JP2011058663A - Refrigerating air-conditioning device - Google Patents

Refrigerating air-conditioning device Download PDF

Info

Publication number
JP2011058663A
JP2011058663A JP2009206589A JP2009206589A JP2011058663A JP 2011058663 A JP2011058663 A JP 2011058663A JP 2009206589 A JP2009206589 A JP 2009206589A JP 2009206589 A JP2009206589 A JP 2009206589A JP 2011058663 A JP2011058663 A JP 2011058663A
Authority
JP
Japan
Prior art keywords
heat exchanger
refrigeration
side heat
water
refrigerating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009206589A
Other languages
Japanese (ja)
Other versions
JP5534752B2 (en
Inventor
Takuya Ito
拓也 伊藤
Yoshihiro Sumida
嘉裕 隅田
Takashi Okazaki
多佳志 岡崎
Makoto Saito
信 齊藤
Hisahira Kato
央平 加藤
Takashi Fukui
孝史 福井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2009206589A priority Critical patent/JP5534752B2/en
Publication of JP2011058663A publication Critical patent/JP2011058663A/en
Application granted granted Critical
Publication of JP5534752B2 publication Critical patent/JP5534752B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compact refrigerating air-conditioning device of high efficiency by preventing biasing of oil and increase of a unit size, even in a refrigerating air-conditioning device composed of refrigerating cycles using three or more compressors. <P>SOLUTION: One refrigerating device is composed of the plurality of refrigerating cycles 2 having: the plurality of compressors 3; one common heat source-side heat exchanger 4 to which a plurality of refrigerant circuits are connected; a plurality of pressure reducing devices 5; and one common load-side heat exchanger 6 to which the plurality of refrigerant circuits can be connected. Each refrigerating cycle configures one refrigerant circuit by annularly connecting the compressor, the heat source-side heat exchanger, the pressure reducing device and the load-side heat exchanger. The plurality of refrigerating devices composed of the plurality of refrigerating cycles independent by each compressor are included, flow channels of heat source-side heat medium are connected in series to the heat source-side heat exchangers of the plurality of refrigerating devices, and flow channels of load-side heat medium are connected in series to the load-side heat exchangers of the plurality of refrigerating devices. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、冷凍空調装置に係り、特に水・ブラインなどの液媒体を加熱・冷却することで、冷温熱を負荷側に供給する冷凍空調装置に関するものである。   The present invention relates to a refrigeration air conditioner, and more particularly, to a refrigeration air conditioner that supplies cold and hot heat to a load side by heating and cooling a liquid medium such as water and brine.

従来の冷温熱を供給する冷凍空調装置は、2つの冷媒回路を搭載し、水側の流路を2つの冷媒回路のプレート熱交換器の入口と出口で連結させることにより、熱交換器内での凍結を防止するようにしている(例えば、特許文献1参照)。   A conventional refrigeration and air-conditioning apparatus for supplying cold / hot heat is equipped with two refrigerant circuits, and the water-side flow path is connected at the inlet and the outlet of the plate heat exchanger of the two refrigerant circuits. Is prevented from freezing (see, for example, Patent Document 1).

特開2007−187353号公報(第1頁、図1)Japanese Patent Laying-Open No. 2007-187353 (first page, FIG. 1)

しかし、従来の冷凍空調装置の場合には、圧縮機が3台以上になると、プレート熱交換器をさらに複雑な構造にするしかなく、ユニットサイズも大きくなり、結果としてコストも高くなるという問題があった。
また、熱交換器の流路の形態が冷媒側回路を左右に2分割していることから、1台の圧縮機が停止した場合、合流後の温度をみて凍結検知しているものの、停止している系統は完全にバイパスすることになるため、効率が低下するという問題もあった。
However, in the case of the conventional refrigeration and air-conditioning apparatus, if there are three or more compressors, the plate heat exchanger has to be made more complicated, and the unit size increases, resulting in an increase in cost. there were.
In addition, since the flow path of the heat exchanger divides the refrigerant side circuit into left and right parts, when one compressor stops, although it detects freezing by looking at the temperature after merging, it stops Since the existing system is completely bypassed, there is a problem that efficiency is lowered.

本発明はかかる問題を解決するためになされたもので、3個以上の圧縮機を使用する冷凍サイクルで構成される冷凍空調装置であっても、油の偏りを防止し、かつユニットサイズが大きくならないようにし、コンパクトで高効率の冷凍空調装置を得ることを目的とする。   The present invention has been made to solve such a problem, and even in a refrigeration air conditioner configured with a refrigeration cycle using three or more compressors, oil bias is prevented and the unit size is large. The purpose is to obtain a compact and highly efficient refrigeration air conditioner.

本発明に係る冷凍空調装置は、複数の圧縮機と、複数の冷媒回路が接続可能な1つの共用の熱源側熱交換器と、複数の減圧装置と、複数の冷媒回路が接続可能な1つの急用の負荷側熱交換器とを有する複数の冷凍サイクルで1つの冷凍装置が構成され、各冷凍サイクルは圧縮機、熱源側熱交換器、減圧装置、負荷側熱交換器が環状に接続されて1つの冷媒回路を形成し、圧縮機毎に独立した複数の冷凍サイクルで構成された前記冷凍装置を複数備え、該複数の冷凍装置のそれぞれの熱源側熱交換器に対して熱源側熱媒体の流路を直列に接続し、複数の冷凍装置のそれぞれの負荷側熱交換器に対して負荷側熱媒体の流路を直列に接続したことを特徴とする。   The refrigerating and air-conditioning apparatus according to the present invention includes a plurality of compressors, a common heat source side heat exchanger to which a plurality of refrigerant circuits can be connected, a plurality of decompression devices, and a single refrigerant circuit that can be connected. One refrigeration apparatus is composed of a plurality of refrigeration cycles having an emergency load-side heat exchanger, and each refrigeration cycle includes a compressor, a heat source-side heat exchanger, a decompression device, and a load-side heat exchanger connected in a ring shape. A plurality of the refrigeration apparatuses that form a single refrigerant circuit and are configured with a plurality of independent refrigeration cycles for each compressor, and each of the heat source side heat exchangers of the heat source side heat exchangers of the plurality of refrigeration apparatuses The flow path is connected in series, and the flow path of the load side heat medium is connected in series to each load side heat exchanger of the plurality of refrigeration apparatuses.

本発明に係る冷凍空調装置は、複数の圧縮機と、複数の冷媒回路が接続可能な1つの共用の熱源側熱交換器と、複数の減圧装置と、複数の冷媒回路が接続可能な1つの共用の負荷側熱交換器とを有する複数の冷凍サイクルで1つの冷凍装置が構成され、各冷凍サイクルは圧縮機、熱源側熱交換器、減圧装置、負荷側熱交換器が環状に接続されて1つの冷媒回路を形成し、圧縮機毎に独立した複数の冷凍サイクルで構成された前記冷凍装置を複数備えており、複数の冷凍サイクルは圧縮機毎に独立しているため、圧縮機から出て行った油量分、油が圧縮機に戻ってくる回路であり、油が減ることが無いため、信頼性が高くなると共に、熱源側熱交換器と負荷側熱交換器は複数の冷凍サイクルに共用されるため、熱交換器個数は増えていないため、コンパクトな設置形態の装置を提供できるという効果がある。
また、複数の冷凍装置のそれぞれの熱源側熱交換器に対して熱源側熱媒体の流路を直列に接続し、複数の冷凍装置のそれぞれの負荷側熱交換器に対して負荷側熱媒体の流路を直列に接続したので、熱負荷媒体を所定温度まで下げたり、熱源媒体を所定温度まで上げたりする場合に分担して温度勾配を小さくすることにより、熱交換器1個或いは並列に設置した複数の熱交換器により所定温度まで下げたり、上げたりする場合よりも、効率の良い運転を提供することができる。
The refrigerating and air-conditioning apparatus according to the present invention includes a plurality of compressors, a common heat source side heat exchanger to which a plurality of refrigerant circuits can be connected, a plurality of decompression devices, and a single refrigerant circuit that can be connected. A plurality of refrigeration cycles having a shared load-side heat exchanger constitutes one refrigeration device, and each refrigeration cycle includes a compressor, a heat source-side heat exchanger, a decompression device, and a load-side heat exchanger connected in a ring shape. A plurality of the refrigeration devices that are formed by a plurality of independent refrigeration cycles for each compressor are formed, and the plurality of refrigeration cycles are independent for each compressor. This is a circuit that returns the oil to the compressor for the amount of oil that has been removed, and since the oil does not decrease, the reliability increases, and the heat source side heat exchanger and load side heat exchanger have multiple refrigeration cycles. Because the number of heat exchangers has not increased There is an effect that it provides an apparatus compact installation mode.
In addition, the flow path of the heat source side heat medium is connected in series to each heat source side heat exchanger of the plurality of refrigeration apparatuses, and the load side heat medium is connected to each load side heat exchanger of the plurality of refrigeration apparatuses. Since the flow paths are connected in series, the heat load medium is lowered to a predetermined temperature, or the heat source medium is raised to a predetermined temperature, so that the temperature gradient is reduced to install one heat exchanger or in parallel. More efficient operation can be provided than when the temperature is lowered or raised to a predetermined temperature by the plurality of heat exchangers.

本発明の実施の形態1の冷凍空調装置の回路図。1 is a circuit diagram of a refrigeration air conditioner according to Embodiment 1 of the present invention. 同冷凍空調装置の水熱交換器の内部構造の概略構成図。The schematic block diagram of the internal structure of the water heat exchanger of the freezing air conditioner. 本発明の実施の形態2の冷凍空調装置の回路図。The circuit diagram of the refrigerating air-conditioning apparatus of Embodiment 2 of this invention.

実施の形態1.
図1は本発明の実施の形態1の冷凍空調装置の回路図、図2は同冷凍空調装置の水熱交換器の内部構造の概略構成図である。
図1に示すように、冷凍空調装置である熱源機1内には、同一回路構成で同一仕様の冷凍サイクル2a、2b、2c、2dがそれぞれ搭載されている。
冷凍サイクル2aには、圧縮機3a、熱源側熱交換器である水熱交換器4a、減圧装置である主膨張弁5a、負荷側熱交換器である水熱交換器6aが内蔵され、環状に接続された冷媒回路を構成する。また、冷凍サイクル2bには、圧縮機3b、熱源側熱交換器である水熱交換器4a、減圧装置である主膨張弁5b、負荷側熱交換器である水熱交換器6aが内蔵され、環状に接続された冷媒回路を構成する。
そして、2つの水熱交換器4a、6aは2つの冷凍サイクル2a、2bに共用される。
この2つの冷凍サイクル2a、2bで1つ或いは1組の冷凍装置が構成される。
Embodiment 1 FIG.
1 is a circuit diagram of a refrigerating and air-conditioning apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a schematic configuration diagram of the internal structure of a water heat exchanger of the refrigerating and air-conditioning apparatus.
As shown in FIG. 1, refrigeration cycles 2a, 2b, 2c, and 2d having the same circuit configuration and the same specifications are mounted in a heat source machine 1 that is a refrigeration air conditioner.
The refrigeration cycle 2a includes a compressor 3a, a water heat exchanger 4a that is a heat source side heat exchanger, a main expansion valve 5a that is a pressure reducing device, and a water heat exchanger 6a that is a load side heat exchanger, and is annularly formed. A connected refrigerant circuit is configured. The refrigeration cycle 2b includes a compressor 3b, a water heat exchanger 4a that is a heat source side heat exchanger, a main expansion valve 5b that is a pressure reducing device, and a water heat exchanger 6a that is a load side heat exchanger. An annularly connected refrigerant circuit is configured.
The two water heat exchangers 4a and 6a are shared by the two refrigeration cycles 2a and 2b.
These two refrigeration cycles 2a and 2b constitute one or a set of refrigeration apparatuses.

さらに、冷凍サイクル2cには、圧縮機3c、熱源側熱交換器である水熱交換器4c、減圧装置である主膨張弁5c、負荷側熱交換器である水熱交換器6cが内蔵され、環状に接続された冷媒回路を構成する。また、冷凍サイクル2dには、圧縮機3d、熱源側熱交換器である水熱交換器4c、減圧装置である主膨張弁5d、負荷側熱交換器である水熱交換器6cが内蔵され、環状に接続された冷媒回路を構成する。そして、2つの水熱交換器4c、6cは2つの冷凍サイクル2c、2dに共用される。
この2つの冷凍サイクル2a、2bで1つ或いは1組の冷凍装置が構成される。
したがって、この実施の形態1は、2つ或いは2組の冷凍装置で構成されている。
各冷凍サイクル2a、2b、2c、2dともそれぞれ1個の圧縮機3a、3b、3c、3dが備えられる。
各々の環状に接続された冷媒回路2は、圧縮機3、水熱交換器4、主膨張弁5、水熱交換器6、圧縮機3の順で冷媒が流れる。
Further, the refrigeration cycle 2c includes a compressor 3c, a water heat exchanger 4c that is a heat source side heat exchanger, a main expansion valve 5c that is a pressure reducing device, and a water heat exchanger 6c that is a load side heat exchanger, An annularly connected refrigerant circuit is configured. The refrigeration cycle 2d includes a compressor 3d, a water heat exchanger 4c that is a heat source side heat exchanger, a main expansion valve 5d that is a pressure reducing device, and a water heat exchanger 6c that is a load side heat exchanger. An annularly connected refrigerant circuit is configured. The two water heat exchangers 4c and 6c are shared by the two refrigeration cycles 2c and 2d.
These two refrigeration cycles 2a and 2b constitute one or a set of refrigeration apparatuses.
Therefore, this Embodiment 1 is composed of two or two sets of refrigeration apparatuses.
Each of the refrigeration cycles 2a, 2b, 2c, and 2d is provided with one compressor 3a, 3b, 3c, and 3d.
In each of the annularly connected refrigerant circuits 2, the refrigerant flows in the order of the compressor 3, the water heat exchanger 4, the main expansion valve 5, the water heat exchanger 6, and the compressor 3.

水熱交換器4a、4c、6a、6cはプレート式熱交換器であり、図2に示すように、熱源媒体である水と冷媒1、冷媒2の流路を持ち、水1回路、冷媒2回路を流す構造となっており、熱源と冷媒1及び冷媒2が熱交換を行う。この冷凍空調装置の冷媒としては疑似共沸混合冷媒であるR410Aが用いられる。
また、主膨張弁5a〜5cは開度が可変に制御される電子膨張弁である。
熱負荷媒体である冷水は、熱源機1の外部に設けられた冷水ポンプ11により搬送され、熱源機1内では点線の流路となり、水熱交換器6a、水熱交換器6cの順に流れる。これら水熱交換器6a、6cでは、冷媒と冷水が対向して流れる対向流となるように流路構成される。
また、熱源媒体である冷却水は、熱源機1の外部に設けられた冷却水ポンプ12により搬送され、熱源機1内では点線の流路となり、水熱交換器4c、水熱交換器4aの順に流れる。これら水熱交換器4a、4cでは、冷媒と冷水が対向して流れる対向流となるように流路構成される。
The water heat exchangers 4a, 4c, 6a, and 6c are plate heat exchangers, and have a flow path of water, refrigerant 1, and refrigerant 2, which are heat source media, as shown in FIG. The circuit is configured to flow, and the heat source, the refrigerant 1 and the refrigerant 2 exchange heat. R410A, which is a pseudo azeotrope refrigerant, is used as the refrigerant of this refrigeration air conditioner.
The main expansion valves 5a to 5c are electronic expansion valves whose opening degree is variably controlled.
Cold water, which is a heat load medium, is transported by a cold water pump 11 provided outside the heat source unit 1, becomes a dotted channel in the heat source unit 1, and flows in the order of the water heat exchanger 6 a and the water heat exchanger 6 c. In these water heat exchangers 6a and 6c, the flow path is configured so that the refrigerant and the cold water are opposed to each other.
Moreover, the cooling water which is a heat source medium is conveyed by the cooling water pump 12 provided outside the heat source unit 1 and becomes a dotted line in the heat source unit 1, and the water heat exchanger 4c and the water heat exchanger 4a It flows in order. In these water heat exchangers 4a and 4c, the flow path is configured so that the refrigerant and the cold water are opposed to each other.

熱源機制御装置13は、冷凍サイクルの冷媒圧力や温度、熱媒体となる水温の温度を計測し、運転情報や冷凍空調装置の使用者から指示される運転内容に基づいて、圧縮機3の運転・停止や回転数、主膨張弁5の開度等、各アクチュエータを制御する。   The heat source device control device 13 measures the refrigerant pressure and temperature of the refrigeration cycle, and the temperature of the water temperature as the heat medium, and operates the compressor 3 based on the operation information and the operation content instructed by the user of the refrigeration air conditioner. Control each actuator such as stop, rotation speed, opening of main expansion valve 5 and the like.

次に、本発明の実施の形態1の冷凍空調装置の運転動作について説明する。
冷凍サイクル2aにおいて、圧縮機3aから吐出された高温高圧のガス冷媒は、熱源側水熱交換器である水熱交換器4aに流入し、凝縮器となる水熱交換器4aで放熱しながら凝縮・液化する。
水熱交換器4aを出た高圧の液冷媒は主膨張弁5aに流入する。主膨張弁5aにて低圧に減圧された二相状態の冷媒は、蒸発器となる負荷側水熱交換器である水熱交換器6aにて、蒸発ガス化しながら吸熱し、負荷側熱媒体である水を冷却し冷水を生成する。水熱交換器6aを出た冷媒は圧縮機3aに吸入される。
冷凍サイクル2b、2c、2dについても、上記冷凍サイクル2aの動作と同じである。
Next, the operation of the refrigeration air conditioner according to Embodiment 1 of the present invention will be described.
In the refrigeration cycle 2a, the high-temperature and high-pressure gas refrigerant discharged from the compressor 3a flows into the water heat exchanger 4a that is a heat source side water heat exchanger, and condenses while dissipating heat in the water heat exchanger 4a that serves as a condenser.・ Liquefy.
The high-pressure liquid refrigerant exiting the water heat exchanger 4a flows into the main expansion valve 5a. The refrigerant in the two-phase state decompressed to a low pressure by the main expansion valve 5a absorbs heat while evaporating and gasifying in the water heat exchanger 6a which is a load side water heat exchanger serving as an evaporator. Some water is cooled to produce cold water. The refrigerant leaving the water heat exchanger 6a is sucked into the compressor 3a.
The operations of the refrigeration cycles 2b, 2c, and 2d are the same as those of the refrigeration cycle 2a.

次に、負荷側熱交換器である水熱交換器6a、6cに流れる冷水の動作について説明する。
冷水は冷水ポンプ11によって駆動される。低温の、例えば7℃の冷水はファンコイルなどの負荷側装置に流入し、そこで負荷側装置周囲に冷熱を供給しながら冷水そのものの温度は上昇し、例えば12℃まで上昇した後で、熱源機1に流入する。
熱源機1に流入した冷水は、水熱交換器6aにて冷媒により冷却されて温度低下し、例えば9.5℃となって流出し、次いで水熱交換器6cに流入する。ここで、冷水は冷媒により冷却され、さらに温度低下し、例えば7℃となって、水熱交換器6cを流出し、熱源機1を流出する。その後、冷水は再び負荷側装置に流入する。
Next, operation | movement of the cold water which flows into the water heat exchangers 6a and 6c which are load side heat exchangers is demonstrated.
The cold water is driven by a cold water pump 11. Low-temperature, for example, 7 ° C. cold water flows into a load-side device such as a fan coil, where the temperature of the cold water itself rises while supplying cold heat around the load-side device. Flows into 1.
The cold water that has flowed into the heat source unit 1 is cooled by the refrigerant in the water heat exchanger 6a and the temperature is lowered. For example, the cold water flows out to 9.5 ° C., and then flows into the water heat exchanger 6c. Here, the cold water is cooled by the refrigerant, and further drops in temperature, for example, reaches 7 ° C., flows out of the water heat exchanger 6 c, and flows out of the heat source unit 1. Thereafter, the cold water flows into the load side device again.

次に、熱源側熱交換器である水熱交換器4a、4cに流れる冷却水の動作について説明する。
冷却水は冷却水ポンプ12によって駆動される。高温の、例えば40℃の冷却水はクーリングタワーなど冷却装置に流入し、そこで空気などの装置周囲に放熱しながら冷却水の温度は低下し、例えば35℃まで低下した後で、熱源機1に流入する。
熱源機1に流入した冷却水は、水熱交換器4cにて冷媒により加熱されて温度上昇し、例えば37.5℃となって流出し、次いで水熱交換器4aに流入する。ここで、冷却水は冷媒により加熱され、さらに温度上昇し、例えば40℃となって、水熱交換器4aを流出し、熱源機1を流出する。その後、冷却水は再び冷却装置に流入する。
Next, operation | movement of the cooling water which flows into the water heat exchangers 4a and 4c which are heat source side heat exchangers is demonstrated.
The cooling water is driven by the cooling water pump 12. High-temperature, for example, 40 ° C. cooling water flows into a cooling device such as a cooling tower, where the temperature of the cooling water decreases while dissipating heat around the device such as air, and then flows into the heat source unit 1 after decreasing to 35 ° C., for example. To do.
The cooling water that has flowed into the heat source unit 1 is heated by the refrigerant in the water heat exchanger 4c to rise in temperature, for example, flows out at 37.5 ° C., and then flows into the water heat exchanger 4a. Here, the cooling water is heated by the refrigerant and further rises in temperature, for example, reaches 40 ° C., flows out of the water heat exchanger 4a, and flows out of the heat source unit 1. Thereafter, the cooling water again flows into the cooling device.

通常、圧縮機には、運転に必要な油が蓄えられているが、微量の油は冷媒と共に冷凍サイクル内を循環する。
本実施の形態1の冷凍空調装置である熱源機1においては、圧縮機3a〜3dのそれぞれ1台につき、冷凍サイクル2a〜2dの冷媒回路はそれぞれ1つであり、出て行った油量分、油が圧縮機に戻ってくる回路であり、油が減ることが無いため、信頼性が高くなる。
Normally, oil necessary for operation is stored in the compressor, but a small amount of oil circulates in the refrigeration cycle together with the refrigerant.
In the heat source unit 1 that is the refrigeration air-conditioning apparatus according to the first embodiment, each of the compressors 3a to 3d has one refrigerant circuit for the refrigeration cycles 2a to 2d, and the amount of oil that has flown out. This is a circuit in which oil returns to the compressor, and since the oil does not decrease, the reliability increases.

また、各水熱交換器4a、6aを有する冷媒回路を構成する冷凍サイクル2a、2bは独立しているが、水熱交換器4a、6aは、プレート式熱交換器で、水1回路、冷媒2回路を有し、冷媒と冷水が対向して流れる対向流となるように流路構成されており、2つの冷凍サイクル2a、2bに共用されるため、水熱交換器個数は増えていないため、コンパクトな設置形態の装置を提供できる。
また、各水熱交換器4c、6cを有する冷媒回路を構成する冷凍サイクル2c、2dも独立しているが、水熱交換器4c、6cは、前記と同様に、2つの冷凍サイクル2c、2dに共用されるため、水熱交換器個数は増えていないため、コンパクトな設置形態の装置を提供できる。
In addition, the refrigeration cycles 2a and 2b constituting the refrigerant circuit having the water heat exchangers 4a and 6a are independent, but the water heat exchangers 4a and 6a are plate-type heat exchangers, one water circuit and one refrigerant. Since it has two circuits and is configured to have a counter flow so that the refrigerant and the cold water flow opposite to each other and is shared by the two refrigeration cycles 2a and 2b, the number of water heat exchangers has not increased. A device with a compact installation form can be provided.
In addition, the refrigeration cycles 2c and 2d constituting the refrigerant circuit having the water heat exchangers 4c and 6c are also independent, but the water heat exchangers 4c and 6c have two refrigeration cycles 2c and 2d as described above. Since the number of water heat exchangers has not increased, the apparatus can be provided in a compact installation form.

また、冷凍サイクル2a、2bに共用される水熱交換器6aの冷水流路8aと、冷凍サイクル2c、2dに共用される水熱交換器6cの冷水流路8bとが直列に接続され、熱負荷媒体である冷水は、熱源機1の外部に設けられた冷水ポンプ11により搬送され、上流側の冷水流路8aから下流側の冷水流路8bへと順に流れ、冷水を所定温度まで下げるように分担して温度勾配を小さく冷却するようにしているので、熱交換器1個或いは並列に設置した2個の熱交換器により所定温度まで下げるよう冷却する場合よりも、効率の良い冷却運転を提供することができる。
また、冷凍サイクル2a、2bに共用される水熱交換器4cの冷却水流路9aと、冷凍サイクル2c、2dに共用される水熱交換器4aの冷却水流路9bとが直列に接続され、熱源媒体である冷却水は、熱源機1の外部に設けられた冷却水ポンプ12により搬送され、上流側の冷却水流路9aから下流側の冷却水流路9bへと順に流れ、冷却水を所定温度まで上げるように分担して温度勾配を小さく加熱するようにしているので、熱交換器が1個或いは並列に設置した2個の熱交換器により所定温度まで上げるよう加熱する場合よりも、効率の良い冷却運転を提供することができる。
Moreover, the cold water flow path 8a of the water heat exchanger 6a shared by the refrigeration cycles 2a and 2b and the cold water flow path 8b of the water heat exchanger 6c shared by the refrigeration cycles 2c and 2d are connected in series, and the heat Cold water as a load medium is conveyed by a cold water pump 11 provided outside the heat source device 1 and flows in order from the cold water flow path 8a on the upstream side to the cold water flow path 8b on the downstream side so that the cold water is lowered to a predetermined temperature. Since the temperature gradient is cooled to a small degree by dividing the temperature, the cooling operation is more efficient than the case of cooling to a predetermined temperature by one heat exchanger or two heat exchangers installed in parallel. Can be provided.
Further, the cooling water flow path 9a of the water heat exchanger 4c shared by the refrigeration cycles 2a and 2b and the cooling water flow path 9b of the water heat exchanger 4a shared by the refrigeration cycles 2c and 2d are connected in series, and the heat source Cooling water as a medium is conveyed by a cooling water pump 12 provided outside the heat source unit 1 and flows in order from the cooling water flow path 9a on the upstream side to the cooling water flow path 9b on the downstream side, and the cooling water reaches a predetermined temperature. Since the temperature gradient is heated by sharing it so as to increase the temperature, it is more efficient than the case where the heat exchanger is heated up to a predetermined temperature by one heat exchanger or two heat exchangers installed in parallel. A cooling operation can be provided.

また、圧縮機3a〜3dが、容量可変な圧縮機である場合、圧縮機の容量は、冷水温度センサー7の温度と目標温度を比較して、冷水温度>目標温度の場合は、圧縮機の合計容量を大きくしている。また、冷水温度<目標温度の場合は、圧縮機の合計容量を小さくする制御をしている。
一般に、一つの水熱交換器に対して複数の圧縮機を並列に使用した場合、油の偏りを防止するために複数の圧縮機は同容量で運転する必要があった。
本実施の形態1の冷凍空調装置である熱源機1においては、熱源側熱交換器の水熱交換器4a又は負荷側熱交換器である水熱交換器6aに対して2つの圧縮機3a、3bを使用したとしても、圧縮機3a、3bのそれぞれ1台につき、冷凍サイクル2a、2bの冷媒回路はそれぞれ独立して1つであるため、油の偏りを防止するという問題は生ぜず、圧縮機3a、又は3bの1台毎に容量制御を行い、細かな容量制御を行うことが可能となる。 これは、冷凍サイクル2c、2dについても同様である。
また、圧縮機3a〜3dは、1台毎の冷媒配管径で構成されているため、圧縮機運転容量が小さい場合でも冷媒流速が小さくならないため、より小さい容量での運転が可能となる。
さらに、冷凍サイクル2a、2b又は2c、2dにおいて、2つの圧縮機のうち、一つの圧縮機が故障した場合でも、冷媒回路が独立していることで、他の正常な圧縮機での運転が可能であり、緊急対応も容易にできる。
When the compressors 3a to 3d are variable capacity compressors, the capacity of the compressor is compared with the temperature of the chilled water temperature sensor 7 and the target temperature. The total capacity is increased. Further, when the cold water temperature <the target temperature, control is performed to reduce the total capacity of the compressor.
In general, when a plurality of compressors are used in parallel for one water heat exchanger, it is necessary to operate the plurality of compressors with the same capacity in order to prevent oil bias.
In the heat source unit 1 that is the refrigeration air-conditioning apparatus of the first embodiment, two compressors 3a are provided for the water heat exchanger 4a of the heat source side heat exchanger or the water heat exchanger 6a that is the load side heat exchanger. Even if 3b is used, each of the compressors 3a and 3b has one refrigerant circuit for each of the refrigeration cycles 2a and 2b, so that there is no problem of preventing oil bias and compression. Capacity control is performed for each of the machines 3a or 3b, and fine capacity control can be performed. The same applies to the refrigeration cycles 2c and 2d.
Further, since the compressors 3a to 3d are configured with the refrigerant pipe diameter for each unit, the refrigerant flow rate does not become small even when the compressor operating capacity is small, so that operation with a smaller capacity is possible.
Furthermore, in the refrigeration cycle 2a, 2b or 2c, 2d, even when one of the two compressors fails, the refrigerant circuit is independent, so that operation with other normal compressors is possible. It is possible and emergency response can be made easily.

また、使用される地域において商用電源の周波数が相違し、それによって熱源機の冷却能力が異なる場合に、実際に熱源機1が設置された現場において、熱源機制御装置13が電源波形から商用電源の周波数を検知し、熱源機1に使用される圧縮機の商用電源の周波数の違いに対する冷却能力比を合わせるために圧縮機の容量の上限値を変更する。例えば、商用電源の周波数が50Hzで100KWの冷却能力、商用電源の周波数が60Hzで使用するときには120KWの冷却能力がでるように圧縮機の容量の上限値を変更することで、圧縮機のハード構成を変えることなく、異なる商用電源の周波数に対して圧縮機の冷却能力を容易に対処させることができる。   Further, when the frequency of the commercial power source is different in the region where it is used, and the cooling capacity of the heat source unit is different, the heat source unit control device 13 determines the commercial power source from the power source waveform at the site where the heat source unit 1 is actually installed. The upper limit value of the capacity of the compressor is changed in order to match the cooling capacity ratio to the difference in frequency of the commercial power supply of the compressor used in the heat source unit 1. For example, by changing the upper limit value of the compressor capacity so that a commercial power supply frequency is 50 Hz and a cooling capacity of 100 KW, and a commercial power supply frequency is 60 Hz, a cooling capacity of 120 KW can be obtained. It is possible to easily cope with the cooling capacity of the compressor with respect to the frequency of different commercial power sources without changing the frequency.

実施の形態2.
図3は本発明の実施の形態2の冷凍空調装置の回路図である。
上記実施の形態1は、熱源側熱交換器である水熱交換器4aと負荷側熱交換器である水熱交換器6aを有する冷媒回路を構成する2つの冷凍サイクル2a、2bを1組の冷凍装置とすると、2組の冷凍装置が構成されているが、実施の形態2は3組の冷凍装置で構成されている。
上記実施の形態2において、実施の形態1と同一の構成は同一符号を付して重複した構成の説明を省略する。
この実施の形態2では、冷凍サイクル2a、2bで1組目の冷凍装置、冷凍サイクル2c、2dで2組目の冷凍装置、冷凍サイクル2e、2fで3組目の冷凍装置として構成されている。
Embodiment 2. FIG.
FIG. 3 is a circuit diagram of the refrigerating and air-conditioning apparatus according to Embodiment 2 of the present invention.
In the first embodiment, a set of two refrigeration cycles 2a and 2b constituting a refrigerant circuit having a water heat exchanger 4a that is a heat source side heat exchanger and a water heat exchanger 6a that is a load side heat exchanger. In the case of the refrigeration apparatus, two sets of refrigeration apparatuses are configured, but the second embodiment includes three sets of refrigeration apparatuses.
In the second embodiment, the same components as those in the first embodiment are denoted by the same reference numerals, and the description of the overlapping components is omitted.
In the second embodiment, the refrigeration cycles 2a and 2b are configured as the first set of refrigeration devices, the refrigeration cycles 2c and 2d are configured as the second set of refrigeration devices, and the refrigeration cycles 2e and 2f are configured as the third set of refrigeration devices. .

冷凍サイクル2eには、圧縮機3e、熱源側熱交換器である水熱交換器4e、減圧装置である主膨張弁5e、負荷側熱交換器である水熱交換器6eが内蔵され、環状に接続された冷媒回路を構成する。また、冷凍サイクル2fには、圧縮機3f、熱源側熱交換器である水熱交換器4e、減圧装置である主膨張弁5f、負荷側熱交換器である水熱交換器6eが内蔵され、環状に接続された冷媒回路を構成する。
水熱交換器4e、水熱交換器6eも、冷媒と冷水が対向して流れる対向流となるように流路構成されている。
そして、2つの水熱交換器4e、6eは2つの冷凍サイクル2e、2fに共用される。
各冷凍サイクル2a、2b、2c、2d、2e、2fともそれぞれ1個の圧縮機3a、3b、3c、3d、3e、3fが備えられる。
各々の環状に接続された冷媒回路2は、圧縮機3、水熱交換器4、主膨張弁5、水熱交換器6、圧縮機3の順で冷媒が流れる。
The refrigeration cycle 2e includes a compressor 3e, a water heat exchanger 4e that is a heat source side heat exchanger, a main expansion valve 5e that is a pressure reducing device, and a water heat exchanger 6e that is a load side heat exchanger. A connected refrigerant circuit is configured. The refrigeration cycle 2f includes a compressor 3f, a water heat exchanger 4e that is a heat source side heat exchanger, a main expansion valve 5f that is a pressure reducing device, and a water heat exchanger 6e that is a load side heat exchanger. An annularly connected refrigerant circuit is configured.
The water heat exchanger 4e and the water heat exchanger 6e are also configured to have a counter flow so that the refrigerant and the cold water flow oppositely.
The two water heat exchangers 4e and 6e are shared by the two refrigeration cycles 2e and 2f.
Each of the refrigeration cycles 2a, 2b, 2c, 2d, 2e, and 2f includes one compressor 3a, 3b, 3c, 3d, 3e, and 3f.
In each of the annularly connected refrigerant circuits 2, the refrigerant flows in the order of the compressor 3, the water heat exchanger 4, the main expansion valve 5, the water heat exchanger 6, and the compressor 3.

また、各水熱交換器4a、6aを有する冷媒回路を構成する冷凍サイクル2a、2bは独立しているが、水熱交換器4a、6aは、2つの冷凍サイクル2a、2bに共用されるため、水熱交換器個数は増えていないため、コンパクトな設置形態の装置を提供できる。
さらに、各水熱交換器4c、6cを有する冷媒回路を構成する冷凍サイクル2c、2dも独立しているが、水熱交換器4c、6cは、前記と同様に、2つの冷凍サイクル2c、2dに共用されるため、水熱交換器個数は増えていないため、コンパクトな設置形態の装置を提供できる。
またさらに、各水熱交換器4e、6eを有する冷媒回路を構成する冷凍サイクル2e、2fも独立しているが、水熱交換器4e、6eは、前記と同様に、2つの冷凍サイクル2e、2fに共用されるため、水熱交換器個数は増えていないため、コンパクトな設置形態の装置を提供できる。
Moreover, although the refrigerating cycle 2a, 2b which comprises the refrigerant circuit which has each water heat exchanger 4a, 6a is independent, since the water heat exchanger 4a, 6a is shared by the two refrigerating cycles 2a, 2b. Since the number of water heat exchangers has not increased, a compact installation apparatus can be provided.
Furthermore, although the refrigeration cycles 2c and 2d constituting the refrigerant circuit having the water heat exchangers 4c and 6c are also independent, the water heat exchangers 4c and 6c have two refrigeration cycles 2c and 2d as described above. Since the number of water heat exchangers has not increased, the apparatus can be provided in a compact installation form.
Furthermore, although the refrigeration cycles 2e and 2f constituting the refrigerant circuit having the respective water heat exchangers 4e and 6e are also independent, the water heat exchangers 4e and 6e have two refrigeration cycles 2e, Since it is shared by 2f, the number of water heat exchangers has not increased, so that a compact installation apparatus can be provided.

また、冷凍サイクル2a、2bに共用される水熱交換器6aの冷水流路8aと、冷凍サイクル2c、2dに共用される水熱交換器6cの冷水流路8bと、冷凍サイクル2e、2fに共用される水熱交換器6eの冷水流路8cとが直列に接続され、熱負荷媒体である冷水は、熱源機1の外部に設けられた冷水ポンプ11により搬送され、上流側の冷水流路8aから中流側の冷水流路8bを経て下流側の冷水流路8cへと順に流れ、冷水を所定温度まで下げるように分担して温度勾配を小さく冷却するようにしているので、熱交換器1個或いは並列に設置した3個の熱交換器により所定温度まで下げるよう冷却する場合よりも、効率の良い冷却運転を提供することができる。   Moreover, the cold water flow path 8a of the water heat exchanger 6a shared by the refrigeration cycles 2a and 2b, the cold water flow path 8b of the water heat exchanger 6c shared by the refrigeration cycles 2c and 2d, and the refrigeration cycles 2e and 2f The cold water flow path 8c of the shared water heat exchanger 6e is connected in series, and the cold water as the heat load medium is conveyed by the cold water pump 11 provided outside the heat source unit 1, and the upstream cold water flow path Since the cooling water flows in order from the cooling water flow path 8b on the downstream side from the flow path 8a to the cooling water flow path 8c on the downstream side, the cooling water is lowered to a predetermined temperature so as to cool the temperature gradient small. An efficient cooling operation can be provided as compared with the case of cooling to a predetermined temperature by three or three heat exchangers installed in parallel.

また、冷凍サイクル2a、2bに共用される水熱交換器4cの冷却水流路9cと、冷凍サイクル2c、2dに共用される水熱交換器4aの冷水流路9bと、冷凍サイクル2e、2fに共用される水熱交換器4eの冷却水流路9aとが直列に接続され、熱源媒体である冷却水は、熱源機1の外部に設けられた冷却水ポンプ12により搬送され、上流側の冷却水流路9aから中流側の冷却水流路9bを経て下流側の冷却水流路9cへと順に流れ、冷却水を所定温度まで上げるように分担して温度勾配を小さく加熱するようにしているので、熱交換器が1個或いは並列に設置した3個の熱交換器により所定温度まで上げるよう加熱する場合よりも、効率の良い冷却運転を提供することができる。   In addition, the cooling water passage 9c of the water heat exchanger 4c shared by the refrigeration cycles 2a and 2b, the cold water passage 9b of the water heat exchanger 4a shared by the refrigeration cycles 2c and 2d, and the refrigeration cycles 2e and 2f The cooling water flow path 9a of the shared water heat exchanger 4e is connected in series, and the cooling water as the heat source medium is conveyed by the cooling water pump 12 provided outside the heat source unit 1, and the upstream cooling water flow Since the cooling water flows in order from the path 9a to the cooling water flow path 9c on the downstream side to the cooling water flow path 9c, and the cooling water is increased to a predetermined temperature, the temperature gradient is heated to be small. An efficient cooling operation can be provided as compared with the case where heating is performed to raise the temperature to a predetermined temperature by one heat exchanger or three heat exchangers installed in parallel.

本実施の形態2の冷凍空調装置である熱源機1においても、圧縮機3a〜3fのそれぞれ1台につき、冷凍サイクル2a〜2fの冷媒回路はそれぞれ1つであり、出て行った油量分、油が圧縮機に戻ってくる回路であり、油が減ることが無いため、信頼性が高くなる。   Also in the heat source machine 1 which is the refrigeration air-conditioning apparatus of the second embodiment, each of the compressors 3a to 3f has one refrigerant circuit of the refrigeration cycle 2a to 2f, and the amount of oil that has been discharged. This is a circuit in which oil returns to the compressor, and since oil does not decrease, the reliability increases.

1 熱源機、2a〜2f 冷凍サイクル、3a〜3f 圧縮機、4a、4c、4e 水熱交換器、5a〜5f 主膨張弁、6a、6c、6e 水熱交換器、7 冷水温度センサー、11 冷水ポンプ、12 冷却水ポンプ、13 熱源機制御装置。   1 heat source machine, 2a-2f refrigeration cycle, 3a-3f compressor, 4a, 4c, 4e water heat exchanger, 5a-5f main expansion valve, 6a, 6c, 6e water heat exchanger, 7 cold water temperature sensor, 11 cold water Pump, 12 Cooling water pump, 13 Heat source machine control device.

Claims (3)

複数の圧縮機と、複数の冷媒回路が接続可能な1つの共用の熱源側熱交換器と、複数の減圧装置と、複数の冷媒回路が接続可能な1つの急用の負荷側熱交換器とを有する複数の冷凍サイクルで1つの冷凍装置が構成され、各冷凍サイクルは圧縮機、熱源側熱交換器、減圧装置、負荷側熱交換器が環状に接続されて1つの冷媒回路を形成し、
圧縮機毎に独立した複数の冷凍サイクルで構成された前記冷凍装置を複数備え、
該複数の冷凍装置のそれぞれの熱源側熱交換器に対して熱源側熱媒体の流路を直列に接続し、複数の冷凍装置のそれぞれの負荷側熱交換器に対して負荷側熱媒体の流路を直列に接続したことを特徴とする冷凍空調装置。
A plurality of compressors, a common heat source side heat exchanger to which a plurality of refrigerant circuits can be connected, a plurality of pressure reducing devices, and an emergency load side heat exchanger to which a plurality of refrigerant circuits can be connected A plurality of refrigeration cycles constitute one refrigeration device, and each refrigeration cycle is formed by connecting a compressor, a heat source side heat exchanger, a decompression device, and a load side heat exchanger in a ring to form one refrigerant circuit,
A plurality of the refrigeration devices configured with a plurality of independent refrigeration cycles for each compressor,
The flow path of the heat source side heat medium is connected in series with each heat source side heat exchanger of the plurality of refrigeration apparatuses, and the flow of the load side heat medium with respect to each load side heat exchanger of the plurality of refrigeration apparatuses A refrigerating and air-conditioning apparatus characterized by connecting paths in series.
前記複数の冷凍サイクルでそれぞれ独立の圧縮機は運転容量が可変であり、該各圧縮機の運転容量をそれぞれ制御可能な制御装置を備えたことを特徴とする請求項1記載の冷凍空調装置。   The refrigerating and air-conditioning apparatus according to claim 1, wherein the compressors independent of each other in the plurality of refrigeration cycles have variable operation capacities, and each has a control device capable of controlling the operation capacities of the compressors. 前記制御装置は、商用電源の周波数を検知し、前記冷凍装置における各圧縮機の商用電源の周波数の違いに対する能力比を合わせるために圧縮機の容量の上限値を変更するよう制御することを特徴とする請求項2記載の冷凍空調装置。   The control device detects the frequency of the commercial power source and controls to change the upper limit value of the compressor capacity in order to match the capacity ratio with respect to the difference in the commercial power source frequency of each compressor in the refrigeration apparatus. The refrigerating and air-conditioning apparatus according to claim 2.
JP2009206589A 2009-09-08 2009-09-08 Refrigeration air conditioner Active JP5534752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009206589A JP5534752B2 (en) 2009-09-08 2009-09-08 Refrigeration air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009206589A JP5534752B2 (en) 2009-09-08 2009-09-08 Refrigeration air conditioner

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2014013756A Division JP2014074583A (en) 2014-01-28 2014-01-28 Refrigeration air conditioner

Publications (2)

Publication Number Publication Date
JP2011058663A true JP2011058663A (en) 2011-03-24
JP5534752B2 JP5534752B2 (en) 2014-07-02

Family

ID=43946516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009206589A Active JP5534752B2 (en) 2009-09-08 2009-09-08 Refrigeration air conditioner

Country Status (1)

Country Link
JP (1) JP5534752B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180970A (en) * 2011-03-01 2012-09-20 Mitsubishi Electric Corp Refrigerating cycle device
JP2012202634A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Composite dual refrigerating cycle device
JP2013124843A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle system
CN105571186A (en) * 2015-12-22 2016-05-11 重庆美的通用制冷设备有限公司 Water chilling unit
JP2016130597A (en) * 2015-01-13 2016-07-21 東芝キヤリア株式会社 Plate type heat exchanger and refrigerating-cycle device
CN109579191A (en) * 2018-12-25 2019-04-05 荏原冷热系统(中国)有限公司 The control method of double-compressor air-conditioning system and its refrigerant cycle amount, control device
US11408656B2 (en) 2018-03-07 2022-08-09 Mitsubishi Electric Corporation Heat source device and refrigeration cycle device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023669U (en) * 1983-07-25 1985-02-18 株式会社日立製作所 heat pump equipment
JPS62272041A (en) * 1986-05-20 1987-11-26 Matsushita Refrig Co Multiroom cooling and heating device
JPH06101895A (en) * 1992-09-18 1994-04-12 Fujitsu General Ltd Inverter controller for air-conditioner
JPH109693A (en) * 1996-06-20 1998-01-16 Kimura Kohki Co Ltd Air conditioner
JPH10160271A (en) * 1996-11-26 1998-06-19 Hitachi Ltd Air conditioner
JP2005337626A (en) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc Heat pump water heater system
JP2007187353A (en) * 2006-01-12 2007-07-26 Hitachi Ltd Freezer
JP2007198693A (en) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd Cascade type heat pump system
JP2009097756A (en) * 2007-10-15 2009-05-07 Hoshizaki Electric Co Ltd Refrigerating device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6023669U (en) * 1983-07-25 1985-02-18 株式会社日立製作所 heat pump equipment
JPS62272041A (en) * 1986-05-20 1987-11-26 Matsushita Refrig Co Multiroom cooling and heating device
JPH06101895A (en) * 1992-09-18 1994-04-12 Fujitsu General Ltd Inverter controller for air-conditioner
JPH109693A (en) * 1996-06-20 1998-01-16 Kimura Kohki Co Ltd Air conditioner
JPH10160271A (en) * 1996-11-26 1998-06-19 Hitachi Ltd Air conditioner
JP2005337626A (en) * 2004-05-28 2005-12-08 Hitachi Home & Life Solutions Inc Heat pump water heater system
JP2007187353A (en) * 2006-01-12 2007-07-26 Hitachi Ltd Freezer
JP2007198693A (en) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd Cascade type heat pump system
JP2009097756A (en) * 2007-10-15 2009-05-07 Hoshizaki Electric Co Ltd Refrigerating device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012180970A (en) * 2011-03-01 2012-09-20 Mitsubishi Electric Corp Refrigerating cycle device
JP2012202634A (en) * 2011-03-25 2012-10-22 Toshiba Carrier Corp Composite dual refrigerating cycle device
JP2013124843A (en) * 2011-12-16 2013-06-24 Mitsubishi Electric Corp Refrigeration cycle system
JP2016130597A (en) * 2015-01-13 2016-07-21 東芝キヤリア株式会社 Plate type heat exchanger and refrigerating-cycle device
CN105571186A (en) * 2015-12-22 2016-05-11 重庆美的通用制冷设备有限公司 Water chilling unit
US11408656B2 (en) 2018-03-07 2022-08-09 Mitsubishi Electric Corporation Heat source device and refrigeration cycle device
CN109579191A (en) * 2018-12-25 2019-04-05 荏原冷热系统(中国)有限公司 The control method of double-compressor air-conditioning system and its refrigerant cycle amount, control device

Also Published As

Publication number Publication date
JP5534752B2 (en) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5534752B2 (en) Refrigeration air conditioner
JP5349686B2 (en) Refrigeration cycle equipment
JP2006292351A (en) Refrigerating air conditioner
JP5976576B2 (en) Air conditioner
JP2009133624A (en) Refrigerating/air-conditioning device
JP2012137214A (en) Refrigerating device
JP2012067985A (en) Refrigerating machine, refrigerating device, and air conditioning device
JP4317793B2 (en) Cooling system
JP2007163013A (en) Refrigerating cycle device
US11274851B2 (en) Air conditioning apparatus
US20140332197A1 (en) Air Conditioner Terminal Device, Air Conditioning Apparatus And Data Center
JP2005226950A (en) Refrigerating air conditioner
JP6422590B2 (en) Heat source system
JP2014178110A (en) Freezing air conditioner
JP5496161B2 (en) Refrigeration cycle system
JP2014074583A (en) Refrigeration air conditioner
JP2015014372A (en) Air conditioner
JP2008051464A (en) Air conditioner
JP2013124843A (en) Refrigeration cycle system
JP2016080179A (en) Air conditioner
JP6978242B2 (en) Refrigerant circuit equipment
KR20150133966A (en) Cooling system
US10634394B2 (en) Air conditioner outdoor unit including heat exchange apparatus
JP2017187249A (en) Composite heat source heat pump device
JP2010038408A (en) Outdoor heat exchanger and refrigerating cycle device mounted with the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130814

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140415

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140422

R150 Certificate of patent or registration of utility model

Ref document number: 5534752

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250