は従来の1段加温・冷却方式を示し、(b)は本発明の第1実施例による2段カスケード加温・冷却を示す。図12に示すように、本発明のほうがCOPが向上しており、電力換算で従来方式より23%削減することができる。   For example, FIG. 12 shows a case where the conventional system in the case of heating and cooling the secondary side heat medium (water) at a temperature difference of 20 ° C. with a single-stage refrigerator and the COP in the cooling of the present invention are compared. In the figure, (a) shows a conventional one-stage heating / cooling system, and (b) shows a two-stage cascade heating / cooling according to the first embodiment of the present invention. As shown in FIG. 12, the COP of the present invention is improved, and can be reduced by 23% compared to the conventional method in terms of power.

次に本発明の第2実施例を図9により説明する。第2実施例は、単段圧縮機2台を両駆動軸端を有する駆動機(電動機)で連結駆動する、2段階のカスケード型ヒートポンプチラーユニットに係る実施例であり、図9において、圧縮機3’および圧縮機4’は各々単一の単段圧縮機を示し、1台の両軸端駆動機5’の両軸端に接続されて同時運転する、タンデム駆動型圧縮機ユニット6’を形成する。
その他の部位の構成は、前記第1実施例と同一であるので、それら同一の部位には第1実施例と同一の符号を付し、説明を省略する。
Next, a second embodiment of the present invention will be described with reference to FIG. The second embodiment is an embodiment relating to a two-stage cascade heat pump chiller unit in which two single-stage compressors are connected and driven by a drive machine (electric motor) having both drive shaft ends. In FIG. Reference numeral 3 'and compressor 4' each denote a single single-stage compressor, and a tandem drive type compressor unit 6 'that is connected to both shaft ends of a single shaft end drive unit 5' and is operated simultaneously. Form.
Since the structure of other parts is the same as that of the first embodiment, the same parts are denoted by the same reference numerals as those of the first embodiment, and the description thereof is omitted.

かかる構成の第2実施例によれば、第1実施例と同様に、従来は圧縮機+駆動源組み合わせの2台別置きの配置が、1基の駆動源5’の両軸端に圧縮機3’及び圧縮機4‘を連結する事により、容積で約10〜30%の省スペースが可能となる。その他2台の圧縮機を汎用一体型ユニットとして製造、施工することによる工費節減、COPの向上等、第1実施例と同様の作用効果を奏する。   According to the second embodiment having such a configuration, as in the first embodiment, the conventional arrangement in which the compressor and the drive source are separately arranged in two units has a compressor at both shaft ends of one drive source 5 ′. By connecting 3 ′ and the compressor 4 ′, a space saving of about 10 to 30% in volume can be achieved. The other two compressors are produced and constructed as a general-purpose integrated unit, and the same operational effects as the first embodiment are achieved, such as reduction in construction cost and improvement of COP.

なお第1実施例の単機二段圧縮機ユニット6と第2実施例のタンデム駆動型圧縮機ユニット6’とを比較すると、第1実施例の圧縮機ユニット6が完全直結型の場合、カップリング、シール装置及びベアリング等が1個で済み、これに対し第2実施例のタンデム駆動型圧縮機ユニット6’は、上記部品を圧縮機2台に個別に必要であり、そのため第1実施例の圧縮機ユニット6のほうが占有スペース、重量及びコストがともに低減する。   When comparing the single-unit two-stage compressor unit 6 of the first embodiment with the tandem drive type compressor unit 6 ′ of the second embodiment, when the compressor unit 6 of the first embodiment is a complete direct coupling type, the coupling The tandem drive type compressor unit 6 ′ according to the second embodiment, on the other hand, requires only one sealing device and a bearing, etc., and the above-mentioned components are separately required for the two compressors. The compressor unit 6 reduces both occupied space, weight and cost.

次に本発明の第3実施例を図10により説明する。本実施例は、一体型凝縮器を組み込んだカスケード型ヒートポンプチラーユニットに係り、図10において、圧縮機25、駆動源28、凝縮熱交換器22、膨張弁37、及び蒸発器31は、冷媒循環流路34により接続されて、単一の独立した第1冷凍サイクルR1を構成し、蒸発器31には2次側熱媒体流路21が接続されて冷却二次側熱媒体から吸熱し、凝縮熱交換器22により放熱する。   Next, a third embodiment of the present invention will be described with reference to FIG. The present embodiment relates to a cascade type heat pump chiller unit incorporating an integrated condenser. In FIG. 10, the compressor 25, the drive source 28, the condensation heat exchanger 22, the expansion valve 37, and the evaporator 31 are refrigerant circulation. Connected by the flow path 34 to form a single independent first refrigeration cycle R1, and the evaporator 31 is connected to the secondary heat medium flow path 21 to absorb heat from the cooling secondary heat medium and condense. Heat is dissipated by the heat exchanger 22.

圧縮機26、駆動源29、凝縮熱交換器23、膨張弁38、及び蒸発器32は、冷媒循環流路35により接続されて、単一の独立した第2冷凍サイクルR2を構成し、蒸発器32には冷却二次側熱媒体流路21が接続されて2次側熱媒体から吸熱し、凝縮熱交換器23により放熱する。
また圧縮機27、駆動源30、凝縮熱交換器24、膨張弁39、及び蒸発器33は、冷媒循環流路36により接続されて、単一の独立した第3冷凍サイクルR3を構成し、蒸発器33には冷却二次側熱媒体流路21が接続されて2次側熱媒体から吸熱し、凝縮熱交換器24により放熱する。各冷凍サイクルの蒸発器31〜33には冷却2次側熱媒体流路21が直列に接続されて、蒸発圧力(圧縮機吸入圧)の高い蒸発器31から低い側へ2次側熱媒体が流れるように構成されている。
The compressor 26, the drive source 29, the condensing heat exchanger 23, the expansion valve 38, and the evaporator 32 are connected by a refrigerant circulation channel 35 to constitute a single independent second refrigeration cycle R <b> 2. The cooling secondary side heat medium flow path 21 is connected to 32 and absorbs heat from the secondary side heat medium, and is radiated by the condensation heat exchanger 23.
Further, the compressor 27, the drive source 30, the condensing heat exchanger 24, the expansion valve 39, and the evaporator 33 are connected by a refrigerant circulation flow path 36 to constitute a single independent third refrigeration cycle R3 and evaporate. The cooling secondary side heat medium flow path 21 is connected to the vessel 33 to absorb heat from the secondary side heat medium and radiate heat by the condensation heat exchanger 24. A cooling secondary side heat medium flow path 21 is connected in series to the evaporators 31 to 33 of each refrigeration cycle, and the secondary side heat medium flows from the evaporator 31 having a high evaporation pressure (compressor suction pressure) to the low side. It is configured to flow.

凝縮熱交換器22、凝縮熱交換器23、凝縮熱交換器24は、散水ポンプ45、散水配管41、空気入口42、排気ファン43、及び冷却水44で構成される一体型の蒸発式凝縮器25の内部に配置される。
冷却二次側熱媒体(水)21は蒸発器30により一段階目の冷却後、直列に配置された蒸発器32により二段階目の冷却がなされ、さらに直列に配置された蒸発器33により三段階目の冷却がなされる。以上の機器類で構成される一体型チラーユニット46は、一体に製造、施工される。
The condensing heat exchanger 22, the condensing heat exchanger 23, and the condensing heat exchanger 24 are an integrated evaporative condenser that includes a watering pump 45, a watering pipe 41, an air inlet 42, an exhaust fan 43, and cooling water 44. 25 is disposed inside.
The cooling secondary heat medium (water) 21 is cooled by the evaporator 30 in the first stage, then cooled in the second stage by the evaporator 32 arranged in series, and further cooled by the evaporator 33 arranged in series. Stage cooling is performed. The integrated chiller unit 46 composed of the above devices is manufactured and constructed integrally.

第3実施例では、凝縮器を一体に構成するため、各圧縮機25〜27の吐出圧は同一となるが、これら圧縮機の吸入圧を階段状に設定することにより、各圧縮機の圧縮比を単一の冷凍サイクルで稼動させる場合より小さくすることができる。このように各圧縮機25〜27の圧縮比がそれぞれ異なるために、各圧縮機の内部容積比を異ならしめてこれら圧縮機の軸動力を均一化するように構成している。これによってこれらの圧縮機の負荷バランスを良好に保つことができる。またこれら圧縮機を駆動用電動機の単一の駆動軸に連結した場合、該電動機のトルク変動が少なくなる利点がある。   In the third embodiment, since the condensers are integrally formed, the discharge pressures of the compressors 25 to 27 are the same. By setting the suction pressures of these compressors in a stepped manner, the compressors of the compressors are compressed. The ratio can be smaller than when operating with a single refrigeration cycle. Since the compression ratios of the compressors 25 to 27 are different from each other in this way, the internal volume ratios of the compressors are made different to make the shaft power of these compressors uniform. Thereby, the load balance of these compressors can be kept good. Further, when these compressors are connected to a single drive shaft of a drive motor, there is an advantage that torque fluctuation of the motor is reduced.

かかる構成の第3実施例によれば、従来、一般的な冷却塔により冷凍サイクルの冷却水を37℃から32℃に冷却した場合、冷凍サイクルの凝縮温度は40℃〜42℃程度と推定されるが、蒸発式凝縮器を使用した場合は、一般的に35℃とされており、本実施例において、蒸発式凝縮器41を組み込んだことより、凝縮温度が下がり、これにより、冷凍サイクルのCOPが約10%向上する。   According to the third embodiment having such a configuration, when the cooling water of the refrigeration cycle is conventionally cooled from 37 ° C. to 32 ° C. by a general cooling tower, the condensation temperature of the refrigeration cycle is estimated to be about 40 ° C. to 42 ° C. However, when an evaporative condenser is used, the temperature is generally set to 35 ° C. In this embodiment, since the evaporating condenser 41 is incorporated, the condensing temperature is lowered. COP is improved by about 10%.

また蒸発式凝縮器40の上記省エネルギー効果を生かしつつ、且つ冷却二次側熱媒体21の冷却温度差を大きくとり、複数の冷凍サイクルR1、R2、R3の構成にて直列にカスケード運転することにより、冷却性能の省エネルギー効果が相乗され、従来、単一で使用されている水冷式凝縮器使用のヒートポンプチラーに比べ、COP(成績係数)を約10〜20%向上させることが可能となる。   In addition, by taking advantage of the energy saving effect of the evaporative condenser 40 and by increasing the cooling temperature difference of the cooling secondary side heat medium 21, cascade operation is performed in series with a plurality of refrigeration cycles R1, R2, and R3. The energy saving effect of the cooling performance is synergistic, and it is possible to improve the COP (coefficient of performance) by about 10 to 20% as compared with a heat pump chiller using a water-cooled condenser conventionally used alone.

さらに本発明の第3実施例として、2次側冷却媒体の入出口の温度差Δt=20℃以上の場合について従来方式とのCOPを比較した例を図13に示す。図13において、(a)は従来の冷却方式を示し、(b)は本発明の第3実施例による3段カスケード冷却方式を示す。(b)に示すように、本発明のほうがCOPが格段に向上し、電力換算で37%削減される。   Furthermore, as a third embodiment of the present invention, FIG. 13 shows an example in which the COP of the conventional method is compared with the case where the temperature difference Δt = 20 ° C. or more of the inlet and outlet of the secondary side cooling medium. In FIG. 13, (a) shows a conventional cooling method, and (b) shows a three-stage cascade cooling method according to the third embodiment of the present invention. As shown in (b), the COP is significantly improved in the present invention, and is reduced by 37% in terms of electric power.

また一体型蒸発式凝縮器40としたことにより、冷媒として毒性をもつアンモニアを使用した場合でも、漏れ箇所を排気ファン43の部分のみに限定することができ、万一アンモニア漏れが発生した場合でもアンモニアの機外への漏洩を容易に防止することができる。
また本実施例において汎用ユニットとして、一体型ユニット構造とすることにより、製造、施工等を大幅に低減することができる。
In addition, since the integrated evaporator 40 is used, even when toxic ammonia is used as a refrigerant, the leak point can be limited to only the exhaust fan 43, and even if an ammonia leak occurs. Leakage of ammonia outside the machine can be easily prevented.
Moreover, manufacturing, construction, etc. can be significantly reduced by using an integrated unit structure as a general-purpose unit in the present embodiment.

次に本発明の第4実施例を図11に基づいて説明する。本実施例は、二元冷凍サイクルを複数直列に配置したカスケード型ヒートポンプチラーユニットに係り、図11において、低元圧縮機56、駆動源57、カスケード凝縮器59、膨張弁60、蒸発器58は、低元側の単一冷凍サイクルを構成し、冷却2次側熱媒体流路51が蒸発器58に接続されて、冷却二次側熱媒体から吸熱し、カスケード凝縮器59により低元側冷凍サイクルの凝縮熱を排出する。   Next, a fourth embodiment of the present invention will be described with reference to FIG. This embodiment relates to a cascade heat pump chiller unit in which a plurality of binary refrigeration cycles are arranged in series. In FIG. 11, a low-source compressor 56, a drive source 57, a cascade condenser 59, an expansion valve 60, and an evaporator 58 are The low secondary side single refrigeration cycle is configured, the cooling secondary heat medium passage 51 is connected to the evaporator 58, absorbs heat from the cooling secondary heat medium, and the cascade condenser 59 reduces the low original side refrigeration. The heat of condensation in the cycle is discharged.

さらに高元圧縮機62、駆動源63、凝縮器64、膨張弁65、カスケード凝縮器59は高元側の単一冷凍サイクルを形成し、カスケード凝縮器59により低元側冷凍サイクルの凝縮熱を回収し、凝縮器64に加熱(放熱)次側熱媒体流路52が接続されて、加熱(放熱)次側熱媒体流路へ高元側冷凍サイクルの凝縮熱を排出する。これらの低元側と高元側の組み合わせにより、単一の第1二元冷凍サイクル53を構成する。   Further, the high-source compressor 62, the drive source 63, the condenser 64, the expansion valve 65, and the cascade condenser 59 form a single high-side refrigeration cycle, and the cascade condenser 59 generates the condensation heat of the low-source side refrigeration cycle. The heating (heat radiation) secondary side heat medium flow path 52 is connected to the condenser 64, and the condensation heat of the high-source side refrigeration cycle is discharged to the heating (heat radiation) secondary side heat medium flow path. The combination of the low element side and the high element side constitutes a single first binary refrigeration cycle 53.

一方、低元圧縮機67、駆動源68、カスケード凝縮器70、膨張弁71、蒸発器69は低元側の単一冷凍サイクルを構成し、蒸発器69に冷却2次側熱媒体流路51が接続されて、冷却二次側媒体から吸熱し、カスケード凝縮器70により低元側凝縮熱を排出する。さらに高元圧縮機73、駆動源74、凝縮器75、膨張弁76、及びカスケード凝縮器70により高元側の単一冷凍サイクルを形成し、カスケード凝縮器70で低元側冷凍サイクルの凝縮熱を回収し、凝縮器75で加熱(放熱)二次側熱媒体流路52と接続し、加熱(放熱)二次側熱媒体へ高元側冷凍サイクルの凝縮熱を排出する。これらの低元側と高元側の組み合わせにより、単一の第2二元冷凍サイクル54を構成する。   On the other hand, the low-source compressor 67, the drive source 68, the cascade condenser 70, the expansion valve 71, and the evaporator 69 constitute a low-source-side single refrigeration cycle. Are connected to absorb the heat from the cooling secondary medium, and the low-side condensation heat is discharged by the cascade condenser 70. Further, the high-source compressor 73, the drive source 74, the condenser 75, the expansion valve 76, and the cascade condenser 70 form a high-source-side single refrigeration cycle, and the cascade condenser 70 condenses heat of the low-source-side refrigeration cycle. Is connected to the heating (heat radiation) secondary side heat medium flow path 52 by the condenser 75, and the condensation heat of the high-side refrigeration cycle is discharged to the heating (heat radiation) secondary side heat medium. The combination of the low element side and the high element side constitutes a single second binary refrigeration cycle 54.

冷却二次側熱媒体51は、第一の二元冷凍サイクル53の蒸発器58により一段階目の冷却後、さらに直列に配置された第二の二元冷凍サイクル54の蒸発器69により二段階目の冷却がなされる。また加熱2次側熱媒体52は、第一の二元冷凍サイクル53の凝縮器64により一段階目の加熱後、さらに直列に配置された第二の二元冷凍サイクル54の凝縮器75により二段階目の加熱がなされる。かかる構成の第4実施例は、一体型ユニット構造77として製造、施工される。
なお図7中に、各部位における2次側熱媒体又は冷媒の温度値を一例として示す。
The cooling secondary heat medium 51 is cooled in the first stage by the evaporator 58 of the first binary refrigeration cycle 53, and then in two stages by the evaporator 69 of the second binary refrigeration cycle 54 arranged in series. The eyes are cooled. The heated secondary heat medium 52 is heated by the condenser 64 of the first binary refrigeration cycle 53 and then heated by the condenser 75 of the second binary refrigeration cycle 54 arranged in series after the first stage heating. Stage heating is performed. The fourth embodiment having such a configuration is manufactured and constructed as an integrated unit structure 77.
In addition, in FIG. 7, the temperature value of the secondary side heat medium or refrigerant | coolant in each site | part is shown as an example.

かかる第4実施例によれば、冷却2次側熱媒体流路51において、入口温度−60℃の2次側熱媒体から出口温度―80〜−100℃の極低温2次側熱媒体をつくり出すことができ、また同時に加熱2次側熱媒体流路52において、入口温度20℃の2次側熱媒体から出口温度45℃の高温2次側熱媒体をつくり出すことが出来る。   According to the fourth embodiment, in the cooling secondary heat medium flow channel 51, an extremely low temperature secondary heat medium having an outlet temperature of −80 to −100 ° C. is produced from the secondary heat medium having an inlet temperature of −60 ° C. At the same time, in the heating secondary heat medium flow path 52, a high temperature secondary heat medium having an outlet temperature of 45 ° C. can be produced from the secondary heat medium having an inlet temperature of 20 ° C.

このように二元冷凍サイクルを複数直列にカスケード構成させることにより、従来の単一の二元冷凍サイクルシステムを適用する場合に比べ、COP(成績係数)を数%向上させることが可能である。
またカスケード凝縮器59及び70で夫々−20℃及び−40℃の冷熱源をつくり出すことができ、このように種々の冷却負荷に冷熱源を供給することができる。
As described above, a plurality of binary refrigeration cycles are cascaded in series, so that the COP (coefficient of performance) can be improved by several percent compared to the case where a conventional single binary refrigeration cycle system is applied.
In addition, the cascade condensers 59 and 70 can produce -20 [deg.] C. and -40 [deg.] C. cooling sources, respectively, and thus can supply the cooling sources to various cooling loads.

本発明によれば、システムの入口と出口とで温度差の大きな冷熱源及び温熱源を得ることができるとともに、多種の冷却負荷又は加熱負荷に対して幅広い温度範囲の冷熱又は温熱を供給することができ、またヒートポンプシステムの動力を削減でき、成績係数COPを格段に向上させることができる。   ADVANTAGE OF THE INVENTION According to this invention, while being able to obtain a cold source and a thermal source with a large temperature difference at the inlet and outlet of the system, it is possible to supply a variety of cooling loads or heating loads in a wide temperature range. In addition, the power of the heat pump system can be reduced, and the coefficient of performance COP can be significantly improved.

図1の(a)は、本発明の第1の構成にかかる一形態を示す模式図、(b)は従来の冷凍サイクルを示す模式図である。FIG. 1A is a schematic diagram showing an embodiment according to the first configuration of the present invention, and FIG. 1B is a schematic diagram showing a conventional refrigeration cycle. 図2の(a)は、本発明の第2の構成にかかる一形態を示す模式図、(b)は従来の冷凍サイクルを示す模式図である。FIG. 2A is a schematic diagram showing an embodiment according to the second configuration of the present invention, and FIG. 2B is a schematic diagram showing a conventional refrigeration cycle. 冷媒温度とCOPとの関係を示す線図である。It is a diagram which shows the relationship between refrigerant | coolant temperature and COP. 単一の駆動軸に3台の圧縮機を連結した場合の圧縮比と内部容積比の例を示す表である。It is a table | surface which shows the example of a compression ratio at the time of connecting three compressors to a single drive shaft, and an internal volume ratio. 隣り合う2台の圧縮機を単一の駆動軸に連結した場合の動力削減状況を示す線図である。It is a diagram which shows the power reduction condition at the time of connecting two adjacent compressors to a single drive shaft. 隣り合う2台の圧縮機を単一の駆動軸に連結した場合の動力削減状況を示すP−T線図である。It is a PT diagram showing a power reduction situation when two adjacent compressors are connected to a single drive shaft. 本発明の第3の構成にかかる一形態を示す模式図である。It is a schematic diagram which shows one form concerning the 3rd structure of this invention. 本発明の第1実施例を示す構成図である。It is a block diagram which shows 1st Example of this invention. 本発明の第2実施例を示す構成図である。It is a block diagram which shows 2nd Example of this invention. 本発明の第3実施例を示す構成図である。It is a block diagram which shows 3rd Example of this invention. 本発明の第4実施例を示す構成図である。It is a block diagram which shows 4th Example of this invention. 本発明の第1実施例によるCOP向上率を示す説明図である。It is explanatory drawing which shows the COP improvement rate by 1st Example of this invention. 本発明の第3実施例によるCOP向上率を示す説明図である。It is explanatory drawing which shows the COP improvement rate by 3rd Example of this invention.

符号の説明Explanation of symbols

1,21,51 2次側熱媒体流路
2,52 加熱(放熱)2次側熱媒体流路
3,3’,4,4’,25,26,27 圧縮機
5,28,29,30,57,63,68,74 圧縮機駆動源
6 単機二段圧縮機ユニット
6’ タンデム駆動型圧縮機ユニット
7,8,32,32,58,69蒸発器
9,10,64,75 凝縮器
11,12,37,38,39,60,65,71,76 膨張弁
15,46,77 一体型チラーユニット
40 蒸発式凝縮器
53 第1二元冷凍サイクル
54 第2二元冷凍サイクル
59,70 カスケード凝縮器
56,67 低元圧縮機
62,73 高元圧縮機
R1 第1冷凍サイクル
R2 第2冷凍サイクル
R3 第3冷凍サイクル
1,21,51 Secondary heat medium flow path 2,52 Heating (heat radiation) secondary heat medium flow path 3,3 ', 4,4', 25,26,27 Compressor 5,28,29,30 , 57, 63, 68, 74 Compressor drive source 6 Single-unit two-stage compressor unit 6 'Tandem drive type compressor unit 7, 8, 32, 32, 58, 69 Evaporator 9, 10, 64, 75 Condenser 11 , 12, 37, 38, 39, 60, 65, 71, 76 Expansion valve 15, 46, 77 Integrated chiller unit 40 Evaporative condenser 53 First two-way refrigeration cycle 54 Second two-way refrigeration cycle 59, 70 Cascade Condensers 56, 67 Low original compressor 62, 73 High original compressor R1 First refrigeration cycle R2 Second refrigeration cycle R3 Third refrigeration cycle

Claims (9)

それぞれ圧縮機、凝縮器、膨張器及び蒸発器を備えた複数の冷凍サイクルを並列に配置したカスケード型ヒートポンプシステムにおいて、
前記複数の冷凍サイクルを構成する蒸発器群に一側より最終段に向けて2次側熱媒体の流路を直列に接続し、
各圧縮機の冷媒吸入圧を一側から最終段に向けて順次異ならせて設定し、
前記2次側熱媒体流路に2次側熱媒体を蒸発圧力の高い蒸発器から蒸発圧力の低い蒸発器に向けて順に流すように構成したことを特徴とするカスケード型ヒートポンプシステム。
In a cascade heat pump system in which a plurality of refrigeration cycles each having a compressor, a condenser, an expander and an evaporator are arranged in parallel,
The flow path of the secondary side heat medium is connected in series from one side to the final stage to the evaporator group constituting the plurality of refrigeration cycles,
Set the refrigerant suction pressure of each compressor in order from one side to the last stage,
A cascade-type heat pump system, wherein the secondary heat medium is caused to flow through the secondary heat medium flow path in order from an evaporator having a high evaporation pressure toward an evaporator having a low evaporation pressure.
それぞれ圧縮機、凝縮器、膨張器及び蒸発器を備えた複数の冷凍サイクルを並列に配置したカスケード型ヒートポンプシステムにおいて、
前記複数の冷凍サイクルを構成する凝縮器群に一側より最終段に向けて2次側熱媒体の流路を直列に接続し、
各圧縮機の冷媒吐出圧を一側から最終段に向けて順次異ならせて設定し、
前記2次側熱媒体流路に2次側熱媒体を凝縮圧力の低い凝縮器から凝縮圧力の高い凝縮器に向けて順に流すように構成したことを特徴とするカスケード型ヒートポンプシステム。
In a cascade heat pump system in which a plurality of refrigeration cycles each having a compressor, a condenser, an expander and an evaporator are arranged in parallel,
The flow path of the secondary side heat medium is connected in series from one side to the final stage to the condenser group constituting the plurality of refrigeration cycles,
Set the refrigerant discharge pressure of each compressor in order from the one side to the final stage,
A cascade-type heat pump system, wherein the secondary heat medium flows in the secondary heat medium flow path in order from a condenser having a low condensation pressure to a condenser having a high condensation pressure.
それぞれ圧縮機、凝縮器、膨張器及び蒸発器を備えた複数の冷凍サイクルを並列に配置したカスケード型ヒートポンプシステムにおいて、
前記複数の冷凍サイクルを構成する蒸発器群及び凝縮器群にそれぞれ一側より最終段に向けて2次側熱媒体の流路を直列に接続し、
各圧縮機の冷媒吸入圧を一側から最終段に向けて順次異ならせて設定し、
前記蒸発器に接続した2次側熱媒体流路に2次側熱媒体を蒸発圧力の高い蒸発器から蒸発圧力の低い蒸発器に向けて順に流すとともに、前記凝縮器に接続した2次側熱媒体流路に2次側熱媒体を凝縮圧力の低い凝縮器から凝縮圧力の高い凝縮器に向けて順に流すように構成したことを特徴とするカスケード型ヒートポンプシステム。
In a cascade heat pump system in which a plurality of refrigeration cycles each having a compressor, a condenser, an expander and an evaporator are arranged in parallel,
The flow path of the secondary side heat medium is connected in series from one side to the final stage to the evaporator group and the condenser group constituting the plurality of refrigeration cycles,
Set the refrigerant suction pressure of each compressor in order from one side to the last stage,
The secondary side heat medium flows in the secondary side heat medium flow path connected to the evaporator in order from an evaporator having a high evaporation pressure to an evaporator having a low evaporation pressure, and the secondary side heat medium connected to the condenser. A cascade type heat pump system configured to flow a secondary heat medium in a medium flow path in order from a condenser having a low condensation pressure to a condenser having a high condensation pressure.
内部容積比可変型の圧縮機において、前記凝縮器群を一体に構成し、各圧縮機の軸動力を均一化させる方向に各圧縮機の内部容積比を一側から最終段に向けて異ならしめるように構成したことを特徴とする請求項1記載のカスケード型ヒートポンプシステム。   In the internal volume ratio variable type compressor, the condenser group is integrally formed, and the internal volume ratio of each compressor is made different from one side toward the final stage in a direction to make the shaft power of each compressor uniform. The cascade heat pump system according to claim 1, wherein the cascade heat pump system is configured as described above. 前記凝縮器群を散水槽を形成する容器本体を一体にした一体型蒸発式凝縮器で構成し、該容器本体の散水領域に前記冷凍サイクルの冷媒配管を別々に配置したことを特徴とする請求項1又は4記載のカスケード型ヒートポンプシステム。   The condenser group is constituted by an integral-type evaporative condenser in which a container main body forming a sprinkling tank is integrated, and refrigerant pipes of the refrigeration cycle are separately arranged in the water sprinkling region of the container main body. Item 5. The cascade heat pump system according to Item 1 or 4. 単一の駆動源に連結された単機二段圧縮の低段側圧縮機と高段側圧縮機を、各々単段機
として機能させることを特徴とする請求項1〜3のいずれかに記載のカスケード型ヒートポンプシステム。
The single-stage two-stage compression low-stage compressor and the high-stage compressor connected to a single drive source each function as a single-stage machine. Cascade type heat pump system.
並列に配置された隣り合う2台の圧縮機を向かい合わせ、それらの圧縮機の間に駆動用電動機を配置し、該駆動用電動機の単一の駆動軸に前記2台の圧縮機を連結したことを特徴とする請求項1〜3のいずれかに記載のカスケード型ヒートポンプシステム。   Two adjacent compressors arranged in parallel face each other, a drive motor is arranged between the compressors, and the two compressors are connected to a single drive shaft of the drive motor. The cascade heat pump system according to any one of claims 1 to 3, wherein 前記複数の冷凍サイクルに単一の自然系冷媒を使用することを特徴とする請求項1〜3のいずれかに記載のカスケード型ヒートポンプシステム。   The cascade type heat pump system according to claim 1, wherein a single natural refrigerant is used for the plurality of refrigeration cycles. 前記複数の冷凍サイクルの少なくともひとつが、高温側の高元冷媒が流れる高元冷凍サイクルと低温側の低元冷媒が流れる低元冷凍サイクルとが低元冷媒が高元冷媒によって蒸発潜熱を吸収されて冷却、液化するカスケード凝縮器で組み合わされた多元冷凍サイクルで構成されたことを特徴とする請求項1〜3のいずれかに記載のカスケード型ヒートポンプシステム。   At least one of the plurality of refrigeration cycles includes a high-source refrigeration cycle in which high-temperature side high-source refrigerant flows and a low-source refrigeration cycle in which low-temperature side low-source refrigerant flows. The cascade heat pump system according to claim 1, wherein the cascade heat pump system is configured by a multi-source refrigeration cycle combined with a cascade condenser that cools and liquefies.
JP2006019821A 2006-01-27 2006-01-27 Cascade type heat pump system Pending JP2007198693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006019821A JP2007198693A (en) 2006-01-27 2006-01-27 Cascade type heat pump system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006019821A JP2007198693A (en) 2006-01-27 2006-01-27 Cascade type heat pump system

Publications (1)

Publication Number Publication Date
JP2007198693A true JP2007198693A (en) 2007-08-09

Family

ID=38453461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006019821A Pending JP2007198693A (en) 2006-01-27 2006-01-27 Cascade type heat pump system

Country Status (1)

Country Link
JP (1) JP2007198693A (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150562A (en) * 2007-12-19 2009-07-09 Hoshizaki Electric Co Ltd Refrigerating device
JP2009293867A (en) * 2008-06-05 2009-12-17 Yurikai Co Ltd Temperature control device
JP2011058663A (en) * 2009-09-08 2011-03-24 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2011117708A (en) * 2009-10-30 2011-06-16 Takasago Thermal Eng Co Ltd Heat source system
JP2011518308A (en) * 2008-04-25 2011-06-23 エルエス エムトロン リミテッド Dual refrigerator
JP2011169532A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Refrigerator unit and method of controlling the same
WO2012090579A1 (en) * 2010-12-28 2012-07-05 三菱重工業株式会社 Heat source system and control method therefor
WO2012128229A1 (en) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 Binary refrigeration cycle device
JP2012202634A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Composite dual refrigerating cycle device
JP2012215319A (en) * 2011-03-31 2012-11-08 Miura Co Ltd Steam generating system
JP2012237494A (en) * 2011-05-11 2012-12-06 Hoshizaki Electric Co Ltd Refrigerating device
WO2013021762A1 (en) * 2011-08-05 2013-02-14 東芝キヤリア株式会社 Heating system
WO2013027757A1 (en) * 2011-08-22 2013-02-28 東芝キヤリア株式会社 Combined binary refrigeration cycle apparatus
EP2597400A2 (en) 2011-11-22 2013-05-29 Mitsubishi Heavy Industries Heat pump system
WO2013151005A1 (en) * 2012-04-04 2013-10-10 東芝キヤリア株式会社 Composite dual refrigeration cycle device
WO2014050213A1 (en) * 2012-09-27 2014-04-03 三菱重工業株式会社 Heat source system and control method therefor
JP2014062699A (en) * 2012-09-24 2014-04-10 Miura Co Ltd Steam generation system
JP2014070864A (en) * 2012-10-01 2014-04-21 Kannetsu:Kk Cooling system
JP2014074583A (en) * 2014-01-28 2014-04-24 Mitsubishi Electric Corp Refrigeration air conditioner
WO2015133622A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle apparatus
JP2015178923A (en) * 2014-03-19 2015-10-08 三浦工業株式会社 cooling system
JP2015212616A (en) * 2010-02-08 2015-11-26 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat exchanger having stacked coil section
JP2016011773A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Immersed type liquid cooling device
CN107631508A (en) * 2017-10-26 2018-01-26 焦景田 The self-cascade heat pump circulatory system
CN107940804A (en) * 2017-12-25 2018-04-20 北京中矿博能节能科技有限公司 Multistage takes hot step heating direct-cooling type idle air heat pump unit
KR101913905B1 (en) * 2016-05-11 2018-10-31 김현기 Hot and chilled water generator
JP2018194183A (en) * 2017-05-12 2018-12-06 株式会社ニシヤマ Cooling device
CN111981720A (en) * 2020-01-21 2020-11-24 天津冷源工程设计院 Multi-load system
CN112033038A (en) * 2020-08-31 2020-12-04 青岛海尔空调电子有限公司 Air source heat pump drying system
CN113587471A (en) * 2021-06-21 2021-11-02 东南大学 Cold and hot confession system that allies oneself with of doublestage compression and absorption formula high temperature heat pump complex
CN113701387A (en) * 2021-04-07 2021-11-26 中国科学院理化技术研究所 Supersonic two-phase expansion multi-stage low-temperature refrigeration system and refrigerator
CN115013997A (en) * 2022-06-21 2022-09-06 同济大学 Supercooling and overheating double-effect type multistage semi-overlapping heat pump cycle
CN115111828A (en) * 2022-05-18 2022-09-27 东南大学 Time-sharing overlapping refrigeration double-temperature cold-chain logistics vehicle based on vehicle-mounted photovoltaic and cold accumulation
US11635243B2 (en) 2009-01-23 2023-04-25 Bitzer Kuehlmaschinenbau Gmbh Scroll compressors with different volume indexes and systems and methods for same

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611790Y1 (en) * 1968-02-14 1971-04-23
JPS55134254A (en) * 1979-04-02 1980-10-18 Valmet Oy Method of recovering heat in use of heat pump
JPH04222335A (en) * 1990-03-29 1992-08-12 Hitachi Metals Ltd Cooler
JPH04278149A (en) * 1991-03-06 1992-10-02 Toshiba Corp Cooling and heating device
JPH04350468A (en) * 1991-04-23 1992-12-04 Asahi Breweries Ltd Liquid cooler
JPH0593550A (en) * 1991-04-11 1993-04-16 Ebara Corp Freezing system
JPH10288155A (en) * 1997-04-15 1998-10-27 Matsushita Refrig Co Ltd Oscillating type compressor
JP2000257982A (en) * 1999-03-11 2000-09-22 Sanyo Electric Co Ltd Low-temperature gas generator and cold-blast machining device using the same
JP2001091074A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Cascade-type refrigerating device
JP2001165514A (en) * 1999-10-25 2001-06-22 Electricite De France Service National Heat pump device especially with cooling function
JP2002071281A (en) * 2000-08-30 2002-03-08 Matsushita Electric Ind Co Ltd Secondary refrigerant refrigeration cycling device
WO2005010370A1 (en) * 2003-07-28 2005-02-03 Daikin Industries, Ltd. Freezer device
JP2005315476A (en) * 2004-04-27 2005-11-10 Mayekawa Mfg Co Ltd Method and device for utilizing compound heat

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4611790Y1 (en) * 1968-02-14 1971-04-23
JPS55134254A (en) * 1979-04-02 1980-10-18 Valmet Oy Method of recovering heat in use of heat pump
JPH04222335A (en) * 1990-03-29 1992-08-12 Hitachi Metals Ltd Cooler
JPH04278149A (en) * 1991-03-06 1992-10-02 Toshiba Corp Cooling and heating device
JPH0593550A (en) * 1991-04-11 1993-04-16 Ebara Corp Freezing system
JPH04350468A (en) * 1991-04-23 1992-12-04 Asahi Breweries Ltd Liquid cooler
JPH10288155A (en) * 1997-04-15 1998-10-27 Matsushita Refrig Co Ltd Oscillating type compressor
JP2000257982A (en) * 1999-03-11 2000-09-22 Sanyo Electric Co Ltd Low-temperature gas generator and cold-blast machining device using the same
JP2001091074A (en) * 1999-09-24 2001-04-06 Sanyo Electric Co Ltd Cascade-type refrigerating device
JP2001165514A (en) * 1999-10-25 2001-06-22 Electricite De France Service National Heat pump device especially with cooling function
JP2002071281A (en) * 2000-08-30 2002-03-08 Matsushita Electric Ind Co Ltd Secondary refrigerant refrigeration cycling device
WO2005010370A1 (en) * 2003-07-28 2005-02-03 Daikin Industries, Ltd. Freezer device
JP2005315476A (en) * 2004-04-27 2005-11-10 Mayekawa Mfg Co Ltd Method and device for utilizing compound heat

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150562A (en) * 2007-12-19 2009-07-09 Hoshizaki Electric Co Ltd Refrigerating device
JP2011518308A (en) * 2008-04-25 2011-06-23 エルエス エムトロン リミテッド Dual refrigerator
JP2009293867A (en) * 2008-06-05 2009-12-17 Yurikai Co Ltd Temperature control device
EP2389516B1 (en) * 2009-01-23 2024-01-10 BITZER Kühlmaschinenbau GmbH Compressors with different volume indexes and method for same
US11635243B2 (en) 2009-01-23 2023-04-25 Bitzer Kuehlmaschinenbau Gmbh Scroll compressors with different volume indexes and systems and methods for same
JP2011058663A (en) * 2009-09-08 2011-03-24 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2011117708A (en) * 2009-10-30 2011-06-16 Takasago Thermal Eng Co Ltd Heat source system
US9869487B2 (en) 2010-02-08 2018-01-16 Johnson Controls Technology Company Heat exchanger having stacked coil sections
JP2015212616A (en) * 2010-02-08 2015-11-26 ジョンソン コントロールズ テクノロジー カンパニーJohnson Controls Technology Company Heat exchanger having stacked coil section
US10215444B2 (en) 2010-02-08 2019-02-26 Johnson Controls Technology Company Heat exchanger having stacked coil sections
JP2011169532A (en) * 2010-02-19 2011-09-01 Mitsubishi Heavy Ind Ltd Refrigerator unit and method of controlling the same
US9341401B2 (en) 2010-12-28 2016-05-17 Mitsubishi Heavy Industries, Ltd. Heat source system and control method therefor
CN103348196A (en) * 2010-12-28 2013-10-09 三菱重工业株式会社 Heat source system and control method therefor
JP2012141098A (en) * 2010-12-28 2012-07-26 Mitsubishi Heavy Ind Ltd Heat source system and its control method
WO2012090579A1 (en) * 2010-12-28 2012-07-05 三菱重工業株式会社 Heat source system and control method therefor
US9593869B2 (en) 2011-03-18 2017-03-14 Toshiba Carrier Corporation Cascade refrigeration cycle apparatus
CN103250012B (en) * 2011-03-18 2016-02-17 东芝开利株式会社 binary refrigeration cycle device
CN103250012A (en) * 2011-03-18 2013-08-14 东芝开利株式会社 Binary refrigeration cycle device
WO2012128229A1 (en) * 2011-03-18 2012-09-27 東芝キヤリア株式会社 Binary refrigeration cycle device
JP5659292B2 (en) * 2011-03-18 2015-01-28 東芝キヤリア株式会社 Dual refrigeration cycle equipment
JP2012202634A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Composite dual refrigerating cycle device
JP2012215319A (en) * 2011-03-31 2012-11-08 Miura Co Ltd Steam generating system
JP2012237494A (en) * 2011-05-11 2012-12-06 Hoshizaki Electric Co Ltd Refrigerating device
WO2013021762A1 (en) * 2011-08-05 2013-02-14 東芝キヤリア株式会社 Heating system
KR20140022919A (en) * 2011-08-22 2014-02-25 도시바 캐리어 가부시키가이샤 Combined binary refrigeration cycle apparatus
JP5632973B2 (en) * 2011-08-22 2014-11-26 東芝キヤリア株式会社 Combined dual refrigeration cycle equipment
US9395107B2 (en) 2011-08-22 2016-07-19 Toshiba Carrier Corporation Combined cascade refrigeration cycle apparatus
CN103733004A (en) * 2011-08-22 2014-04-16 东芝开利株式会社 Combined binary refrigeration cycle apparatus
KR101638675B1 (en) * 2011-08-22 2016-07-11 도시바 캐리어 가부시키가이샤 Combined binary refrigeration cycle apparatus
WO2013027757A1 (en) * 2011-08-22 2013-02-28 東芝キヤリア株式会社 Combined binary refrigeration cycle apparatus
EP2597400A2 (en) 2011-11-22 2013-05-29 Mitsubishi Heavy Industries Heat pump system
WO2013151005A1 (en) * 2012-04-04 2013-10-10 東芝キヤリア株式会社 Composite dual refrigeration cycle device
JPWO2013151005A1 (en) * 2012-04-04 2015-12-17 東芝キヤリア株式会社 Combined dual refrigeration cycle equipment
CN104204693A (en) * 2012-04-04 2014-12-10 东芝开利株式会社 Composite dual refrigeration cycle device
JP2014062699A (en) * 2012-09-24 2014-04-10 Miura Co Ltd Steam generation system
US10697680B2 (en) 2012-09-27 2020-06-30 Mitsubishi Heavy Industries Thermal Systems, Ltd. Heat source system and control method thereof
WO2014050213A1 (en) * 2012-09-27 2014-04-03 三菱重工業株式会社 Heat source system and control method therefor
EP2902724A4 (en) * 2012-09-27 2016-05-18 Mitsubishi Heavy Ind Ltd Heat source system and control method thereof
JP2014070741A (en) * 2012-09-27 2014-04-21 Mitsubishi Heavy Ind Ltd Heat source system and control method for the same
JP2014070864A (en) * 2012-10-01 2014-04-21 Kannetsu:Kk Cooling system
JP2014074583A (en) * 2014-01-28 2014-04-24 Mitsubishi Electric Corp Refrigeration air conditioner
WO2015132966A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle device
US9970693B2 (en) 2014-03-07 2018-05-15 Mitsubishi Electric Corporation Refrigeration cycle apparatus
JP6042026B2 (en) * 2014-03-07 2016-12-14 三菱電機株式会社 Refrigeration cycle equipment
JPWO2015133622A1 (en) * 2014-03-07 2017-04-06 三菱電機株式会社 Refrigeration cycle equipment
WO2015133622A1 (en) * 2014-03-07 2015-09-11 三菱電機株式会社 Refrigeration cycle apparatus
JP2015178923A (en) * 2014-03-19 2015-10-08 三浦工業株式会社 cooling system
JP2016011773A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Immersed type liquid cooling device
KR101913905B1 (en) * 2016-05-11 2018-10-31 김현기 Hot and chilled water generator
JP2018194183A (en) * 2017-05-12 2018-12-06 株式会社ニシヤマ Cooling device
CN107631508A (en) * 2017-10-26 2018-01-26 焦景田 The self-cascade heat pump circulatory system
CN107940804A (en) * 2017-12-25 2018-04-20 北京中矿博能节能科技有限公司 Multistage takes hot step heating direct-cooling type idle air heat pump unit
CN111981720A (en) * 2020-01-21 2020-11-24 天津冷源工程设计院 Multi-load system
CN111981720B (en) * 2020-01-21 2024-02-20 天津冷源工程设计院 Multi-load system
CN112033038A (en) * 2020-08-31 2020-12-04 青岛海尔空调电子有限公司 Air source heat pump drying system
CN113701387A (en) * 2021-04-07 2021-11-26 中国科学院理化技术研究所 Supersonic two-phase expansion multi-stage low-temperature refrigeration system and refrigerator
CN113701387B (en) * 2021-04-07 2022-10-28 中国科学院理化技术研究所 Supersonic two-phase expansion multistage low-temperature refrigerating system and refrigerator
CN113587471B (en) * 2021-06-21 2022-06-28 东南大学 Double-stage compression and absorption type high-temperature heat pump combined cold and heat combined supply system
CN113587471A (en) * 2021-06-21 2021-11-02 东南大学 Cold and hot confession system that allies oneself with of doublestage compression and absorption formula high temperature heat pump complex
CN115111828A (en) * 2022-05-18 2022-09-27 东南大学 Time-sharing overlapping refrigeration double-temperature cold-chain logistics vehicle based on vehicle-mounted photovoltaic and cold accumulation
CN115013997A (en) * 2022-06-21 2022-09-06 同济大学 Supercooling and overheating double-effect type multistage semi-overlapping heat pump cycle

Similar Documents

Publication Publication Date Title
JP2007198693A (en) Cascade type heat pump system
US10215444B2 (en) Heat exchanger having stacked coil sections
US7293428B2 (en) Refrigerating machine
Jensen et al. Optimal operation of simple refrigeration cycles: Part I: Degrees of freedom and optimality of sub-cooling
US9103571B2 (en) Refrigeration apparatus
EP3514462B1 (en) Air conditioner
US20070074536A1 (en) Refrigeration system with bypass subcooling and component size de-optimization
US7802440B2 (en) Compression system and air conditioning system
US20020050149A1 (en) Multistage compression refrigerating machine for supplying refrigerant from intercooler to cool rotating machine and lubricating oil
JP2005077088A (en) Condensation machine
CN108759138B (en) Operation method and system of secondary throttling middle incomplete cooling refrigerating system
KR101755456B1 (en) Heat exchanger
JP2005337700A (en) Refrigerant cooling circuit
KR100381634B1 (en) Refrigerator
CN1321298C (en) Refrigerating machine
JP2010078164A (en) Refrigeration and air conditioning device
US11754320B2 (en) Refrigeration system with multiple heat absorbing heat exchangers
KR20170062160A (en) refrigerator
JP2010078165A (en) Refrigeration and air conditioning device
CN210425610U (en) Refrigeration system
WO2021106084A1 (en) Refrigeration cycle device
JP2010236833A (en) Air heat source turbo heat pump and method for controlling the same
JP3894222B2 (en) Refrigeration equipment
CN215176144U (en) Refrigeration device
JP3657579B2 (en) Air conditioning system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110708