JP2007187353A - Freezer - Google Patents

Freezer Download PDF

Info

Publication number
JP2007187353A
JP2007187353A JP2006004336A JP2006004336A JP2007187353A JP 2007187353 A JP2007187353 A JP 2007187353A JP 2006004336 A JP2006004336 A JP 2006004336A JP 2006004336 A JP2006004336 A JP 2006004336A JP 2007187353 A JP2007187353 A JP 2007187353A
Authority
JP
Japan
Prior art keywords
heat exchanger
side heat
temperature
refrigerant
cooled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006004336A
Other languages
Japanese (ja)
Inventor
Koji Ito
浩二 伊藤
Mitsuru Komatsu
満 小松
Takeshi Ito
毅 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006004336A priority Critical patent/JP2007187353A/en
Publication of JP2007187353A publication Critical patent/JP2007187353A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prevent freezing of water refrigerant in a plate type heat exchanger to which a plurality of refrigeration circuits are connected. <P>SOLUTION: In the freezer comprising a plurality of refrigeration circuits for circulating refrigerant by successively connecting a compressor 1, a heat source-side heat exchanger 2, an expansion device 3, and a using-side heat exchanger 4, in which a cooled medium heat-exchanged by each using-side heat exchanger 4 is supplied to a load, each using-side heat exchanger 4 includes refrigerant passages for passing a refrigerant and cooled medium passages for passing the cooled medium alternately disposed between a plurality of plates opposed to each other, all the cooled medium passages of the using-side heat exchanger being connected at the inlet side and outlet side of the plates, respectively to form the plate type heat exchanger. This freezer comprises a temperature estimation means for inputting detection temperatures at the inlet side and outlet side of the cooled medium in the plate type heat exchanger and an operation capacity of each refrigeration circuit, and arithmetically estimating the cooled medium temperature on the outlet side of the cooled medium passages of each using-side heat exchanger. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば、冷蔵倉庫や居室空間の空調機に用いられる冷凍装置にかかり、特に、冷媒と被冷却媒体を熱交換するプレート式熱交換器の凍結防止に好適な冷凍装置に関する。   The present invention relates to a refrigeration apparatus used in, for example, a refrigerator or an air conditioner in a living room, and more particularly to a refrigeration apparatus suitable for preventing freezing of a plate heat exchanger that exchanges heat between a refrigerant and a medium to be cooled.

一般に、冷凍装置は、圧縮機、熱源側熱交換器、減圧装置、利用側熱交換器を冷媒配管によって順次接続する冷凍回路と、利用側熱交換器、循環用ポンプ、熱負荷を冷媒配管によって接続する水循環回路とを備えて構成され、利用側熱交換器により冷媒と熱交換された被冷却媒体(以下、適宜、水冷媒という。)を熱負荷に供給することで冷凍運転を行う。   In general, a refrigeration system is composed of a refrigeration circuit that sequentially connects a compressor, a heat source side heat exchanger, a decompression device, and a usage side heat exchanger by refrigerant piping, a usage side heat exchanger, a circulation pump, and a heat load by refrigerant piping. A refrigeration operation is performed by supplying a cooling medium (hereinafter, appropriately referred to as a water refrigerant), which is configured to include a water circulation circuit to be connected and heat-exchanged with the refrigerant by the use side heat exchanger, to a heat load.

このような冷凍装置において、利用側熱交換器内の水冷媒の凍結を防止するため、利用側熱交換器に流入する水冷媒の入口部と出口部の温度を検出し、入口部の温度と出口部の温度の差が所定値以上になると冷凍回路の運転を停止させる機能を備えた冷凍装置が知られている(特許文献1参照)。   In such a refrigeration apparatus, in order to prevent freezing of the water refrigerant in the use side heat exchanger, the temperatures of the inlet and outlet portions of the water refrigerant flowing into the use side heat exchanger are detected, There is known a refrigeration apparatus having a function of stopping the operation of a refrigeration circuit when a difference in temperature at an outlet becomes a predetermined value or more (see Patent Document 1).

一方、複数の冷凍回路を共通の利用側熱交換器を介して接続して構成される冷凍装置が知られている。この種の冷凍装置には、例えば、利用側熱交換器としてプレート式熱交換器が用いられる。   On the other hand, a refrigeration apparatus configured by connecting a plurality of refrigeration circuits via a common use side heat exchanger is known. In this type of refrigeration apparatus, for example, a plate heat exchanger is used as a use side heat exchanger.

このプレート式熱交換器は、例えば、複数のプレートを平行に配置して、各冷凍回路から流入する冷媒の冷媒流路と水循環回路から流入する水冷媒の水冷媒流路とを交互に配置し、各プレートの両端に形成される一対のヘッダにより水冷媒流路を相互に連通させて構成される。これによれば、プレート式熱交換器に導入された水冷媒は、一方のヘッダで分流されて複数の水冷媒流路に導かれた後、他方のヘッダにて再び合流し、熱負荷へと供給される。   In this plate heat exchanger, for example, a plurality of plates are arranged in parallel, and refrigerant flow paths for refrigerant flowing from each refrigeration circuit and water refrigerant flow paths for water refrigerant flowing from the water circulation circuit are alternately arranged. The water refrigerant flow path is configured to communicate with each other by a pair of headers formed at both ends of each plate. According to this, the water refrigerant introduced into the plate heat exchanger is diverted in one header and led to a plurality of water refrigerant flow paths, and then merges again in the other header, to the heat load. Supplied.

このように、利用側熱交換器としてプレート式熱交換器を用いると、例えば、水流路のスペースを小さくすることができ、コンパクトで、しかも高い熱交換効率を得ることができる。   Thus, when a plate-type heat exchanger is used as the use-side heat exchanger, for example, the space of the water channel can be reduced, and a compact and high heat exchange efficiency can be obtained.

特開2000−121175号公報JP 2000-121175 A

しかしながら、上記のように複数の冷凍回路を接続させたプレート式熱交換器においては、各冷凍回路と熱交換された水冷媒の合流後の出口部の温度を検出しても、各冷凍回路の冷凍能力は運転容量によって異なる場合があるため、十分な凍結防止を図ることができないという問題がある。例えば、複数台の冷凍回路を運転中、1台が停止した場合、熱交換器の出口部の温度を一定に保つため、他の冷凍回路の運転容量が増加されると、その冷凍回路の冷凍能力が増加され、水冷媒の過冷却による局所的な凍結が生じるおそれがある。   However, in the plate heat exchanger in which a plurality of refrigeration circuits are connected as described above, even if the temperature of the outlet portion after the joining of the water refrigerant heat-exchanged with each refrigeration circuit is detected, Since the refrigeration capacity may vary depending on the operating capacity, there is a problem that sufficient freezing prevention cannot be achieved. For example, when one unit stops while operating a plurality of refrigeration circuits, if the operating capacity of another refrigeration circuit is increased in order to keep the temperature at the outlet of the heat exchanger constant, The capacity is increased and local freezing due to supercooling of the water refrigerant may occur.

本発明は、複数の冷凍回路が接続されるプレート式熱交換器において水冷媒の凍結を防止することを課題とする。   An object of the present invention is to prevent freezing of water refrigerant in a plate heat exchanger to which a plurality of refrigeration circuits are connected.

上記課題を解決するため、本発明は、圧縮機、熱源側熱交換器、膨張装置、利用側熱交換器を順次接続して冷媒を循環させる冷凍回路を複数備え、各利用側熱交換器によって熱交換された被冷却媒体を負荷に供給する冷凍装置において、各利用側熱交換器は、複数のプレートを互いに対向配置して冷媒が通流する冷媒流路と被冷却媒体が通流する被冷却媒体流路とを交互に配置し、すべての利用側熱交換器の被冷却媒体流路をプレートの入り側と出側でそれぞれ連通させてプレート式熱交換器を形成し、そのプレート式熱交換器の被冷却媒体の入り側と出側の検出温度と各冷凍回路の運転容量とを入力して各利用側熱交換器の被冷却媒体流路の出側の被冷却媒体温度を演算により推定する温度推定手段を設けたことを特徴とする。   In order to solve the above problems, the present invention includes a plurality of refrigeration circuits that sequentially connect a compressor, a heat source side heat exchanger, an expansion device, and a use side heat exchanger to circulate the refrigerant, and each use side heat exchanger In the refrigeration apparatus that supplies the heat-exchanged medium to be cooled to the load, each user-side heat exchanger has a plurality of plates arranged to face each other and a refrigerant flow path through which the refrigerant flows and a medium through which the medium to be cooled flows. The cooling medium flow paths are arranged alternately, and the cooling medium flow paths of all the use side heat exchangers are communicated with each other on the inlet side and the outlet side of the plate to form a plate heat exchanger. Input the detected temperatures on the inlet and outlet sides of the cooling medium of the exchanger and the operating capacity of each refrigeration circuit, and calculate the temperature of the cooling medium on the outlet side of the cooling medium flow path of each use side heat exchanger by calculation A temperature estimation means for estimation is provided.

すなわち、各利用側熱交換器の被冷却媒体流路の出側の被冷却媒体温度は、プレート式熱交換器の被冷却媒体の入り側と出側の検出温度、及び各冷凍回路の運転容量の検出値に基づいて一定の処理を行うことにより推定できるため、予め温度推定手段にこれらの演算式を入力しておけば、各出側の被冷却媒体温度を推定値として検知することができる。そして、この被冷却媒体温度の推定値に基づいて、例えば、各冷凍回路の運転容量を適宜調整することにより、被冷却媒体の水温低下を抑制できるため、凍結を防止することができる。   That is, the cooling medium temperature on the outlet side of the cooling medium flow path of each use side heat exchanger is the detected temperature on the inlet side and outlet side of the cooling medium of the plate heat exchanger, and the operating capacity of each refrigeration circuit Therefore, the temperature of each cooling medium can be detected as an estimated value by inputting these arithmetic expressions into the temperature estimating means in advance. . Then, based on the estimated value of the cooling medium temperature, for example, by appropriately adjusting the operating capacity of each refrigeration circuit, a decrease in the water temperature of the cooling medium can be suppressed, so that freezing can be prevented.

また、各冷凍回路の運転容量を入力情報とすることにより、例えば、冷凍回路の運転停止状態も判断することができ、これに基づいて同様に処理すれば、被冷却媒体温度の推定値を検知することができる。   In addition, by using the operation capacity of each refrigeration circuit as input information, for example, the operation stop state of the refrigeration circuit can also be determined, and if the same processing is performed based on this, an estimated value of the cooling medium temperature is detected. can do.

この場合において、温度推定手段は、被冷却媒体温度の推定値が設定温度以下の場合、推定値に基づいて冷凍回路の運転容量を変化させる制御手段を備えるようにする。これによれば、推定値に基づいて、各冷凍回路の運転容量を自動的に最適設定できるため、利用側熱交換器の凍結をより確実に防止できる。また、温度推定手段は、被冷却媒体温度の推定値が設定温度以下の場合、冷凍回路の運転を停止する制御手段を備えていてもよい。   In this case, the temperature estimation means includes control means for changing the operating capacity of the refrigeration circuit based on the estimated value when the estimated value of the temperature of the cooling medium is equal to or lower than the set temperature. According to this, since the operation capacity of each refrigeration circuit can be automatically set optimally based on the estimated value, it is possible to more reliably prevent the use side heat exchanger from freezing. Further, the temperature estimation means may include a control means for stopping the operation of the refrigeration circuit when the estimated value of the temperature of the cooling medium is equal to or lower than the set temperature.

また、プレート式熱交換器は、例えば、各利用側熱交換器のプレートの両端の被冷却媒体流路を相互に連通させる一対の共通ヘッダを配置して構成されるものであってもよいし、各利用側熱交換器のプレートの両端の被冷却媒体流路を一対のヘッダにより相互に連通させ、すべての前記利用側熱交換器の各ヘッダを相互に連通させて構成されるものであってもよい。   In addition, the plate heat exchanger may be configured, for example, by arranging a pair of common headers that allow the cooling medium flow paths at both ends of the plates of each use-side heat exchanger to communicate with each other. The cooling medium passages at both ends of the plates of each use side heat exchanger are communicated with each other by a pair of headers, and the headers of all the use side heat exchangers are communicated with each other. May be.

本発明の冷凍装置によれば、複数の冷凍回路が接続されるプレート式熱交換器において水冷媒の凍結を防止することができる。   According to the refrigeration apparatus of the present invention, water refrigerant can be prevented from freezing in a plate heat exchanger to which a plurality of refrigeration circuits are connected.

(第1の実施形態)
以下、本発明の冷凍装置の第1の実施形態について図を参照して説明する。図1は、本発明を適用してなる冷凍装置の一実施形態を示す冷凍サイクル系統図である。
(First embodiment)
Hereinafter, a first embodiment of a refrigeration apparatus of the present invention will be described with reference to the drawings. FIG. 1 is a refrigeration cycle system diagram showing an embodiment of a refrigeration apparatus to which the present invention is applied.

本実施の形態の冷凍装置は、二つの冷凍回路(1号機21と2号機22)と制御装置12を備えている。各冷凍回路は、圧縮機1、熱源側熱交換器2、膨張装置3、利用側熱交換器4を順次冷媒配管により接続して構成され、共通の利用側熱交換器4を介して接続されている。また、熱源側熱交換器2の近傍には送風機5が配置されている。   The refrigeration apparatus of the present embodiment includes two refrigeration circuits (No. 1 machine 21 and No. 2 machine 22) and a control device 12. Each refrigeration circuit is configured by sequentially connecting a compressor 1, a heat source side heat exchanger 2, an expansion device 3, and a usage side heat exchanger 4 by refrigerant piping, and is connected via a common usage side heat exchanger 4. ing. A blower 5 is disposed in the vicinity of the heat source side heat exchanger 2.

利用側熱交換器2は、水循環回路(図示せず)の熱交換器として利用され、水循環回路を流れる水冷媒は、利用側熱交換器2を介して各冷凍回路の冷媒と熱交換するようになっている。水循環回路は、例えば、利用側熱交換器4、循環用ポンプ、熱負荷を順次冷媒配管により接続して構成される。   The use side heat exchanger 2 is used as a heat exchanger of a water circulation circuit (not shown), and the water refrigerant flowing through the water circulation circuit exchanges heat with the refrigerant of each refrigeration circuit via the use side heat exchanger 2. It has become. The water circulation circuit is configured, for example, by connecting the use-side heat exchanger 4, the circulation pump, and the heat load sequentially by refrigerant piping.

水循環回路から利用側熱交換器4に流入する水冷媒の入口部と、水冷媒が利用側熱交換器4から流出する出口部には、サーミスタ6,7がそれぞれ設置され、利用側熱交換器4に流入する水冷媒の水温と、利用側熱交換器4から流出する水冷媒の水温をそれぞれ検出するようになっている。1号機21と2号機22の各圧縮機1とサーミスタ6,7は、制御装置12とそれぞれ電気的に接続されている。   The thermistors 6 and 7 are respectively installed at the inlet portion of the water refrigerant flowing into the utilization side heat exchanger 4 from the water circulation circuit and the outlet portion where the water refrigerant flows out of the utilization side heat exchanger 4, and the utilization side heat exchanger. The water temperature of the water refrigerant flowing into the water 4 and the water temperature of the water refrigerant flowing out of the use side heat exchanger 4 are detected. The compressors 1 and the thermistors 6 and 7 of the first machine 21 and the second machine 22 are electrically connected to the control device 12, respectively.

図3は、図1の利用側熱交換器4の内部構造の概略図である。本実施形態の利用側熱交換器4は、複数のプレート(8a,8b,8c・・・)が所定の間隔をもって対向し、積層されるプレート式熱交換器として構成される。各プレート8の間には、冷凍回路の冷媒が流れる冷媒流路(9b,9d,9f・・・)と水循環回路の水冷媒が流れる水冷媒流路(9a,9c,9e・・・)が交互に配置されている。各プレート8には、冷媒の供給と排出をそれぞれ行う冷媒導入管路23及び冷媒排出管路24がプレートの積層方向から挿通されており、プレートの間の各冷媒流路は、冷媒導入管路23及び冷媒排出管路24とそれぞれ連通されている。冷媒流路となるプレート8の間は、水冷媒の侵入を防ぐため端部が封止される。   FIG. 3 is a schematic diagram of the internal structure of the use side heat exchanger 4 of FIG. The use side heat exchanger 4 of the present embodiment is configured as a plate heat exchanger in which a plurality of plates (8a, 8b, 8c...) Face each other with a predetermined interval and are stacked. Between each plate 8, there are refrigerant flow paths (9b, 9d, 9f...) Through which the refrigerant in the refrigeration circuit flows and water refrigerant flow paths (9a, 9c, 9e...) Through which the water refrigerant in the water circulation circuit flows. Alternatingly arranged. Refrigerant introduction pipes 23 and refrigerant discharge pipes 24 for supplying and discharging refrigerant are respectively inserted into the plates 8 from the stacking direction of the plates, and the refrigerant flow paths between the plates are connected to the refrigerant introduction pipes. 23 and the refrigerant discharge pipe 24. Between the plates 8 serving as the refrigerant flow path, the end portions are sealed to prevent the water refrigerant from entering.

プレート8の積層方向の中央には、各プレート8と平行に、仕切りプレート8iが設けられている。これにより、利用側熱交換器4の冷媒流路は、1号機側と2号機側に分割されて、互いに独立した冷媒流路となるように構成される。   A partition plate 8 i is provided in the center in the stacking direction of the plates 8 in parallel with the plates 8. Thereby, the refrigerant | coolant flow path of the utilization side heat exchanger 4 is divided | segmented into the 1st machine side and the 2nd machine side, and it is comprised so that it may become a mutually independent refrigerant | coolant flow path.

一方、各プレート8の間の開口側の一端とその対向する他端には、共通ヘッダ25と共通ヘッダ26が設けられ、この共通ヘッダ25と26は、仕切りプレート8iを含む全てのプレート8を覆って形成される。つまり、共通ヘッダ25と26は、すべての水冷媒流路を通じて互いに連通されており、冷媒流路のように、1号機側と2号機側の仕切りは設けられていない。   On the other hand, a common header 25 and a common header 26 are provided at one end on the opening side between the plates 8 and the other end opposite to each other. The common headers 25 and 26 connect all the plates 8 including the partition plate 8i. Covered and formed. That is, the common headers 25 and 26 are communicated with each other through all the water refrigerant channels, and no partition on the first and second machine sides is provided as in the refrigerant channel.

ここで、利用側熱交換器4は、1号機21側の水冷媒の流路抵抗と2号機22側の水冷媒の流路抵抗が同一に構成されるため、1号機側と2号機側の水冷媒流路を流れる水冷媒量(単位時間当たりの流量)は同等になる。また、1号機21と2号機22は、圧縮機の運転容量を同一に設定すれば、それぞれ冷媒流路を流れる冷媒量(単位時間当たりの流量)が同等になるように構成される。   Here, since the flow resistance of the water refrigerant on the No. 1 unit 21 side and the flow resistance of the water refrigerant on the No. 2 unit 22 side are configured to be the same, the use-side heat exchanger 4 is configured on the No. 1 side and the No. 2 side. The amount of water refrigerant flowing through the water refrigerant channel (flow rate per unit time) is the same. In addition, the No. 1 machine 21 and the No. 2 machine 22 are configured so that the refrigerant amounts (flow rates per unit time) flowing through the refrigerant flow paths become equal if the operating capacities of the compressors are set to be the same.

このような利用側熱交換器4の構成において、1号機側の入口部を通じてヘッダ25内に流入した水冷媒は、分流されてすべての水冷媒流路に流入(実線矢印)し、ヘッダ26において合流された後、1号機側から出口部を通じて排出される。一方、1号機21と2号機22の冷媒導入管路23からそれぞれ流入した冷媒は、冷媒流路を水冷媒と対向する方向(点線矢印)へ通流し、冷媒排出管路24からそれぞれ排出される。   In such a configuration of the use-side heat exchanger 4, the water refrigerant that has flowed into the header 25 through the inlet of the first unit is divided and flows into all the water refrigerant channels (solid arrows). After being merged, it is discharged from the Unit 1 side through the outlet. On the other hand, the refrigerant that has flowed in from the refrigerant introduction pipes 23 of the first machine 21 and the second machine 22 flows through the refrigerant flow path in the direction opposite to the water refrigerant (dotted arrow) and is discharged from the refrigerant discharge pipe 24, respectively. .

ところで、利用側熱交換器4を流れる水冷媒の温度は、各号機の運転容量や流入される水冷媒温度等によって変化する。このため、利用側熱交換器4において水冷媒の凍結を防止するには、各号機の冷媒と熱交換される水冷媒の出口温度、例えば、水冷媒流路の出口部の冷水出口温度10,11をそれぞれ検知する方法が考えられる。しかし、これらの位置は、例えば、構造上、極めて狭い領域となるため、サーミスタを設置するための十分なスペースを確保することができない。また、仮に設置できたとしても、各号機側の水冷媒流路を流れた冷水は、ヘッダ26内で合流してしまうため、正確な水温検知が困難となる。   By the way, the temperature of the water refrigerant flowing through the use side heat exchanger 4 varies depending on the operating capacity of each unit, the temperature of the water refrigerant flowing in, and the like. For this reason, in order to prevent freezing of the water refrigerant in the use side heat exchanger 4, the outlet temperature of the water refrigerant exchanged with the refrigerant of each unit, for example, the cold water outlet temperature 10 at the outlet of the water refrigerant flow path, A method of detecting each of 11 is conceivable. However, these positions are, for example, extremely narrow areas in terms of structure, so that a sufficient space for installing the thermistor cannot be secured. Even if it can be installed, the cold water that has flowed through the water refrigerant flow path on each unit side joins in the header 26, making it difficult to accurately detect the water temperature.

そこで、本実施形態では、ヘッダ25の入口側とヘッダ26の出口側に、それぞれサーミスタ6,7を設置する。これにより、利用側熱交換器4に流入する時点の水冷媒の温度と、各号機側の水冷媒流路を通過して合流した後の水冷媒の温度を検知する。   Therefore, in this embodiment, the thermistors 6 and 7 are installed on the inlet side of the header 25 and the outlet side of the header 26, respectively. Thereby, the temperature of the water refrigerant at the time of flowing into the use-side heat exchanger 4 and the temperature of the water refrigerant after passing through the water refrigerant flow path on each unit side are detected.

先ず、1号機21と2号機22の圧縮機1が同一容量で運転している場合は、各号機側の冷水出口温度10,11は同一の温度となり、合流後のサーミスタ7の検知温度は冷水出口温度10,11と同一となる。したがって、サーミスタ7の温度を検知していれば、各号機側の冷水出口温度10,11は、検知可能となる。   First, when the compressor 1 of the No. 1 machine 21 and the No. 2 machine 22 is operating with the same capacity, the cold water outlet temperatures 10 and 11 on each machine side are the same temperature, and the detected temperature of the thermistor 7 after merging is cold water. It becomes the same as outlet temperature 10 and 11. Therefore, if the temperature of the thermistor 7 is detected, the cold water outlet temperatures 10 and 11 on each unit side can be detected.

一方、2号機22の圧縮機1が停止した場合、1号機側の冷水出口温度10は、水冷媒が冷媒と熱交換されるため、サーミスタ6の検知温度よりも低下するのに対し、2号機側の冷水出口温度11は、水冷媒が熱交換されないため、サーミスタ6の検知温度と同一となる。すなわち、サーミスタ7の検知温度は、各号機側の水冷媒流量が同一のため、冷水出口温度10,11の平均温度を検出することになる。したがって、1号機側の冷水出口温度10は検知できない。   On the other hand, when the compressor 1 of the No. 2 machine 22 stops, the cold water outlet temperature 10 on the No. 1 side is lower than the temperature detected by the thermistor 6 because the water refrigerant exchanges heat with the refrigerant. The cold water outlet temperature 11 on the side is the same as the detected temperature of the thermistor 6 because the water refrigerant does not exchange heat. That is, the detected temperature of the thermistor 7 detects the average temperature of the chilled water outlet temperatures 10 and 11 because the water refrigerant flow rate on each unit side is the same. Therefore, the cold water outlet temperature 10 on the first unit side cannot be detected.

次に、制御装置12の制御動作の一例について図を参照して説明する。   Next, an example of the control operation of the control device 12 will be described with reference to the drawings.

図5は、容量制御機能を持たない圧縮機1を搭載する冷凍回路を複数組み合わせた場合の制御動作を示すフローチャートである。制御装置12から運転開始指令が入力されることにより冷凍回路及び水循環回路の運転を開始する。これらの運転が開始されると、サーミスタ6,7により各部の水冷媒温度(以下、適宜、T6,T7と略す。)を検出する(ステップS1)。次に、制御装置12は、これに接続される圧縮機の台数mと、現在運転中の圧縮機の台数nを検出する(ステップS2)。そして、検出された温度と圧縮機の状態により運転中の号機の冷水出口温度10,11(以下、適宜、T10,T11と略す。)を下記の式1により求める。   FIG. 5 is a flowchart showing a control operation when a plurality of refrigeration circuits equipped with the compressor 1 having no capacity control function are combined. The operation of the refrigeration circuit and the water circulation circuit is started when an operation start command is input from the control device 12. When these operations are started, the thermistors 6 and 7 detect the water refrigerant temperature of each part (hereinafter abbreviated as T6 and T7 as appropriate) (step S1). Next, the control device 12 detects the number m of compressors connected thereto and the number n of compressors currently in operation (step S2). Then, the cold water outlet temperature 10, 11 (hereinafter, abbreviated as T10, T11 as appropriate) of the unit in operation is obtained by the following equation 1 based on the detected temperature and the state of the compressor.

Figure 2007187353
例えば、圧縮機1の接続台数2台、運転台数2台であれば、T10はT7となる。また、圧縮機1の接続台数2台、運転台数1台であれば、T10はT6−2×(T6−T7)となり、T6,T7を検知することにより、T10の温度を演算により求める(ステップS3)。
Figure 2007187353
For example, if the number of connected compressors 1 is two and the number of operating units is two, T10 is T7. Further, if the number of connected compressors 1 is two and the number of operating units is 1, T10 becomes T6-2 × (T6-T7), and the temperature of T10 is calculated by detecting T6 and T7 (step) S3).

そして、ステップS3にて演算されたT10が所定温度Ta以下であるか否かを判定し(ステップS4)、Ta以下の場合は、被冷却媒体が過冷却されていると判断し、圧縮機1の運転を停止させる(ステップS5)。一方、ステップS4の判定においてT10が所定温度Taよりも大きい場合は、再度ステップS1より判定する。   Then, it is determined whether or not T10 calculated in step S3 is equal to or lower than a predetermined temperature Ta (step S4). If it is equal to or lower than Ta, it is determined that the medium to be cooled is supercooled, and the compressor 1 Is stopped (step S5). On the other hand, if T10 is higher than the predetermined temperature Ta in the determination in step S4, the determination is made again from step S1.

例えば、圧縮機1の接続台数2台、運転台数2台であれば、T10はT7となる。また、圧縮機1の接続台数2台、運転台数1台であれば、T10はT6−2×(T6−T7)となり、T6,T7を検知することにより、T10の温度を演算する(ステップS3)。   For example, if the number of connected compressors 1 is two and the number of operating units is two, T10 is T7. If the number of connected compressors 1 is two and the number of operating units is one, T10 becomes T6-2 × (T6-T7), and the temperature of T10 is calculated by detecting T6 and T7 (step S3). ).

次に、圧縮機1に容量制御機能を搭載する場合について説明する。1号機21と2号機22の圧縮機1が同一容量で運転している場合は、各号機側の冷水出口温度10,11は同一の温度となり、合流後のサーミスタ7の検知温度は冷水出口温度10,11と同一となる。しかし、例えば、1号機21が100%の運転容量、2号機が50%の運転容量で圧縮機1が運転すると、各号機側の冷水出口温度10,11は異なり、冷水出口温度10が冷水出口温度11よりも低下してしまい、合流後のサーミスタ7の検知温度だけでは、冷水出口温度10及び11の温度を検知できない。   Next, a case where a capacity control function is installed in the compressor 1 will be described. When the compressors 1 of the No. 1 machine 21 and the No. 2 machine 22 are operated with the same capacity, the cold water outlet temperatures 10 and 11 on the side of each machine are the same temperature, and the detected temperature of the thermistor 7 after the merging is the cold water outlet temperature. 10 and 11 are the same. However, for example, when the compressor 1 is operated with the operating capacity of the first unit 21 being 100% and the second unit being 50%, the chilled water outlet temperatures 10 and 11 on each unit side are different and the chilled water outlet temperature 10 is the chilled water outlet. The temperature of the chilled water outlet temperatures 10 and 11 cannot be detected only by the detected temperature of the thermistor 7 after merging.

図6は、圧縮機1に容量制御機能を搭載する冷凍回路を2台使用した場合(2サイクル)の制御動作を示すフローチャートである。   FIG. 6 is a flowchart showing the control operation when two refrigeration circuits equipped with a capacity control function are used in the compressor 1 (two cycles).

制御装置12から運転開始指令が入力されることにより冷凍回路及び水循環回路の運転を開始する。これらの運転が開始されると、サーミスタ6,7によりT6,T7を検出する(ステップS21)。次に、制御装置12は、現在運転中の圧縮機の台数nを検出し、2台とも運転しているか否かを判定する(ステップS22)。1台のみの運転であれば、図5のステップS3と同様に、例えば、運転中の1号機のT10を演算する(ステップS23)。そして、T10が所定温度Ta以下となったか否かを判定し(ステップS24)、T10が所定温度Ta以下の場合は、被冷却媒体が過冷却されていると判断し、圧縮機1の運転を停止させる(ステップS25)。なお、ステップS24の判定でT10が所定温度Taよりも大きい場合は、再度ステップS1より判定する。   The operation of the refrigeration circuit and the water circulation circuit is started when an operation start command is input from the control device 12. When these operations are started, T6 and T7 are detected by the thermistors 6 and 7 (step S21). Next, the control device 12 detects the number n of the currently operating compressors and determines whether or not both are operating (step S22). If only one unit is operated, for example, T10 of the first unit in operation is calculated in the same manner as step S3 in FIG. 5 (step S23). Then, it is determined whether or not T10 is equal to or lower than the predetermined temperature Ta (step S24). If T10 is equal to or lower than the predetermined temperature Ta, it is determined that the medium to be cooled is supercooled, and the compressor 1 is operated. Stop (step S25). When T10 is higher than the predetermined temperature Ta in the determination in step S24, the determination is made again from step S1.

一方、ステップS22の判定で2台とも運転中の場合、制御装置13により各圧縮機1の運転容量を検出する(ステップS26)。ここで、サーミスタ6,7の検出温度T6,T7、1号機圧縮機の容量R1、2号機圧縮機の容量R2、各号機側の冷水出口温度T10,T11は、下記の関係が成り立つ。ここで、式2は、各号機側の水冷媒の入口側と出口側の温度差は圧縮機1の運転容量に比例することを表しており、式3は、各号機側の水冷媒の冷水出口温度の平均が合流後の冷水出口温度となることを表している。式2と式3により各号機の冷水出口温度T10,T11は演算により求まる(ステップS27)。   On the other hand, if both units are operating in the determination of step S22, the control device 13 detects the operating capacity of each compressor 1 (step S26). Here, the detected temperatures T6 and T7 of the thermistors 6 and 7, the capacity R1 of the No. 1 compressor, the capacity R2 of the No. 2 compressor, and the cold water outlet temperatures T10 and T11 on the side of each No. 1 hold the following relationship. Here, Equation 2 represents that the temperature difference between the inlet side and outlet side of the water refrigerant on each unit side is proportional to the operating capacity of the compressor 1, and Equation 3 represents the cold water of the water refrigerant on each unit side. It shows that the average of the outlet temperature is the cold water outlet temperature after merging. The cold water outlet temperatures T10 and T11 of each unit are obtained by calculation according to Equations 2 and 3 (step S27).

Figure 2007187353
Figure 2007187353

Figure 2007187353
次に、例えば、T10が所定温度Ta以下であるか否かを判定する(ステップS28)。ここで、演算温度T10が所定温度Ta以下と判定された場合、被冷却媒体が過冷却されていると判断し、1号機の圧縮機1の運転を停止し(ステップS29)、次のステップS30へと進む。
Figure 2007187353
Next, for example, it is determined whether T10 is equal to or lower than a predetermined temperature Ta (step S28). Here, when it is determined that the calculated temperature T10 is equal to or lower than the predetermined temperature Ta, it is determined that the medium to be cooled is supercooled, the operation of the compressor 1 of the first unit is stopped (step S29), and the next step S30 is performed. Proceed to

一方、ステップS28の判定で、演算温度T10が所定温度Taよりも大きい場合は、T11が所定温度Ta以下であるか否かを判定する(ステップS30)。ここで、演算温度T11が所定温度Ta以下と判定された場合、被冷却媒体が過冷却されていると判断して、2号機の圧縮機1の運転を停止し(ステップS31)、再度ステップS21により判定を行う。なお、ステップS30の判定で演算温度T11が所定温度Ta以上であれば、同様のステップS21より再度判定を行う流れとなる。   On the other hand, if the calculation temperature T10 is higher than the predetermined temperature Ta in the determination in step S28, it is determined whether T11 is equal to or lower than the predetermined temperature Ta (step S30). Here, when it is determined that the calculated temperature T11 is equal to or lower than the predetermined temperature Ta, it is determined that the medium to be cooled is supercooled, the operation of the compressor 1 of the second machine is stopped (step S31), and step S21 is performed again. Judge by Note that if the calculation temperature T11 is equal to or higher than the predetermined temperature Ta in the determination in step S30, the determination is made again from the same step S21.

以上述べたように、本実施形態によれば、例えば、各号機側の冷水出口温度T10,T11の検知が困難な利用側熱交換器4においても、利用側熱交換器4に流入する水冷媒の入口部のT6と、水冷媒が利用側熱交換器4から流出する出口部のT7、及び各冷凍回路の圧縮機の運転容量を検出することにより、T10とT11を直接検出しなくても、これらの水温を演算により容易に推定することができる。そして、この推定温度に基づいて各圧縮機1の運転容量の調整や運転停止を制御することにより、利用側熱交換器4における被冷却媒体の凍結や、それによる熱交換器の破損等を防止することができる。   As described above, according to the present embodiment, for example, even in the use side heat exchanger 4 where it is difficult to detect the cold water outlet temperatures T10 and T11 on each unit side, the water refrigerant flowing into the use side heat exchanger 4 Without detecting T10 and T11 directly by detecting T6 at the inlet, T7 at the outlet from which the water refrigerant flows out of the use-side heat exchanger 4, and the operating capacity of the compressor of each refrigeration circuit These water temperatures can be easily estimated by calculation. Then, by adjusting the operation capacity of each compressor 1 and controlling the operation stop based on the estimated temperature, it is possible to prevent the medium to be cooled in the use side heat exchanger 4 from being frozen and the heat exchanger from being damaged thereby. can do.

また、本実施形態によれば、各号機側の冷水出口温度を検知するためのサーミスタを設置する必要がないため、その分、製造原価を低減することができ、経済的である。   Moreover, according to this embodiment, since it is not necessary to install the thermistor for detecting the cold water exit temperature of each unit side, the manufacturing cost can be reduced correspondingly, which is economical.

(第2の実施形態)
次に、本発明の冷凍装置の第2の実施形態について図を参照して説明する。図2は、本発明を適用してなる冷凍装置の一実施形態を示す冷凍サイクル系統図である。図4は、図2の利用側熱交換器4の内部構造の概略図である。なお、以下の説明において、第1の実施形態と同一の構成要素には同一符号を用い、重複する説明は省略する。
(Second Embodiment)
Next, a second embodiment of the refrigeration apparatus of the present invention will be described with reference to the drawings. FIG. 2 is a refrigeration cycle system diagram showing an embodiment of a refrigeration apparatus to which the present invention is applied. FIG. 4 is a schematic view of the internal structure of the use side heat exchanger 4 of FIG. In the following description, the same reference numerals are used for the same components as those in the first embodiment, and duplicate descriptions are omitted.

本実施形態の冷凍装置は、第1の実施形態と利用側熱交換器の構成が相違する。本実施形態の利用側熱交換器31は、各プレート8の間の開口側の一端とその対向する他端に、ヘッダ32,33が設けられている。ヘッダ32は1号機21側と2号機22側のそれぞれ独立したヘッダ32aと32bから構成され、ヘッダ33は1号機21側と2号機22側のそれぞれ独立したヘッダ33aと33bから構成される。   The refrigeration apparatus of this embodiment is different from the first embodiment in the configuration of the use side heat exchanger. In the use side heat exchanger 31 of the present embodiment, headers 32 and 33 are provided at one end on the opening side between the plates 8 and the other end opposite thereto. The header 32 includes independent headers 32a and 32b on the first machine 21 side and the second machine 22 side, and the header 33 includes independent headers 33a and 33b on the first machine 21 side and the second machine 22 side.

ヘッダ32aと33a、ヘッダ32bと33bは、それぞれプレート8の間の水冷媒流路を介して連通されている。そして、ヘッダ32aと32b、ヘッダ33aと33bは、それぞれ水冷媒流路34,35を介して並列的に連通されている。すなわち、本実施形態の利用側熱交換器31は、冷媒流路と水冷媒流路が共に1号機21側と2号機22側に仕切られており、互いに独立した関係になっている。そのため、各号機間の冷媒及び水冷媒の流れは分離されたものとなる。   The headers 32 a and 33 a and the headers 32 b and 33 b are communicated with each other via a water refrigerant channel between the plates 8. The headers 32a and 32b and the headers 33a and 33b are communicated in parallel via the water refrigerant channels 34 and 35, respectively. That is, in the use side heat exchanger 31 of the present embodiment, the refrigerant flow path and the water refrigerant flow path are both partitioned into the No. 1 machine 21 side and the No. 2 machine 22 side, and are in an independent relationship. Therefore, the flow of the refrigerant and the water refrigerant between the units is separated.

また、水冷媒熱交換器31に流入する水冷媒が各号機側に分流する手前の入口部と、水冷媒が利用側熱交換器31から流出する出口部には、サーミスタ6,7がそれぞれ設置されている。   Further, the thermistors 6 and 7 are respectively installed at the inlet portion before the water refrigerant flowing into the water refrigerant heat exchanger 31 is diverted to each unit side and at the outlet portion where the water refrigerant flows out from the use side heat exchanger 31. Has been.

なお、第1の実施形態と同様、利用側熱交換器4は、1号機側と2号機側の水冷媒流路を流れる水冷媒量(単位時間当たりの流量)は同等に構成され、各号機の圧縮機の運転容量が同一であれば、それぞれ冷媒流路を流れる冷媒量(単位時間当たりの流量)も同等になるように構成される。   As in the first embodiment, the use-side heat exchanger 4 is configured so that the amount of water refrigerant (flow rate per unit time) flowing through the water refrigerant passages on the first and second units is the same. If the operating capacities of the compressors are the same, the refrigerant amounts (flow rates per unit time) flowing through the refrigerant flow paths are equal.

このような利用側熱交換器31の構成において、入口部を通じてヘッダ32内に流入した水冷媒は、水冷媒流路34を介して分流されて1号機側と2号機側の水冷媒流路に流入(実線矢印)し、熱交換された後、ヘッダ33内に流入する。ヘッダ33内において、水冷媒流路35を介して合流された水冷媒は、出口部を通じて排出される。一方、1号機21と2号機22の冷媒導入管路23からそれぞれ流入した冷媒は、冷媒流路を水冷媒と対向する方向(点線矢印)へ通流し、冷媒排出管路24からそれぞれ排出される。   In such a configuration of the use side heat exchanger 31, the water refrigerant that has flowed into the header 32 through the inlet is diverted through the water refrigerant flow path 34 to the water refrigerant flow paths on the first and second machines. After flowing in (solid arrow) and heat exchange, it flows into the header 33. In the header 33, the water refrigerant merged through the water refrigerant flow path 35 is discharged through the outlet. On the other hand, the refrigerant that has flowed in from the refrigerant introduction pipes 23 of the first machine 21 and the second machine 22 flows through the refrigerant flow path in the direction opposite to the water refrigerant (dotted arrow) and is discharged from the refrigerant discharge pipe 24, respectively. .

本実施形態においても、各号機側の水冷媒流路の出口部の冷水出口温度10,11をそれぞれ検知する必要があるが、これらの検出位置にはサーミスタを取り付けないものとして、各温度を推定する。ここで、各圧縮機1が同一容量で運転、停止を行う場合は、第1の実施形態と同様、図5の制御を用いることにより、T10、11を演算により求めることができる。また、圧縮機1に容量制御機能が搭載される場合は、図6の制御を用いることにより、T10、11を演算により求めることができる。このように、水冷媒を各号機に対応させて並列に分配し、熱交換する構成の利用側熱交換器31においても、第1の実施形態と同様、水冷媒の凍結を防止することができる。   Also in this embodiment, it is necessary to detect the chilled water outlet temperatures 10 and 11 at the outlet portions of the water refrigerant flow paths on each unit side, but each temperature is estimated on the assumption that a thermistor is not attached to these detection positions. To do. Here, when each compressor 1 operates and stops with the same capacity, T10 and 11 can be obtained by calculation using the control of FIG. 5 as in the first embodiment. When the capacity control function is installed in the compressor 1, T10 and 11 can be obtained by calculation using the control of FIG. In this way, in the usage-side heat exchanger 31 configured to distribute the water refrigerant in parallel with each unit and perform heat exchange, the water refrigerant can be prevented from freezing as in the first embodiment. .

以上述べたように、上記の実施形態では、いずれも2個の圧縮機(冷凍回路)を備える冷凍装置について示したが、これに限定されず、さらに多くの冷凍回路を搭載し、これらの利用側熱交換器を並列に接続してなる熱交換器の構成においても、同様に制御することができる。   As described above, in the above-described embodiments, the refrigeration apparatus including two compressors (refrigeration circuits) is shown. However, the present invention is not limited to this, and more refrigeration circuits are mounted and their use. The same control can be performed in the configuration of the heat exchanger in which the side heat exchangers are connected in parallel.

また、上記の実施形態では、各号機側の水冷媒流路を流れる水冷媒流量は、同一であるものとして説明したが、例えば、水冷媒流量が異なる場合でも、各号機側の水冷媒流量比を検出することにより、同様の制御を行うことができる。   In the above embodiment, the flow rate of the water refrigerant flowing through the water refrigerant flow path on each unit side has been described as being the same. For example, even if the water refrigerant flow rate is different, the water refrigerant flow rate ratio on each unit side By detecting this, the same control can be performed.

本発明を適用してなる冷凍装置の第1の実施形態を示す冷凍サイクル系統図である。1 is a refrigeration cycle system diagram illustrating a first embodiment of a refrigeration apparatus to which the present invention is applied. 本発明を適用してなる冷凍装置の第2の実施形態を示す冷凍サイクル系統図である。It is a refrigerating-cycle system | strain diagram which shows 2nd Embodiment of the freezing apparatus formed by applying this invention. 図1の利用側熱交換器の内部構造の概略図である。It is the schematic of the internal structure of the utilization side heat exchanger of FIG. 図2の利用側熱交換器の内部構造の概略図である。It is the schematic of the internal structure of the utilization side heat exchanger of FIG. 容量制御機能を持たない圧縮機を搭載する冷凍回路を複数組み合わせた場合の制御動作を示すフローチャートである。It is a flowchart which shows the control operation at the time of combining several refrigeration circuits carrying the compressor which does not have a capacity | capacitance control function. 圧縮機に容量制御機能を搭載する冷凍回路を2台使用した場合の制御動作を示すフローチャートである。It is a flowchart which shows the control operation at the time of using two refrigeration circuits which mount a capacity | capacitance control function in a compressor.

符号の説明Explanation of symbols

1 圧縮機
2 熱源側熱交換器
3 膨張装置
4 利用側熱交換器
6,7 サーミスタ
8 プレート
12 制御装置
DESCRIPTION OF SYMBOLS 1 Compressor 2 Heat source side heat exchanger 3 Expansion apparatus 4 Use side heat exchanger 6,7 Thermistor 8 Plate 12 Control apparatus

Claims (5)

圧縮機、熱源側熱交換器、膨張装置、利用側熱交換器を順次接続して冷媒を循環させる冷凍回路を複数備え、前記各利用側熱交換器によって熱交換された被冷却媒体を負荷に供給する冷凍装置において、
前記各利用側熱交換器は、複数のプレートを互いに対向配置して前記冷媒が通流する冷媒流路と前記被冷却媒体が通流する被冷却媒体流路とを交互に配置し、すべての前記利用側熱交換器の前記被冷却媒体流路を前記プレートの入り側と出側でそれぞれ連通させてプレート式熱交換器を形成してなり、
前記プレート式熱交換器の前記被冷却媒体の入り側と出側の検出温度と前記各冷凍回路の運転容量とを入力して前記各利用側熱交換器の前記被冷却媒体流路の出側の被冷却媒体温度を演算により推定する温度推定手段を設けたことを特徴とする冷凍装置。
A compressor, a heat source side heat exchanger, an expansion device, and a plurality of refrigeration circuits that sequentially connect the use side heat exchanger to circulate the refrigerant are provided, and the medium to be cooled exchanged by each of the use side heat exchangers is used as a load. In the refrigeration equipment to be supplied,
Each of the use-side heat exchangers has a plurality of plates arranged opposite to each other, and alternately arranges a refrigerant flow path through which the refrigerant flows and a cooled medium flow path through which the cooled medium flows. A plate type heat exchanger is formed by communicating the cooling medium flow path of the utilization side heat exchanger on the entrance side and the exit side of the plate,
The detected temperature of the inlet side and outlet side of the medium to be cooled of the plate heat exchanger and the operating capacity of each refrigeration circuit are input to the outlet side of the cooling medium flow path of each user side heat exchanger. A refrigeration apparatus comprising temperature estimation means for estimating the temperature of the medium to be cooled by calculation.
圧縮機、熱源側熱交換器、膨張装置、利用側熱交換器を順次接続して冷媒を循環させる複数の冷凍回路と、前記各利用側熱交換器によって熱交換された被冷却媒体を負荷に供給する冷凍装置において、
前記各利用側熱交換器は、複数のプレートを互いに対向配置して前記冷媒が通流する冷媒流路と前記被冷却媒体が通流する被冷却媒体流路とを交互に配置し、前記各利用側熱交換器の前記プレートの両端の前記被冷却媒体流路を相互に連通させる一対の共通ヘッダを配置してなるプレート式熱交換器を形成してなり、
前記プレート式熱交換器の前記被冷却媒体の入り側と出側の検出温度と前記各冷凍回路の運転容量とを入力して前記各利用側熱交換器の前記被冷却媒体流路の出側の被冷却媒体温度を演算により推定する温度推定手段を設けたことを特徴とする冷凍装置。
A compressor, a heat source side heat exchanger, an expansion device, a plurality of refrigeration circuits that sequentially connect the use side heat exchanger to circulate the refrigerant, and a medium to be cooled exchanged by each of the use side heat exchangers as a load In the refrigeration equipment to be supplied,
Each of the use-side heat exchangers is configured by alternately arranging a plurality of plates facing each other and a refrigerant flow path through which the refrigerant flows and a cooled medium flow path through which the cooled medium flows, A plate-type heat exchanger is formed by arranging a pair of common headers that allow the cooling medium flow paths at both ends of the plate of the use side heat exchanger to communicate with each other;
The detected temperature of the inlet side and outlet side of the medium to be cooled of the plate heat exchanger and the operating capacity of each refrigeration circuit are input to the outlet side of the cooling medium flow path of each user side heat exchanger. A refrigeration apparatus comprising temperature estimation means for estimating the temperature of the medium to be cooled by calculation.
圧縮機、熱源側熱交換器、膨張装置、利用側熱交換器を順次接続して冷媒を循環させる複数の冷凍回路と、前記各利用側熱交換器によって熱交換された被冷却媒体を負荷に供給する冷凍装置において、
前記各利用側熱交換器は、複数のプレートを互いに対向配置して前記冷媒が通流する冷媒流路と前記被冷却媒体が通流する被冷却媒体流路とを交互に配置し、かつ前記プレートの両端の前記被冷却媒体流路を一対のヘッダにより相互に連通させ、すべての前記利用側熱交換器の各ヘッダを相互に連通させてなるプレート式熱交換器を形成してなり、
前記プレート式熱交換器の前記被冷却媒体の入り側と出側の検出温度と前記各冷凍回路の運転容量とを入力して前記各利用側熱交換器の前記被冷却媒体流路の出側の被冷却媒体温度を演算により推定する温度推定手段を設けたことを特徴とする冷凍装置。
A compressor, a heat source side heat exchanger, an expansion device, a plurality of refrigeration circuits that sequentially connect the use side heat exchanger to circulate the refrigerant, and a medium to be cooled exchanged by each of the use side heat exchangers as a load In the refrigeration equipment to be supplied,
Each usage-side heat exchanger has a plurality of plates arranged opposite to each other, alternately arranged refrigerant flow paths through which the refrigerant flows and cooled medium flow paths through which the cooled medium flows, and The cooling medium flow path at both ends of the plate is communicated with each other by a pair of headers, and a plate heat exchanger is formed in which the headers of all the use side heat exchangers are communicated with each other.
The detected temperature of the inlet side and outlet side of the medium to be cooled of the plate heat exchanger and the operating capacity of each refrigeration circuit are input to the outlet side of the cooling medium flow path of each user side heat exchanger. A refrigeration apparatus comprising temperature estimation means for estimating the temperature of the medium to be cooled by calculation.
前記温度推定手段は、前記被冷却媒体温度の推定値が設定温度以下の場合、前記推定値に基づいて前記冷凍回路の運転容量を変化させる制御手段を有することを特徴とする請求項1乃至3のいずれかに記載の冷凍装置。 The said temperature estimation means has a control means to change the operation capacity of the said refrigerating circuit based on the said estimated value, when the estimated value of the said to-be-cooled medium temperature is below setting temperature, The Claim 1 thru | or 3 characterized by the above-mentioned. The refrigeration apparatus according to any one of the above. 前記温度推定手段は、前記被冷却媒体温度の推定値が設定温度以下の場合、前記冷凍回路の運転を停止する制御手段を有することを特徴とする請求項1乃至3のいずれかに記載の冷凍装置。
The refrigeration according to any one of claims 1 to 3, wherein the temperature estimation means includes control means for stopping the operation of the refrigeration circuit when the estimated value of the temperature of the cooling medium is equal to or lower than a set temperature. apparatus.
JP2006004336A 2006-01-12 2006-01-12 Freezer Pending JP2007187353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006004336A JP2007187353A (en) 2006-01-12 2006-01-12 Freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006004336A JP2007187353A (en) 2006-01-12 2006-01-12 Freezer

Publications (1)

Publication Number Publication Date
JP2007187353A true JP2007187353A (en) 2007-07-26

Family

ID=38342640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006004336A Pending JP2007187353A (en) 2006-01-12 2006-01-12 Freezer

Country Status (1)

Country Link
JP (1) JP2007187353A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079788A (en) * 2007-09-25 2009-04-16 Sanden Corp Refrigerating device
JP2011058663A (en) * 2009-09-08 2011-03-24 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2012093086A (en) * 2012-02-13 2012-05-17 Sanden Corp Refrigerating device
JP2013231590A (en) * 2009-07-28 2013-11-14 Toshiba Carrier Corp Heat source unit
JP2014074583A (en) * 2014-01-28 2014-04-24 Mitsubishi Electric Corp Refrigeration air conditioner
JP2016011773A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Immersed type liquid cooling device
JP2016130597A (en) * 2015-01-13 2016-07-21 東芝キヤリア株式会社 Plate type heat exchanger and refrigerating-cycle device
JP2017053542A (en) * 2015-09-09 2017-03-16 株式会社富士通ゼネラル Heat exchanger
WO2019171486A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Heat source device and refrigeration cycle system

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291167U (en) * 1985-11-29 1987-06-11
JPH04350468A (en) * 1991-04-23 1992-12-04 Asahi Breweries Ltd Liquid cooler
JPH0875275A (en) * 1994-09-01 1996-03-19 Ebara Corp Method for controlling operation of refrigerator provided with a plurality of compressors
JPH09287851A (en) * 1996-04-24 1997-11-04 Mitsubishi Electric Corp Cooling device
JPH10132400A (en) * 1996-10-24 1998-05-22 Mitsubishi Heavy Ind Ltd Parallel type freezer
JPH10197131A (en) * 1996-12-27 1998-07-31 Daikin Ind Ltd Freezer device
JPH1130449A (en) * 1997-07-09 1999-02-02 Daikin Ind Ltd Refrigerating device
JPH1194301A (en) * 1997-09-26 1999-04-09 Daikin Ind Ltd Refrigerator
JP2000121175A (en) * 1998-10-15 2000-04-28 Hitachi Ltd Chiller
JP2002267289A (en) * 2001-03-09 2002-09-18 Sanyo Electric Co Ltd Plate heat exchanger
JP2002310442A (en) * 2001-04-10 2002-10-23 Sekisui Chem Co Ltd Floor heating system
JP2003287291A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Refrigerating unit
JP2005337688A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Refrigeration device
JP2006200814A (en) * 2005-01-20 2006-08-03 Daikin Ind Ltd Freezer

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6291167U (en) * 1985-11-29 1987-06-11
JPH04350468A (en) * 1991-04-23 1992-12-04 Asahi Breweries Ltd Liquid cooler
JPH0875275A (en) * 1994-09-01 1996-03-19 Ebara Corp Method for controlling operation of refrigerator provided with a plurality of compressors
JPH09287851A (en) * 1996-04-24 1997-11-04 Mitsubishi Electric Corp Cooling device
JPH10132400A (en) * 1996-10-24 1998-05-22 Mitsubishi Heavy Ind Ltd Parallel type freezer
JPH10197131A (en) * 1996-12-27 1998-07-31 Daikin Ind Ltd Freezer device
JPH1130449A (en) * 1997-07-09 1999-02-02 Daikin Ind Ltd Refrigerating device
JPH1194301A (en) * 1997-09-26 1999-04-09 Daikin Ind Ltd Refrigerator
JP2000121175A (en) * 1998-10-15 2000-04-28 Hitachi Ltd Chiller
JP2002267289A (en) * 2001-03-09 2002-09-18 Sanyo Electric Co Ltd Plate heat exchanger
JP2002310442A (en) * 2001-04-10 2002-10-23 Sekisui Chem Co Ltd Floor heating system
JP2003287291A (en) * 2002-03-27 2003-10-10 Mitsubishi Electric Corp Refrigerating unit
JP2005337688A (en) * 2004-05-31 2005-12-08 Hitachi Ltd Refrigeration device
JP2006200814A (en) * 2005-01-20 2006-08-03 Daikin Ind Ltd Freezer

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009079788A (en) * 2007-09-25 2009-04-16 Sanden Corp Refrigerating device
JP2017129357A (en) * 2009-07-28 2017-07-27 東芝キヤリア株式会社 Heat source unit
JP2013231590A (en) * 2009-07-28 2013-11-14 Toshiba Carrier Corp Heat source unit
JP2015129632A (en) * 2009-07-28 2015-07-16 東芝キヤリア株式会社 heat source unit
US9127867B2 (en) 2009-07-28 2015-09-08 Toshiba Carrier Corporation Heat source unit
JP7247148B2 (en) 2009-07-28 2023-03-28 東芝キヤリア株式会社 heat source unit
JP2020180780A (en) * 2009-07-28 2020-11-05 東芝キヤリア株式会社 Heat source unit
JP2018185142A (en) * 2009-07-28 2018-11-22 東芝キヤリア株式会社 Heat source unit
US10072883B2 (en) 2009-07-28 2018-09-11 Toshiba Carrier Corporation Heat source unit
JP2011058663A (en) * 2009-09-08 2011-03-24 Mitsubishi Electric Corp Refrigerating air-conditioning device
JP2012093086A (en) * 2012-02-13 2012-05-17 Sanden Corp Refrigerating device
JP2014074583A (en) * 2014-01-28 2014-04-24 Mitsubishi Electric Corp Refrigeration air conditioner
JP2016011773A (en) * 2014-06-27 2016-01-21 ダイキン工業株式会社 Immersed type liquid cooling device
JP2016130597A (en) * 2015-01-13 2016-07-21 東芝キヤリア株式会社 Plate type heat exchanger and refrigerating-cycle device
WO2017043285A1 (en) * 2015-09-09 2017-03-16 株式会社富士通ゼネラル Heat exchanger
US10107576B2 (en) 2015-09-09 2018-10-23 Fujitsu General Limited Heat exchanger
JP2017053542A (en) * 2015-09-09 2017-03-16 株式会社富士通ゼネラル Heat exchanger
WO2019171486A1 (en) * 2018-03-07 2019-09-12 三菱電機株式会社 Heat source device and refrigeration cycle system
US11408656B2 (en) 2018-03-07 2022-08-09 Mitsubishi Electric Corporation Heat source device and refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP2007187353A (en) Freezer
EP1662212A2 (en) Air conditioning system and method for controlling the same
AU2005268223B2 (en) Refrigerating apparatus
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
JP5501179B2 (en) Medium temperature source system with free cooling
US6722156B2 (en) Refrigeration system
WO2013160929A1 (en) Refrigeration cycle system
JP2007298221A (en) Air conditioner
EP3228951B1 (en) Refrigeration cycle apparatus
JP2007240108A (en) Air conditioner
JP2011208928A (en) Air conditioner
JP2006336947A (en) Refrigerating cycle device
JP2005077084A (en) Air-conditioner, and control method therefor
EP1643196B1 (en) Air conditioner
JP2006071174A (en) Refrigerating device
KR100641774B1 (en) Air conditioner
EP1643195A2 (en) Multi-unit air conditioner and method for controlling the same
JP2009079863A (en) Refrigeration device
JP5627564B2 (en) Refrigeration cycle system
JP5496161B2 (en) Refrigeration cycle system
US7299648B2 (en) Refrigeration system of air conditioning apparatuses with bypass line between inlet and outlet of compressor
WO2017170356A1 (en) Multistage compression device, refrigeration cycle comprising same, and operation method for multistage compression device
CN113646598A (en) Condenser arrangement for a cooler
MXPA06004560A (en) Multiple refrigerant circuits with single economizer heat exchanger.
JP2011127785A (en) Refrigerating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080123

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080619

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080826

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110816

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120403