JPH04278149A - Cooling and heating device - Google Patents

Cooling and heating device

Info

Publication number
JPH04278149A
JPH04278149A JP4016891A JP4016891A JPH04278149A JP H04278149 A JPH04278149 A JP H04278149A JP 4016891 A JP4016891 A JP 4016891A JP 4016891 A JP4016891 A JP 4016891A JP H04278149 A JPH04278149 A JP H04278149A
Authority
JP
Japan
Prior art keywords
refrigerant
cylinder
heat exchanger
heating
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4016891A
Other languages
Japanese (ja)
Other versions
JP2835196B2 (en
Inventor
Kazuo Saito
和夫 齊藤
Katsuyoshi Kumazawa
熊澤 克義
Tetsuo Sano
哲夫 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4016891A priority Critical patent/JP2835196B2/en
Publication of JPH04278149A publication Critical patent/JPH04278149A/en
Application granted granted Critical
Publication of JP2835196B2 publication Critical patent/JP2835196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To set up continuous and wide variable capability range by a method wherein a cylinder having a high volume is connected to an outdoor heat exchanger through one suction port and another cylinder having a low volume is connected to a refrigerant heater through the other suction port. CONSTITUTION:Since a volume of the second cylinder 30 at a refrigerant heater to which refrigerant having a high suction pressure of a compressor 25 and having a low specific volume is larger than that of the first cylinder 29 at a heat pump at a suction side of the compressor 25 in correspondence with a specific volume ratio of both refrigerants, discharged amounts of refrigerant from the cylinders 29 and 30 are approximately equal to each other, heating capabilities are approximately equal to each other and then a high heating capability under a concurrent operation can be sufficiently attained. As the refrigerant heater 53 is stopped, a heat pump operation utilizing the outdoor heat exchanger 57 under an operation of the first cylinder 29 is carried out. However, a volume of the first cylinder 29 is high and a sufficient heating capability is provided, so that a wide variable range of capability can be attained at a low heating capability side.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】[発明の目的][Object of the invention]

【0002】0002

【産業上の利用分野】この発明は、冷凍サイクルと冷媒
加熱器とを組み合わせた冷暖房装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a heating and cooling system that combines a refrigeration cycle and a refrigerant heater.

【0003】0003

【従来の技術】一般に、圧縮機,室内熱交換器,室外熱
交換器,膨脹弁などより冷凍サイクルを構成したヒート
ポンプ式の冷暖房装置は、暖房時には室内熱交換器にて
放熱後の冷媒を、膨脹弁にて減圧した後、室外熱交換器
にて大気の熱を吸収させて気化させ、圧縮機に送る構成
となっている。このようなヒートポンプ式における冷媒
は、室外熱交換器で大気から受熱して気化させるため、
外気温度が低いと、本来は暖房能力を大きくする必要が
あるにも拘らず暖房能力が低下する欠点がある。このた
め従来では、上記ヒートポンプ式の冷凍サイクルに冷媒
加熱器を付加して暖房能力を向上させた冷媒加熱式冷暖
房装置がある。冷媒加熱とヒートポンプとを同時に運転
する冷暖房機では、図3にその冷凍サイクル構成を示す
ように、二シリンダ式の圧縮機1を使用した例がある。 この冷暖房機の主要な構成要素としては、二シリンダ式
圧縮機1,四方弁3,室内熱交換器5,室外熱交換器7
,冷媒加熱器9,そして各種バルブとして膨張弁11,
二方弁13,流量制御弁15,チェック弁17等である
。この圧縮機1は第1シリンダ19及び第2シリンダ2
1を備え、各シリンダ19,21は互いに同じ容積であ
って一つのモータ23によって同時に作動する。
[Prior Art] In general, a heat pump type air-conditioning system, which has a refrigeration cycle composed of a compressor, an indoor heat exchanger, an outdoor heat exchanger, an expansion valve, etc., uses a refrigerant after heat radiation in an indoor heat exchanger during heating. After reducing the pressure with an expansion valve, the outdoor heat exchanger absorbs atmospheric heat, vaporizes it, and sends it to the compressor. In such a heat pump type, the refrigerant receives heat from the atmosphere in an outdoor heat exchanger and vaporizes it.
When the outside air temperature is low, there is a drawback that the heating capacity decreases even though it is originally necessary to increase the heating capacity. For this reason, conventionally, there is a refrigerant-heating type air-conditioning/heating device in which a refrigerant heater is added to the heat pump type refrigeration cycle to improve the heating capacity. In an air-conditioning/heating machine that operates refrigerant heating and a heat pump at the same time, there is an example in which a two-cylinder compressor 1 is used, as shown in the refrigeration cycle configuration shown in FIG. The main components of this air conditioner include a two-cylinder compressor 1, a four-way valve 3, an indoor heat exchanger 5, and an outdoor heat exchanger 7.
, a refrigerant heater 9, and an expansion valve 11 as various valves.
These include a two-way valve 13, a flow control valve 15, a check valve 17, and the like. This compressor 1 has a first cylinder 19 and a second cylinder 2.
1, each cylinder 19, 21 has the same volume and is operated simultaneously by one motor 23.

【0004】このような構成の冷暖房装置においては、
暖房時には、冷媒加熱とヒートポンプとの同時運転を行
っているとき、冷媒は圧縮機1→四方弁3→室内熱交換
器5と流れ、室内熱交換器5を出た後は二つに分岐し、
一方は冷媒加熱器9を通って圧縮機1の第1シリンダ1
9へ、他方は膨張弁11,室外熱交換器7を通って第2
シリンダ21へと流れる。このとき二方弁13は開いた
状態、流量制御弁15は大きく開いた状態で、実質的に
圧損がほとんどない。また冷媒加熱器9を動作させずヒ
ートポンプ運転だけのときには二方弁13を閉止する。 このとき冷媒加熱器9には冷媒は循環しない。冷房時に
は、冷媒は圧縮機1→四方弁3→室外熱交換器7→膨張
弁11→室内熱交換器5→四方弁3→圧縮機1の順に流
れる。このときも二方弁13は閉じられており、冷媒加
熱器9に冷媒は流れない。
[0004] In a heating and cooling system having such a configuration,
During heating, when refrigerant heating and heat pump are operated simultaneously, the refrigerant flows from the compressor 1 to the four-way valve 3 to the indoor heat exchanger 5, and after leaving the indoor heat exchanger 5, it branches into two. ,
One side passes through the refrigerant heater 9 to the first cylinder 1 of the compressor 1.
9, and the other passes through the expansion valve 11 and the outdoor heat exchanger 7 to the second
It flows into the cylinder 21. At this time, the two-way valve 13 is in an open state, the flow control valve 15 is in a wide open state, and there is virtually no pressure loss. Further, when only the heat pump is operated without operating the refrigerant heater 9, the two-way valve 13 is closed. At this time, the refrigerant does not circulate through the refrigerant heater 9. During cooling, the refrigerant flows in the order of compressor 1 → four-way valve 3 → outdoor heat exchanger 7 → expansion valve 11 → indoor heat exchanger 5 → four-way valve 3 → compressor 1. At this time as well, the two-way valve 13 is closed, and no refrigerant flows into the refrigerant heater 9.

【0005】このような構成では、冷媒加熱器9が動作
状態にあるときは、冷媒加熱器9側の吸い込みラインが
高圧となるので、第1シリンダ19は冷媒加熱器9用に
、第2シリンダ21は室外熱交換器7用つまりヒートポ
ンプ運転用に、それぞれ用いられる。また、二方弁13
を閉止し冷媒加熱器9を動作させない場合には、冷媒加
熱器9側の吸い込みラインの圧力が室外熱交換器7側よ
りも低くなるため、チェック弁17を冷媒が通過するよ
うになる。すなわち、ヒートポンプ運転を2つのシリン
ダ19,21を用いて行っていることになる。
In such a configuration, when the refrigerant heater 9 is in operation, the suction line on the refrigerant heater 9 side becomes high pressure, so the first cylinder 19 is connected to the second cylinder for the refrigerant heater 9. 21 is used for the outdoor heat exchanger 7, that is, for heat pump operation. In addition, two-way valve 13
When the refrigerant heater 9 is closed and the refrigerant heater 9 is not operated, the pressure in the suction line on the refrigerant heater 9 side becomes lower than that on the outdoor heat exchanger 7 side, so that the refrigerant comes to pass through the check valve 17. That is, the heat pump operation is performed using the two cylinders 19 and 21.

【0006】[0006]

【発明が解決しようとする課題】ところが、上記のよう
な構成では、冷媒加熱とヒートポンプとを同時運転する
ことで高い暖房能力を確保できるものの、低暖房能力を
確保するためのヒートポンプのみの運転時には、2つの
シリンダ19,21を用いることから低暖房能力側の下
限には限界があり、冷媒加熱とヒートポンプとの同時運
転における暖房能力可変域とオーバラップする部分があ
って効率のよい運転法ではない。
[Problems to be Solved by the Invention] However, with the above configuration, although high heating capacity can be ensured by operating refrigerant heating and the heat pump simultaneously, when only the heat pump is operated to ensure low heating capacity, Since two cylinders 19 and 21 are used, there is a limit to the lower limit on the low heating capacity side, and there is a portion that overlaps with the heating capacity variable range in simultaneous operation of refrigerant heating and heat pump, making it difficult to operate efficiently. do not have.

【0007】そこで、ヒートポンプ運転では、シリンダ
を1つだけ用いるサイクル構成とすれば、暖房能力の小
さい領域を確保できて、しかも逆止弁17と、逆止弁1
7が設けられた配管が不要となって構造も簡単となる。
Therefore, in heat pump operation, if a cycle configuration is adopted in which only one cylinder is used, a region with a small heating capacity can be secured, and the check valve 17 and the check valve 1
The structure becomes simple as the piping provided with 7 is not required.

【0008】ところで、図4に示す冷凍サイクルにおけ
るモリエル線図でもわかるように、冷媒加熱側のシリン
ダは冷媒をそれほど圧縮せずに送り出すのに対し(実線
A参照)、ヒートポンプ側のシリンダによる冷媒の圧縮
比は極めて大きいものとなっている(破線B参照)。つ
まり、圧縮機1の吸入側の冷媒についてみると、冷媒加
熱側の方が圧力が高く比体積は小さくなる。このため、
圧縮機1の2つのシリンダ19,21の容積が同じであ
ると、冷媒流量がほぼ比体積比の割合で冷媒加熱側の方
が増えることになる。通常、この冷媒流量の割合はヒー
トポンプ側を1とすると冷媒加熱側が3〜10程度であ
る。
By the way, as can be seen from the Mollier diagram for the refrigeration cycle shown in FIG. 4, the cylinder on the refrigerant heating side sends out the refrigerant without compressing it much (see solid line A), whereas the cylinder on the heat pump side sends out the refrigerant without compressing it much. The compression ratio is extremely large (see broken line B). That is, when looking at the refrigerant on the suction side of the compressor 1, the pressure on the refrigerant heating side is higher and the specific volume is smaller. For this reason,
If the volumes of the two cylinders 19 and 21 of the compressor 1 are the same, the refrigerant flow rate will increase on the refrigerant heating side at a rate of approximately the specific volume ratio. Usually, the ratio of the refrigerant flow rate is about 1 to 1 on the heat pump side and 3 to 10 on the refrigerant heating side.

【0009】このように、2つのシリンダ19,21で
冷媒流量が大きく異なると、次のような不都合が生じる
。暖房能力は2つのシリンダからの冷媒流量の和にほぼ
比例するので、2つのシリンダの容積が同じでは、能力
のほとんどが冷媒流量の多い冷媒加熱によって賄われる
ことになり、圧縮機の回転数,シリンダの容積も冷媒加
熱側を基準に決定され、ヒートポンプ側のシリンダは同
条件ではほとんど能力が出せないことになる。これでは
、冷媒加熱器を停止して暖房能力が低い領域をヒートポ
ンプでカバーしようとしても、ほとんどできなくなって
しまう。また、逆にヒートポンプ側に合わせてシリンダ
容積を大きめに設定すると、冷媒加熱側の暖房能力を考
慮すれば圧縮機の回転数を大きく落とさなければならず
、この場合には低回転に伴う圧縮機の振動が顕著となり
、騒音や配管の亀裂などを引き起こす原因となる。
[0009] If the refrigerant flow rates in the two cylinders 19 and 21 differ greatly in this way, the following disadvantages occur. The heating capacity is approximately proportional to the sum of the refrigerant flow rates from the two cylinders, so if the volumes of the two cylinders are the same, most of the capacity will be covered by refrigerant heating with a large refrigerant flow rate. The capacity of the cylinder is also determined based on the refrigerant heating side, and the cylinder on the heat pump side will have almost no capacity under the same conditions. This makes it almost impossible to stop the refrigerant heater and use the heat pump to cover areas with low heating capacity. On the other hand, if the cylinder volume is set larger to match the heat pump side, the rotation speed of the compressor must be significantly reduced considering the heating capacity of the refrigerant heating side. Vibration becomes noticeable, causing noise and cracks in pipes.

【0010】そこでこの発明は、上記のような問題点を
解消するためになされたもので、低暖房能力から高暖房
能力にわたり連続的な広い能力可変幅を得ることを目的
としている。
[0010] The present invention has been made to solve the above-mentioned problems, and its object is to obtain a continuous and wide capacity variable range from low heating capacity to high heating capacity.

【0011】[発明の構成][Configuration of the invention]

【0012】0012

【課題を解決するための手段】前記目的を達成するため
にこの発明は、吸入口を2つ吐出口を1つそれぞれ備え
各吸入口に対応して同時に動作するシリンダ部が2つ設
けられた圧縮機と、室内に設置される室内熱交換器と、
室外に設置される室外熱交換器と、この各室内熱交換器
及び室外熱交換器と前記圧縮機の吐出口及び一方の吸入
口とを接続する切換弁と、前記室内熱交換器と室外熱交
換器とを接続する配管に設けた膨脹弁と、前記配管と前
記圧縮機の他方の吸入口との間に設けた冷媒加熱器とを
備えた冷暖房装置であって、前記圧縮機の2つのシリン
ダ部の容積を互いに異なるものとし、容積の大きいシリ
ンダ部を前記一方の吸入口を介して前記室外熱交換器側
に接続し、容積の小さいシリンダ部を前記他方の吸入口
を介して前記冷媒加熱器に接続したものである。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the present invention has two cylinder parts each having two suction ports and one discharge port, and two cylinder parts that operate simultaneously corresponding to each suction port. A compressor, an indoor heat exchanger installed indoors,
an outdoor heat exchanger installed outdoors, a switching valve that connects each of the indoor heat exchangers and the outdoor heat exchanger to the discharge port and one suction port of the compressor, and a switching valve that connects the indoor heat exchanger and the outdoor heat An air-conditioning and heating system comprising: an expansion valve provided in a pipe connecting an exchanger; and a refrigerant heater provided between the pipe and the other suction port of the compressor. The volumes of the cylinder parts are different from each other, and the cylinder part with a large volume is connected to the outdoor heat exchanger side through the one suction port, and the cylinder part with a small volume is connected to the refrigerant through the other suction port. It is connected to a heater.

【0013】[0013]

【作用】このように、圧縮比の小さい冷媒加熱器側に接
続されるシリンダの容積を小さく、一方圧縮比の大きい
室外熱交換器側に接続されるシリンダの容積を大きくす
ることで、冷媒加熱器と室外熱交換器との冷媒流量をほ
ぼ同じとすることができ、低暖房能力を確保するために
室外熱交換器のみの運転としても、低暖房能力側が充分
にカバーされ、低暖房能力から高暖房能力にわたり連続
的な広い能力可変幅が得られる。
[Effect] In this way, by reducing the volume of the cylinder connected to the refrigerant heater side with a low compression ratio, and increasing the volume of the cylinder connected to the outdoor heat exchanger side with a high compression ratio, the refrigerant can be heated. The refrigerant flow rate between the heat exchanger and the outdoor heat exchanger can be made almost the same, and even if only the outdoor heat exchanger is operated to ensure low heating capacity, the low heating capacity side is sufficiently covered, and the low heating capacity side is A wide range of continuous capacity variation can be obtained over a high heating capacity.

【0014】[0014]

【実施例】以下、この発明の実施例を図面に基づき説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Examples of the present invention will be described below with reference to the drawings.

【0015】図1は、この発明の一実施例を示す冷暖房
装置の冷凍サイクル構成を示している。暖房時に冷媒が
流れる順番に構成要素を述べると、二シリンダ式の圧縮
機25,切換弁としての四方弁26,室内熱交換器27
である。圧縮機25は、図2に示すように、圧縮機ケー
ス28内にシリンダ容積の大きい第1シリンダ29、及
びシリンダ容積の小さい第2シリンダ30が収納され、
一つの吐出口31と二つの吸入口33,35とを備えて
いる。34はサクションカップであり、図1では省略し
てある。これら両シリンダ29,30はモータ37によ
って同時に作動するものとする。第1シリンダ29と第
2シリンダ30とのシリンダ容積比は、圧縮機25の吸
入側における冷媒の比体積の、ヒートポンプ側と冷媒加
熱側との比にほぼ等しくしてある。符号39はモータ軸
、41は主軸受である。
FIG. 1 shows a refrigeration cycle configuration of a heating and cooling system according to an embodiment of the present invention. The components are described in the order in which the refrigerant flows during heating: a two-cylinder compressor 25, a four-way valve 26 as a switching valve, and an indoor heat exchanger 27.
It is. As shown in FIG. 2, the compressor 25 includes a first cylinder 29 with a large cylinder volume and a second cylinder 30 with a small cylinder volume housed in a compressor case 28.
It has one discharge port 31 and two suction ports 33 and 35. 34 is a suction cup, which is omitted in FIG. It is assumed that both cylinders 29 and 30 are operated simultaneously by a motor 37. The cylinder volume ratio of the first cylinder 29 and the second cylinder 30 is approximately equal to the ratio of the specific volumes of the refrigerant on the suction side of the compressor 25 on the heat pump side and on the refrigerant heating side. Reference numeral 39 is a motor shaft, and 41 is a main bearing.

【0016】圧縮機25の吐出口31と四方弁26とは
配管43で接続され、四方弁26と室内熱交換器27と
は配管45で接続されている。室内熱交換器27を出た
冷媒は配管47を流れた後、分岐部49にて二系統に分
岐し、一方は配管51により冷媒加熱器53側へ、他方
は配管55により室外熱交換器57側へと流れる。冷媒
加熱器53は、冷媒加熱熱交換器59とバ―ナ部61と
から構成されている。配管55には膨脹弁63が設けら
れ、この膨脹弁63はヒートポンプ運転時に大気から熱
を吸収できる蒸発圧力まで冷媒の圧力を下げる働きをす
る。
The discharge port 31 of the compressor 25 and the four-way valve 26 are connected by a pipe 43, and the four-way valve 26 and the indoor heat exchanger 27 are connected by a pipe 45. The refrigerant that has exited the indoor heat exchanger 27 flows through a pipe 47 and is then branched into two systems at a branching part 49, one of which goes to the refrigerant heater 53 through a pipe 51, and the other goes to the outdoor heat exchanger 57 through a pipe 55. flows to the side. The refrigerant heater 53 includes a refrigerant heating heat exchanger 59 and a burner section 61. An expansion valve 63 is provided in the pipe 55, and this expansion valve 63 functions to lower the pressure of the refrigerant to an evaporation pressure at which heat can be absorbed from the atmosphere during operation of the heat pump.

【0017】冷媒加熱器53の上流側の配管51には二
方弁65が設けられ、この二方弁65は、暖房時ヒート
ポンプ運転のみで冷媒加熱器53を用いない場合や、冷
房時に冷媒加熱器53を用いない場合に流路を閉じる。 冷媒加熱器53を出た冷媒は配管67に流れ、この配管
67は圧縮機25の吸入口35に接続されている。室外
熱交換器57と四方弁26とは配管69により接続され
、四方弁26と吸入口33とは配管71により接続され
ている。
A two-way valve 65 is provided in the piping 51 on the upstream side of the refrigerant heater 53, and this two-way valve 65 is used when the refrigerant heater 53 is not used when the heat pump is operated only during heating, or when the refrigerant is heated during cooling. The flow path is closed when the vessel 53 is not used. The refrigerant leaving the refrigerant heater 53 flows into a pipe 67, which is connected to the suction port 35 of the compressor 25. The outdoor heat exchanger 57 and the four-way valve 26 are connected by a pipe 69, and the four-way valve 26 and the suction port 33 are connected by a pipe 71.

【0018】以上の構成において、暖房能力が大きいと
きは冷媒加熱とヒートポンプとの同時運転となるが、そ
の場合二方弁65は開いた状態である。冷媒加熱器53
を出た冷媒は絞られていないために高圧となっており、
そのまま配管67を経て容積の小さい第2シリンダ30
へ送り込まれる。一方、室外熱交換器57を出た冷媒は
低圧の蒸気となっており、配管69,四方弁26,配管
71を経て容積の大きい第1シリンダ29に送り込まれ
る。第2シリンダ30内に送り込まれる冷媒蒸気は、高
圧のため僅かな圧縮がなされた後、圧縮機ケース28内
に吐出される。また、第1シリンダ29内に送り込まれ
る低圧の冷媒蒸気は、高圧の状態まで圧縮されて圧縮機
ケース28内に吐出される。
In the above configuration, when the heating capacity is large, the refrigerant heating and the heat pump are operated simultaneously, but in this case, the two-way valve 65 is in an open state. Refrigerant heater 53
The refrigerant that exits is under high pressure because it is not throttled.
The second cylinder 30, which has a smaller volume, continues through the piping 67.
sent to. On the other hand, the refrigerant that has exited the outdoor heat exchanger 57 is a low-pressure vapor, and is sent to the first cylinder 29 having a large volume through the piping 69, the four-way valve 26, and the piping 71. The refrigerant vapor sent into the second cylinder 30 is slightly compressed due to its high pressure, and then is discharged into the compressor case 28 . Furthermore, the low-pressure refrigerant vapor sent into the first cylinder 29 is compressed to a high-pressure state and discharged into the compressor case 28 .

【0019】ここで、圧縮機25の吸入側の圧力が高く
て比体積が小さい冷媒が流入する冷媒加熱側の第2シリ
ンダ30の容積は、同圧力が低くて比体積が大きい冷媒
が流入するヒートポンプ側の第1シリンダ29の容積よ
り、圧縮機25の吸入側における両者の冷媒相互の比体
積比に対応して大きくしてあるので、各シリンダ29,
30から吐出される冷媒の量はほぼ等しくなり、この冷
媒流量を考慮すれば暖房能力としては両者ほぼ等しいも
のとなって、同時運転時での高暖房能力は充分に得られ
る。この状態から、上記冷媒加熱器53を停止すると、
第1シリンダ29の作動による室外熱交換器57を利用
したヒートポンプのみの運転になるが、上記したように
第1シリンダ29の容積が大きく暖房能力が充分あるの
で、ヒートポンプ運転のみとしても、低暖房能力側にお
いて広い能力可変幅が得られ、冷媒加熱とヒートポンプ
との同時運転とを合わせ、これら両者を暖房能力に応じ
て使い分けることで、低暖房能力から高暖房能力まで連
続的で広い能力可変幅が得られることになる。
Here, the volume of the second cylinder 30 on the refrigerant heating side into which the refrigerant having a high pressure and a small specific volume flows into the suction side of the compressor 25 is different from the volume of the second cylinder 30 on the refrigerant heating side into which the refrigerant having the same low pressure and a large specific volume flows. Since the volume of the first cylinder 29 on the heat pump side is made larger in accordance with the specific volume ratio of both refrigerants on the suction side of the compressor 25, each cylinder 29,
The amount of refrigerant discharged from the refrigerant 30 is approximately equal, and if this refrigerant flow rate is taken into consideration, the heating capacity of both units is approximately equal, and a high heating capacity can be sufficiently obtained during simultaneous operation. From this state, when the refrigerant heater 53 is stopped,
Only the heat pump using the outdoor heat exchanger 57 is operated by the operation of the first cylinder 29, but as mentioned above, the first cylinder 29 has a large volume and sufficient heating capacity, so even if the heat pump is operated only, the heating will be low. A wide capacity variable range can be obtained on the capacity side, and by combining refrigerant heating and simultaneous operation of the heat pump and using both of them depending on the heating capacity, a continuous and wide capacity variable range from low heating capacity to high heating capacity can be achieved. will be obtained.

【0020】また、冷媒加熱側の第2シリンダ30の容
積を小さくしてあるので、ヒートポンプ側の第1シリン
ダ29に合わせ、圧縮機25の回転数を低くすることな
く所望に維持できるので、圧縮機25の振動が防止でき
、騒音の発生,配管の亀裂などは防止される。
Furthermore, since the volume of the second cylinder 30 on the refrigerant heating side is made small, the rotational speed of the compressor 25 can be maintained at a desired level without lowering it in accordance with the first cylinder 29 on the heat pump side. Vibration of the machine 25 can be prevented, noise generation, pipe cracking, etc. can be prevented.

【0021】[0021]

【発明の効果】以上説明してきたようにこの発明によれ
ば、圧縮機を2つの異なるシリンダ容積を有する二シリ
ンダ式圧縮機とし、圧縮機吸入側の冷媒の圧力が高く比
体積が小さい冷媒加熱側に接続されるシリンダの容積を
小さく、一方同冷媒の圧力が低く比体積が大きい室外熱
交換器側に接続されるシリンダの容積を大きくしたため
、冷媒加熱とヒートポンプとの同時運転時に、2つのシ
リンダから吐出される冷媒流量をほぼ等しくすることが
でき、ヒートポンプ側も冷媒加熱側とほぼ同程度の暖房
能力を発揮することができ、これにより低暖房能力時、
冷媒加熱器を停止させてヒートポンプだけの運転として
も、低暖房能力側を充分カバーでき、低暖房能力から高
暖房能力まで連続的で広い能力可変幅を得ることができ
る。
As explained above, according to the present invention, the compressor is a two-cylinder compressor having two different cylinder volumes, and the refrigerant on the suction side of the compressor has a high pressure and a small specific volume. By reducing the volume of the cylinder connected to the side, and increasing the volume of the cylinder connected to the outdoor heat exchanger side, where the pressure of the refrigerant is low and the specific volume is large, when the refrigerant heating and heat pump are operated simultaneously, two The flow rate of the refrigerant discharged from the cylinder can be made almost equal, and the heat pump side can also exhibit almost the same heating capacity as the refrigerant heating side, so that when the heating capacity is low,
Even if the refrigerant heater is stopped and only the heat pump is operated, the low heating capacity side can be sufficiently covered, and a continuous and wide capacity variable range from low heating capacity to high heating capacity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】この発明の一実施例を示す冷凍サイクル構成図
である。
FIG. 1 is a configuration diagram of a refrigeration cycle showing an embodiment of the present invention.

【図2】図1の冷凍サイクルに使用される圧縮機の要部
を示す部分断面図である。
FIG. 2 is a partial cross-sectional view showing essential parts of the compressor used in the refrigeration cycle of FIG. 1;

【図3】従来例を示す冷凍サイクル構成図である。FIG. 3 is a configuration diagram of a refrigeration cycle showing a conventional example.

【図4】冷凍サイクルにおけるモリエル線図である。FIG. 4 is a Mollier diagram in a refrigeration cycle.

【符号の説明】[Explanation of symbols]

25  二シリンダ式圧縮機 26  四方弁(切換弁) 27  室内熱交換器 29  第1シリンダ(シリンダ部) 30  第2シリンダ(シリンダ部) 31  吐出口31 33,35  吸入口 47,55  配管 53  冷媒加熱器 57  室外熱交換器 61  膨脹弁 25 Two-cylinder compressor 26 Four-way valve (switching valve) 27 Indoor heat exchanger 29 First cylinder (cylinder part) 30 Second cylinder (cylinder part) 31 Discharge port 31 33, 35 Inlet 47,55 Piping 53 Refrigerant heater 57 Outdoor heat exchanger 61 Expansion valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  吸入口を2つ吐出口を1つそれぞれ備
え各吸入口に対応して同時に動作するシリンダ部が2つ
設けられた圧縮機と、室内に設置される室内熱交換器と
、室外に設置される室外熱交換器と、この各室内熱交換
器及び室外熱交換器と前記圧縮機の吐出口及び一方の吸
入口とを接続する切換弁と、前記室内熱交換器と室外熱
交換器とを接続する配管に設けた膨脹弁と、前記配管と
前記圧縮機の他方の吸入口との間に設けた冷媒加熱器と
を備えた冷暖房装置であって、前記圧縮機の2つのシリ
ンダ部の容積を互いに異なるものとし、容積の大きいシ
リンダ部を前記一方の吸入口を介して前記室外熱交換器
側に接続し、容積の小さいシリンダ部を前記他方の吸入
口を介して前記冷媒加熱器に接続したことを特徴とする
冷暖房装置。
[Claim 1] A compressor having two suction ports and one discharge port, and two cylinder sections that operate simultaneously corresponding to each suction port, and an indoor heat exchanger installed indoors; an outdoor heat exchanger installed outdoors, a switching valve that connects each of the indoor heat exchangers and the outdoor heat exchanger to the discharge port and one suction port of the compressor, and a switching valve that connects the indoor heat exchanger and the outdoor heat An air-conditioning and heating system comprising: an expansion valve provided in a pipe connecting an exchanger; and a refrigerant heater provided between the pipe and the other suction port of the compressor. The volumes of the cylinder parts are different from each other, and the cylinder part with a large volume is connected to the outdoor heat exchanger side through the one suction port, and the cylinder part with a small volume is connected to the refrigerant through the other suction port. A heating and cooling device characterized by being connected to a heater.
JP4016891A 1991-03-06 1991-03-06 Air conditioning Expired - Fee Related JP2835196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4016891A JP2835196B2 (en) 1991-03-06 1991-03-06 Air conditioning

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4016891A JP2835196B2 (en) 1991-03-06 1991-03-06 Air conditioning

Publications (2)

Publication Number Publication Date
JPH04278149A true JPH04278149A (en) 1992-10-02
JP2835196B2 JP2835196B2 (en) 1998-12-14

Family

ID=12573239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4016891A Expired - Fee Related JP2835196B2 (en) 1991-03-06 1991-03-06 Air conditioning

Country Status (1)

Country Link
JP (1) JP2835196B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198693A (en) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd Cascade type heat pump system
US20120125024A1 (en) * 2010-11-23 2012-05-24 Byoungjin Ryu Heat pump and method of controlling the same
CN105202796A (en) * 2015-10-10 2015-12-30 安徽美芝精密制造有限公司 Air conditioner system and air conditioner provided with same
WO2017059665A1 (en) * 2015-10-10 2017-04-13 广东美芝制冷设备有限公司 Air conditioning system and air conditioning apparatus having same
CN111594443A (en) * 2020-05-12 2020-08-28 珠海凌达压缩机有限公司 Compressor assembly, air conditioning system comprising same and control method

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198693A (en) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd Cascade type heat pump system
US20120125024A1 (en) * 2010-11-23 2012-05-24 Byoungjin Ryu Heat pump and method of controlling the same
CN102538298A (en) * 2010-11-23 2012-07-04 Lg电子株式会社 Heat pump and method of controlling the same
US8635879B2 (en) * 2010-11-23 2014-01-28 Lg Electronics Inc. Heat pump and method of controlling the same
CN105202796A (en) * 2015-10-10 2015-12-30 安徽美芝精密制造有限公司 Air conditioner system and air conditioner provided with same
WO2017059665A1 (en) * 2015-10-10 2017-04-13 广东美芝制冷设备有限公司 Air conditioning system and air conditioning apparatus having same
CN111594443A (en) * 2020-05-12 2020-08-28 珠海凌达压缩机有限公司 Compressor assembly, air conditioning system comprising same and control method

Also Published As

Publication number Publication date
JP2835196B2 (en) 1998-12-14

Similar Documents

Publication Publication Date Title
JPWO2012085965A1 (en) Air conditioner
JP2003139429A (en) Refrigeration unit
CN110631286B (en) Heat exchange system and control method
JPH04278149A (en) Cooling and heating device
JP5216557B2 (en) Refrigeration cycle equipment
JP2007232280A (en) Refrigeration unit
JP3650088B2 (en) Heat pump equipment
JP4273588B2 (en) Air conditioner refrigerant circuit
JP6926460B2 (en) Refrigerator
KR100626756B1 (en) Heat pump air-conditioner
KR100963433B1 (en) A heat pump system
JP2004085047A (en) Air conditioner
JPH10281566A (en) Outdoor device of heat pump type air conditioner
KR100441008B1 (en) Cooling and heating air conditioning system
CN111076445A (en) Air conditioning system and operation method thereof
JP3617742B2 (en) Scroll compressor and air conditioner
JP2831857B2 (en) Air conditioning
JPH04324067A (en) Air conditioner
US11397015B2 (en) Air conditioning apparatus
JP2653749B2 (en) Heat pump package
JP3657579B2 (en) Air conditioning system
JPH04278148A (en) Cooling and heating device
JPH08320172A (en) Air conditioner
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JPS632859Y2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees