JP2013167368A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2013167368A
JP2013167368A JP2012029059A JP2012029059A JP2013167368A JP 2013167368 A JP2013167368 A JP 2013167368A JP 2012029059 A JP2012029059 A JP 2012029059A JP 2012029059 A JP2012029059 A JP 2012029059A JP 2013167368 A JP2013167368 A JP 2013167368A
Authority
JP
Japan
Prior art keywords
superheat degree
evaporator
refrigerant
pump
outlet side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012029059A
Other languages
Japanese (ja)
Inventor
Toshitaro Inoue
俊太郎 井上
Hajime Yasuda
源 安田
Yasuhiro Naito
靖浩 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2012029059A priority Critical patent/JP2013167368A/en
Publication of JP2013167368A publication Critical patent/JP2013167368A/en
Pending legal-status Critical Current

Links

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve the efficiency of a pump cycle operation in an air conditioner which performs both a compressor cycle operation and the pump cycle operation.SOLUTION: An air conditioner includes: a compressor which performs a compressor cycle operation for circulating a refrigerant; a condenser which condenses the refrigerant compressed by the compressor; an expansion valve which expands the refrigerant compressed by the condenser; an evaporator which evaporates the refrigerant expanded by the expansion valve; and a pump which performs a pump cycle operation for circulating the refrigerant by feeding a liquid refrigerant flowing out of the condenser with the compressor stopped at the expansion valve. In the pump cycle operation, when the degree of superheat on the outlet side of the evaporator is a first set degree of superheat or higher, the opening of the expansion valve is increased, and when the degree of superheat on the outlet side still remains at the first set degree of superheat or higher even if the opening reaches an upper limit, the rotating speed of the pump is increased.

Description

本発明は、空気調和装置について、特に圧縮機による圧縮機サイクル運転とポンプによるポンプサイクル運転の双方の運転を行うものに関する。   The present invention relates to an air conditioner, and particularly to an apparatus that performs both a compressor cycle operation by a compressor and a pump cycle operation by a pump.

コンピュータネットワークを構築するには、各コンピュータから要求を受けて処理するために、コミュニケーション用、データベース用、ファイル管理用などのサーバーを必要とする。この種のサーバーは運営や管理の利便性から、サーバー機械室に設置されている。また複数台のサーバーはサーバーラックに格納され、サーバー機械室には複数のサーバーラックが設置される。サーバーは動作時の発熱が大きく、安定動作させるためサーバー機械室には空調装置を併設し運用する。   In order to construct a computer network, a server for communication, a database, a file management, etc. is required to receive and process a request from each computer. This type of server is installed in the server machine room for convenience of operation and management. A plurality of servers are stored in a server rack, and a plurality of server racks are installed in the server machine room. The server generates a large amount of heat during operation, and an air conditioner is installed in the server machine room for stable operation.

ここで、サーバー機械室全体の空調装置としては、一般に圧縮機、室外熱交換器(凝縮器)、膨張弁、室内熱交換器(蒸発器)を順次冷媒配管で接続して冷凍サイクルを構成する空調装置が利用される。   Here, as an air conditioner for the entire server machine room, generally, a compressor, an outdoor heat exchanger (condenser), an expansion valve, and an indoor heat exchanger (evaporator) are sequentially connected by a refrigerant pipe to constitute a refrigeration cycle. An air conditioner is used.

しかしサーバー機械室は、30℃程度で運用されるため、たとえば真冬の場合など外気温がそれよりも低ければ、圧縮機を使用するまでもなく単に冷媒を循環させることにより直接外気で冷媒を冷却できるため、冷房運転を行うことができる。ただし外気を直接取り込む方法は湿度調整や塵埃等不純物の除去が必要となるためサーバー機械室のような環境においては不向きである。そこで、外気の冷熱を空調機の熱交換器を介して輸送する、間接外気冷房方式という技術が注目されている。冷媒を室外熱交換機(凝縮器)にて外気で冷却し強制循環することで、前記圧縮機を使用せず冷房を行うことができる。冷媒の強制循環には、冷媒ポンプを使うことで圧縮機駆動時の消費電力よりも低消費電力で冷房運転をできることが知られている。   However, since the server machine room is operated at about 30 ° C, if the outside air temperature is lower than that, for example in the case of midwinter, the refrigerant is directly cooled by the outside air by simply circulating the refrigerant without using the compressor. Therefore, cooling operation can be performed. However, the method of directly taking outside air is not suitable in an environment such as a server machine room because humidity adjustment and removal of impurities such as dust are necessary. In view of this, a technique called an indirect outdoor air cooling system in which cold air from outside air is transported through a heat exchanger of an air conditioner has attracted attention. Cooling can be performed without using the compressor by cooling the refrigerant with outside air using an outdoor heat exchanger (condenser) and forcibly circulating the refrigerant. It is known that for forced circulation of the refrigerant, a cooling operation can be performed with lower power consumption than the power consumption when the compressor is driven by using a refrigerant pump.

この点について特許文献1には圧縮機、室外熱交換器(凝縮器)、膨張弁、室内熱交換器(蒸発器)を順次冷媒配管で接続した圧縮機サイクル運転を行い、室内空気温度より外気温の低い冬季や夜間などの条件下においては、冷媒ポンプ、室外熱交換器(凝縮器)、膨張弁、室内熱交換器(蒸発器)を順次冷媒配管で接続した冷媒ポンプサイクル運転し、両サイクルを運転条件によって切替えることにより年間冷房を要する環境において効率のよい運転を行うことが記載されている。   In this regard, Patent Document 1 discloses a compressor cycle operation in which a compressor, an outdoor heat exchanger (condenser), an expansion valve, and an indoor heat exchanger (evaporator) are sequentially connected by a refrigerant pipe, and the outside of the room air temperature is exceeded. Under conditions such as winter and nighttime when the temperature is low, the refrigerant pump, the outdoor heat exchanger (condenser), the expansion valve, and the indoor heat exchanger (evaporator) are connected to the refrigerant pipe in sequence, It is described that efficient operation is performed in an environment requiring annual cooling by switching the cycle according to the operation conditions.

特許第4352604号公報Japanese Patent No. 4352604

特許文献1には、前記圧縮機、前記室外熱交換器(凝縮器)、前記膨張弁、前記室内熱交換器(蒸発器)を順次冷媒配管で接続した圧縮サイクルと、前記冷媒ポンプ、前記室外熱交換器(凝縮器)、前記膨張弁、前記室内熱交換器(蒸発器)を順次冷媒配管で接続した冷媒ポンプサイクルの二種類のサイクル構成を持ち合わせた空気調和装置は前記膨張弁の絞り開度の制御と前記冷媒ポンプ周波数を制御し、冷媒の循環量を調節することが記載されている。   Patent Document 1 discloses a compression cycle in which the compressor, the outdoor heat exchanger (condenser), the expansion valve, and the indoor heat exchanger (evaporator) are sequentially connected by a refrigerant pipe, the refrigerant pump, and the outdoor An air conditioner having two types of cycle configurations of a refrigerant pump cycle in which a heat exchanger (condenser), the expansion valve, and the indoor heat exchanger (evaporator) are sequentially connected by refrigerant piping is used to open the expansion valve. The control of the temperature and the refrigerant pump frequency are controlled to adjust the circulation amount of the refrigerant.

ポンプによるポンプサイクル運転によれば、圧縮機による圧縮機サイクル運転に比べて大幅な省電力化が可能である。   According to the pump cycle operation by the pump, significant power saving can be achieved as compared with the compressor cycle operation by the compressor.

しかし、ポンプサイクル運転のポンプによる消費電力も無視できるものではなく、更なる省エネ化が求められる。   However, the power consumption of the pump in the pump cycle operation is not negligible, and further energy saving is required.

上記特許文献に記載の空気調和装置においては、この点についての更なる改善が必要である。   In the air conditioning apparatus described in the above-mentioned patent document, further improvement in this respect is necessary.

そこで、本発明の目的は圧縮機サイクル運転とポンプサイクル運転との双方を行う空気調和装置において、ポンプサイクル運転の更なる効率向上を図ることができる空気調和装置を提供することを目的とする。   Therefore, an object of the present invention is to provide an air conditioner that can further improve the efficiency of the pump cycle operation in the air conditioner that performs both the compressor cycle operation and the pump cycle operation.

上記目的を達成するために本発明は、冷媒を循環させる圧縮機サイクル運転を行う圧縮機と、該圧縮機により圧縮された冷媒を凝縮する凝縮器と、該凝縮器により凝縮された冷媒を膨張させる膨張弁と、該膨張弁により膨張された冷媒を蒸発させる蒸発器と、前記圧縮機が停止した状態で前記凝縮器から流れる液冷媒を前記膨張弁に送ることにより冷媒を循環させるポンプサイクル運転を行うポンプと、を備え、前記ポンプサイクル運転を行う場合に、前記蒸発器の出口側過熱度が第1の設定過熱度以上の場合に前記膨張弁の開度を大きくし、該開度が上限に達しても前記蒸発器の出口側過熱度が前記第1の設定過熱度以上の場合に前記ポンプの回転数を増加させる空気調和装置である。   In order to achieve the above object, the present invention provides a compressor that performs a compressor cycle operation for circulating a refrigerant, a condenser that condenses the refrigerant compressed by the compressor, and an expansion of the refrigerant condensed by the condenser. An expansion valve for evaporating, an evaporator for evaporating the refrigerant expanded by the expansion valve, and a pump cycle operation for circulating the refrigerant by sending liquid refrigerant flowing from the condenser to the expansion valve with the compressor stopped When the pump cycle operation is performed, the opening degree of the expansion valve is increased when the outlet side superheat degree of the evaporator is equal to or higher than a first set superheat degree, and the opening degree is The air conditioner increases the number of revolutions of the pump when the outlet superheat degree of the evaporator is equal to or higher than the first set superheat degree even when the upper limit is reached.

また、前記ポンプサイクル運転を行う場合に、前記蒸発器の出口側過熱度が前記第1の設定過熱度よりも低い第2の設定過熱度以下の場合に前記ポンプの回転数を低下させ、該回転数が下限に達しても前記蒸発器の出口側過熱度が前記第2の設定過熱度以下の場合に前記膨張弁の開度を小さくすることが望ましい。   Further, when performing the pump cycle operation, when the outlet side superheat degree of the evaporator is equal to or lower than a second set superheat degree lower than the first set superheat degree, the rotation speed of the pump is reduced, Even when the rotational speed reaches the lower limit, it is desirable to reduce the opening of the expansion valve when the outlet side superheat degree of the evaporator is equal to or lower than the second set superheat degree.

さらに前記蒸発器は、複数の熱交換器が並列に並べられることにより構成され、該複数の熱交換器の入口側にはそれぞれ膨張弁が設置され、前記ポンプサイクル運転を行う場合に、前記蒸発器の出口側過熱度が前記第1の設定過熱度以上の場合には、前記複数の膨張弁のうち、前記熱交換器の出口側過熱度が該熱交換器の設定過熱度以上となっているものの開度を大きくし、前記複数の膨張弁開度が上限に達しても前記蒸発器の出口側過熱度が前記第1の設定過熱度以上の場合に前記ポンプの回転数を増加させることが望ましい。   Furthermore, the evaporator is configured by arranging a plurality of heat exchangers in parallel, and an expansion valve is installed on each inlet side of the plurality of heat exchangers, and the evaporation is performed when the pump cycle operation is performed. When the outlet side superheat degree of the heat exchanger is equal to or higher than the first set superheat degree, among the plurality of expansion valves, the outlet side superheat degree of the heat exchanger becomes equal to or higher than the set superheat degree of the heat exchanger. And increasing the number of rotations of the pump if the degree of superheat on the outlet side of the evaporator is equal to or higher than the first set superheat degree even if the plurality of expansion valve openings reach an upper limit. Is desirable.

さらに前記蒸発器は、複数の熱交換器が並列に並べられることにより構成され、該複数の熱交換器の入口側にはそれぞれ膨張弁が設置され、前記ポンプサイクル運転を行う場合に、前記蒸発器の出口側過熱度が前記第2の設定過熱度以下の場合には、前記ポンプの回転数を低下させ、該回転数が下限に達しても前記蒸発器の出口側過熱度が前記第2の設定過熱度以下の場合に、前記複数の膨張弁のうち、前記熱交換器の出口側過熱度が該熱交換器の設定過熱度以下となっているものの開度を小さくすることが望ましい。   Furthermore, the evaporator is configured by arranging a plurality of heat exchangers in parallel, and an expansion valve is installed on each inlet side of the plurality of heat exchangers, and the evaporation is performed when the pump cycle operation is performed. When the outlet superheat degree of the evaporator is equal to or lower than the second set superheat degree, the rotational speed of the pump is decreased, and even if the rotational speed reaches the lower limit, the outlet superheat degree of the evaporator is the second superheat degree. When the degree of superheat of the heat exchanger is equal to or less than the set superheat degree, it is desirable to reduce the opening degree of the plurality of expansion valves whose outlet side superheat degree is equal to or less than the set superheat degree of the heat exchanger.

本発明によれば、圧縮機サイクル運転とポンプサイクル運転との双方を行う空気調和装置において、ポンプサイクル運転の更なる効率向上を図ることができる空気調和装置を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, in the air conditioning apparatus which performs both a compressor cycle driving | operation and a pump cycle driving | operation, the air conditioning apparatus which can aim at the further efficiency improvement of a pump cycle driving | operation can be provided.

上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。   Problems, configurations, and effects other than those described above will be clarified by the following description of embodiments.

実施例1の冷凍サイクル構成図を示す。The refrigeration cycle block diagram of Example 1 is shown. 実施例1の冷媒循環量制御を説明するフローチャートの例である。It is an example of the flowchart explaining the refrigerant | coolant circulation amount control of Example 1. FIG. 実施例2の冷凍サイクル構成図を示す。The refrigeration cycle block diagram of Example 2 is shown. 実施例2の冷媒循環量制御を説明するフローチャートの例である。It is an example of the flowchart explaining the refrigerant | coolant circulation amount control of Example 2. FIG. 実施例2の冷媒循環量制御を説明するフローチャートの例である。It is an example of the flowchart explaining the refrigerant | coolant circulation amount control of Example 2. FIG.

以下、本発明の実施例について図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、実施例1の情報通信向け空気調和装置の冷凍サイクル構成図を示す図である。本実施例の空気調和装置は、室外機筐体6、室内機筐体7からなり、各筐体の液阻止弁19間、ガス阻止弁21間を配管により連結させている。そして圧縮機1、凝縮器2、膨張弁4、蒸発器5を順次冷媒配管で接続して冷房運転を行う圧縮サイクル運転と、凝縮器2、強制冷媒循環ポンプ3、膨張弁4、蒸発器5を順次冷媒配管で接続して冷房運転するポンプサイクル運転との双方を行う。なお、両サイクルで凝縮器2、膨張弁4、蒸発器5を共有する。圧縮機1出口には、液冷媒が逆流することを避けるため、逆止弁22が接続されている。この逆止弁は、開止弁とし圧縮機運転に応じた開閉制御としても良い。   FIG. 1 is a diagram illustrating a configuration of a refrigeration cycle of the air conditioner for information communication according to the first embodiment. The air conditioner of the present embodiment includes an outdoor unit housing 6 and an indoor unit housing 7, and the liquid blocking valves 19 and the gas blocking valves 21 of each housing are connected by piping. Then, the compressor 1, the condenser 2, the expansion valve 4, and the evaporator 5 are sequentially connected by refrigerant piping to perform the cooling operation, the condenser 2, the forced refrigerant circulation pump 3, the expansion valve 4, and the evaporator 5 Are sequentially connected by refrigerant pipes, and both the pump cycle operation for cooling operation is performed. In both cycles, the condenser 2, the expansion valve 4, and the evaporator 5 are shared. A check valve 22 is connected to the compressor 1 outlet in order to prevent the liquid refrigerant from flowing backward. This check valve may be an open / close control according to the compressor operation.

強制冷媒循環ポンプ3は室外機筐体6内、もしくは別ユニット内に単体で設置され、凝縮器2との間に、余剰冷媒調整装置9を配し、強制冷媒循環ポンプ3入口側には、冷媒の過冷却度をモニタするための圧力センサ10、温度センサ11を配し、過冷却度に応じ、室外送風機8の周波数を制御する。室内機7側には、室内送風機18、膨張弁4、蒸発器5、圧縮機1、が搭載される。膨張弁4、蒸発器5、圧縮機1は配管により順次接続されている。蒸発器5の出口側配管は圧縮機1の入口側配管と接続され、圧縮機サイクル運転の場合はこの配管を冷媒が流れることによりサイクルを形成する。蒸発器5の出口側配管から圧縮機1の入口側配管の間には圧縮機1をバイパスするための配管が接続されており、ポンプサイクル運転の場合にはこの配管を冷媒が流れることによりポンプサイクル運転が行われる。なお、圧縮機1をバイパスする配管には逆止弁13が接続されており、圧縮機サイクル運転時に圧縮機1から吐出された冷媒が蒸発器5の出口側配管に流れることを防止している。   The forced refrigerant circulation pump 3 is installed alone in the outdoor unit housing 6 or in a separate unit, and an excess refrigerant adjusting device 9 is arranged between the condenser 2 and the inlet side of the forced refrigerant circulation pump 3 is A pressure sensor 10 and a temperature sensor 11 for monitoring the degree of supercooling of the refrigerant are arranged, and the frequency of the outdoor blower 8 is controlled according to the degree of supercooling. The indoor blower 18, the expansion valve 4, the evaporator 5, and the compressor 1 are mounted on the indoor unit 7 side. The expansion valve 4, the evaporator 5, and the compressor 1 are sequentially connected by piping. The outlet side piping of the evaporator 5 is connected to the inlet side piping of the compressor 1, and in the case of compressor cycle operation, the refrigerant flows through this piping to form a cycle. A pipe for bypassing the compressor 1 is connected between the outlet side pipe of the evaporator 5 and the inlet side pipe of the compressor 1, and in the case of pump cycle operation, the refrigerant flows through this pipe so that the pump flows. Cycle operation is performed. A check valve 13 is connected to the pipe bypassing the compressor 1 to prevent the refrigerant discharged from the compressor 1 during the compressor cycle operation from flowing to the outlet side pipe of the evaporator 5. .

圧縮機サイクル運転とポンプサイクル運転とは外気温度や運転状況により切り替わる。圧縮機サイクル運転中、室内温度と比較して室外温度が十分に低い場合に、冷房負荷がポンプサイクル運転により発揮可能な能力を下回った状態が継続した場合には、ポンプサイクル運転に切り替わる。ポンプサイクル運転中に冷房負荷が賄えなくなった場合や室外温度が高くなった状態が継続した場合には、圧縮機サイクル運転に切り替える。   The compressor cycle operation and the pump cycle operation are switched depending on the outside air temperature and the operation state. During the compressor cycle operation, when the outdoor temperature is sufficiently lower than the indoor temperature, if the cooling load continues to be less than the capacity that can be exhibited by the pump cycle operation, the operation is switched to the pump cycle operation. When the cooling load cannot be covered during the pump cycle operation or when the outdoor temperature continues to be high, the operation is switched to the compressor cycle operation.

ポンプサイクル運転時における冷媒循環量は、蒸発器5出口部の過熱度が設定値となるように強制冷媒循環ポンプ3の周波数または膨張弁4の開度にて調節する。過熱度は、蒸発器5出口部に配された圧力センサ15により得られた圧力の値からその圧力における冷媒の飽和温度を算出し、温度センサ14により得られた冷媒の温度との差により算出する。強制冷媒循環ポンプ3の入口・出口には、圧縮機サイクル運転時、強制冷媒循環ポンプ3をバイパスするよう逆止弁23を介したバイパス配管で接続される。また強制冷媒循環ポンプ3前後への配管は、チェックバルブ20を介することで、強制冷媒循環ポンプ3を停止、圧縮機サイクル運転状態にて、強制冷媒循環ポンプ3の交換が可能とする構造である。   The refrigerant circulation amount during the pump cycle operation is adjusted by the frequency of the forced refrigerant circulation pump 3 or the opening degree of the expansion valve 4 so that the degree of superheat at the outlet of the evaporator 5 becomes a set value. The degree of superheat is calculated by calculating the saturation temperature of the refrigerant at that pressure from the pressure value obtained by the pressure sensor 15 disposed at the outlet of the evaporator 5 and calculating the difference from the temperature of the refrigerant obtained by the temperature sensor 14. To do. The inlet / outlet of the forced refrigerant circulation pump 3 is connected by a bypass pipe through a check valve 23 so as to bypass the forced refrigerant circulation pump 3 during the compressor cycle operation. In addition, the piping before and after the forced refrigerant circulation pump 3 has a structure that allows the forced refrigerant circulation pump 3 to be replaced in the compressor cycle operation state by stopping the forced refrigerant circulation pump 3 through the check valve 20. .

図2はポンプサイクル運転時の冷媒循環量調整を行うフローチャートを示している。蒸発器5の出口側過熱度には上限値SH2と下限値SH1が設定されており、この設定値と算出した蒸発器出口側過熱度SHeとを比較することで、冷媒循環量の調整を行う。まず蒸発器出口側過熱度SHeが下限値SH1より低い場合について説明すると、この場合には冷媒循環量を下げる必要があるが、本実施例においては、このとき膨張弁4の開度を絞るのではなく、強制冷媒循環ポンプ3の周波数を段階的に下げることを行う。このように膨張弁4より先に強制冷媒循環ポンプ3の回転数を下げることにより、冷媒循環量を減らして所望の蒸発器出口側過熱度としつつ、なおかつ、強制冷媒循環ポンプ3による消費電力を低減することが可能である。   FIG. 2 shows a flowchart for adjusting the refrigerant circulation amount during pump cycle operation. An upper limit value SH2 and a lower limit value SH1 are set for the outlet side superheat degree of the evaporator 5, and the refrigerant circulation amount is adjusted by comparing the set value with the calculated evaporator outlet side superheat degree SHe. . First, the case where the evaporator outlet side superheat degree SHe is lower than the lower limit value SH1 will be described. In this case, it is necessary to reduce the refrigerant circulation amount, but in this embodiment, the opening degree of the expansion valve 4 is reduced at this time. Instead, the frequency of the forced refrigerant circulation pump 3 is lowered stepwise. Thus, by reducing the rotational speed of the forced refrigerant circulation pump 3 before the expansion valve 4, while reducing the refrigerant circulation amount to the desired degree of superheat on the outlet side of the evaporator, the power consumption by the forced refrigerant circulation pump 3 is reduced. It is possible to reduce.

また、強制冷媒循環ポンプ3の回転数を下げていき、下限周波数に達した場合に、それでも蒸発器出口側過熱度SHeが下限値SH1より低い場合には、さらに冷媒循環量を下げる必要があることから、膨張弁4の開度を絞るように徐々に制御して冷媒循環量を減らす。蒸発器出口側過熱度SHeが下限値SH1より低い状態が継続すれば、膨張弁4の開度が下限に達するまで開度制御を行う。   Further, when the rotational speed of the forced refrigerant circulation pump 3 is decreased and the lower limit frequency is reached, if the evaporator outlet side superheating degree SHe is still lower than the lower limit value SH1, it is necessary to further reduce the refrigerant circulation amount. Therefore, the refrigerant circulation amount is reduced by gradually controlling the opening degree of the expansion valve 4 to be reduced. If the evaporator outlet side superheat degree SHe continues to be lower than the lower limit value SH1, the opening degree control is performed until the opening degree of the expansion valve 4 reaches the lower limit.

次に蒸発器出口側過熱度SHeが上限値SH2より高い場合について説明すると、この場合には冷媒循環量を上げる必要があるが、本実施例においては、このとき強制冷媒循環ポンプ3の周波数を上げるのではなく、まず膨張弁4の開度を大きくする開度制御を行う。なお、当然のことながら上限値SH2>下限値SH1の関係となっている。これにより冷媒循環量が増加するので、所望の蒸発器出口側過熱度としつつ、ポンプ3を駆動する必要がないことから、省電力にてこれを行うことが可能となる。   Next, the case where the evaporator outlet side superheat degree SHe is higher than the upper limit value SH2 will be described. In this case, it is necessary to increase the amount of refrigerant circulation. Instead of increasing, first, the opening degree control for increasing the opening degree of the expansion valve 4 is performed. As a matter of course, the relationship is upper limit value SH2> lower limit value SH1. As a result, the amount of refrigerant circulating increases, so that it is not necessary to drive the pump 3 while maintaining the desired degree of superheat on the outlet side of the evaporator, and this can be done with low power consumption.

また膨張弁4の開度が上限に達してもなお蒸発器出口側過熱度SHeが上限値SH2より高い状態が継続すると、このとき強制冷媒循環ポンプ3の周波数を下限周波数より徐々に高くしていき冷媒循環量を増やす。蒸発器出口側過熱度SHeが上限値SH2より高い状態が継続すれば、強制冷媒循環ポンプ3の周波数が上限に達するまで制御を行う。   If the evaporator outlet side superheat degree SHe continues to be higher than the upper limit value SH2 even when the opening degree of the expansion valve 4 reaches the upper limit, the frequency of the forced refrigerant circulation pump 3 is gradually increased from the lower limit frequency at this time. Increase the amount of refrigerant circulation. If the evaporator outlet side superheat degree SHe continues to be higher than the upper limit value SH2, control is performed until the frequency of the forced refrigerant circulation pump 3 reaches the upper limit.

以上に説明した通り、図3のような制御手順を踏むことで、低消費電力でのポンプサイクル運転が可能となり、強制冷媒循環ポンプ3と膨張弁4の双方を制御するため、適正化できる冷媒循環量の範囲を広げることができる。   As described above, the control procedure as shown in FIG. 3 enables the pump cycle operation with low power consumption, and controls both the forced refrigerant circulation pump 3 and the expansion valve 4, so that the refrigerant can be optimized. The range of circulation amount can be expanded.

図3は、実施例2の情報通信向け空気調和装置の冷凍サイクル構成図を示す図である。本実施例の空気調和装置は、圧縮機サイクル運転とポンプサイクル運転を切り替えて制御されるものであり、ポンプサイクル運転時に蒸発器5において冷媒量の循環量が過多となると、圧縮機1付近に液冷媒が溜まり、必要十分な冷媒が強制冷媒循環ポンプ3に流れず冷凍サイクル効率が悪くなる虞がある。   FIG. 3 is a diagram illustrating a refrigeration cycle configuration diagram of the air conditioner for information communication according to the second embodiment. The air conditioner according to the present embodiment is controlled by switching between the compressor cycle operation and the pump cycle operation. If the circulation amount of the refrigerant amount is excessive in the evaporator 5 during the pump cycle operation, the air conditioner is located near the compressor 1. Liquid refrigerant accumulates, and necessary and sufficient refrigerant does not flow to the forced refrigerant circulation pump 3, which may deteriorate the refrigeration cycle efficiency.

たとえば実施例1のように膨張弁4一つのみの開度制御により冷媒流量制御するのであれば、膨張弁4の開度を絞った際、少ない冷媒流量条件であった場合に蒸発器5の入口のパス配管に入る冷媒量が必ずしも均一でないので、蒸発器5内に流れる冷媒に偏った流量分布ができてしまう可能性がある。蒸発器5内部を通る冷媒に偏りのある流量分布が生じれば適切な熱交換量能力が得られない場合があるため過熱度のオーダーに信頼性がもてなくなる。また、圧縮機1に液冷媒が溜まれば圧縮機サイクル運転に切り替わった場合に、圧縮機吸入側に液冷媒が流れ、液圧縮が起こることで圧縮機の故障原因ともなり得る。   For example, if the refrigerant flow rate control is performed by controlling the opening degree of only one expansion valve 4 as in the first embodiment, when the opening degree of the expansion valve 4 is narrowed, the evaporator 5 Since the amount of refrigerant entering the inlet path pipe is not necessarily uniform, there is a possibility that a flow rate distribution that is biased toward the refrigerant flowing in the evaporator 5 may be formed. If an uneven flow distribution is generated in the refrigerant passing through the evaporator 5, an appropriate heat exchange capacity may not be obtained, and reliability in the order of the superheat degree is lost. Further, if liquid refrigerant accumulates in the compressor 1, when switching to the compressor cycle operation, the liquid refrigerant flows to the compressor suction side, and liquid compression occurs, which may cause a failure of the compressor.

そこで図3においては、図1の異なり、蒸発器5を複数の室内熱交換器(5−1、5−2、5−3)により構成し、冷媒循環量をより精度良く調整できるようにしたものである。またそれぞれの室内熱交換器(5−1、5−2、5−3)には、それぞれの冷媒循環量を制御するための膨張弁(4−1、4−2、4−3)を設置し、さらに各室内熱交換器毎に出口側の冷媒過熱度を算出するための温度センサ16、及び圧力センサ17をそれぞれの室内熱交換器毎に設けている。   Therefore, in FIG. 3, unlike FIG. 1, the evaporator 5 is constituted by a plurality of indoor heat exchangers (5-1, 5-2, 5-3) so that the refrigerant circulation amount can be adjusted with higher accuracy. Is. Each indoor heat exchanger (5-1, 5-2, 5-3) is provided with an expansion valve (4-1, 4-2, 4-3) for controlling the refrigerant circulation amount. Further, a temperature sensor 16 and a pressure sensor 17 for calculating the degree of refrigerant superheating on the outlet side are provided for each indoor heat exchanger for each indoor heat exchanger.

さらに全体の蒸発器5としての出口側過熱度を算出するために図1と同様に出口側に温度センサ14、圧力センサ15を設けている。それぞれの室内熱交換器(5−1、5−2、5−3)には目標出口側過熱度が設定され、この目標出口側過熱度は、これらが合わせて蒸発器全体としての目標出口側過熱度となるように決められる。なお、この目標出口過熱度は実施例1と同様に上限値と下限値とから決められる一定の範囲で設定され、その範囲内に出口側過熱度が収まるように制御を行うものである。   Further, a temperature sensor 14 and a pressure sensor 15 are provided on the outlet side in the same manner as in FIG. 1 in order to calculate the outlet side superheat degree as the entire evaporator 5. A target outlet side superheat degree is set for each indoor heat exchanger (5-1, 5-2, 5-3), and this target outlet side superheat degree is a target outlet side as a whole of the evaporator. It is determined to be the degree of superheat. The target outlet superheat degree is set in a certain range determined from the upper limit value and the lower limit value as in the first embodiment, and control is performed so that the outlet side superheat degree falls within the range.

次に具体的なそれぞれの室内熱交換器(5−1、5−2、5−3)の冷媒循環量制御について説明する。   Next, the refrigerant | coolant circulation amount control of each specific indoor heat exchanger (5-1, 5-2, 5-3) is demonstrated.

図4は蒸発器5の全体としての出口側過熱度、すなわち温度センサ14及び圧力センサ15により算出される出口側過熱度SHeが設定された下限値SH1より低い場合の制御について説明するための図である。この場合には冷媒循環量を少なくする必要があるが、本実施例では実施例1と同様にまず強制冷媒循環ポンプ3の回転速度を下げるように制御する。そして強制冷媒循環ポンプ3の回転速度が下限に達しても出口側過熱度SHeが設定された下限値SH1より低い場合には、このときそれぞれの膨張弁(4−1、4−2、4−3)を制御する。   FIG. 4 is a diagram for explaining the control when the outlet-side superheat degree of the evaporator 5 as a whole, that is, the outlet-side superheat degree She calculated by the temperature sensor 14 and the pressure sensor 15 is lower than the set lower limit value SH1. It is. In this case, it is necessary to reduce the refrigerant circulation amount, but in this embodiment, control is first performed so as to lower the rotational speed of the forced refrigerant circulation pump 3 as in the first embodiment. If the outlet side superheat degree SHe is lower than the set lower limit value SH1 even when the rotational speed of the forced refrigerant circulation pump 3 reaches the lower limit, each expansion valve (4-1, 4-2, 4- 3) is controlled.

ここで、それぞれの室内熱交換器(5−1、5−2、5−3)には上記したように目標出口側過熱度が設定されており、それぞれに設置された温度センサ16、及び圧力センサ17から出口側過熱度が算出できることから、出口側過熱度が設定された下限値より低くなっている室内熱交換器(たとえば5−1)の膨張弁(4−1)を絞る制御を行う。このように複数の室内熱交換器(5−1、5−2、5−3)で蒸発器5が構成され、それぞれの膨張弁(4−1、4−2、4−3)により制御を行うため、蒸発器内の能力むらを抑制でき、より精度良く冷媒循環量の調整を行うことができる。   Here, the target outlet side superheat degree is set in each indoor heat exchanger (5-1, 5-2, 5-3) as described above, and the temperature sensor 16 and the pressure installed in each are set. Since the outlet-side superheat degree can be calculated from the sensor 17, control is performed to throttle the expansion valve (4-1) of the indoor heat exchanger (for example, 5-1) where the outlet-side superheat degree is lower than the set lower limit value. . Thus, the evaporator 5 is comprised by several indoor heat exchangers (5-1, 5-2, 5-3), and control is carried out by each expansion valve (4-1, 4-2, 4-3). Therefore, it is possible to suppress the uneven performance in the evaporator and adjust the refrigerant circulation amount with higher accuracy.

図5は蒸発器5の全体としての出口側過熱度、すなわち温度センサ14及び圧力センサ15により算出される出口側過熱度SHeが設定された上限値SH2より高い場合の制御について説明するための図である。この場合においては、冷媒循環量を多くする必要があるが、本実施例では、強制冷媒循環ポンプ3の回転速度を高くする前に、それぞれの膨張弁(4−1、4−2、4−3)の開度を大きくする開度制御を行う。止、圧縮サイクル運転状態にて、強制冷媒循環ポンプ3の交換が可能とする構造である。   FIG. 5 is a diagram for explaining control when the outlet-side superheat degree of the evaporator 5 as a whole, that is, the outlet-side superheat degree She calculated by the temperature sensor 14 and the pressure sensor 15 is higher than a set upper limit value SH2. It is. In this case, it is necessary to increase the refrigerant circulation amount, but in this embodiment, before increasing the rotational speed of the forced refrigerant circulation pump 3, each expansion valve (4-1, 4-2, 4- Opening control for increasing the opening in 3) is performed. In this configuration, the forced refrigerant circulation pump 3 can be replaced in the stopped and compression cycle operation state.

なお、この場合には、それぞれの室内熱交換器(5−1、5−2、5−3)で出口側過熱度の上限値が設定されており、温度センサ16、及び圧力センサ17から出口側過熱度が算出できることから、出口側過熱度が設定された上限値より高くなっている室内熱交換器(たとえば5−1)の膨張弁(4−1)の開度を大きくする制御を行う。そして、全ての膨張弁(4−1、4−2、4−3)の開度が上限に達しても、なお出口側過熱度SHeが設定された上限値SH2より高い状態が継続した場合には、強制冷媒循環ポンプ3の回転速度を上げるように制御する。   In this case, the upper limit value of the outlet side superheat degree is set in each indoor heat exchanger (5-1, 5-2, 5-3), and the outlet from the temperature sensor 16 and the pressure sensor 17 is set. Since the side superheat degree can be calculated, control is performed to increase the opening degree of the expansion valve (4-1) of the indoor heat exchanger (for example, 5-1) in which the outlet side superheat degree is higher than the set upper limit value. . And even if the opening degree of all the expansion valves (4-1, 4-2, 4-3) reaches the upper limit, the state where the outlet side superheat degree SHe is still higher than the set upper limit value SH2 continues. Controls to increase the rotational speed of the forced refrigerant circulation pump 3.

以上に説明したように、本実施例の冷媒循環量制御では、蒸発器5を複数の室内熱交換器(5−1、5−2、5−3)で構成し、さらにそれぞれの膨張弁(4−1、4−2、4−3)の開度制御を行うことで能力むらを抑制でき、より精度良く冷媒循環量の調整を行うことができる。これにより、ポンプサイクル運転時に圧縮機1付近に液冷媒が溜ることを防止し、必要十分な冷媒が強制冷媒循環ポンプ3に流すことができるため、冷凍サイクル効率が悪くなることを防止することができる。また、圧縮機1に液冷媒が溜まることで液圧縮が起こることがないようにし、圧縮機の信頼性向上を図ることができる。   As described above, in the refrigerant circulation amount control according to the present embodiment, the evaporator 5 is configured by a plurality of indoor heat exchangers (5-1, 5-2, 5-3), and each expansion valve ( By performing the opening control of (4-1, 4-2, 4-3), it is possible to suppress unevenness in performance and adjust the refrigerant circulation amount with higher accuracy. As a result, liquid refrigerant can be prevented from accumulating near the compressor 1 during pump cycle operation, and necessary and sufficient refrigerant can flow to the forced refrigerant circulation pump 3, thereby preventing deterioration in refrigeration cycle efficiency. it can. Further, the liquid refrigerant does not accumulate due to the liquid refrigerant accumulating in the compressor 1, and the reliability of the compressor can be improved.

1 圧縮機
2 室外熱交換器(凝縮器)
3 強制冷媒循環ポンプ
4、4−1、4−2、4−3 膨張弁
5 室内熱交換気(蒸発器)
5−1、5−2、5−3 室内熱交換器(蒸発器)
6 室外機筐体
7 室内機筐体
8 室外送風機
9 余剰冷媒装置
10、15、17 圧力センサ
11、14、16 温度センサ
12 消音器(サイレンサ)
13、22、23 逆止弁
18 室内送風機
19 液阻止弁
20 チェックバルブ
21 ガス阻止弁
1 Compressor 2 Outdoor heat exchanger (condenser)
3 Forced refrigerant circulation pump 4, 4-1, 4-2, 4-3 Expansion valve 5 Indoor heat exchange air (evaporator)
5-1, 5-2, 5-3 Indoor heat exchanger (evaporator)
6 Outdoor unit housing 7 Indoor unit housing 8 Outdoor blower 9 Excess refrigerant device 10, 15, 17 Pressure sensor 11, 14, 16 Temperature sensor 12 Silencer
13, 22, 23 Check valve 18 Indoor blower 19 Liquid blocking valve 20 Check valve 21 Gas blocking valve

Claims (4)

冷媒を循環させる圧縮機サイクル運転を行う圧縮機と、
該圧縮機により圧縮された冷媒を凝縮する凝縮器と、
該凝縮器により凝縮された冷媒を膨張させる膨張弁と、
該膨張弁により膨張された冷媒を蒸発させる蒸発器と、
前記圧縮機が停止した状態で前記凝縮器から流れる液冷媒を前記膨張弁に送ることにより冷媒を循環させるポンプサイクル運転を行うポンプと、を備え、
前記ポンプサイクル運転を行う場合に、前記蒸発器の出口側過熱度が第1の設定過熱度以上の場合に前記膨張弁の開度を大きくし、該開度が上限に達しても前記蒸発器の出口側過熱度が前記第1の設定過熱度以上の場合に前記ポンプの回転数を増加させることを特徴とする空気調和装置。
A compressor that performs a compressor cycle operation for circulating the refrigerant;
A condenser for condensing the refrigerant compressed by the compressor;
An expansion valve for expanding the refrigerant condensed by the condenser;
An evaporator for evaporating the refrigerant expanded by the expansion valve;
A pump that performs a pump cycle operation to circulate the refrigerant by sending liquid refrigerant flowing from the condenser to the expansion valve while the compressor is stopped, and
When performing the pump cycle operation, if the degree of superheat on the outlet side of the evaporator is greater than or equal to a first set superheat degree, the opening of the expansion valve is increased, and the evaporator is not affected even when the opening reaches the upper limit. An air conditioner that increases the number of revolutions of the pump when the outlet side superheat degree is equal to or greater than the first set superheat degree.
請求項1に記載の空気調和装置において、
前記ポンプサイクル運転を行う場合に、前記蒸発器の出口側過熱度が前記第1の設定過熱度よりも低い第2の設定過熱度以下の場合に前記ポンプの回転数を低下させ、該回転数が下限に達しても前記蒸発器の出口側過熱度が前記第2の設定過熱度以下の場合に前記膨張弁の開度を小さくすることを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1,
When performing the pump cycle operation, when the outlet side superheat degree of the evaporator is equal to or lower than a second set superheat degree lower than the first set superheat degree, the rotation speed of the pump is reduced, and the rotation speed Even if the temperature reaches the lower limit, the opening degree of the expansion valve is reduced when the outlet side superheat degree of the evaporator is not more than the second set superheat degree.
請求項1又は2に記載の空気調和装置において、
前記蒸発器は、複数の熱交換器が並列に並べられることにより構成され、
該複数の熱交換器の入口側にはそれぞれ膨張弁が設置され、
前記ポンプサイクル運転を行う場合に、前記蒸発器の出口側過熱度が前記第1の設定過熱度以上の場合には、前記複数の膨張弁のうち、前記熱交換器の出口側過熱度が該熱交換器の設定過熱度以上となっているものの開度を大きくし、前記複数の膨張弁開度が上限に達しても前記蒸発器の出口側過熱度が前記第1の設定過熱度以上の場合に前記ポンプの回転数を増加させることを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 1 or 2,
The evaporator is configured by arranging a plurality of heat exchangers in parallel,
Expansion valves are respectively installed on the inlet sides of the plurality of heat exchangers,
When performing the pump cycle operation, if the outlet side superheat degree of the evaporator is equal to or higher than the first set superheat degree, the outlet side superheat degree of the heat exchanger among the plurality of expansion valves is Although the opening degree of the heat exchanger that is equal to or higher than the set superheat degree of the heat exchanger is increased, the superheat degree on the outlet side of the evaporator is equal to or higher than the first set superheat degree even if the plurality of expansion valve openings reach the upper limit. In this case, the air conditioner increases the rotational speed of the pump.
請求項2に記載の空気調和装置において、
前記蒸発器は、複数の熱交換器が並列に並べられることにより構成され、
該複数の熱交換器の入口側にはそれぞれ膨張弁が設置され、
前記ポンプサイクル運転を行う場合に、前記蒸発器の出口側過熱度が前記第2の設定過熱度以下の場合には、前記ポンプの回転数を低下させ、該回転数が下限に達しても前記蒸発器の出口側過熱度が前記第2の設定過熱度以下の場合に、前記複数の膨張弁のうち、前記熱交換器の出口側過熱度が該熱交換器の設定過熱度以下となっているものの開度を小さくすることを特徴とする空気調和装置。
In the air conditioning apparatus according to claim 2,
The evaporator is configured by arranging a plurality of heat exchangers in parallel,
Expansion valves are respectively installed on the inlet sides of the plurality of heat exchangers,
When performing the pump cycle operation, if the superheat degree on the outlet side of the evaporator is equal to or lower than the second set superheat degree, the rotational speed of the pump is decreased, and even if the rotational speed reaches the lower limit, When the outlet side superheat degree of the evaporator is less than or equal to the second set superheat degree, among the plurality of expansion valves, the outlet side superheat degree of the heat exchanger becomes less than or equal to the set superheat degree of the heat exchanger. An air conditioner characterized in that the opening degree of what is present is reduced.
JP2012029059A 2012-02-14 2012-02-14 Air conditioner Pending JP2013167368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012029059A JP2013167368A (en) 2012-02-14 2012-02-14 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012029059A JP2013167368A (en) 2012-02-14 2012-02-14 Air conditioner

Publications (1)

Publication Number Publication Date
JP2013167368A true JP2013167368A (en) 2013-08-29

Family

ID=49177906

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012029059A Pending JP2013167368A (en) 2012-02-14 2012-02-14 Air conditioner

Country Status (1)

Country Link
JP (1) JP2013167368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041987A (en) * 2014-08-15 2016-03-31 株式会社大気社 Compressor/pump switchable cooling device
JP2016050738A (en) * 2014-09-01 2016-04-11 株式会社大気社 Compressor/pump switching type cooling device
CN111448434A (en) * 2017-12-11 2020-07-24 维谛公司 Air conditioning system and method for cooling capacity adjustment by fixed pump operation and variable condenser fan operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016041987A (en) * 2014-08-15 2016-03-31 株式会社大気社 Compressor/pump switchable cooling device
JP2016050738A (en) * 2014-09-01 2016-04-11 株式会社大気社 Compressor/pump switching type cooling device
CN111448434A (en) * 2017-12-11 2020-07-24 维谛公司 Air conditioning system and method for cooling capacity adjustment by fixed pump operation and variable condenser fan operation
CN111448434B (en) * 2017-12-11 2022-06-17 维谛公司 Air conditioning system and method for cooling capacity adjustment by fixed pump operation and variable condenser fan operation

Similar Documents

Publication Publication Date Title
US11774154B2 (en) Systems and methods for controlling a refrigeration system
US10739045B2 (en) Systems and methods for controlling a refrigeration system
JP5639984B2 (en) Air conditioner
JP4885481B2 (en) Cooling device operation method
JP6119141B2 (en) Air conditioning system
WO2003095906A1 (en) Thermo siphon chiller refrigerator for use in cold district
CN111928419B (en) Control method and system for multi-split air conditioning unit
JP5927670B2 (en) Air conditioner
JP5667956B2 (en) Air conditioner
JP4167190B2 (en) Refrigeration system and operation method thereof
JP2007298235A (en) Heat source system and its control method
JP5246891B2 (en) Heat pump system
KR102507362B1 (en) Data center local cooling system with pre-cooling chiller
JP2010164270A (en) Multiple chamber type air conditioner
JP2013167368A (en) Air conditioner
JP6180165B2 (en) Air conditioner
JP5496161B2 (en) Refrigeration cycle system
JP2960218B2 (en) Control method of absorption air conditioner
JP2013083382A (en) Air conditioner
KR101649447B1 (en) Geothermal heat pump system using gas
JP2013124843A (en) Refrigeration cycle system
US11408651B2 (en) Heating, ventilation, air-conditioning, and refrigeration system with variable speed compressor
US20220074632A1 (en) Outdoor unit of air conditioner
JP2007147133A (en) Air conditioner
JP6169363B2 (en) Heat medium control device, cooling / heating system, temperature adjusting device, and method for adding cooling / heating system