JP2006336947A - Refrigerating cycle device - Google Patents

Refrigerating cycle device Download PDF

Info

Publication number
JP2006336947A
JP2006336947A JP2005162671A JP2005162671A JP2006336947A JP 2006336947 A JP2006336947 A JP 2006336947A JP 2005162671 A JP2005162671 A JP 2005162671A JP 2005162671 A JP2005162671 A JP 2005162671A JP 2006336947 A JP2006336947 A JP 2006336947A
Authority
JP
Japan
Prior art keywords
evaporator
refrigerant
control valve
flow rate
refrigerant temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005162671A
Other languages
Japanese (ja)
Inventor
Yuichi Kusumaru
雄一 藥丸
Akira Komori
晃 小森
Masaya Honma
雅也 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2005162671A priority Critical patent/JP2006336947A/en
Publication of JP2006336947A publication Critical patent/JP2006336947A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To unify refrigerant diffluence of an evaporator by accurately detecting nonuniformity of the refrigerant at each flow channel outlet of the evaporator. <P>SOLUTION: This refrigerating cycle device is constituted by mounting a first flow rate control valve 105 for controlling the quantity of refrigerant flowing in a first evaporator, a second flow rate control valve 106 for controlling the quantity of refrigerant flowing in a second evaporator, a first refrigerant temperature detecting means 107 for detecting a refrigerant temperature of a first evaporator outlet, a second refrigerant temperature detecting means 108 for detecting a refrigerant temperature of a second evaporator outlet, and a control means 109 for controlling a throttle 103, the first flow rate control valve and the second flow rate control valve on the basis of the first refrigerant temperature and the second refrigerant temperature, in a refrigerating cycle circuit formed by successively connecting a compressor 101, a radiator 102, the throttle 103, and the first evaporator 104a and the second evaporator 104b in parallel with each other, the refrigerant diffluence can be surely unified by reducing an opening of the throttle 103 by the control means 109. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、給湯機や空気調和機などの冷凍サイクル装置に関し、流量制御弁の開度を調整することにより、熱交換器の冷媒分流を改善する構成とその制御方法に関する。   The present invention relates to a refrigeration cycle apparatus such as a water heater or an air conditioner, and relates to a configuration for improving refrigerant branching of a heat exchanger by adjusting an opening degree of a flow control valve and a control method therefor.

従来の冷凍サイクル装置において、熱交換器に流入した冷媒は熱交換した後、冷媒出口から出ていくものであるが、冷媒入口から複数に分岐された熱交換器の場合、熱交換器自体の温度と冷媒出口の温度差(偏差)が大きいほど、冷媒出口の冷媒乾き度が大きく、すなわち冷媒流量が不足しており、小さいほど、冷媒流量は十分足りていると考えられる。
したがって、熱交換器の温度とそれぞれの冷媒出口温度との各偏差が相違する場合には、冷媒の分流に偏りが生じている。このような冷媒分流の偏りが生じると、冷房運転時における熱交換器の凍結や暖房運転時における高負荷運転が生じ、運転効率が低下するという課題があった。
このような課題を解決するための冷凍サイクル装置として、図10の従来技術の冷凍サイクル装置を示す構成図のように、圧縮機22と、四方切換弁23と、熱源側熱交換器24と、電動膨張弁25と、利用側熱交換器の第1の熱交換器3及び第2の熱交換器4と、アキュームレータ28とを冷媒管路で順次接続して冷媒回路を構成している空気調和機が提案されている(特許文献1参照)。
この冷凍サイクル装置は、冷媒回路に対して相互に並列接続された第1及び第2の熱交換器3,4と、各熱交換器への冷媒供給をそれぞれ制御する第1及び第2の弁装置としての第1及び第2の分流用電動弁26,27を備えて構成されるものであって、各熱交換器の温度をそれぞれ検出する第1及び第2の熱交温度センサ36,37と、各熱交換器の冷媒出口の温度を検出する出口温度センサ38,39と、各弁装置の開度を制御する制御装置とを備え、この制御装置は、第1の熱交温度センサが検出する温度と第1の出口温度センサが検出する温度の偏差、及び、第2の熱交温度センサが検出する温度と第2の出口温度センサが検出する温度の偏差を監視して各弁装置の開度を決定するものである。
この構成によれば、例えば偏差が大きい方の熱交換器は弁装置の開度を大きくして当該熱交換器への冷媒流量を増やし、及び/又は、偏差が小さい方の熱交換器は弁装置の開度を小さくして当該熱交換器への冷媒流量を減らすことにより、各熱交換器の冷媒流量の均一化を実現することが可能となる。
特開2001−65950号公報(図9)
In the conventional refrigeration cycle apparatus, the refrigerant that has flowed into the heat exchanger exchanges heat and then exits from the refrigerant outlet. However, in the case of a heat exchanger branched into a plurality from the refrigerant inlet, the heat exchanger itself It is considered that the larger the temperature difference (deviation) between the temperature and the refrigerant outlet, the larger the refrigerant dryness at the refrigerant outlet, that is, the refrigerant flow rate is insufficient, and the smaller the refrigerant flow rate, the more sufficient the refrigerant flow rate.
Therefore, when the deviations between the temperature of the heat exchanger and the respective refrigerant outlet temperatures are different, the refrigerant diversion is biased. When such a deviation in refrigerant distribution occurs, there has been a problem that the heat exchanger freezes during cooling operation or high-load operation occurs during heating operation, resulting in a reduction in operating efficiency.
As a refrigeration cycle apparatus for solving such a problem, as shown in the block diagram of the prior art refrigeration cycle apparatus in FIG. 10, a compressor 22, a four-way switching valve 23, a heat source side heat exchanger 24, An air conditioner in which the electric expansion valve 25, the first heat exchanger 3 and the second heat exchanger 4 of the use side heat exchanger, and the accumulator 28 are sequentially connected by a refrigerant pipe to constitute a refrigerant circuit. A machine has been proposed (see Patent Document 1).
The refrigeration cycle apparatus includes first and second heat exchangers 3 and 4 connected in parallel to a refrigerant circuit, and first and second valves for controlling supply of refrigerant to each heat exchanger, respectively. The first and second heat exchange temperature sensors 36 and 37 are configured to include first and second diversion motor-operated valves 26 and 27 as devices, and detect the temperature of each heat exchanger, respectively. And outlet temperature sensors 38 and 39 for detecting the temperature of the refrigerant outlet of each heat exchanger, and a control device for controlling the opening degree of each valve device. This control device includes a first heat exchange temperature sensor. Each valve device monitors the deviation between the temperature detected and the temperature detected by the first outlet temperature sensor, and the difference between the temperature detected by the second heat exchange temperature sensor and the temperature detected by the second outlet temperature sensor. Is determined.
According to this configuration, for example, the heat exchanger with a larger deviation increases the flow rate of the refrigerant to the heat exchanger by increasing the opening of the valve device, and / or the heat exchanger with a smaller deviation is a valve. By reducing the opening of the apparatus and reducing the flow rate of refrigerant to the heat exchanger, it is possible to achieve a uniform flow rate of refrigerant in each heat exchanger.
JP 2001-65950 A (FIG. 9)

しかしながら熱交換器の冷媒流路のどちらかが湿り状態の場合、その偏差を比較しただけではどの程度冷媒分流が不均一であるかを判断することができないという課題がある。例えば、冷媒流路AとBの偏差がそれぞれ2deg、3degであったとして、わずか1degの不均一と判断して弁開度を微量に制御したとしても、冷媒流路Aが湿り状態に入っている場合は、少なくとも1deg以上の差があることになり、速やかな冷媒分流の均一化を行うことができない。   However, when one of the refrigerant flow paths of the heat exchanger is in a wet state, there is a problem that it is not possible to determine how much the refrigerant distribution is non-uniform simply by comparing the deviations. For example, assuming that the deviations of the refrigerant flow paths A and B are 2 deg and 3 deg, respectively, even if it is determined that the deviation is only 1 deg and the valve opening is controlled to a small amount, the refrigerant flow path A enters the wet state. If it is, there will be at least a difference of 1 deg or more, and it will not be possible to quickly make uniform the refrigerant distribution.

そこで、本発明は、蒸発器の各流路出口の冷媒を確実に乾き状態とし、不均一性を的確に検出することで、より確実に蒸発器の冷媒分流を均一化することを目的としている。   In view of this, the present invention aims to make the refrigerant distribution in the evaporator more uniform by reliably making the refrigerant at the outlet of each flow path of the evaporator dry and detecting the non-uniformity accurately. .

第1の発明に係る冷凍サイクル装置は、圧縮機と、放熱器と、絞り装置と、並列の第1の蒸発器及び第2の蒸発器を順次に接続した冷凍サイクル装置であって、第1の蒸発器に流す冷媒量を制御する第1の流量制御弁と、第2の蒸発器に流す冷媒量を制御する第2の流量制御弁と、第1の蒸発器出口の冷媒温度を検出する第1の冷媒温度検出手段と、第2の蒸発器出口の冷媒温度を検出する第2の冷媒温度検出手段と、第1の冷媒温度及び第2の冷媒温度を用いて絞り装置、第1の流量制御弁及び第2の流量制御弁を制御する制御手段とを設け、制御手段で、絞り装置の開度を小さくして第1の蒸発器及び第2の蒸発器の各流路出口の冷媒を乾き状態とし、第1の流量制御弁及び第2の流量制御弁の各開度を制御して第1の蒸発器及び第2の蒸発器の冷媒分流を均一化するものである。
第1の発明によれば、絞り装置の開度を小さくすることによって蒸発器の各流路出口の冷媒を確実に乾き状態とし、第1の冷媒温度と第2の冷媒温度の差を検出することで、より確実に冷媒分流を均一化することができる。
第2の発明に係る冷凍サイクル装置は、第1の発明に係る冷凍サイクル装置において、制御手段で、圧縮機の起動時に絞り装置の開度を小さくするものである。
上記第2の発明によれば、最も冷媒乾き度が確保されやすい状態で第1の冷媒温度と第2の冷媒温度の差を検出することができるので、より短時間で冷媒分流の均一化を図ることができる。
第3の発明に係る冷凍サイクル装置は、圧縮機と、放熱器と、絞り装置と、並列の第1の蒸発器及び第2の蒸発器を順次に接続した冷凍サイクル装置であって、第1の蒸発器に流す冷媒量を制御する第1の流量制御弁と、第2の蒸発器に流す冷媒量を制御する第2の流量制御弁と、第1の蒸発器出口の冷媒温度を検出する第1の冷媒温度検出手段と、第2の蒸発器出口の冷媒温度を検出する第2の冷媒温度検出手段と、圧縮機の運転周波数を制御する運転周波数制御手段と、第1の冷媒温度及び第2の冷媒温度を用いて運転周波数制御手段、第1の流量制御弁及び第2の流量制御弁を制御する制御手段とを設け、制御手段で、運転周波数制御手段を介して運転周波数を大きくして第1の蒸発器及び第2の蒸発器の各流路出口の冷媒を乾き状態とし、第1の流量制御弁及び第2の流量制御弁の各開度を制御して第1の蒸発器及び第2の蒸発器の冷媒分流を均一化するものである。
上記第3の発明によれば、冷媒流量をより迅速に増加させることができるため冷媒乾き度が確保されやすく、より短時間で冷媒分流の均一化を図り、通常運転に復帰することができるので省エネルギー化を図ることができる。
第4の発明に係る冷凍サイクル装置は、圧縮機と、放熱器と、絞り装置と、並列の第1の蒸発器及び第2の蒸発器を順次に接続した冷凍サイクル装置であって、第1の蒸発器への冷媒流量を制御する第1の流量制御弁と、第2の蒸発器への冷媒流量を制御する第2の流量制御弁と、第1の蒸発器出口の冷媒温度を検出する第1の冷媒温度検出手段と、第2の蒸発器出口の冷媒温度を検出する第2の冷媒温度検出手段と、第1の蒸発器及び第2の蒸発器へのファン風量を制御するファン風量制御手段と、第1の冷媒温度及び第2の冷媒温度を用いてファン風量制御手段、第1の流量制御弁及び第2の流量制御弁の開度を制御する制御手段とを設け、制御手段で、ファン風量制御手段を介してファン風量を大きくして第1の蒸発器及び第2の蒸発器の各流路出口の冷媒を乾き状態とし、第1の流量制御弁及び第2の流量制御弁の各開度を制御して第1の蒸発器及び第2の蒸発器の冷媒分流を均一化するものである。
上記第4の発明によれば、蒸発器のみの熱交換量を増大させて冷媒乾き度を確保しつつ、放熱器での熱交換量の変動を極力小さくすることができるので、より冷凍サイクルの変動を抑えつつ、短時間で冷媒分流の均一化を図ることができる。
第5の発明に係る冷凍サイクル装置は、圧縮機と、放熱器と、絞り装置と、並列の第1の蒸発器及び第2の蒸発器を順次に接続した冷凍サイクル装置であって、第3の流量制御弁と冷媒貯留器と第4の流量調整弁を介して放熱器出口と絞り装置出口とを接続して絞り装置をバイパスするバイパス回路を備え、第1の蒸発器に流す冷媒量を制御する第1の流量制御弁と、第2の蒸発器に流す冷媒量を制御する第2の流量制御弁と、第1の蒸発器出口の冷媒温度を検出する第1の冷媒温度検出手段と、第2の蒸発器出口の冷媒温度を検出する第2の冷媒温度検出手段と、第1の冷媒温度及び第2の冷媒温度を用いて第1の流量制御弁、第2の流量制御弁、第3の流量制御弁及び第4の流量制御弁を制御する制御手段とを設け、制御手段で、第3の流量制御弁の開度を大きくし第4の流量制御弁の開度を小さくして第1の蒸発器及び第2の蒸発器の各流路出口の冷媒を乾き状態とし、第1の流量制御弁及び第2の流量制御弁の各開度を制御して第1の蒸発器及び第2の蒸発器の冷媒分流を均一化するものである。
上記第5の発明によれば、冷媒貯溜器の冷媒圧力を上昇させることによって、冷媒貯留器内にホールドされる冷媒量を増大させ、蒸発器の冷媒乾き度をより確実に確保し、短時間で冷媒分流の均一化を図ることができる。
A refrigeration cycle apparatus according to a first aspect of the present invention is a refrigeration cycle apparatus in which a compressor, a radiator, a throttling device, and a first evaporator and a second evaporator in parallel are connected in order, A first flow rate control valve that controls the amount of refrigerant that flows to the evaporator, a second flow rate control valve that controls the amount of refrigerant that flows to the second evaporator, and a refrigerant temperature at the outlet of the first evaporator. A first refrigerant temperature detecting means; a second refrigerant temperature detecting means for detecting a refrigerant temperature at the outlet of the second evaporator; a throttling device using the first refrigerant temperature and the second refrigerant temperature; And a control means for controlling the flow rate control valve and the second flow rate control valve, and the control means reduces the opening of the expansion device to reduce the refrigerant at the outlet of each flow path of the first evaporator and the second evaporator. The first evaporator and the second evaporator by controlling the opening degree of the first flow control valve and the second flow control valve. It is intended to equalize the refrigerant flow of Hatsuki.
According to the first aspect of the invention, the refrigerant at the outlet of each flow path of the evaporator is surely dried by reducing the opening of the expansion device, and the difference between the first refrigerant temperature and the second refrigerant temperature is detected. As a result, the refrigerant distribution can be made more uniform.
A refrigeration cycle apparatus according to a second invention is the refrigeration cycle apparatus according to the first invention, wherein the opening of the expansion device is reduced by the control means when the compressor is started.
According to the second aspect of the present invention, the difference between the first refrigerant temperature and the second refrigerant temperature can be detected in a state where the refrigerant dryness is most easily secured, so that the refrigerant distribution can be made uniform in a shorter time. Can be planned.
A refrigeration cycle apparatus according to a third aspect of the present invention is a refrigeration cycle apparatus in which a compressor, a radiator, a throttling device, and a parallel first and second evaporators are sequentially connected, A first flow rate control valve that controls the amount of refrigerant that flows to the evaporator, a second flow rate control valve that controls the amount of refrigerant that flows to the second evaporator, and a refrigerant temperature at the outlet of the first evaporator. First refrigerant temperature detecting means, second refrigerant temperature detecting means for detecting refrigerant temperature at the outlet of the second evaporator, operating frequency control means for controlling the operating frequency of the compressor, first refrigerant temperature, An operation frequency control means, a first flow rate control valve, and a control means for controlling the second flow rate control valve are provided using the second refrigerant temperature, and the operation frequency is increased by the control means via the operation frequency control means. Then, the refrigerant at each channel outlet of the first evaporator and the second evaporator is dried. And it is intended to equalize the refrigerant flow of the first evaporator and the second evaporator by controlling the opening degree of the first flow control valve and the second flow control valve.
According to the third aspect of the invention, since the refrigerant flow rate can be increased more quickly, the dryness of the refrigerant is easily ensured, the refrigerant distribution can be made uniform in a shorter time, and the normal operation can be resumed. Energy saving can be achieved.
A refrigeration cycle apparatus according to a fourth aspect of the present invention is a refrigeration cycle apparatus in which a compressor, a radiator, a throttling device, and a parallel first and second evaporators are connected in order, A first flow control valve for controlling the flow rate of refrigerant to the evaporator, a second flow control valve for controlling the flow rate of refrigerant to the second evaporator, and a refrigerant temperature at the outlet of the first evaporator. First refrigerant temperature detection means, second refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the second evaporator, and fan air volume for controlling the fan air volume to the first evaporator and the second evaporator A control means, and a control means for controlling the opening of the fan air volume control means, the first flow rate control valve and the second flow rate control valve using the first refrigerant temperature and the second refrigerant temperature; Then, the fan air volume is increased via the fan air volume control means to increase the first evaporator and the second evaporator. The refrigerant at the outlet of each of the channels is dried, and the opening amounts of the first flow rate control valve and the second flow rate control valve are controlled to equalize the refrigerant flow in the first evaporator and the second evaporator. To do.
According to the fourth aspect of the invention, since the heat exchange amount of only the evaporator is increased to ensure the dryness of the refrigerant and the fluctuation of the heat exchange amount in the radiator can be minimized, It is possible to make the refrigerant distribution uniform in a short time while suppressing fluctuations.
A refrigeration cycle apparatus according to a fifth aspect of the present invention is a refrigeration cycle apparatus in which a compressor, a radiator, a throttling device, and a parallel first and second evaporators are sequentially connected, A bypass circuit that connects the radiator outlet and the throttle device outlet via the flow rate control valve, the refrigerant reservoir, and the fourth flow rate adjustment valve to bypass the throttle device, and the amount of refrigerant flowing to the first evaporator is A first flow control valve for controlling, a second flow control valve for controlling the amount of refrigerant flowing to the second evaporator, and a first refrigerant temperature detecting means for detecting the refrigerant temperature at the outlet of the first evaporator. A second refrigerant temperature detecting means for detecting a refrigerant temperature at the outlet of the second evaporator, a first flow rate control valve, a second flow rate control valve using the first refrigerant temperature and the second refrigerant temperature, And a control means for controlling the third flow rate control valve and the fourth flow rate control valve. The opening of the flow control valve is increased and the opening of the fourth flow control valve is decreased so that the refrigerant at the outlet of each flow path of the first evaporator and the second evaporator is in a dry state. The respective openings of the valve and the second flow rate control valve are controlled to equalize the refrigerant flow in the first evaporator and the second evaporator.
According to the fifth aspect, by increasing the refrigerant pressure of the refrigerant reservoir, the amount of refrigerant held in the refrigerant reservoir is increased, the refrigerant dryness of the evaporator is more reliably ensured, and the time Thus, it is possible to make the refrigerant distribution uniform.

本発明の冷凍サイクル装置によれば、絞り装置の開度を小さくすることによって蒸発器の各流路出口の冷媒を確実に乾き状態とし、第1の冷媒温度と第2の冷媒温度の差などから不均一性を正しく検出して第1の流量制御弁及び第2の流量制御弁を制御することで、より確実に蒸発器の冷媒分流を均一化することができる。   According to the refrigeration cycle apparatus of the present invention, by reducing the opening of the expansion device, the refrigerant at the outlet of each flow path of the evaporator is surely dried, and the difference between the first refrigerant temperature and the second refrigerant temperature, etc. By detecting the non-uniformity correctly and controlling the first flow rate control valve and the second flow rate control valve, it is possible to make the refrigerant flow in the evaporator more uniform.

(実施の形態1)
以下、本発明の冷凍サイクル装置の実施例について、図面を参照しながら説明する。
図1は、本発明による実施の形態1の冷凍サイクル装置を示す構成図であり、図2は、本実施の形態1の冷凍サイクル装置の制御フローチャートである。
本実施の形態の冷凍サイクル装置では、例えばフロンまたは二酸化炭素等の冷媒を作動流体とし、冷媒を昇圧する圧縮機101と、この圧縮機101で昇圧された冷媒を冷却する放熱器102と、この放熱器102よりも冷媒下流側に配置されて冷却された冷媒を減圧膨張する絞り装置103と、この絞り装置103で減圧された冷媒を加熱する蒸発器104とを順次配管接続して、冷凍サイクル回路が構成されている。
また、蒸発器104は、冷凍サイクル回路に対して相互に並列接続された第1の蒸発器104aと第2の蒸発器104bとから構成される。そして、蒸発器104を流れる冷媒は、第1の蒸発器入口配管111と第1の蒸発器104aと第1の蒸発器出口配管113とから成る第1の流路と、第2の蒸発器入口配管112と第2の蒸発器104bと第2の蒸発器出口配管114とから成る第2の流路とに分かれる。
また、第1の蒸発器入口配管111に設けられて第1の蒸発器104aに流す冷媒量を制御する第1の流量制御弁105と、第2の蒸発器入口配管112に設けられて第2の蒸発器104bに流す冷媒量を制御する第2の流量制御弁106と、第1の蒸発器出口配管113に設けられて第1の蒸発器104a出口の冷媒温度を検出する第1の冷媒温度検出手段107と、第2の蒸発器出口配管114に設けられて第2の蒸発器104b出口の冷媒温度を検出する第2の冷媒温度検出手段108と、制御手段109とを備えている。
そして、この制御手段109により、絞り装置103の開度が制御できるとともに、第1の冷媒温度検出手段107によって検出された第1の冷媒温度と、第2の冷媒温度検出手段108によって検出された第2の冷媒温度と、それらの差などに応じて、第1の流量制御弁105と第2の流量制御弁106の各開度が制御できるように構成されている。
(Embodiment 1)
Hereinafter, embodiments of the refrigeration cycle apparatus of the present invention will be described with reference to the drawings.
FIG. 1 is a configuration diagram illustrating a refrigeration cycle apparatus according to a first embodiment of the present invention, and FIG. 2 is a control flowchart of the refrigeration cycle apparatus according to the first embodiment.
In the refrigeration cycle apparatus of the present embodiment, for example, a refrigerant such as chlorofluorocarbon or carbon dioxide is used as a working fluid, the compressor 101 boosts the refrigerant, the radiator 102 cools the refrigerant boosted by the compressor 101, A refrigeration cycle is made by sequentially connecting a throttle device 103 disposed at a downstream side of the refrigerant from the radiator 102 and decompressing and expanding the cooled refrigerant and an evaporator 104 for heating the refrigerant decompressed by the throttling device 103. A circuit is configured.
Moreover, the evaporator 104 is comprised from the 1st evaporator 104a and the 2nd evaporator 104b mutually connected in parallel with respect to the refrigerating cycle circuit. The refrigerant flowing through the evaporator 104 includes a first flow path composed of the first evaporator inlet pipe 111, the first evaporator 104a, and the first evaporator outlet pipe 113, and the second evaporator inlet. It is divided into a second flow path comprising a pipe 112, a second evaporator 104b, and a second evaporator outlet pipe 114.
Also, a first flow rate control valve 105 that is provided in the first evaporator inlet pipe 111 and controls the amount of refrigerant flowing to the first evaporator 104a, and a second evaporator inlet pipe 112 that is provided in the second evaporator. The first flow rate control valve 106 that controls the amount of refrigerant flowing to the evaporator 104b and the first refrigerant temperature that is provided in the first evaporator outlet pipe 113 and detects the refrigerant temperature at the outlet of the first evaporator 104a The detection means 107, the 2nd refrigerant | coolant temperature detection means 108 which is provided in the 2nd evaporator exit piping 114, and detects the refrigerant | coolant temperature of the 2nd evaporator 104b exit are provided, and the control means 109 is provided.
The opening of the expansion device 103 can be controlled by the control means 109, and the first refrigerant temperature detected by the first refrigerant temperature detecting means 107 and the second refrigerant temperature detecting means 108 are detected. Each opening degree of the first flow rate control valve 105 and the second flow rate control valve 106 can be controlled in accordance with the second refrigerant temperature and the difference between them.

以上のように構成された、冷凍サイクル装置について、以下その動作を説明する。
圧縮機101で吐出された冷媒は、放熱器102に入り、ここで放熱して冷却される。その後、絞り装置103に導かれ、蒸発圧力まで減圧されて低温低圧の湿り蒸気となり、蒸発器104において、吸熱してガス状となり圧縮機101へ戻される。
The operation of the refrigeration cycle apparatus configured as described above will be described below.
The refrigerant discharged from the compressor 101 enters the radiator 102 where it dissipates heat and is cooled. After that, it is guided to the expansion device 103 and is reduced to the evaporation pressure to become low-temperature and low-pressure wet steam. In the evaporator 104, it absorbs heat and becomes gaseous, and is returned to the compressor 101.

本実施の形態の動作を、図2のフローチャートを用いて説明する。
運転が開始されると、ステップ201で絞り装置103の開度を小さくするように制御し、ステップ202に移る。ステップ202では、第1の冷媒温度検出手段107によって検出された第1の冷媒温度T1と、第2の冷媒温度検出手段108によって検出された第2の冷媒温度T2とがそれぞれ設定値TXと比較される。
そして、T1またはT2がTXよりも小さい場合は、冷媒乾き度が確実に確保されていない状態であることを示しており、ステップ201に戻る。また、T1およびT2がTXよりも大きい場合は、各流路出口とも確実に冷媒乾き度が確保されていると判断され、ステップ203に移る。ステップ203では、第1の冷媒温度検出手段107によって検出された第1の冷媒温度T1と、第2の冷媒温度検出手段108によって検出された第2の冷媒温度T2が比較される。
そして、T1がT2より大きい場合には、第1の蒸発器出口配管113を流れる冷媒流量が第2の蒸発器出口配管114を流れる冷媒流量よりも小さいことを示しており、ステップ204に移り、第1の流量調整弁105の開度X1は大きくするように、第2の流量調整弁106の開度X2は小さくするように制御して、ステップ206に移る。
また、T1がT2より小さい場合には、第1の蒸発器出口配管113を流れる冷媒流量が第2の蒸発器出口配管114を流れる冷媒流量よりも大きいことを示しており、ステップ205に移り、第1の流量調整弁105の開度X1は小さくするように、第2の流量調整弁106の開度X2は大きくするように制御して、ステップ206に移る。
次に、ステップ206で、T1とT2が比較され、T1=T2の場合はステップ207に移り、ステップ207で絞り装置103の開度を通常運転の開度Xmに戻してステップ202に戻る。また、T1≠T2の場合には、ステップ203に戻り、T1とT2が比較される。
The operation of this embodiment will be described with reference to the flowchart of FIG.
When the operation is started, control is performed to reduce the opening of the expansion device 103 in step 201, and the process proceeds to step 202. In step 202, the first refrigerant temperature T1 detected by the first refrigerant temperature detection means 107 and the second refrigerant temperature T2 detected by the second refrigerant temperature detection means 108 are respectively compared with the set value TX. Is done.
And when T1 or T2 is smaller than TX, it has shown that it is the state in which the dryness of a refrigerant | coolant is not ensured reliably, and returns to step 201. FIG. If T1 and T2 are larger than TX, it is determined that the refrigerant dryness is surely ensured at each channel outlet, and the routine proceeds to step 203. In step 203, the first refrigerant temperature T1 detected by the first refrigerant temperature detection means 107 and the second refrigerant temperature T2 detected by the second refrigerant temperature detection means 108 are compared.
If T1 is greater than T2, the refrigerant flow rate flowing through the first evaporator outlet pipe 113 is smaller than the refrigerant flow rate flowing through the second evaporator outlet pipe 114, and the process proceeds to step 204. Control is performed so that the opening degree X1 of the first flow rate adjusting valve 105 is increased and the opening degree X2 of the second flow rate adjusting valve 106 is decreased, and the routine proceeds to step 206.
In addition, when T1 is smaller than T2, it indicates that the refrigerant flow rate flowing through the first evaporator outlet pipe 113 is larger than the refrigerant flow rate flowing through the second evaporator outlet pipe 114, and the process proceeds to step 205. Control is performed to increase the opening X2 of the second flow rate adjustment valve 106 so that the opening X1 of the first flow rate adjustment valve 105 is decreased, and the routine proceeds to step 206.
Next, in step 206, T1 and T2 are compared. If T1 = T2, the process proceeds to step 207. In step 207, the opening degree of the expansion device 103 is returned to the opening degree Xm of the normal operation, and the process returns to step 202. If T1 ≠ T2, the process returns to step 203 and T1 and T2 are compared.

以上のように、本実施の形態の冷凍サイクル装置では、絞り装置103の開度を小さくすることによって蒸発器104の各流路出口の冷媒を確実に乾き状態とし、第1の冷媒温度と第2の冷媒温度の差から不均一性を的確に検出して第1及び第2の流量制御弁105,106の各開度を制御することで、より確実に蒸発器の冷媒分流を均一化することができる。
また、圧縮機101の起動時に絞り装置103の開度を小さくするようにすれば、最も冷媒乾き度が確保されやすい状態で第1の冷媒温度と第2の冷媒温度の差を検出することができるので、より短時間で冷媒分流の均一化を図ることができる。
As described above, in the refrigeration cycle apparatus according to the present embodiment, by reducing the opening degree of the expansion device 103, the refrigerant at the outlet of each flow path of the evaporator 104 is surely dried, and the first refrigerant temperature and the first refrigerant temperature are changed. By accurately detecting the non-uniformity from the difference between the refrigerant temperatures of the two and controlling the opening degrees of the first and second flow control valves 105 and 106, the refrigerant diversion in the evaporator is more evenly uniform. be able to.
Further, if the opening degree of the expansion device 103 is reduced when the compressor 101 is started, the difference between the first refrigerant temperature and the second refrigerant temperature can be detected in a state where the refrigerant dryness is most easily secured. As a result, the refrigerant flow can be made uniform in a shorter time.

(実施の形態2)
図3は、本発明による実施の形態2の冷凍サイクル装置を示す構成図であり、図4は、本実施の形態2の冷凍サイクル装置の制御フローチャートである。
実施の形態2の冷凍サイクル装置は、実施の形態1の構成に、圧縮機101の運転周波数を制御する運転周波数制御手段110を備えている。
そして、この運転周波数制御手段110は、第1の蒸発器出口配管113に設けられた第1の冷媒温度検出手段107と第2の蒸発器出口配管114に設けられた第2の冷媒温度検出手段108の各検出信号に応じて、圧縮機101の運転周波数を制御できるように構成されている。
(Embodiment 2)
FIG. 3 is a configuration diagram showing a refrigeration cycle apparatus according to a second embodiment of the present invention, and FIG. 4 is a control flowchart of the refrigeration cycle apparatus according to the second embodiment.
The refrigeration cycle apparatus of the second embodiment is provided with an operation frequency control means 110 that controls the operation frequency of the compressor 101 in the configuration of the first embodiment.
The operating frequency control means 110 includes a first refrigerant temperature detection means 107 provided in the first evaporator outlet pipe 113 and a second refrigerant temperature detection means provided in the second evaporator outlet pipe 114. The operation frequency of the compressor 101 can be controlled according to each detection signal 108.

本実施の形態の動作を、図4のフローチャートを用いて説明する。
運転が開始されると、ステップ301で圧縮機101の運転周波数を大きくするように制御し、ステップ302に移る。圧縮機101の運転周波数を増加させると、全体の冷媒流量が増加するので、蒸発器104での熱交換量も増加し、冷媒流量の小さい流路出口の冷媒を迅速に乾き状態とすることができる。
次のステップ302からステップ306は、実施の形態1で述べたステップ202から206と同一であり、説明を省略する。
そして、ステップ306で、T1=T2の場合はステップ307に移り、ステップ307で圧縮機101の運転周波数を通常運転の周波数Hmに戻してステップ302に戻る。また、T1≠T2の場合には、ステップ303に戻り、T1とT2が比較される。
The operation of the present embodiment will be described with reference to the flowchart of FIG.
When the operation is started, control is performed to increase the operation frequency of the compressor 101 in step 301, and the process proceeds to step 302. When the operating frequency of the compressor 101 is increased, the overall refrigerant flow rate increases, so the amount of heat exchange in the evaporator 104 also increases, and the refrigerant at the outlet of the flow path having a small refrigerant flow rate can be quickly dried. it can.
The next steps 302 to 306 are the same as steps 202 to 206 described in the first embodiment, and a description thereof will be omitted.
In step 306, if T1 = T2, the process proceeds to step 307. In step 307, the operation frequency of the compressor 101 is returned to the normal operation frequency Hm, and the process returns to step 302. If T1 ≠ T2, the process returns to step 303 and T1 and T2 are compared.

以上のように、本実施の形態の冷凍サイクル装置では、圧縮機101の運転周波数を大きくすることによって蒸発器104の各流路出口の冷媒をより迅速に乾き状態とし、第1の冷媒温度と第2の冷媒温度の差を検出することで、より確実に冷媒分流を均一化することができる。また、通常運転に復帰することで、省エネルギー化することができる。
また、圧縮機101の起動時に絞り装置103の開度を小さくするようにすれば、最も冷媒乾き度が確保されやすい状態で第1の冷媒温度と第2の冷媒温度の差を検出することができるので、より短時間で冷媒分流の均一化を図ることができる。
As described above, in the refrigeration cycle apparatus of the present embodiment, the refrigerant at the outlet of each flow path of the evaporator 104 is more quickly dried by increasing the operating frequency of the compressor 101, and the first refrigerant temperature and By detecting the difference in the second refrigerant temperature, it is possible to make the refrigerant diversion more uniform. In addition, energy can be saved by returning to normal operation.
Further, if the opening degree of the expansion device 103 is reduced when the compressor 101 is started, the difference between the first refrigerant temperature and the second refrigerant temperature can be detected in a state where the refrigerant dryness is most easily secured. As a result, the refrigerant flow can be made uniform in a shorter time.

(実施の形態3)
図5は、本発明による実施の形態3の冷凍サイクル装置を示す構成図であり、図6は、本実施の形態3の冷凍サイクル装置の制御フローチャートである。
実施の形態3の冷凍サイクル装置は、実施の形態1の構成に、蒸発器104のファン風量を制御するファン風量制御手段121を備えている。
そして、このファン風量制御手段121は、第1の蒸発器出口配管113に設けられた第1の冷媒温度検出手段107と第2の蒸発器出口配管114に設けられた第2の冷媒温度検出手段108の各検出信号に応じて、蒸発器104へのファン風量を制御できるように構成されている。
(Embodiment 3)
FIG. 5 is a block diagram showing a refrigeration cycle apparatus according to a third embodiment of the present invention, and FIG. 6 is a control flowchart of the refrigeration cycle apparatus according to the third embodiment.
The refrigeration cycle apparatus of the third embodiment is provided with fan air volume control means 121 for controlling the fan air volume of the evaporator 104 in the configuration of the first embodiment.
The fan air volume control means 121 includes a first refrigerant temperature detection means 107 provided in the first evaporator outlet pipe 113 and a second refrigerant temperature detection means provided in the second evaporator outlet pipe 114. The fan air flow rate to the evaporator 104 can be controlled in accordance with each detection signal 108.

本実施の形態の動作を、図6のフローチャートを用いて説明する。
運転が開始されると、ステップ401で蒸発器104のファン風量を大きくするように制御し、ステップ402に移る。蒸発器104のファン風量を増加させると、蒸発器104での空気熱伝達率が向上するので、蒸発器104での熱交換量も増加し、冷媒流量の小さい蒸発器104の流路出口の冷媒を乾き状態とすることができる。
次のステップ402からステップ406は、実施の形態1で述べたステップ202から206と同一であり、説明を省略する。
そして、ステップ406で、T1=T2の場合はステップ407に移り、ステップ407で蒸発器104のファン風量を通常運転の風量Qmに戻してステップ402に戻る。また、T1≠T2の場合には、ステップ403に戻り、T1とT2が比較される。
The operation of this embodiment will be described with reference to the flowchart of FIG.
When the operation is started, control is performed to increase the fan air volume of the evaporator 104 in step 401, and the process proceeds to step 402. When the fan air volume of the evaporator 104 is increased, the air heat transfer coefficient in the evaporator 104 is improved, so the amount of heat exchange in the evaporator 104 is also increased, and the refrigerant at the outlet of the flow path of the evaporator 104 having a small refrigerant flow rate. Can be in a dry state.
The next steps 402 to 406 are the same as steps 202 to 206 described in the first embodiment, and a description thereof will be omitted.
In step 406, if T1 = T2, the process proceeds to step 407. In step 407, the fan air volume of the evaporator 104 is returned to the normal operation air volume Qm, and the process returns to step 402. If T1 ≠ T2, the process returns to step 403 to compare T1 and T2.

以上のように、本実施の形態の冷凍サイクル装置では、蒸発器104のファン風量を大きくすることによって、蒸発器104のみの熱交換量を増大させて、放熱器102での熱交換量の変動を極力小さくすることができるので、より冷凍サイクルの変動を抑えつつ、短時間で冷媒分流の均一化を図ることができる。   As described above, in the refrigeration cycle apparatus according to the present embodiment, by increasing the fan air volume of the evaporator 104, the heat exchange amount of only the evaporator 104 is increased and the fluctuation of the heat exchange amount in the radiator 102 is increased. Therefore, the refrigerant flow can be made uniform in a short time while further suppressing the fluctuation of the refrigeration cycle.

(実施の形態4)
図7は、本発明による実施の形態4の冷凍サイクル装置を示す構成図であり、図8は、本実施の形態4の冷凍サイクル装置の制御フローチャートである。また、図9は、冷媒貯留器内の冷媒圧力と冷媒ホールド量の関係図である。
実施の形態4の冷凍サイクル装置は、実施の形態1の構成に、放熱器102出口と絞り装置103出口とを、第3の流量制御弁131と冷媒貯留器132と第4の流量調整弁133を介して接続することにより、絞り装置103をバイパスするバイパス回路134を備えている。
そして、制御手段109は、第1の蒸発器出口配管113に設けられた第1の冷媒温度検出手段107と第2の蒸発器出口配管114に設けられた第2の冷媒温度検出手段108の各検出信号に応じて、第3の流量制御弁131と第4の流量調整弁133の各開度を制御できるように構成されている。
(Embodiment 4)
FIG. 7 is a configuration diagram showing a refrigeration cycle apparatus according to a fourth embodiment of the present invention, and FIG. 8 is a control flowchart of the refrigeration cycle apparatus according to the fourth embodiment. FIG. 9 is a relationship diagram between the refrigerant pressure in the refrigerant reservoir and the refrigerant hold amount.
In the refrigeration cycle apparatus of the fourth embodiment, the radiator 102 and the throttle device 103 outlet are added to the configuration of the first embodiment, the third flow control valve 131, the refrigerant reservoir 132, and the fourth flow control valve 133. By connecting via the, a bypass circuit 134 for bypassing the expansion device 103 is provided.
Then, the control means 109 includes each of the first refrigerant temperature detection means 107 provided in the first evaporator outlet pipe 113 and the second refrigerant temperature detection means 108 provided in the second evaporator outlet pipe 114. Each opening degree of the third flow rate control valve 131 and the fourth flow rate adjustment valve 133 can be controlled according to the detection signal.

本実施の形態の動作を、図8のフローチャートを用いて説明する。
運転が開始されると、ステップ501で第3の流量制御弁131の開度を大きくし、第4の流量調整弁133の開度を小さくするように制御し、ステップ502に移る。第3の流量制御弁131の開度を大きくし、第4の流量調整弁133の開度を小さくすると、図9に示すように、冷媒貯留器132内にホールドされる冷媒量が大きくなるので、冷凍サイクル装置を循環する冷媒量が小さくなる。したがって、蒸発器104の流路出口の冷媒を乾き状態とすることができる。
次のステップ502からステップ506は、実施の形態1で述べたステップ202から206と同一であり、説明を省略する。
そして、ステップ506で、T1=T2の場合はステップ507に移り、ステップ507で第3の流量制御弁131の開度を通常運転の開度Xpに、第4の流量制御弁133の開度を通常運転の開度Xqに戻してステップ502に戻る。また、T1≠T2の場合には、ステップ503に戻り、T1とT2が比較される。
The operation of this embodiment will be described with reference to the flowchart of FIG.
When the operation is started, control is performed to increase the opening of the third flow control valve 131 and decrease the opening of the fourth flow control valve 133 in step 501, and the process proceeds to step 502. When the opening of the third flow control valve 131 is increased and the opening of the fourth flow control valve 133 is decreased, the amount of refrigerant held in the refrigerant reservoir 132 increases as shown in FIG. The amount of refrigerant circulating through the refrigeration cycle apparatus is reduced. Therefore, the refrigerant at the outlet of the channel of the evaporator 104 can be dried.
The next steps 502 to 506 are the same as steps 202 to 206 described in the first embodiment, and a description thereof will be omitted.
In step 506, if T1 = T2, the process proceeds to step 507, and in step 507, the opening of the third flow control valve 131 is set to the opening Xp of the normal operation, and the opening of the fourth flow control valve 133 is set. Return to the normal operation opening Xq and return to step 502. If T1 ≠ T2, the process returns to step 503, and T1 and T2 are compared.

以上のように、本実施の形態の冷凍サイクル装置では、第3の流量制御弁131の開度を大きくし、第4の流量調整弁133の開度を小さくして、冷媒貯溜器132の冷媒圧力を上昇させることによって、冷媒貯留器132内にホールドされる冷媒量を増大させ、蒸発器104の各流路出口の冷媒乾き度をより確実に確保し、短時間で冷媒分流の均一化を図ることができる。   As described above, in the refrigeration cycle apparatus according to the present embodiment, the opening of the third flow control valve 131 is increased, the opening of the fourth flow control valve 133 is decreased, and the refrigerant in the refrigerant reservoir 132 is increased. By increasing the pressure, the amount of refrigerant held in the refrigerant reservoir 132 is increased, the degree of dryness of the refrigerant at the outlet of each flow path of the evaporator 104 is more reliably ensured, and the refrigerant distribution is made uniform in a short time. Can be planned.

本発明にかかる冷凍サイクル装置は、より確実に蒸発器の冷媒分流を均一化することができる効果を有し、給湯器や空気調和機の他に、食器乾燥用や生ゴミ処理用など、他の用途の冷凍サイクル装置として利用することができる。   The refrigeration cycle apparatus according to the present invention has an effect of more evenly uniforming the refrigerant flow in the evaporator, and in addition to a water heater and an air conditioner, It can be used as a refrigeration cycle apparatus for the following applications.

本発明による実施の形態1の冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus of Embodiment 1 by this invention. 本実施の形態1の冷凍サイクル装置の制御フローチャートControl flowchart of refrigeration cycle apparatus of Embodiment 1 本発明による実施の形態2の冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus of Embodiment 2 by this invention. 本実施の形態2の冷凍サイクル装置の制御フローチャートControl flowchart of the refrigeration cycle apparatus of the second embodiment 本発明による実施の形態3の冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus of Embodiment 3 by this invention. 本実施の形態3の冷凍サイクル装置の制御フローチャートControl flowchart of refrigeration cycle apparatus of Embodiment 3 本発明による実施の形態4の冷凍サイクル装置を示す構成図The block diagram which shows the refrigerating-cycle apparatus of Embodiment 4 by this invention. 本実施の形態4の冷凍サイクル装置の制御フローチャートControl flowchart of refrigeration cycle apparatus of Embodiment 4 冷媒貯留器内の冷媒圧力と冷媒ホールド量の関係図Relationship diagram between refrigerant pressure in refrigerant reservoir and refrigerant hold amount 従来技術の冷凍サイクル装置を示す構成図Configuration diagram showing a prior art refrigeration cycle apparatus

符号の説明Explanation of symbols

101 圧縮機
102 放熱器
103 絞り装置
104 蒸発器
104a 第1の蒸発器
104b 第2の蒸発器
105 第1の流量制御弁
106 第2の流量制御弁
107 第1の冷媒温度検出手段
108 第2の冷媒温度検出手段
109 制御手段
110 運転周波数制御手段
111 第1の蒸発器入口配管
112 第2の蒸発器入口配管
113 第1の蒸発器出口配管
114 第2の蒸発器出口配管
121 ファン風量制御手段
131 第3の流量制御弁
132 冷媒貯留器
133 第4の流量制御弁
134 バイパス回路
DESCRIPTION OF SYMBOLS 101 Compressor 102 Radiator 103 Throttle device 104 Evaporator 104a 1st evaporator 104b 2nd evaporator 105 1st flow control valve 106 2nd flow control valve 107 1st refrigerant | coolant temperature detection means 108 2nd Refrigerant temperature detection means 109 Control means 110 Operating frequency control means 111 First evaporator inlet piping 112 Second evaporator inlet piping 113 First evaporator outlet piping 114 Second evaporator outlet piping 121 Fan air volume control means 131 Third flow control valve 132 Refrigerant reservoir 133 Fourth flow control valve 134 Bypass circuit

Claims (5)

圧縮機と、放熱器と、絞り装置と、並列の第1の蒸発器及び第2の蒸発器を順次に接続した冷凍サイクル装置であって、
前記第1の蒸発器に流す冷媒量を制御する第1の流量制御弁と、前記第2の蒸発器に流す冷媒量を制御する第2の流量制御弁と、前記第1の蒸発器出口の冷媒温度を検出する第1の冷媒温度検出手段と、前記第2の蒸発器出口の冷媒温度を検出する第2の冷媒温度検出手段と、前記第1の冷媒温度及び前記第2の冷媒温度を用いて前記絞り装置、前記第1の流量制御弁及び前記第2の流量制御弁を制御する制御手段とを設け、
前記制御手段で、前記絞り装置の開度を小さくして前記第1の蒸発器及び前記第2の蒸発器の各流路出口の冷媒を乾き状態とし、前記第1の流量制御弁及び前記第2の流量制御弁の各開度を制御して前記第1の蒸発器及び前記第2の蒸発器の冷媒分流を均一化することを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus in which a compressor, a radiator, a throttling device, and a first evaporator and a second evaporator in parallel are sequentially connected,
A first flow rate control valve for controlling the amount of refrigerant flowing to the first evaporator, a second flow rate control valve for controlling the amount of refrigerant flowing to the second evaporator, and an outlet of the first evaporator First refrigerant temperature detection means for detecting the refrigerant temperature, second refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the second evaporator, the first refrigerant temperature and the second refrigerant temperature. Using the throttle device, the first flow control valve and the control means for controlling the second flow control valve,
The control means reduces the opening of the expansion device to dry the refrigerant at the outlets of the first evaporator and the second evaporator, the first flow control valve and the first A refrigerating cycle apparatus characterized by equalizing the refrigerant diversion of the first evaporator and the second evaporator by controlling each opening degree of the second flow control valve.
前記制御手段で、前記圧縮機の起動時に前記絞り装置の開度を小さくすることを特徴とする請求項1に記載の冷凍サイクル装置。   The refrigeration cycle apparatus according to claim 1, wherein the control means reduces the opening of the expansion device when the compressor is started. 圧縮機と、放熱器と、絞り装置と、並列の第1の蒸発器及び第2の蒸発器を順次に接続した冷凍サイクル装置であって、
前記第1の蒸発器に流す冷媒量を制御する第1の流量制御弁と、前記第2の蒸発器に流す冷媒量を制御する第2の流量制御弁と、前記第1の蒸発器出口の冷媒温度を検出する第1の冷媒温度検出手段と、前記第2の蒸発器出口の冷媒温度を検出する第2の冷媒温度検出手段と、前記圧縮機の運転周波数を制御する運転周波数制御手段と、前記第1の冷媒温度及び前記第2の冷媒温度を用いて前記運転周波数制御手段、前記第1の流量制御弁及び前記第2の流量制御弁を制御する制御手段とを設け、
前記制御手段で、前記運転周波数制御手段を介して前記運転周波数を大きくして前記第1の蒸発器及び前記第2の蒸発器の各流路出口の冷媒を乾き状態とし、前記第1の流量制御弁及び前記第2の流量制御弁の各開度を制御して前記第1の蒸発器及び前記第2の蒸発器の冷媒分流を均一化することを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus in which a compressor, a radiator, a throttling device, and a first evaporator and a second evaporator in parallel are sequentially connected,
A first flow rate control valve for controlling the amount of refrigerant flowing to the first evaporator, a second flow rate control valve for controlling the amount of refrigerant flowing to the second evaporator, and an outlet of the first evaporator A first refrigerant temperature detecting means for detecting a refrigerant temperature; a second refrigerant temperature detecting means for detecting a refrigerant temperature at the outlet of the second evaporator; and an operating frequency control means for controlling an operating frequency of the compressor. A control means for controlling the operating frequency control means, the first flow rate control valve and the second flow rate control valve using the first refrigerant temperature and the second refrigerant temperature;
In the control means, the operating frequency is increased via the operating frequency control means to make the refrigerant at the outlet of each flow path of the first evaporator and the second evaporator dry, and the first flow rate A refrigeration cycle apparatus characterized in that the respective opening degrees of the control valve and the second flow rate control valve are controlled to equalize the refrigerant diversion of the first evaporator and the second evaporator.
圧縮機と、放熱器と、絞り装置と、並列の第1の蒸発器及び第2の蒸発器を順次に接続した冷凍サイクル装置であって、
前記第1の蒸発器への冷媒流量を制御する第1の流量制御弁と、前記第2の蒸発器への冷媒流量を制御する第2の流量制御弁と、前記第1の蒸発器出口の冷媒温度を検出する第1の冷媒温度検出手段と、前記第2の蒸発器出口の冷媒温度を検出する第2の冷媒温度検出手段と、前記第1の蒸発器及び第2の蒸発器へのファン風量を制御するファン風量制御手段と、前記第1の冷媒温度及び前記第2の冷媒温度を用いて前記ファン風量制御手段、前記第1の流量制御弁及び前記第2の流量制御弁を制御する制御手段とを設け、
前記制御手段で、前記ファン風量制御手段を介して前記ファン風量を大きくして前記第1の蒸発器及び前記第2の蒸発器の各流路出口の冷媒を乾き状態とし、前記第1の流量制御弁及び前記第2の流量制御弁の各開度を制御して前記第1の蒸発器及び前記第2の蒸発器の冷媒分流を均一化することを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus in which a compressor, a radiator, a throttling device, and a first evaporator and a second evaporator in parallel are sequentially connected,
A first flow rate control valve for controlling a refrigerant flow rate to the first evaporator, a second flow rate control valve for controlling a refrigerant flow rate to the second evaporator, and a first evaporator outlet First refrigerant temperature detecting means for detecting refrigerant temperature, second refrigerant temperature detecting means for detecting refrigerant temperature at the outlet of the second evaporator, and the first and second evaporators. Fan air volume control means for controlling the fan air volume, and the fan air volume control means, the first flow rate control valve, and the second flow rate control valve are controlled using the first refrigerant temperature and the second refrigerant temperature. And control means for
In the control means, the fan air volume is increased via the fan air volume control means so that the refrigerant at the outlet of each flow path of the first evaporator and the second evaporator is dried, and the first flow rate is increased. A refrigeration cycle apparatus characterized in that the respective opening degrees of the control valve and the second flow rate control valve are controlled to equalize the refrigerant diversion of the first evaporator and the second evaporator.
圧縮機と、放熱器と、絞り装置と、並列の第1の蒸発器及び第2の蒸発器を順次に接続した冷凍サイクル装置であって、
第3の流量制御弁と冷媒貯留器と第4の流量調整弁を介して前記放熱器出口と前記絞り装置出口とを接続して前記絞り装置をバイパスするバイパス回路を備え、
前記第1の蒸発器に流す冷媒量を制御する第1の流量制御弁と、前記第2の蒸発器に流す冷媒量を制御する第2の流量制御弁と、前記第1の蒸発器出口の冷媒温度を検出する第1の冷媒温度検出手段と、前記第2の蒸発器出口の冷媒温度を検出する第2の冷媒温度検出手段と、前記第1の冷媒温度及び前記第2の冷媒温度を用いて前記第1の流量制御弁、前記第2の流量制御弁、前記第3の流量制御弁及び前記第4の流量制御弁を制御する制御手段とを設け、
前記制御手段で、前記第3の流量制御弁の開度を大きくし前記第4の流量制御弁の開度を小さくして前記第1の蒸発器及び前記第2の蒸発器の各流路出口の冷媒を乾き状態とし、前記第1の流量制御弁及び前記第2の流量制御弁の各開度を制御して前記第1の蒸発器及び前記第2の蒸発器の冷媒分流を均一化することを特徴とする冷凍サイクル装置。
A refrigeration cycle apparatus in which a compressor, a radiator, a throttling device, and a first evaporator and a second evaporator in parallel are sequentially connected,
A bypass circuit that bypasses the throttle device by connecting the radiator outlet and the throttle device outlet via a third flow rate control valve, a refrigerant reservoir, and a fourth flow rate adjustment valve;
A first flow rate control valve for controlling the amount of refrigerant flowing to the first evaporator, a second flow rate control valve for controlling the amount of refrigerant flowing to the second evaporator, and an outlet of the first evaporator First refrigerant temperature detection means for detecting the refrigerant temperature, second refrigerant temperature detection means for detecting the refrigerant temperature at the outlet of the second evaporator, the first refrigerant temperature and the second refrigerant temperature. Control means for controlling the first flow control valve, the second flow control valve, the third flow control valve and the fourth flow control valve using,
In the control means, the opening of the third flow control valve is increased and the opening of the fourth flow control valve is decreased, so that the respective outlets of the first evaporator and the second evaporator are exited. The refrigerant is dried and the respective openings of the first flow rate control valve and the second flow rate control valve are controlled to equalize the refrigerant flow in the first evaporator and the second evaporator. A refrigeration cycle apparatus characterized by that.
JP2005162671A 2005-06-02 2005-06-02 Refrigerating cycle device Withdrawn JP2006336947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005162671A JP2006336947A (en) 2005-06-02 2005-06-02 Refrigerating cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005162671A JP2006336947A (en) 2005-06-02 2005-06-02 Refrigerating cycle device

Publications (1)

Publication Number Publication Date
JP2006336947A true JP2006336947A (en) 2006-12-14

Family

ID=37557652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005162671A Withdrawn JP2006336947A (en) 2005-06-02 2005-06-02 Refrigerating cycle device

Country Status (1)

Country Link
JP (1) JP2006336947A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157584A (en) * 2006-12-26 2008-07-10 Daikin Ind Ltd Air conditioner
JP2009228953A (en) * 2008-03-21 2009-10-08 Kawata Mfg Co Ltd Heat pump type dryer assembly
JP2012255585A (en) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp Heat pump device and method of controlling the same
WO2013038615A1 (en) * 2011-09-12 2013-03-21 ダイキン工業株式会社 Refrigeration device
JP2013195034A (en) * 2012-03-22 2013-09-30 Fujitsu General Ltd Refrigeration cycle apparatus
WO2015045452A1 (en) * 2013-09-24 2015-04-02 三菱電機株式会社 Air conditioner
US20150176878A1 (en) * 2013-12-23 2015-06-25 Alstom Technology Ltd System and method for evaporator outlet temperature control
WO2016151655A1 (en) * 2015-03-20 2016-09-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioning device and method for determining performance of same
WO2016170575A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Refrigeration cycle apparatus
CN106969547A (en) * 2017-04-12 2017-07-21 美的集团武汉制冷设备有限公司 Evaporator cooling-medium-flow distribution control method and control device and air-conditioner system
CN109595721A (en) * 2018-12-12 2019-04-09 江苏翼兰博特新能源科技有限公司 A kind of leaving air temp control air-conditioning
CN109611607A (en) * 2018-12-18 2019-04-12 深圳创维空调科技有限公司 Distributing T-pipe device and air-conditioning system
CN110966807A (en) * 2018-09-28 2020-04-07 青岛海尔智能技术研发有限公司 Falling film evaporator and control method

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157584A (en) * 2006-12-26 2008-07-10 Daikin Ind Ltd Air conditioner
JP2009228953A (en) * 2008-03-21 2009-10-08 Kawata Mfg Co Ltd Heat pump type dryer assembly
JP2012255585A (en) * 2011-06-08 2012-12-27 Mitsubishi Electric Corp Heat pump device and method of controlling the same
AU2012309991B2 (en) * 2011-09-12 2015-09-17 Daikin Industries, Ltd. Refrigerating apparatus
WO2013038615A1 (en) * 2011-09-12 2013-03-21 ダイキン工業株式会社 Refrigeration device
JP2013061091A (en) * 2011-09-12 2013-04-04 Daikin Industries Ltd Refrigeration device
CN103782115A (en) * 2011-09-12 2014-05-07 大金工业株式会社 Refrigeration device
US9581365B2 (en) 2011-09-12 2017-02-28 Daikin Industries, Ltd. Refrigerating apparatus
JP2013195034A (en) * 2012-03-22 2013-09-30 Fujitsu General Ltd Refrigeration cycle apparatus
WO2015045452A1 (en) * 2013-09-24 2015-04-02 三菱電機株式会社 Air conditioner
JP6041995B2 (en) * 2013-09-24 2016-12-14 三菱電機株式会社 Air conditioner
KR20160101933A (en) * 2013-12-23 2016-08-26 제네럴 일렉트릭 테크놀러지 게엠베하 System and method for evaporator outlet temperature control
KR102379432B1 (en) * 2013-12-23 2022-03-28 제네럴 일렉트릭 테크놀러지 게엠베하 System and method for evaporator outlet temperature control
US20150176878A1 (en) * 2013-12-23 2015-06-25 Alstom Technology Ltd System and method for evaporator outlet temperature control
US10260784B2 (en) * 2013-12-23 2019-04-16 General Electric Company System and method for evaporator outlet temperature control
WO2016151655A1 (en) * 2015-03-20 2016-09-29 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド Air conditioning device and method for determining performance of same
EP3287715A4 (en) * 2015-04-20 2018-10-31 Mitsubishi Electric Corporation Refrigeration cycle apparatus
CN107532830A (en) * 2015-04-20 2018-01-02 三菱电机株式会社 Refrigerating circulatory device
JPWO2016170575A1 (en) * 2015-04-20 2017-12-07 三菱電機株式会社 Refrigeration cycle equipment
CN107532830B (en) * 2015-04-20 2019-12-20 三菱电机株式会社 Refrigeration cycle device
US11156391B2 (en) 2015-04-20 2021-10-26 Mitsubishi Electric Corporation Refrigeration cycle apparatus
WO2016170575A1 (en) * 2015-04-20 2016-10-27 三菱電機株式会社 Refrigeration cycle apparatus
CN106969547A (en) * 2017-04-12 2017-07-21 美的集团武汉制冷设备有限公司 Evaporator cooling-medium-flow distribution control method and control device and air-conditioner system
CN106969547B (en) * 2017-04-12 2020-12-22 美的集团武汉制冷设备有限公司 Evaporator refrigerant flow distribution control method and control device and air conditioner system
CN110966807A (en) * 2018-09-28 2020-04-07 青岛海尔智能技术研发有限公司 Falling film evaporator and control method
CN109595721A (en) * 2018-12-12 2019-04-09 江苏翼兰博特新能源科技有限公司 A kind of leaving air temp control air-conditioning
CN109611607A (en) * 2018-12-18 2019-04-12 深圳创维空调科技有限公司 Distributing T-pipe device and air-conditioning system
CN109611607B (en) * 2018-12-18 2020-02-14 深圳创维空调科技有限公司 Tee bend shunt and air conditioning system

Similar Documents

Publication Publication Date Title
JP2006336947A (en) Refrigerating cycle device
EP2631562B1 (en) Heat pump-type air-warming device
US20060107683A1 (en) Air conditioning system and method for controlling the same
KR101109730B1 (en) Chiller apparatus for semiconductor process and Method for controlling temperature in the same
JP2008232508A (en) Water heater
JPWO2018002983A1 (en) Refrigeration cycle equipment
EP3228951B1 (en) Refrigeration cycle apparatus
JP5921777B1 (en) Refrigeration cycle equipment
US11274851B2 (en) Air conditioning apparatus
TWI659186B (en) Liquid temperature adjusting device and temperature control system
JP5404761B2 (en) Refrigeration equipment
JP5927670B2 (en) Air conditioner
JP5202666B2 (en) Refrigeration system
US11255582B2 (en) HVAC systems and methods with multiple-path expansion device subsystems
JP2012172918A (en) Refrigerant liquid forced circulation type refrigeration system
JP5202665B2 (en) Refrigeration system
JP2011012844A (en) Refrigerating cycle device
WO2019026234A1 (en) Refrigeration cycle device
EP2126476B1 (en) Air conditioning system and control method for the same
JP2013167368A (en) Air conditioner
JP2013124843A (en) Refrigeration cycle system
KR100682718B1 (en) Air conditioner having refrigerants distributor for branch
JP4335115B2 (en) Air refrigerant refrigeration system
JP6989788B2 (en) Refrigeration cycle device
KR20180123378A (en) cooling purpose evaporator capable of refrigerant distribution equally

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080805