JP5202666B2 - Refrigeration system - Google Patents

Refrigeration system Download PDF

Info

Publication number
JP5202666B2
JP5202666B2 JP2011035805A JP2011035805A JP5202666B2 JP 5202666 B2 JP5202666 B2 JP 5202666B2 JP 2011035805 A JP2011035805 A JP 2011035805A JP 2011035805 A JP2011035805 A JP 2011035805A JP 5202666 B2 JP5202666 B2 JP 5202666B2
Authority
JP
Japan
Prior art keywords
refrigerant
cooling coil
refrigerant liquid
distributor
forced circulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011035805A
Other languages
Japanese (ja)
Other versions
JP2012172920A (en
Inventor
正伸 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOYO. SS. CO., LTD.
Original Assignee
TOYO. SS. CO., LTD.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOYO. SS. CO., LTD. filed Critical TOYO. SS. CO., LTD.
Priority to JP2011035805A priority Critical patent/JP5202666B2/en
Publication of JP2012172920A publication Critical patent/JP2012172920A/en
Application granted granted Critical
Publication of JP5202666B2 publication Critical patent/JP5202666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は冷媒液強制循環式冷凍システムに関するものであり、特に分割可能な複数の冷却コイル系を設けた熱交換器を備える冷媒液強制循環式冷凍システムに関するものである。   The present invention relates to a refrigerant liquid forced circulation type refrigeration system, and more particularly to a refrigerant liquid forced circulation type refrigeration system including a heat exchanger provided with a plurality of divisional cooling coil systems.

一般に、冷媒液強制循環式冷凍システムの熱交換器は、互いに平行に配置された複数の冷却コイルと、該各冷却コイルに接する多数の伝熱用フィンと、各冷却コイルの一端に接続されたヘッダータイプの分流器とを備え、冷媒液ポンプから分流器に流入した冷媒液を各冷却コイルに分流し、その各冷却コイル内を流通する冷媒液と外部の空気との間の熱交換を、伝熱用フィンを介して行うようにしたものが知られている(例えば、特許文献1参照)。   Generally, a heat exchanger of a refrigerant liquid forced circulation refrigeration system is connected to a plurality of cooling coils arranged in parallel to each other, a large number of heat transfer fins in contact with each cooling coil, and one end of each cooling coil. A header type flow divider, and the refrigerant liquid flowing into the flow divider from the refrigerant liquid pump is divided into each cooling coil, and heat exchange between the refrigerant liquid flowing through each cooling coil and external air is performed. What is performed via the heat transfer fin is known (for example, refer to Patent Document 1).

また、従来、複数の冷媒通路を設けた冷却コイルを上下または左右、あるいは前後に配置し、上下または左右、あるいは前後に配置された冷却コイルの一方、すなわち上側または下側、左側または右側、前側または後側だけを運転する、またはその両方同時に運転する等の方法により、冷却コイルを分割状態にして温度制御を行う方法が知られている例えば、特許文献2参照。   Conventionally, a cooling coil provided with a plurality of refrigerant passages is arranged vertically or horizontally or front and back, and one of the cooling coils arranged vertically or horizontally or front and rear, that is, upper side or lower side, left side or right side, front side Alternatively, a method is known in which only the rear side is operated, or both are operated at the same time, and the temperature control is performed by dividing the cooling coil into a divided state.

ここで、従来の冷凍システムにおける冷却コイルの制御では、冷却コイル毎に制御を行っている。また、その冷媒コイルは、冷媒コイル毎にまとめられて設置している。したがって、各冷却コイルが例えば上下に配設されている場合で、上側または下側に配設された片方の冷却コイルを停止させたとき、上側または下側に配設された片方の冷却コイルだけで冷却することになる。このため、熱交換器の上側または下側にまとめられた冷却コイルだけで運転することになるので、負荷が少ないと冷媒の流れに偏りが生じて出口空気に温度ムラが発生するとともに、蒸発温度が低下し、結果として能力低下となる。また、停止されていない下側または上側の冷却コイルは、停止された冷却コイルの分も補完しながら運転することになる場合もある。この場合、容量以上の運転になることもあり、十分な運転能力を得ることができない。これは、各冷却コイルが例えば左右に配設されている場合も同じである。   Here, in the control of the cooling coil in the conventional refrigeration system, the control is performed for each cooling coil. Moreover, the refrigerant coil is installed for each refrigerant coil. Therefore, when each cooling coil is arranged vertically, for example, when one cooling coil arranged on the upper side or the lower side is stopped, only one cooling coil arranged on the upper side or the lower side is stopped. It will be cooled with. For this reason, since the operation is performed only with the cooling coils arranged on the upper side or the lower side of the heat exchanger, if the load is small, the refrigerant flow is biased and temperature unevenness occurs in the outlet air, and the evaporation temperature As a result, the capacity is reduced. Further, the lower or upper cooling coil that is not stopped may be operated while complementing the amount of the stopped cooling coil. In this case, the operation may exceed the capacity, and a sufficient driving ability cannot be obtained. This is the same also when each cooling coil is arrange | positioned at right and left, for example.

さらに、各冷却コイルが例えば前後、すなわち熱交換される空気が流れる方向に配設されている場合では、上流側に配設された前側冷却コイルを停止させたとき、該後側冷却コイルが液バックを起こすおそれがある。   Furthermore, when each cooling coil is disposed, for example, in the front-rear direction, that is, in the direction in which heat-exchanged air flows, when the front cooling coil disposed on the upstream side is stopped, the rear cooling coil is liquid. May cause back.

特開2001−133078号。JP2001-133308A. 特開平7−280338号。JP-A-7-280338.

上述したように、従来の冷凍システムにおける冷却コイルの制御は、冷却コイル毎にまとめられて設置され、該冷却コイル毎に制御を行うようにしているので、冷却コイルを上下または左右に配置した場合において、上側または下側のうち、片方の冷却コイルだけを運転させた場合、あるいは左側または右側のうち、片方の冷却コイルだけを運転させた場合に、温度ムラが発生して能力低下を引き起こす。また、冷却コイルを前後に配置した場
合で、後側の冷却コイルだけを運転させた場合は、後側冷却コイルが液バック運転となる。したがって、これらの問題を考慮すると、台数制御による省エネ運転が難しいという問題点があった。
As described above, the control of the cooling coil in the conventional refrigeration system is arranged for each cooling coil and is controlled for each cooling coil. Therefore, when the cooling coils are arranged vertically or horizontally In this case, when only one cooling coil is operated on the upper side or the lower side, or when only one cooling coil is operated on the left side or the right side, temperature unevenness occurs and the performance is reduced. Further, when the cooling coils are arranged at the front and rear, and only the rear cooling coil is operated, the rear cooling coil is in the liquid back operation. Therefore, when these problems are taken into consideration, there is a problem that energy-saving operation by unit control is difficult.

そこで、複数個の冷却コイル系における冷媒流通路の配置を、温度分布を考慮した配置とすることにより、出口空気の温度ムラを無くすとともに、冷凍機の能力低下を抑え、かつ、省エネ運転を可能にする冷媒液強制循環式冷凍システムを提供するために解決すべき技術的課題が生じてくるのであり、本発明はこの課題を解決することを目的とする。   Therefore, by arranging the refrigerant flow passages in the multiple cooling coil systems in consideration of the temperature distribution, the temperature unevenness of the outlet air can be eliminated, the capacity reduction of the refrigerator can be suppressed, and energy-saving operation can be performed. The technical problem which should be solved in order to provide the refrigerant | coolant liquid forced circulation type refrigeration system made arises, and this invention aims at solving this problem.

本発明は上記目的を達成するために提案されたものであり、請求項1記載の発明は、冷媒圧縮機と、凝縮器と、膨張弁と、低圧受液器と、冷却コイルを持つ熱交換器と、該熱交換器に冷媒液を供給する冷媒液ポンプとを含む冷凍サイクルにより、冷凍若しくはヒートポンプサイクルを形成し、前記冷却コイルは、互いに平行な直線部と曲線部を交互に設けて蛇行状を成した複数の冷媒流通路を有してなる複数個の冷却コイル系を備えた冷媒液強制循環式冷凍システムにおいて、前記複数個の冷却コイル系は、前記熱交換器の上流側にて冷媒配管から複数本に分岐した各経路に夫々設けられ、前記各冷却コイル系の前記各冷媒流通路を、前記熱交換する空気の流れと直交する方向にそれぞれ互い違いにずらすとともに、前記各冷却コイル系の前記直線部を互いに前記空気の流れ方向に所定ピッチ分ずつずらして配設してなり、かつ、該冷却コイル系に対する冷媒の流量を独立させて制御可能な制御弁を前記各冷却コイル系に夫々に設け、前記各冷却コイル系の前記冷媒流通路の入口側に、前記冷媒液ポンプからの冷媒を前記各冷媒流通路に対して均等に液分配するディストリビュータを接続したことを特徴とする冷媒液強制循環式冷凍システムを提供する。 The present invention has been proposed to achieve the above object, and the invention according to claim 1 is a heat exchange having a refrigerant compressor, a condenser, an expansion valve, a low-pressure receiver, and a cooling coil. And a refrigeration cycle including a refrigerant liquid pump for supplying a refrigerant liquid to the heat exchanger to form a refrigeration or heat pump cycle, and the cooling coil meanders by alternately providing straight and curved portions parallel to each other. In the refrigerant liquid forced circulation refrigeration system having a plurality of cooling coil systems having a plurality of refrigerant flow passages formed in a shape, the plurality of cooling coil systems are located upstream of the heat exchanger. Each of the cooling coil systems is provided in each of a plurality of paths branched from the refrigerant pipe, and the refrigerant flow passages of the cooling coil systems are alternately shifted in a direction perpendicular to the air flow to be heat-exchanged. Before the system It will be arranged by shifting the flow direction of the air from each other straight portions by a predetermined pitch minutes, and a controllable control valve is independent of the flow rate of the coolant for the cooling coil system respectively to the respective cooling coil system A refrigerant liquid forcing is provided, wherein a distributor for evenly distributing the refrigerant from the refrigerant liquid pump to each refrigerant flow passage is connected to the inlet side of the refrigerant flow passage of each cooling coil system A circulating refrigeration system is provided.

この構成によれば、熱交換する空気の流れ方向に対して各冷却コイル系の冷媒流通路が交互に、かつ、直線部を互いに空気の流れ方向に所定ピッチ分ずつずらして配設されることにより、各冷媒流通路は、それぞれ熱交換する空気が流れる通路内全体にほぼ均一に分散して配置される。これにより、各冷却コイル系を切り換えて運転をしても、出口付近での空気が場所によって温度が異なると言うような温度ムラが発生するのを最小限に抑えることができ、冷凍機の台数制御も可能になる。また、各冷却コイル系の各冷媒通路にそれぞれ供給される冷媒は、ディストリビュータにより均一に液分配される。 According to this configuration, the refrigerant flow passages of the respective cooling coil systems are alternately arranged with respect to the flow direction of the air to be heat-exchanged, and the straight portions are arranged to be shifted from each other by a predetermined pitch in the flow direction of the air. Thus, the refrigerant flow passages are arranged almost uniformly in the entire passage through which the air for heat exchange flows. As a result, even when the cooling coil systems are switched and operated, it is possible to minimize the occurrence of temperature unevenness that the temperature of the air near the outlet varies depending on the location. Control is also possible. In addition, the refrigerant supplied to each refrigerant passage of each cooling coil system is uniformly distributed by the distributor.

請求項2記載の発明は、前記各冷却コイル系と前記ディストリビュータとの間を、キャピラリーチューブを介して接続してなることを特徴とする請求項1記載の冷媒液強制循環式冷凍システムを提供する。 The invention according to claim 2 provides the refrigerant liquid forced circulation type refrigeration system according to claim 1, wherein each cooling coil system and the distributor are connected via a capillary tube. .

この構成によれば、冷却コイル系の各冷媒通路に供給される冷媒を、ディストリビュータとキャピラリーチューブで均一に分流して供給することができる。 According to this configuration, the refrigerant supplied to each refrigerant passage of the cooling coil system can be divided and supplied uniformly by the distributor and the capillary tube.

請求項3記載の発明は、前記ディストリビュータの内部には、該ディストリビュータ内に流入した冷媒がぶつかる突起部を設けて環状の空間部が形成されていることを特徴とする請求項1または2記載の冷媒液強制循環式冷凍システムを提供する。 The invention according to claim 3 is characterized in that an annular space portion is formed in the distributor by providing a protrusion portion against which the refrigerant flowing into the distributor collides. A refrigerant liquid forced circulation refrigeration system is provided.

この構成によれば、前記冷媒は、ディストリビュータ内部の突起部に一度ぶつかることで、該冷媒の偏流の影響が打ち消されるので、冷媒流出口から各々流出される冷媒を均一に分流させることができる。 According to this configuration, since the refrigerant once hits the protrusion inside the distributor, the influence of the drift of the refrigerant is canceled out, so that each refrigerant flowing out from the refrigerant outlet can be evenly divided.

請求項4記載の発明は、求項1,2または3記載の構成において、上記冷却コイル系毎に前記制御弁を設けて、前記冷却コイル毎に冷媒の流れを独立させて制御できるように構成した冷媒液強制循環式冷凍システムを提供する。 The invention of claim 4, wherein, in the structure of the Motomeko 1, wherein, provided the control valve for each of the cooling coil system, so that it can be controlled independently is allowed the flow of the refrigerant in each of the cooling coil A refrigerant liquid forced circulation refrigeration system is provided.

この構成によれば、冷却コイル系毎に冷媒の流れを独立させて制御することができるので、各冷却コイル系における冷媒の流れの制御をより細かく行うことができる。 According to this configuration, since the refrigerant flow can be controlled independently for each cooling coil system, the refrigerant flow in each cooling coil system can be more finely controlled.

請求項1記載の発明は、冷却コイル系毎に温度分布を考慮し、熱交換する空気が流れる通路内全体に各冷却コイル系の冷媒流通路がそれぞれほぼ均一に分散して配置されるようにして、各冷却コイル系の冷媒流通路をその熱交換する空気が流れる通路内に設けているので、出口付近での空気温度が場所によって異なるという温度ムラが発生するのを最小限に抑えることができる。これにより、冷凍能力を改善することができる。また、低負荷時に、冷却コイル系毎に停止する制御、すなわち台数制御が可能となり、省エネ化に寄与することができる。また、冷却系毎に制御弁で流量をコントロールすることも可能となる。さらに、ディストリビュータにより、冷媒が各冷却コイル系側へ意図しない割合で分流するのを防止することができる。これにより、各空気出口での温度のムラがさらに解消されるとともに、各冷却コイル系のガスロックの発生や、冷凍機油の溜まりを無くして冷凍能力を改善することができる。 According to the first aspect of the present invention, the temperature distribution is taken into consideration for each cooling coil system, and the refrigerant flow passages of the respective cooling coil systems are arranged almost uniformly distributed in the entire passage through which the air for heat exchange flows. In addition, since the refrigerant flow passages of the respective cooling coil systems are provided in the passages through which the heat exchange air flows, it is possible to minimize the occurrence of temperature unevenness in which the air temperature near the outlet varies depending on the location. it can. Thereby, the refrigerating capacity can be improved. In addition, when the load is low, control for stopping each cooling coil system, that is, control of the number of units can be performed, which can contribute to energy saving. It is also possible to control the flow rate with a control valve for each cooling system. Further, the distributor can prevent the refrigerant from diverting to the respective cooling coil systems at an unintended ratio. As a result, the temperature unevenness at each air outlet is further eliminated, and the refrigerating capacity can be improved by eliminating the occurrence of gas locks in each cooling coil system and the accumulation of refrigerating machine oil.

請求項2記載の発明は、ディストリビュータの冷媒流出口から流出される冷媒を、キャピラリーチューブを通して各冷却コイル系側の冷媒通路内に供給することにより、このキャタピラーチューブで冷媒の圧力をさらに均一にすることができるので、請求項1記載の発明の効果に加えて、冷媒が意図しない割合で分流するのをさらに防止することができる。 In the invention according to claim 2 , by supplying the refrigerant flowing out from the refrigerant outlet of the distributor into the refrigerant passage on the cooling coil system side through the capillary tube, the pressure of the refrigerant is made more uniform by this caterpillar tube. Therefore, in addition to the effect of the invention of claim 1, it is possible to further prevent the refrigerant from being diverted at an unintended ratio.

請求項3記載の発明は、ディストリビュータ内に流入した冷媒が突起部に一度ぶつかることで、冷媒の偏流の影響を打ち消すことができるので、請求項1または2記載の発明の効果に加えて、冷媒流出口から各々流出される冷媒をより均一に分流させることができる。 In the invention described in claim 3, since the refrigerant flowing into the distributor once strikes the protrusion, the influence of the drift of the refrigerant can be counteracted. Therefore, in addition to the effect of the invention described in claim 1 or 2, The refrigerant flowing out from the outlet can be more evenly divided.

請求項4記載の発明は、請求項4記載の発明は、冷却コイル系毎に冷媒の流れを独立させて制御することができるので、請求項1,2または3記載の発明の効果に加えて、制御をより細かく行うことができ、さらに省エネ化に寄与する。   In the invention according to claim 4, since the invention according to claim 4 can control the refrigerant flow independently for each cooling coil system, in addition to the effect of the invention according to claim 1, 2 or 3 , Control can be performed more finely and contribute to energy saving.

本発明を適用した冷媒液強制循環式冷凍システムの実施例を示す概略構成図。BRIEF DESCRIPTION OF THE DRAWINGS The schematic block diagram which shows the Example of the refrigerant liquid forced circulation type refrigeration system to which this invention is applied. 同上冷媒液強制循環式冷凍システムにおける冷却コイル系の一配置例をディストリビュータと共に示す模式図。The schematic diagram which shows one example of arrangement | positioning of the cooling coil system in a refrigerant liquid forced circulation type refrigerating system same as the above with a distributor. 図2に示した同上冷媒液強制循環式冷凍システムにおける冷却コイル系とディストリビュータの接続構造を説明する結線図。The connection diagram explaining the connection structure of the cooling coil system and distributor in the same refrigerant liquid forced circulation type refrigeration system shown in FIG. 同上冷媒液強制循環式冷凍システムにおけるディストリビュータの側面図。The side view of the distributor in a refrigerant liquid forced circulation type refrigerating system same as the above. 図4のA−A断面図。AA sectional drawing of FIG. 同上冷媒液強制循環式冷凍システムにおける冷却コイルの変形例を説明する模式図。The schematic diagram explaining the modification of the cooling coil in a refrigerant liquid forced circulation type refrigerating system same as the above. 図6に示した同上冷媒液強制循環式冷凍システムにおける冷却コイルとディストリビュータの接続構造を説明する結線図。The connection diagram explaining the connection structure of the cooling coil and distributor in the same refrigerant liquid forced circulation type refrigeration system shown in FIG.

本発明は複数個の冷却コイル系を、複数個の冷却コイル系における冷媒流通路の配置を、温度分布を考慮した配置とすることにより、出口空気の温度ムラを無くすとともに、冷凍機の能力低下を抑え、かつ、省エネ運転を可能にする冷媒液強制循環式冷凍システムを提供するという目的を達成するために、冷媒圧縮機と、凝縮器と、膨張弁と、低圧受液器と、冷却コイルを持つ熱交換器と、該熱交換器に冷媒液を供給する冷媒液ポンプとを含む冷凍サイクルにより、冷凍若しくはヒートポンプサイクルを形成し、前記冷却コイルは、互いに平行な直線部と曲線部を交互に設けて蛇行状を成した複数の冷媒流通路を有してなる複数個の冷却コイル系を備えた冷媒液強制循環式冷凍システムにおいて、前記複数個の冷却コイル系は、前記熱交換器の上流側にて冷媒配管から複数本に分岐した各経路に夫々設けられ、前記各冷却コイル系の前記各冷媒流通路を、前記熱交換する空気の流れと直交する方向にそれぞれ互い違いにずらすとともに、前記各冷却コイル系の前記直線部を互いに前記空気の流れ方向に所定ピッチ分ずつずらして配設してなり、かつ、該冷却コイル系に対する冷媒の流量を独立させて制御可能な制御弁を前記各冷却コイル系に夫々に設け、前記各冷却コイル系の前記冷媒流通路の入口側に、冷媒を前記各冷媒流通路に対して均等に液分配するディストリビュータを接続したことにより実現した。 The present invention eliminates the temperature unevenness of the outlet air and reduces the capacity of the refrigerator by arranging the plurality of cooling coil systems in the arrangement of the refrigerant flow passages in the plurality of cooling coil systems in consideration of the temperature distribution. In order to achieve the purpose of providing a refrigerant liquid forced circulation type refrigeration system that can suppress energy consumption and enable energy saving operation, a refrigerant compressor, a condenser, an expansion valve, a low-pressure receiver, and a cooling coil are provided. A refrigeration cycle including a heat exchanger having a refrigerant temperature and a refrigerant liquid pump that supplies a refrigerant liquid to the heat exchanger forms a refrigeration or heat pump cycle, and the cooling coil alternates between straight and curved portions parallel to each other. comprising a plurality of refrigerant flow paths form a serpentine shape provided at a plurality of refrigerant liquid forced circulation refrigerating system with a cooling coil system, said plurality of cooling coil system, the heat exchanger Respectively provided in each path branched into a plurality of the refrigerant pipe on the upstream side, the said respective refrigerant flow paths of the cooling coil system, together with the shifted respectively staggered in the direction perpendicular to the flow of air to the heat exchanger, the result was arranged by shifting by a predetermined pitch minutes the linear portion in the flow direction of the air from each other in the cooling coil system and said controllable control valve is independent of the flow rate of the coolant for the cooling coil system This is realized by providing each cooling coil system with a distributor for equally distributing the refrigerant to each refrigerant flow passage on the inlet side of the refrigerant flow passage of each cooling coil system .

以下、本発明の実施形態による冷媒液強制循環式冷凍システムの好適な実施例を、自動車の環境試験を屋内で行うための環境試験装置に適用した場合として、図面に基づいて説明する。   Hereinafter, a preferred example of a refrigerant liquid forced circulation type refrigeration system according to an embodiment of the present invention will be described based on the drawings as a case where it is applied to an environmental test apparatus for performing an environmental test of an automobile indoors.

図1は本発明に係る冷媒液強制循環式冷凍システムを示す概略構成図である。同図において、該冷凍システム10は、冷媒圧縮機11、凝縮器12、高圧受液器13、膨張弁14、低圧受液器15及び蒸発器16等により構成された循環冷媒回路を有している。   FIG. 1 is a schematic configuration diagram showing a refrigerant liquid forced circulation refrigeration system according to the present invention. In the figure, the refrigeration system 10 has a circulating refrigerant circuit including a refrigerant compressor 11, a condenser 12, a high-pressure receiver 13, an expansion valve 14, a low-pressure receiver 15, an evaporator 16, and the like. Yes.

さらに詳述すると、前記蒸発器16と前記低圧受液器15を接続している冷媒配管17aには、該低圧受液器15内の冷媒液を該蒸発器16内の冷却コイル16aにディストリビュータ18を介して供給する冷媒液ポンプ19が設けられている。また、該蒸発器16内の冷却コイル16aで熱交換された冷媒は、ヘッダー25と冷媒配管17bを通って前記低圧受液器15内に戻される構造になっている。また、前記冷媒圧縮機11は2台以上設けられている。   More specifically, in the refrigerant pipe 17a connecting the evaporator 16 and the low-pressure receiver 15, the refrigerant liquid in the low-pressure receiver 15 is distributed to the cooling coil 16a in the evaporator 16 to the distributor 18. There is provided a refrigerant liquid pump 19 that is supplied via the. Further, the refrigerant heat-exchanged by the cooling coil 16a in the evaporator 16 is returned to the low-pressure receiver 15 through the header 25 and the refrigerant pipe 17b. Two or more refrigerant compressors 11 are provided.

前記低圧受液器15と前記冷媒圧縮機11を接続している冷媒配管17cには、調整弁20が設けられており、前記高圧受液器13と前記低圧受液器15を接続している冷媒配管17fには、電磁弁21及び前記膨張弁14が設けられている。また、前記低圧受液器15と前記高圧受液器13には、前記低圧受液器15内と前記高圧受液器13内の冷媒液の量をそれぞれ検出する液面センサ22,23が設けられている。   The refrigerant pipe 17c that connects the low-pressure receiver 15 and the refrigerant compressor 11 is provided with a regulating valve 20, and connects the high-pressure receiver 13 and the low-pressure receiver 15. An electromagnetic valve 21 and the expansion valve 14 are provided in the refrigerant pipe 17f. The low-pressure receiver 15 and the high-pressure receiver 13 are provided with liquid level sensors 22 and 23 for detecting the amount of refrigerant liquid in the low-pressure receiver 15 and the high-pressure receiver 13, respectively. It has been.

前記蒸発器16の冷却コイル16aは、図2及び図3に示すように、第1冷却コイル系36aと第2冷却コイル系36bの、2つの冷却コイル系でなる。また、前記各冷却コイル系36a,36bは、それぞれ銅あるいはアルミ製のチューブを互いに平行な直線部37と曲線部38を交互に設けて蛇行状に屈曲され、その内部を冷媒が流通するようにして形成された4本の冷媒流通路39a,39b,39c,39dを有してなる。また、その各冷媒流通路39a,39b,39c,39dを形成しているチューブには、該チューブに接する多数の伝熱用フィン図示せずが取り付けられている。   As shown in FIGS. 2 and 3, the cooling coil 16a of the evaporator 16 includes two cooling coil systems, a first cooling coil system 36a and a second cooling coil system 36b. Each of the cooling coil systems 36a and 36b is formed by bending a copper or aluminum tube in a meandering manner by alternately providing linear portions 37 and curved portions 38 which are parallel to each other, so that the refrigerant flows through the inside thereof. The four refrigerant flow passages 39a, 39b, 39c, and 39d are formed. Further, a large number of heat transfer fins (not shown) in contact with the tubes are attached to the tubes forming the refrigerant flow passages 39a, 39b, 39c, and 39d.

そして、前記第1冷却コイル系36aの冷媒流通路39a〜39dと前記第2冷却コイル36bの冷媒流通路39a〜39dは、各冷却コイル系36a,36b毎に運転が停止されたときの温度分布を考慮し、熱交換する空気の流れ方向図中に矢印29で示す方向と直交する方向にそれぞれ互い違いに等間隔ずつずらして順に配設しているとともに、前記各冷却コイル系36a,36bの各冷媒流通路39a〜39dを熱交換する前記空気の流れ方向29に対し平行で、かつ該各冷却コイル系36a,36bの前記直線部37を互いに前記空気の流れ方向29に所定ピッチ分本例では3分の2ピッチ分ずつずらして配設している。したがって、この蒸発器16にあっては、熱交換する空気が流れる通路内全体に対して、前記各冷却コイル系36a,36bの各冷媒流通路39a〜39dがほぼ均一に配置された状態になる。   The refrigerant flow passages 39a to 39d of the first cooling coil system 36a and the refrigerant flow passages 39a to 39d of the second cooling coil 36b are temperature distributions when the operation is stopped for each of the cooling coil systems 36a and 36b. In consideration of the above, the cooling coil systems 36a and 36b are arranged in order in the flow direction diagram of the air to be heat-exchanged by alternately shifting them at equal intervals in the direction orthogonal to the direction indicated by the arrow 29. In this example, the refrigerant flow passages 39a to 39d are parallel to the air flow direction 29 for exchanging heat, and the linear portions 37 of the cooling coil systems 36a and 36b are arranged in the air flow direction 29 with a predetermined pitch. They are shifted by 2/3 pitches. Therefore, in the evaporator 16, the refrigerant flow passages 39a to 39d of the cooling coil systems 36a and 36b are arranged substantially uniformly with respect to the entire passage through which the heat exchange air flows. .

また、前記第1冷却コイル系36aと前記第2冷却コイル系36bの前記各冷媒流通路39a〜39dの冷媒入力側には、それぞれキャピラリーチューブ27,27…を介して前記ディストリビュータ18,18及び制御弁40,40が接続され、冷媒出力側にはそれぞれ前記冷媒配管17bを介して前記低圧受液器15に繋がる前記ヘッダー25,25が接続されている。
Further, the distributors 18 and 18 and the control are respectively connected to the refrigerant input sides of the refrigerant flow passages 39a to 39d of the first cooling coil system 36a and the second cooling coil system 36b via capillary tubes 27, 27. The valves 40 and 40 are connected, and the headers 25 and 25 connected to the low-pressure receiver 15 are connected to the refrigerant output side via the refrigerant pipe 17b.

前記ディストリビュータ18は、図4及び図5に示すように、一端側に1つの冷媒流入口18aを設け、他端側に複数個本例では4個の冷媒流出口18b,18b…を設けている。また、前記ディストリビュータ18の内部には、前記冷媒流入口18aと対向する部位に、冷媒流出側から該冷媒流入口18a内に向かって突出している円錐状の突起部18cを設けて環状に形成された空間部28が形成されている。そして、該空間部28の冷媒流出側に略等間隔で前記冷媒流出口18b,18b…を設け、該冷媒流出口18b,18b…にそれぞれ前記キャピラリーチューブ27,27…の一端を接続している。   As shown in FIGS. 4 and 5, the distributor 18 is provided with one refrigerant inlet 18a on one end side and a plurality of refrigerant outlets 18b, 18b... In this example on the other end side. . Further, the distributor 18 is formed in an annular shape by providing a conical protrusion 18c protruding from the refrigerant outflow side into the refrigerant inlet 18a at a portion facing the refrigerant inlet 18a. A space portion 28 is formed. The refrigerant outlets 18b, 18b,... Are provided at substantially equal intervals on the refrigerant outflow side of the space portion 28, and one ends of the capillary tubes 27, 27 ... are connected to the refrigerant outlets 18b, 18b, respectively. .

前記各キャピラリーチューブ27,27…は、それぞれ内径0.7〜2.5mm程度の銅製毛細管であり、その他端側はそれぞれ前記各冷却コイル系36a,36bにおける各冷媒通路39a,39b,39c,39dの冷媒流入口に接続されている。   The capillary tubes 27, 27... Are copper capillaries having an inner diameter of about 0.7 to 2.5 mm, and the other end sides are respectively refrigerant passages 39a, 39b, 39c, 39d in the cooling coil systems 36a, 36b. Connected to the refrigerant inlet.

したがって、このように構成された前記ディストリビュータ18では、前記冷媒流入口18aから前記空間部27内に流入されて来た冷媒は、前記円錐状の突起部18cに一度ぶつかり、該突起部18cにより冷媒の偏流の影響が打ち消される。そして、この偏流の影響を打ち消すことにより、前記冷媒流出口18b,18b…から各々流出される冷媒を均一に分流させることができる。なお、前記空間部27内の形状は、冷媒の偏流の影響を打ち消すことができるものであれば、前記円錐状の突起部18cを設けた形状でなくてもよい。   Therefore, in the distributor 18 configured in this way, the refrigerant that has flowed into the space 27 from the refrigerant inflow port 18a once hits the conical protrusion 18c, and the protrusion 18c causes the refrigerant to flow. The effect of current drift is negated. Then, by canceling the influence of this drift, the refrigerant flowing out from the refrigerant outlets 18b, 18b,... Can be evenly divided. The shape of the space 27 may not be a shape provided with the conical protrusion 18c as long as the influence of the drift of the refrigerant can be canceled.

また、前記ディストリビュータ18の各冷媒流出口18b,18b…には、それぞれ前記冷却コイル16a,16a…を直接接続させずに、冷媒が前記キャピラリーチューブ27を通して該冷却コイル26側に供給されるようにしているので、前記ディストリビュータ18の前記冷媒流出口18b,18b…から流出されて前記冷却コイル16a,16a…に流入する冷媒の分配を、該キャピラリーチューブ27によっても安定化させることができる。   Further, the cooling coils 16a, 16a,... Are not directly connected to the refrigerant outlets 18b, 18b,... Of the distributor 18, so that the refrigerant is supplied to the cooling coil 26 side through the capillary tube 27. Therefore, the distribution of the refrigerant flowing out from the refrigerant outlets 18b, 18b... Of the distributor 18 and flowing into the cooling coils 16a, 16a.

次に、このように構成された冷凍システム10の全体の動作を、図1を用いて説明する。まず、前記高圧受液器13より前記冷媒配管17fに排出された冷媒液は、前記膨張弁14により減圧気化させて上部より前記低圧受液器15内に導入される。   Next, the overall operation of the refrigeration system 10 configured as described above will be described with reference to FIG. First, the refrigerant liquid discharged from the high-pressure receiver 13 to the refrigerant pipe 17 f is vaporized under reduced pressure by the expansion valve 14 and introduced into the low-pressure receiver 15 from above.

また、前記低圧受液器15内の気化冷媒は、前記調整弁20を介して前記圧縮機11内に吸入され、かつ、圧縮される。その圧縮ガスは、前記冷媒配管17dを通って前記凝縮器12に送られ、該凝縮器12内で冷却水24と熱交換が行われて凝縮液化し、ガス状態から液状態に変化をする。   Further, the vaporized refrigerant in the low-pressure receiver 15 is sucked into the compressor 11 via the regulating valve 20 and compressed. The compressed gas is sent to the condenser 12 through the refrigerant pipe 17d, and heat is exchanged with the cooling water 24 in the condenser 12 to condense and liquefy, and change from a gas state to a liquid state.

前記凝縮器12内で液化された冷媒液は、前記冷媒配管17eを介して前記高圧受液器13に上部から導入される。   The refrigerant liquid liquefied in the condenser 12 is introduced into the high-pressure liquid receiver 13 from above through the refrigerant pipe 17e.

一方、前記蒸発器16は、前記冷媒液ポンプ19が駆動されると、前記低圧受液器15から前記冷媒配管17aを介して低圧の冷媒液が送られて来て、この冷媒液が前記制御弁40,40と前記ディストリビュータ18,18及び前記キャピラリーチューブ27,27…を介して前記第1冷却コイル系36aの冷媒流通路39a,39b,39c,39d及び前記第2冷却コイル系36bの冷媒流通路39a,39b,39c,39d…にそれぞれ均等に液分配されて供給される。   On the other hand, when the refrigerant liquid pump 19 is driven, the evaporator 16 is supplied with a low-pressure refrigerant liquid from the low-pressure receiver 15 via the refrigerant pipe 17a, and this refrigerant liquid is controlled by the control. The refrigerant flow passages 39a, 39b, 39c, 39d of the first cooling coil system 36a and the refrigerant flow of the second cooling coil system 36b through the valves 40, 40, the distributors 18, 18 and the capillary tubes 27, 27. The channels 39a, 39b, 39c, 39d... Are equally distributed and supplied.

そして、該冷媒液は、前記蒸発器16内の前記第1冷却コイル系36a及び前記第2冷却コイル系36bを通過するときに蒸発され、その気化熱で前記蒸発器16を通って被空
調室内に流される空気を冷却する。また、該蒸発器16内で液状態からガス状態に変化をして冷却に寄与した冷媒ガスは、前記ヘッダー25,25から前記冷媒配管17bを通って前記低圧受液器15内に上部から導入される。
The refrigerant liquid is evaporated when it passes through the first cooling coil system 36a and the second cooling coil system 36b in the evaporator 16, and the heat of vaporization passes through the evaporator 16 with the heat of vaporization. Cool the air flowing into the. Further, the refrigerant gas that has changed from the liquid state to the gas state in the evaporator 16 and contributed to cooling is introduced from the top into the low-pressure liquid receiver 15 from the headers 25 and 25 through the refrigerant pipe 17b. Is done.

したがって、この実施例による冷凍システムでは、必要に応じて上記動作を繰り返すことにより、前記蒸発器16と前記凝縮器12とで被空調室内を所要の温度、例えば−50℃〜50℃の範囲の温度制御を1液冷媒で行うことができる。   Therefore, in the refrigeration system according to this embodiment, the above operation is repeated as necessary, so that the evaporator 16 and the condenser 12 have a predetermined temperature, for example, in the range of −50 ° C. to 50 ° C. Temperature control can be performed with one liquid refrigerant.

また、省エネ制御を行う場合は、制御弁40,40を閉止させて前記第1冷却コイル系36aまたは前記第2冷却コイル系36bに流す冷媒を停止する。この場合、蒸発器16では、冷却コイル系36a,36b毎に運転が停止されたときの温度分布を考慮し、前記第1冷却コイル系36aの冷媒流通路39a〜39dと前記第2冷却コイル36bの冷媒流通路39a〜39dは、熱交換する空気の流れ方向29と直交する方向にそれぞれ互い違いに等間隔ずつずらして順に配設され、また前記各冷却コイル系36a,36bの各冷媒流通路39a〜39dを熱交換する前記空気の流れ方向29に対し平行で、かつ該各冷却コイル系36a,36bの前記直線部37を互いに前記空気の流れ方向29に所定ピッチ分ずつずらして配設している。この配置形態により、前記各冷却コイル系36a,36bの各冷媒流通路39a〜39dは、熱交換する空気が流れる通路内全体に対してほぼ均一、特に空気が流れる通路内を正面側から見た場合に、その面全体にほぼ均一に配置された状態になっているので、出口付近での空気の温度が場所によって異なると言うような温度ムラが発生するのを最小限に抑えることができる。これにより、温度ムラがなくなり、冷凍能力を改善することができる。また、冷却コイル系毎の制御、すなわち台数制御が可能となり、省エネ化に寄与することができる。   When energy saving control is performed, the control valves 40 and 40 are closed to stop the refrigerant flowing through the first cooling coil system 36a or the second cooling coil system 36b. In this case, in the evaporator 16, the refrigerant flow passages 39a to 39d of the first cooling coil system 36a and the second cooling coil 36b are considered in consideration of the temperature distribution when the operation is stopped for each of the cooling coil systems 36a and 36b. The refrigerant flow passages 39a to 39d are alternately arranged at equal intervals in the direction orthogonal to the flow direction 29 of the air to be heat-exchanged, and the refrigerant flow passages 39a of the cooling coil systems 36a and 36b. -39d are parallel to the air flow direction 29 for exchanging heat, and the linear portions 37 of the cooling coil systems 36a and 36b are shifted from each other by a predetermined pitch in the air flow direction 29. Yes. With this arrangement, the refrigerant flow passages 39a to 39d of the cooling coil systems 36a and 36b are substantially uniform with respect to the entire passage through which air for heat exchange flows, in particular, the inside of the passage through which air flows is viewed from the front side. In this case, since it is in a state of being arranged almost uniformly over the entire surface, it is possible to minimize the occurrence of temperature unevenness such that the temperature of the air near the outlet varies from place to place. Thereby, temperature nonuniformity is eliminated and the refrigeration capacity can be improved. Further, control for each cooling coil system, that is, control of the number of units becomes possible, which can contribute to energy saving.

図6及び図7は、前記蒸発器16の冷却コイル16aの変形例を示すものである。この変形例では、図2及び図3に示した冷却コイル16aが、第1冷却コイル系36aと第2冷却コイル系36bの、2つの冷却コイル系で構成していたのに対して、第1冷却コイル系36aと第2冷却コイル系36bと第3冷却系コイル36cの、3つの冷却コイル系で構成したものであり、他の構成は図2及び図3に示した冷却コイル16aと同じである。したがって、図1乃至図5に示した実施例と対応する部材には図1乃至図5と同じ符号を付して重複説明を省略する。   6 and 7 show modifications of the cooling coil 16a of the evaporator 16. FIG. In this modification, the cooling coil 16a shown in FIGS. 2 and 3 is composed of two cooling coil systems, a first cooling coil system 36a and a second cooling coil system 36b. The cooling coil system 36a, the second cooling coil system 36b, and the third cooling system coil 36c are configured by three cooling coil systems, and the other configurations are the same as those of the cooling coil 16a shown in FIGS. is there. Accordingly, members corresponding to those in the embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals as those in FIGS.

図6及び図7において、冷却コイル系16aの各冷却コイル系36a,36b,36cは、それぞれ銅あるいはアルミ製のチューブを互いに平行な直線部37と曲線部38を交互に設けて蛇行状に屈曲され、その内部を冷媒が流通するようにして形成された冷媒流通路39a,39b,39cを有してなる。また、その各冷媒流通路39a,39b,39cを形成しているチューブには、該チューブに接する多数の伝熱用フィン図示せずが取り付けられている。   6 and 7, each cooling coil system 36a, 36b, 36c of the cooling coil system 16a is bent in a meandering manner by alternately providing a straight portion 37 and a curved portion 38 parallel to each other of tubes made of copper or aluminum. The refrigerant flow passages 39a, 39b, and 39c are formed so that the refrigerant flows through the inside. In addition, a large number of heat transfer fins (not shown) in contact with the tubes are attached to the tubes forming the refrigerant flow passages 39a, 39b, and 39c.

そして、前記第1冷却コイル系36aの冷媒流通路39a〜39cと前記第2冷却コイル36bの冷媒流通路39a〜39cと前記第3冷却コイル36cの冷媒流通路39a〜39cも、図1〜図5に示した上記実施例の構造と同様に、各冷却コイル系36a,36b,36c毎に運転が停止されたときの温度分布を考慮し、熱交換する空気の流れ方向29と直交する方向にそれぞれ互い違いに等間隔ずつずらして順に配設しているとともに、前記各冷却コイル系36a,36b,36cの各冷媒流通路39a〜39cを熱交換する前記空気の流れ方向29に対し平行で、かつ該各冷却コイル系36a,36b,36cの前記直線部37を互いに前記空気の流れ方向29に所定ピッチ分本例では3分の1ピッチ分ずつずらして配設している。したがって、この蒸発器16にあっても、熱交換する空気が流れる面全体に対して、前記各冷却コイル系36a,36b,36cの各冷媒流通路39a〜39cがほぼ均一、特に空気が流れる通路内を正面側から見た場合に、面全体にほぼ均一に配置された状態になる。   The refrigerant flow passages 39a to 39c of the first cooling coil system 36a, the refrigerant flow passages 39a to 39c of the second cooling coil 36b, and the refrigerant flow passages 39a to 39c of the third cooling coil 36c are also shown in FIGS. As in the structure of the above-described embodiment shown in FIG. 5, the temperature distribution when the operation is stopped for each of the cooling coil systems 36a, 36b, 36c is taken into consideration, in a direction orthogonal to the air flow direction 29 for heat exchange. Each of the cooling coil systems 36a, 36b, 36c is parallel to the air flow direction 29 in which heat is exchanged between the refrigerant flow passages 39a to 39c. The linear portions 37 of the cooling coil systems 36a, 36b, 36c are arranged so as to be shifted from each other in the air flow direction 29 by a predetermined pitch by a third pitch in this example. Therefore, even in the evaporator 16, the refrigerant flow passages 39a to 39c of the cooling coil systems 36a, 36b, and 36c are substantially uniform with respect to the entire surface through which heat exchanged air flows, in particular, the passage through which air flows. When the inside is viewed from the front side, it is in a state of being arranged almost uniformly over the entire surface.

また、前記第1冷却コイル系36aと前記第2冷却コイル系36bと前記第3冷却コイル系36cの前記各冷媒流通路39a〜39cの冷媒入力側には、それぞれキャピラリーチューブ27,27…を介して前記ディストリビュータ18,18,18が接続され、冷媒出力側にはそれぞれ前記冷媒配管17bを介して前記低圧受液器15に繋がる前記ヘッダー25,25が接続されている。   Further, the refrigerant input sides of the refrigerant flow passages 39a to 39c of the first cooling coil system 36a, the second cooling coil system 36b, and the third cooling coil system 36c are respectively connected via capillary tubes 27, 27. The distributors 18, 18, and 18 are connected, and the headers 25 and 25 connected to the low-pressure receiver 15 are connected to the refrigerant output side via the refrigerant pipe 17b.

したがって、この変形例の冷却コイル16aの構造を使用して、前記第1冷却コイル系36aまたは前記第2冷却コイル系36b、あるいは前記第3冷却コイル系36cに流す冷媒を停止した場合も、前記各冷却コイル系36a,36b,36cの各冷媒流通路39a〜39cは、熱交換する空気が流れる面全体に対してほぼ均一に配置された状態になっているので、出口付近での空気の温度が場所によって異なるというような温度ムラが発生するのを最小限に抑えることができることになる。この変形例では、冷却コイル系が3つの場合について説明したが、4つ以上の場合も同様して構成することができ、また同様の効果が得られる。   Therefore, when the cooling coil 16a structure of this modification is used and the coolant flowing through the first cooling coil system 36a, the second cooling coil system 36b, or the third cooling coil system 36c is stopped, Since the refrigerant flow passages 39a to 39c of the cooling coil systems 36a, 36b, and 36c are substantially uniformly arranged over the entire surface through which the heat exchange air flows, the temperature of the air near the outlet It is possible to minimize the occurrence of temperature unevenness that varies depending on the location. In this modification, the case where there are three cooling coil systems has been described. However, the case where there are four or more cooling coil systems can be similarly configured, and the same effect can be obtained.

なお、本発明は、これ以外にも本発明の精神を逸脱しない限り種々の改変を為すことができ、そして、本発明が該改変されたものに及ぶことは当然である。   It should be noted that the present invention can be modified in various ways without departing from the spirit of the present invention, and the present invention naturally extends to the modified ones.

以上説明したように、本発明は環境試験装置における被空調室の空気調和に限ることなく、広く一般の冷凍システムにも応用できる。   As described above, the present invention is not limited to the air conditioning of the air-conditioned room in the environmental test apparatus, and can be applied to a general refrigeration system.

10 冷凍システム
11 冷媒圧縮機
12 凝縮器
13 高圧受液器
14 膨張弁
15 低圧受液器
16 蒸発器
16a 冷却コイル
17a 冷媒配管
17b 冷媒配管
17c 冷媒配管
17e 冷媒配管
18 ディストリビュータ
27 キャピラリーチューブ
28 空間部
29 熱交換する空気の流れ方向
36a 第1冷却コイル系
36b 第2冷却コイル系
37 直線部
38 曲線部
39a〜39d 冷媒流通路
40 制御弁
DESCRIPTION OF SYMBOLS 10 Refrigeration system 11 Refrigerant compressor 12 Condenser 13 High pressure receiver 14 Expansion valve 15 Low pressure receiver 16 Evaporator 16a Cooling coil 17a Refrigerant piping 17b Refrigerant piping 17c Refrigerant piping 17e Refrigerant piping 18 Distributor 27 Capillary tube 28 Space 29 Heat exchange air flow direction 36a First cooling coil system 36b Second cooling coil system 37 Linear portion 38 Curved portions 39a to 39d Refrigerant flow passage 40 Control valve

Claims (4)

冷媒圧縮機と、凝縮器と、膨張弁と、低圧受液器と、冷却コイルを持つ熱交換器と、該熱交換器に冷媒液を供給する冷媒液ポンプとを含む冷凍サイクルにより、冷凍若しくはヒートポンプサイクルを形成し、
前記冷却コイルは、互いに平行な直線部と曲線部を交互に設けて蛇行状を成した複数の冷媒流通路を有してなる複数個の冷却コイル系を備えた冷媒液強制循環式冷凍システムにおいて、
前記複数個の冷却コイル系は、前記熱交換器の上流側にて冷媒配管から複数本に分岐した各経路に夫々設けられ、
前記各冷却コイル系の前記各冷媒流通路を、前記熱交換する空気の流れと直交する方向にそれぞれ互い違いにずらすとともに、前記各冷却コイル系の前記直線部を互いに前記空気の流れ方向に所定ピッチ分ずつずらして配設してなり、かつ、該冷却コイル系に対する冷媒の流量を独立させて制御可能な制御弁を前記各冷却コイル系に夫々に設け、
前記各冷却コイル系の前記冷媒流通路の入口側に、前記冷媒液ポンプからの冷媒を前記各冷媒流通路に対して均等に液分配するディストリビュータを接続したことを特徴とする冷媒液強制循環式冷凍システム。
The refrigeration cycle includes a refrigerant compressor, a condenser, an expansion valve, a low-pressure receiver, a heat exchanger having a cooling coil, and a refrigerant liquid pump that supplies the refrigerant liquid to the heat exchanger. Forming a heat pump cycle ,
In the refrigerant liquid forced circulation refrigeration system, the cooling coil includes a plurality of cooling coil systems having a plurality of meandering refrigerant passages provided alternately with straight and curved portions parallel to each other . ,
The plurality of cooling coil systems are respectively provided in each path branched into a plurality of pipes from the refrigerant pipe on the upstream side of the heat exchanger,
The refrigerant flow passages of the cooling coil systems are staggered in a direction orthogonal to the air flow to be heat-exchanged, and the linear portions of the cooling coil systems are mutually spaced by a predetermined pitch in the air flow direction. Each of the cooling coil systems is provided with a control valve that is arranged so as to be shifted by minutes and that can be controlled independently of the flow rate of the refrigerant to the cooling coil system
A refrigerant liquid forced circulation system characterized in that a distributor that evenly distributes the refrigerant from the refrigerant liquid pump to each refrigerant flow path is connected to the inlet side of the refrigerant flow path of each cooling coil system. Refrigeration system.
前記各冷却コイル系と前記ディストリビュータとの間を、キャピラリーチューブを介して接続してなることを特徴とする請求項1記載の冷媒液強制循環式冷凍システム。The refrigerant liquid forced circulation type refrigeration system according to claim 1, wherein each cooling coil system and the distributor are connected via a capillary tube. 前記ディストリビュータの内部には、該ディストリビュータ内に流入した冷媒がぶつかる突起部を設けて環状の空間部が形成されていることを特徴とする請求項1または2記載の冷媒液強制循環式冷凍システム The refrigerant liquid forced circulation type refrigeration system according to claim 1 or 2, wherein an annular space portion is formed in the distributor by providing a protruding portion against which the refrigerant flowing into the distributor collides . 前記冷却コイル系毎に前記制御弁を設けて、前記冷却コイル毎に冷媒の流れを独立させて制御できるように構成したことを特徴とする請求項1,2または3記載の冷媒液強制循環式冷凍システム。 4. The refrigerant liquid forced circulation type according to claim 1, wherein the control valve is provided for each cooling coil system so that the flow of the refrigerant can be controlled independently for each cooling coil. Refrigeration system.
JP2011035805A 2011-02-22 2011-02-22 Refrigeration system Active JP5202666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011035805A JP5202666B2 (en) 2011-02-22 2011-02-22 Refrigeration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011035805A JP5202666B2 (en) 2011-02-22 2011-02-22 Refrigeration system

Publications (2)

Publication Number Publication Date
JP2012172920A JP2012172920A (en) 2012-09-10
JP5202666B2 true JP5202666B2 (en) 2013-06-05

Family

ID=46975990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011035805A Active JP5202666B2 (en) 2011-02-22 2011-02-22 Refrigeration system

Country Status (1)

Country Link
JP (1) JP5202666B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103234298B (en) * 2013-04-28 2015-07-08 南京师范大学 Refrigerating circuit for air conditioning refrigeration device performance testing device
WO2014199484A1 (en) * 2013-06-13 2014-12-18 三菱電機株式会社 Coolant distribution unit and air conditioning device using same
JP6329786B2 (en) * 2014-03-13 2018-05-23 新晃工業株式会社 Air conditioner heat exchanger
CN107576211A (en) * 2017-09-11 2018-01-12 广东芬尼克兹节能设备有限公司 A kind of cross flow heat exchanger and Multi-stage heating heat pump
EP3832232B1 (en) * 2020-06-11 2022-11-09 Beijing Baidu Netcom Science And Technology Co., Ltd. Refrigerating system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60251350A (en) * 1984-05-29 1985-12-12 株式会社東芝 Air conditioner
JPH07117325B2 (en) * 1989-02-06 1995-12-18 ホシザキ電機株式会社 Refrigerant pressure equalizing distribution device in refrigeration system
JPH037854A (en) * 1989-06-02 1991-01-16 Mitsubishi Electric Corp Freezer
JP3036227B2 (en) * 1991-10-21 2000-04-24 富士電機株式会社 Vending machine cooling method
JPH07229655A (en) * 1994-02-17 1995-08-29 Sanyo Electric Co Ltd Refrigerant flow rate controller for vapor compression type refrigerator
JPH07310988A (en) * 1994-05-16 1995-11-28 Sanden Corp Multi-tubular heat exchanger
JP3423207B2 (en) * 1998-02-09 2003-07-07 クボタ空調株式会社 Heat exchanger coil structure
JP4080605B2 (en) * 1998-08-26 2008-04-23 株式会社前川製作所 Full liquid cooler

Also Published As

Publication number Publication date
JP2012172920A (en) 2012-09-10

Similar Documents

Publication Publication Date Title
US10107570B2 (en) Stacking-type header, heat exchanger, and air-conditioning apparatus
EP3021067B1 (en) Laminated header, heat exchanger, air conditioning device, and method for connecting plate-shaped body and pipe of laminated header
US9791189B2 (en) Heat exchanger and refrigeration cycle apparatus
WO2012147336A1 (en) Refrigeration cycle device
JP5202666B2 (en) Refrigeration system
EP3059542B1 (en) Laminated header, heat exchanger, and air-conditioner
US8387410B2 (en) Air cooling type chiller
US10670311B2 (en) Heat exchanger
JP6329786B2 (en) Air conditioner heat exchanger
US10041710B2 (en) Heat exchanger and air conditioner
JP2006336947A (en) Refrigerating cycle device
JP2017044428A (en) Heat exchanger, split flow component and heat exchanging device
WO2014149482A1 (en) Modular coil for air cooled chillers
JP5889745B2 (en) Refrigeration cycle apparatus, and refrigeration apparatus and air conditioner equipped with the refrigeration cycle apparatus
WO2020179651A1 (en) Cooling module for cooling vehicle battery
JP5202665B2 (en) Refrigeration system
JP2012172918A (en) Refrigerant liquid forced circulation type refrigeration system
CN113167512B (en) Heat exchanger and refrigeration cycle device
US10197312B2 (en) Heat exchanger with reduced length distributor tube
JP2010223464A (en) Evaporator
JP6234849B2 (en) Air conditioner heat exchanger
EP3423764A1 (en) Heating and cooling system, and heat exchanger for the same
KR20120113070A (en) Evaporator of air conditioner system for vehicle
KR102076679B1 (en) A heat exchanger and a natural coolant circulation air conditioner
JP2019211138A (en) Air conditioner

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5202666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250