JPH07229655A - Refrigerant flow rate controller for vapor compression type refrigerator - Google Patents

Refrigerant flow rate controller for vapor compression type refrigerator

Info

Publication number
JPH07229655A
JPH07229655A JP2040094A JP2040094A JPH07229655A JP H07229655 A JPH07229655 A JP H07229655A JP 2040094 A JP2040094 A JP 2040094A JP 2040094 A JP2040094 A JP 2040094A JP H07229655 A JPH07229655 A JP H07229655A
Authority
JP
Japan
Prior art keywords
refrigerant
branch
degree
temperature
pipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2040094A
Other languages
Japanese (ja)
Inventor
Takeshi Kawai
毅 川合
Masashi Yasuda
昌司 安田
Ryoichi Sekiya
遼一 関矢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2040094A priority Critical patent/JPH07229655A/en
Publication of JPH07229655A publication Critical patent/JPH07229655A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To so control a refrigerant flow rate to branched refrigerant tubes that refrigerant states of outlets of the tubes become equivalent by controlling switching degree of an expansion valve for the tubes based on a mean value and unevenness of discharge refrigerant temperatures of the respective tubes. CONSTITUTION:A controller 201 stores refrigerant temperatures detected by indoor branch tube temperature detecting means 102 as branch refrigerant tube temperatures in a temperature data memory 203 at the time of cooling, and stores refrigerant temperatures detected by outdoor branch tube temperature detecting means 104 as branch tube refrigerant tube outlet temperatures in the memory 203 at the time of heating. A branch refrigerant state calculator 204 calculates a mean value and a dispersion value of the respective outlet temperatures based on the data stored in the memory 203. The controller 201 controls switching degrees of branch tube expansion valves 101, 103 based on this calculated result.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、その内部において冷媒
配管が複数本に分岐配管されている蒸発器を有する蒸気
圧縮式冷凍機に関し、特にその分岐冷媒配管の冷媒流量
制御に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a vapor compression refrigerator having an evaporator in which a plurality of refrigerant pipes are branched, and more particularly to control of a refrigerant flow rate of the branched refrigerant pipes.

【0002】[0002]

【従来の技術】従来、室内空調に利用する蒸気圧縮式冷
凍機では、室内温度が設定温度となるように制御され、
その際、冷凍機自身が所有する冷房能力を最大限に活用
し、且つ冷凍機内部の冷媒状態を安定に保つために、冷
媒流量の制御が行われている。例えば、冷房の場合では
冷凍機が室内から熱を蒸発器の内部の冷媒に吸収せしめ
て、その熱を凝縮器から室外に放出しており、室内温度
が設定温度より高いとき圧縮機を運転し、室内温度が設
定温度より低くなったとき圧縮機の運転を停止して室内
外の熱交換を停止している。
2. Description of the Related Art Conventionally, in a vapor compression refrigerator used for indoor air conditioning, the indoor temperature is controlled to a set temperature,
At this time, the refrigerant flow rate is controlled in order to maximize the cooling capacity of the refrigerator itself and to keep the refrigerant state inside the refrigerator stable. For example, in the case of cooling, the refrigerator absorbs heat from the room into the refrigerant inside the evaporator and releases the heat from the condenser to the outside, and the compressor is operated when the room temperature is higher than the set temperature. When the indoor temperature becomes lower than the set temperature, the compressor operation is stopped and the indoor and outdoor heat exchange is stopped.

【0003】そして、冷凍機の冷媒流量を制御する手段
として蒸発器、及び凝縮器の間に設けられた電子膨張弁
の開閉度を制御することが行われている。このための制
御方法として、蒸発器出口における過熱度が制御目標値
に収束するように電子膨張弁の開閉度制御する過熱度制
御など種々存在する。以下に、この従来の過熱度制御を
行わせた蒸気圧縮式冷凍機について、以下に具体的に説
明する。
As a means for controlling the refrigerant flow rate of the refrigerator, the opening / closing degree of an electronic expansion valve provided between the evaporator and the condenser is controlled. There are various control methods for this purpose, such as superheat degree control in which the degree of opening and closing of the electronic expansion valve is controlled so that the degree of superheat at the evaporator outlet converges to a control target value. Hereinafter, the vapor compression refrigerator in which the conventional superheat degree control is performed will be specifically described below.

【0004】図6に、蒸気圧縮式冷凍機の冷媒回路の概
念図を示す。1は室内熱交換器、2は室外熱交換器、3
は圧縮機、4は電子膨張弁であり、電子膨張弁4は例え
ばステッピングモータにより電動式でその開閉度が調整
可能となっている。5は室外機、6は室内機である。室
外機5と室内機6の内部の実線7は、冷媒が内部を移動
する冷媒配管を示しており、点線8はその冷媒配管の内
で特に室外機5と室内機6とを接続するための配管を示
している。9は室内熱交換器1、及び室外熱交換器2と
の間に冷媒配管7を介して接続される圧縮機3の接続を
運転状態に応じて切り換える四方弁である。従って、四
方弁9の切り換えにより冷房運転時には、室内熱交換器
1から四方弁9、圧縮機3、四方弁9、室外熱交換器2
の順に冷媒が流れるように接続され、暖房運転時には、
室外熱交換器2から四方弁9、圧縮機3、四方弁9、室
内熱交換器1の順に冷媒が流れるように接続されてい
る。ここで、この図は冷房運転の場合を示しており、冷
媒は配管の中を図示矢印の方向に流れている。
FIG. 6 shows a conceptual diagram of a refrigerant circuit of a vapor compression refrigerator. 1 is an indoor heat exchanger, 2 is an outdoor heat exchanger, 3
Is a compressor, 4 is an electronic expansion valve, and the electronic expansion valve 4 is electrically driven by, for example, a stepping motor, and its opening / closing degree can be adjusted. Reference numeral 5 is an outdoor unit, and 6 is an indoor unit. A solid line 7 inside the outdoor unit 5 and the indoor unit 6 shows a refrigerant pipe through which the refrigerant moves, and a dotted line 8 is for connecting the outdoor unit 5 and the indoor unit 6 in the refrigerant pipe. Shows piping. Reference numeral 9 is a four-way valve that switches the connection of the compressor 3 connected to the indoor heat exchanger 1 and the outdoor heat exchanger 2 via the refrigerant pipe 7 according to the operating state. Therefore, during the cooling operation by switching the four-way valve 9, the indoor heat exchanger 1 to the four-way valve 9, the compressor 3, the four-way valve 9, the outdoor heat exchanger 2
Are connected so that the refrigerant flows in that order, and during heating operation,
The four-way valve 9, the compressor 3, the four-way valve 9 and the indoor heat exchanger 1 are connected in this order from the outdoor heat exchanger 2 so that the refrigerant flows. Here, this figure shows the case of the cooling operation, and the refrigerant flows in the direction of the arrow in the drawing in the pipe.

【0005】そして、冷房運転時には、室内熱交換器1
は蒸発器として、室外熱交換器2は凝縮器として動作
し、暖房運転時にはその逆となる。10は冷房運転時に蒸
発器として動作する室内熱交換器1の冷媒流入側に設け
られたサーミスタからなる第1温度検出手段、11は冷房
運転時の室内熱交換器1の冷媒吐出側に設けられたサー
ミスタからなる第2温度検出手段、12は暖房運転時に蒸
発器として動作する室外熱交換器2の冷媒流入側に設け
られたサーミスタからなる第3温度検出手段、13は暖房
運転時の室外熱交換器2の冷媒吐出側に設けられたサー
ミスタからなる第4温度検出手段である。
Then, during the cooling operation, the indoor heat exchanger 1
As an evaporator and the outdoor heat exchanger 2 as a condenser, and vice versa during heating operation. Reference numeral 10 is a first temperature detecting means including a thermistor provided on the refrigerant inflow side of the indoor heat exchanger 1 that operates as an evaporator during the cooling operation, and 11 is provided on the refrigerant discharge side of the indoor heat exchanger 1 during the cooling operation. The second temperature detecting means consisting of a thermistor, 12 is the third temperature detecting means consisting of a thermistor provided on the refrigerant inflow side of the outdoor heat exchanger 2 that operates as an evaporator during the heating operation, and 13 is the outdoor heat during the heating operation. The fourth temperature detecting means is a thermistor provided on the refrigerant discharge side of the exchanger 2.

【0006】従って、冷房運転時には第1、第2温度検
出手段10,11により、蒸発器として動作する室内熱交換
器1出口の冷媒の過熱度を算出している。一般に、過熱
度とは冷媒の飽和蒸気温度からの温度上昇分を指すが、
通常動作中では蒸発器の冷媒流入側の冷媒温度が飽和蒸
気温度から略一定温度低い値を有するため、蒸発器の前
後での冷媒温度を検出し、その温度差に基づいて蒸発器
出口における過熱度を算出している。同様に、暖房運転
時には第3、第4温度検出手段12,13により、蒸発器と
して動作する室外熱交換器2出口の冷媒の過熱度を算出
している。
Therefore, during the cooling operation, the superheat degree of the refrigerant at the outlet of the indoor heat exchanger 1 which operates as an evaporator is calculated by the first and second temperature detecting means 10 and 11. Generally, the degree of superheat refers to the temperature rise from the saturated vapor temperature of the refrigerant,
During normal operation, the refrigerant temperature on the refrigerant inflow side of the evaporator has a value that is approximately a constant temperature lower than the saturated steam temperature.Therefore, the refrigerant temperature before and after the evaporator is detected, and the overheat at the evaporator outlet is detected based on the temperature difference. The degree is calculated. Similarly, during heating operation, the superheat degree of the refrigerant at the outlet of the outdoor heat exchanger 2 that operates as an evaporator is calculated by the third and fourth temperature detecting means 12 and 13.

【0007】図7に、蒸発器内部における理想的な冷媒
温度変化図を示す。ここで、横軸は蒸発器内部に配設さ
れている冷媒配管の冷媒流入口からの距離、縦軸はその
距離に位置する冷媒の温度を示している。図から分かる
ように、冷媒温度は冷媒が外気から熱を奪うことによ
り、冷媒流入口から離れるに連れ徐々に上昇し(図中a
領域)、冷媒温度が変化しない状態(図中b領域)を経
た後、蒸発器の冷媒吐出口まで冷媒温度が再び上昇する
(図中c領域)。
FIG. 7 shows an ideal refrigerant temperature change diagram inside the evaporator. Here, the horizontal axis indicates the distance from the refrigerant inlet of the refrigerant pipe arranged inside the evaporator, and the vertical axis indicates the temperature of the refrigerant located at that distance. As can be seen from the figure, the refrigerant temperature gradually rises as the refrigerant takes away heat from the outside air and moves away from the refrigerant inlet (a in the figure).
Region), after passing through the state where the refrigerant temperature does not change (region b in the figure), the refrigerant temperature rises again to the refrigerant discharge port of the evaporator (region c in the figure).

【0008】即ち、図中a領域では、冷媒が液体状態の
ままで温度上昇しており、その圧力下での飽和蒸気温度
に達すると、図中b領域に示すように温度上昇せず、液
体から気体への蒸発が行われ、冷媒として気体状態のも
のと液体状態のものが混ざりあった気液2相状態とな
る。そして、冷媒がすべて気体状態となると、図中c領
域に示すように再び冷媒温度が上昇することになる。こ
こで、蒸発器出口での冷媒吐出温度が飽和蒸気温度より
高い場合、即ち蒸発器出口で冷媒が完全に気体状態にな
っていることを、一般に過熱度がとれているいう。
That is, in the area a in the figure, the temperature of the refrigerant rises in the liquid state, and when it reaches the saturated vapor temperature under that pressure, the temperature does not rise as shown in the area b in the figure, and Is evaporated into a gas, and a refrigerant in a gas state and a liquid state are mixed to form a gas-liquid two-phase state. When all the refrigerant is in the gas state, the refrigerant temperature rises again as shown in the area c in the figure. Here, when the refrigerant discharge temperature at the outlet of the evaporator is higher than the saturated vapor temperature, that is, the refrigerant is completely in the gaseous state at the outlet of the evaporator, it is generally said that the degree of superheat is taken.

【0009】そして、過熱度制御では、蒸発器出口にお
ける過熱度が、冷凍機自身が所有する冷凍能力を最大限
に活用し、且つ冷凍機内部の冷媒状態を最も安定に保つ
ことになる制御目標値に収束するように、電子膨張弁4
の開閉度を制御し、冷媒循環による熱交換動作を行わせ
ている。
In superheat control, the control target is that the superheat at the evaporator outlet maximizes the refrigerating capacity of the refrigerator itself and keeps the refrigerant state inside the refrigerator most stable. Electronic expansion valve 4 so that it converges to the value
The degree of opening and closing is controlled to perform the heat exchange operation by circulating the refrigerant.

【0010】また、従来の蒸気圧縮式冷凍機では、外気
に触れる配管表面積を大きくし、外気と冷媒との熱交換
効率を向上させるため、蒸発器を、その蒸発器の前後で
1本であった冷媒配管が内部で複数本の冷媒配管に分岐
され、個々の冷媒配管をジグザクに配設させた構造とし
ている。図8に、冷房運転時に蒸発器として動作する室
内熱交換器1内部の概略構造図を示す。尚、図8では冷
房運転時に室内熱交換器1の冷媒流入口72で1本であっ
た冷媒配管7が、4本の冷媒配管71に分かれ、冷媒吐出
口73でまた1本の冷媒配管7に戻る構成とした場合を表
している。
Further, in the conventional vapor compression refrigerator, in order to increase the surface area of the pipe exposed to the outside air and improve the heat exchange efficiency between the outside air and the refrigerant, only one evaporator is provided before and after the evaporator. The refrigerant pipe is internally branched into a plurality of refrigerant pipes, and the individual refrigerant pipes are arranged in a zigzag manner. FIG. 8 is a schematic structural diagram of the inside of the indoor heat exchanger 1 that operates as an evaporator during the cooling operation. In FIG. 8, the refrigerant pipe 7 that was one at the refrigerant inlet 72 of the indoor heat exchanger 1 during the cooling operation is divided into four refrigerant pipes 71, and another refrigerant pipe 7 is provided at the refrigerant outlet 73. It shows the case where the configuration is returned to.

【0011】[0011]

【発明が解決しようとする課題】そして、従来の蒸気圧
縮式冷凍機では、蒸発器がその内部にて分岐配管されて
いるか否かに関係なく、蒸発器の前後での冷媒温度差に
より過熱度を検出し、その過熱度が制御目標値となるよ
うに電子膨張弁4の開閉度を制御している。
In the conventional vapor compression refrigerator, regardless of whether the evaporator is branched inside or outside, the degree of superheat depends on the refrigerant temperature difference before and after the evaporator. Is detected, and the opening / closing degree of the electronic expansion valve 4 is controlled so that the degree of superheat thereof becomes a control target value.

【0012】このため、蒸発器の内部が複数本の冷媒配
管71に分岐されている(以下、分岐冷媒配管と略記す
る)場合には、全ての冷媒配管71が夫々の出口で均等に
過熱度がとれている状態とはならず、場合によっては複
数本の分岐冷媒配管71のいずれかが過熱度がとれていな
い、即ち分岐冷媒配管71出口の冷媒が気液2相状態とな
る虞れがあった。このため、蒸発器において有効な熱交
換が行われず、冷凍機の設計上の能力を有効に活用でき
ない虞れがあった。
Therefore, when the inside of the evaporator is branched into a plurality of refrigerant pipes 71 (hereinafter abbreviated as branched refrigerant pipes), all the refrigerant pipes 71 are uniformly superheated at their respective outlets. However, in some cases, one of the plurality of branch refrigerant pipes 71 is not superheated, that is, the refrigerant at the outlet of the branch refrigerant pipe 71 may be in a gas-liquid two-phase state. there were. Therefore, effective heat exchange is not performed in the evaporator, and there is a possibility that the design capacity of the refrigerator cannot be effectively used.

【0013】また、この解決のために、従来は全ての分
岐冷媒配管71が均等な過熱度となるように製造時に調整
していたが、製造時における個々の製品のバラツキが存
在するため、完全には上記問題を解決することができな
かった。
Further, in order to solve this problem, conventionally, all the branched refrigerant pipes 71 were adjusted at the time of manufacturing so as to have a uniform degree of superheat. However, since there are variations in individual products at the time of manufacturing, the Could not solve the above problem.

【0014】従って、蒸発器の内部が複数本の分岐冷媒
配管に分岐されている場合には、電子膨張弁の制御によ
り蒸発器の前後では過熱度が制御目標値に制御されてい
るにも係わらず、蒸発器内部での各分岐冷媒配管出口の
冷媒状態が異なり、結果的には冷凍機の設計上の能力を
有効に活用されていなかった。
Therefore, when the inside of the evaporator is branched into a plurality of branch refrigerant pipes, the degree of superheat before and after the evaporator is controlled to the control target value by the control of the electronic expansion valve. However, the refrigerant states at the outlets of the branch refrigerant pipes inside the evaporator are different, and as a result, the design capacity of the refrigerator has not been effectively utilized.

【0015】本発明は、斯かる点に鑑みてなされたもの
であって、内部が複数本の冷媒配管に分岐されている蒸
発器を有する蒸気圧縮式冷凍機において、各分岐冷媒配
管出口の冷媒状態が均等になるように各分岐冷媒配管へ
の冷媒流量を制御し、冷凍機の設計上の能力を有効に活
用する蒸気圧縮式冷凍機を提供することを目的とする。
The present invention has been made in view of the above circumstances, and in a vapor compression refrigerator having an evaporator whose inside is branched into a plurality of refrigerant pipes, a refrigerant at each branch refrigerant pipe outlet An object of the present invention is to provide a vapor compression refrigerator in which the refrigerant flow rate to each branch refrigerant pipe is controlled so that the states are equalized and the design capacity of the refrigerator is effectively utilized.

【0016】[0016]

【課題を解決するための手段】本発明は、蒸発器の内部
が複数本の分岐冷媒配管に分岐されている蒸気圧縮式冷
凍機において、各分岐冷媒配管の冷媒吐出側に夫々設け
られ、吐出冷媒温度を検出する分岐配管用温度検出手段
と、各分岐冷媒配管の冷媒流入側に夫々設けられ、開閉
度が調整可能な分岐配管用膨張弁と、各分岐配管用温度
検出手段による検出温度に基づいて、所定時間内での各
分岐冷媒配管の吐出冷媒温度の平均値、及びバラツキを
算出する分岐冷媒状態演算手段と、分岐冷媒状態演算部
により求められた各分岐冷媒配管の吐出冷媒温度の平均
値、及びバラツキに基づいて、各分岐配管用膨張弁の開
閉度を制御する制御手段と、を備えている。
DISCLOSURE OF THE INVENTION The present invention relates to a vapor compression refrigerator in which the inside of an evaporator is branched into a plurality of branch refrigerant pipes. Branch pipe temperature detection means for detecting the refrigerant temperature, branch pipe expansion valve provided on the refrigerant inflow side of each branch refrigerant pipe, the degree of opening and closing is adjustable, and the temperature detected by each branch pipe temperature detection means Based on, the average value of the discharge refrigerant temperature of each branch refrigerant pipe within a predetermined time, and the branch refrigerant state calculation means for calculating the variation, and the discharge refrigerant temperature of each branch refrigerant pipe obtained by the branch refrigerant state calculation unit A control means for controlling the opening / closing degree of each branch pipe expansion valve based on the average value and the variation.

【0017】また、開閉度が調整可能な電子膨張弁と、
蒸発器の冷媒流入側、及び吐出側に夫々設けられた温度
検出手段と、温度検出手段の検出温度に基づいて、前記
蒸発器出口の過熱度を算出する過熱度算出手段と、を備
え、過熱度算出手段により求められた過熱度に基づい
て、電子膨張弁の開閉度を制御すると共に、分岐冷媒状
態演算部により求められた各分岐冷媒配管の吐出冷媒温
度の平均値、及びバラツキに基づいて、各分岐配管用膨
張弁の開閉度を夫々制御する構成にしてもよい。
Also, an electronic expansion valve whose degree of opening and closing can be adjusted,
The refrigerant inflow side and the discharge side of the evaporator are respectively provided with temperature detecting means, and superheat degree calculating means for calculating the superheat degree of the evaporator outlet based on the temperature detected by the temperature detecting means, Based on the degree of superheat obtained by the degree calculation means, while controlling the opening and closing degree of the electronic expansion valve, the average value of the discharge refrigerant temperature of each branch refrigerant pipe obtained by the branch refrigerant state calculation unit, and based on the variation The degree of opening and closing of each branch pipe expansion valve may be controlled.

【0018】更に、制御手段による電子膨張弁の開閉度
制御によって、所定時間内での過熱度のバラツキが一定
範囲内となった後に、各分岐配管用膨張弁の開閉度制御
を行う構成にしてもよい。
Further, the degree of opening / closing of each expansion valve for branch pipes is controlled after the variation of the degree of superheat within a predetermined time is within a certain range by controlling the degree of opening / closing of the electronic expansion valve by the control means. Good.

【0019】そして、この各分岐配管用膨張弁の開閉度
制御を、過熱度のバラツキが1〜3℃の範囲内となった
後に行う構成にしてもよい。
The control of the degree of opening / closing of the expansion valve for each branch pipe may be performed after the variation in the degree of superheat falls within the range of 1 to 3 ° C.

【0020】更に加えて、制御手段の実行を蒸気圧縮式
冷凍機を運転開始後、所定時間経過後に開始させる構成
にしてもよい。
In addition, the control means may be executed after a predetermined time has elapsed after the vapor compression refrigerator is started.

【0021】[0021]

【作用】本発明によれば、各分岐冷媒配管の吐出冷媒温
度の平均値、及びバラツキに基づいて各分岐配管用膨張
弁の開閉度を制御するので、各分岐冷媒配管出口の冷媒
状態が均等になるように各分岐冷媒配管への冷媒流量が
制御される。
According to the present invention, since the opening / closing degree of each branch pipe expansion valve is controlled based on the average value of the discharge refrigerant temperature of each branch refrigerant pipe and the variation, the refrigerant state at each branch refrigerant pipe outlet is uniform. The refrigerant flow rate to each branch refrigerant pipe is controlled so that

【0022】また、蒸発器出口の過熱度に基づいて電子
膨張弁の開閉度を制御し、且つ各分岐配管用膨張弁の開
閉度制御する場合には、過熱度制御による蒸発器での有
効な熱交換が行われる。
Further, when the opening / closing degree of the electronic expansion valve is controlled on the basis of the superheat degree at the outlet of the evaporator and the opening / closing degree of the expansion valve for each branch pipe is controlled, it is effective in the evaporator by controlling the superheat degree. Heat exchange takes place.

【0023】更に、電子膨張弁の開閉度制御によって、
所定時間内での過熱度のバラツキが一定範囲内となった
後に、各分岐配管用膨張弁の開閉度制御を行う場合に
は、過熱度制御による蒸発器の冷媒流量制御を安定状態
とした後に、各分岐配管用膨張弁の開閉度制御が行われ
る。
Further, by controlling the opening / closing degree of the electronic expansion valve,
When the degree of opening / closing of each expansion valve for each branch pipe is controlled after the variation in the degree of superheat within a predetermined time is within a certain range, after stabilizing the refrigerant flow rate control of the evaporator by the degree of superheat control, The degree of opening / closing of the expansion valve for each branch pipe is controlled.

【0024】更に加えて、蒸気圧縮式冷凍機を運転開始
後、所定時間経過後に電子膨張弁の開閉度制御、及び各
分岐配管用膨張弁の開閉度制御させた場合には、循環冷
媒の状態が安定させた後に冷媒流量制御が行われる。
In addition, when the opening / closing degree control of the electronic expansion valve and the opening / closing degree control of each branch pipe expansion valve are controlled after a lapse of a predetermined time after starting the operation of the vapor compression refrigerator, the state of the circulating refrigerant. Is stabilized, the refrigerant flow rate control is performed.

【0025】[0025]

【実施例】以下、本発明の蒸気圧縮式冷凍機について、
その一実施例を示す図面に基づいて説明する。尚、蒸気
圧縮式冷凍機の冷媒回路の概念図は上述の従来例(図
6)と同じ構成である。
EXAMPLE A vapor compression refrigerator according to the present invention will be described below.
An embodiment will be described with reference to the drawings. The conceptual diagram of the refrigerant circuit of the vapor compression refrigerator has the same configuration as that of the conventional example (FIG. 6) described above.

【0026】図1は、冷房運転時に蒸発器として動作す
る室内熱交換器1内部の概略構造図を示す。尚、上述の
従来例(図8)と同じ構成部分については、同一符号を
付している。
FIG. 1 is a schematic structural diagram of the inside of the indoor heat exchanger 1 which operates as an evaporator during the cooling operation. The same components as those in the conventional example (FIG. 8) described above are designated by the same reference numerals.

【0027】101は、蒸発器として動作時の4本の分岐
冷媒配管71の夫々の冷媒流入口に設けられ、ステッピン
グモータにより電動式でその開閉度を調整し、各分岐冷
媒配管71の冷媒流量を可変させる室内分岐配管用膨張
弁、102は分岐冷媒配管71の夫々の冷媒吐出口に設けら
れ、吐出冷媒の温度を検出するサーミスタからなる室内
分岐配管用温度検出手段である。従って、4個の室内分
岐配管用温度検出手段102により夫々の分岐冷媒配管71
の吐出冷媒温度が検出され、第1温度検出手段10との温
度差に基づいて冷房運転時の各分岐冷媒配管71出口の過
熱度が算出可能となる。
Reference numeral 101 is provided at each refrigerant inlet of each of the four branch refrigerant pipes 71 when operating as an evaporator, and the opening / closing degree is electrically adjusted by a stepping motor to adjust the refrigerant flow rate of each branch refrigerant pipe 71. The indoor branch pipe expansion valve for changing the temperature of the branch refrigerant pipe, and the indoor branch pipe temperature detection means 102, which is provided at each refrigerant discharge port of the branch refrigerant pipe 71 and includes a thermistor for detecting the temperature of the discharged refrigerant. Therefore, each of the four branch refrigerant pipes 71 is detected by the four indoor branch pipe temperature detecting means 102.
The temperature of the discharged refrigerant is detected, and the degree of superheat at the outlet of each branch refrigerant pipe 71 during the cooling operation can be calculated based on the temperature difference from the first temperature detecting means 10.

【0028】また、図2に示すように、暖房運転時に蒸
発器として動作する室外熱交換器2についても、その内
部に上記室内熱交換器1と同様に、室外分岐配管用膨張
弁103、及び室外分岐配管用温度検出手段104が4本の各
分岐冷媒配管74に夫々設けられた構成となっている。従
って、4個の室外分岐配管用温度検出手段104、及び第
3温度検出手段12との温度差に基づいて暖房運転時の各
分岐冷媒配管74出口の過熱度が算出可能となる。
Further, as shown in FIG. 2, the outdoor heat exchanger 2 which operates as an evaporator during the heating operation also has an expansion valve 103 for the outdoor branch pipe and an expansion valve 103 for the outdoor branch pipe therein, like the indoor heat exchanger 1. The outdoor branch pipe temperature detecting means 104 is provided in each of the four branch refrigerant pipes 74. Therefore, the degree of superheat at the outlet of each branch refrigerant pipe 74 during the heating operation can be calculated based on the temperature difference between the four outdoor branch pipe temperature detecting means 104 and the third temperature detecting means 12.

【0029】図3は本発明の冷媒流量制御を行うための
概略構成ブロック図である。
FIG. 3 is a schematic block diagram for controlling the refrigerant flow rate according to the present invention.

【0030】図において、201は第1〜第4温度検出手
段10〜13、室内分岐配管用温度検出手段102、及び室外
分岐配管用温度検出手段104において検出された冷媒温
度が供給され、後述するように蒸発器出口の過熱度、及
び各分岐冷媒配管出口の冷媒温度に基づいて、電子膨張
弁4、室内分岐配管用膨張弁101、及び室外分岐配管用
膨張弁103の開閉度を制御する制御部である。
In the figure, 201 is supplied with the refrigerant temperature detected by the first to fourth temperature detecting means 10 to 13, the indoor branch pipe temperature detecting means 102, and the outdoor branch pipe temperature detecting means 104, which will be described later. To control the degree of opening / closing of the electronic expansion valve 4, the indoor branch piping expansion valve 101, and the outdoor branch piping expansion valve 103 based on the superheat degree at the evaporator outlet and the refrigerant temperature at each branch refrigerant piping outlet It is a department.

【0031】202は所定時間毎(本実施例では10秒毎)
に制御部201にタイミング信号を出力するタイミング信
号発生部、203は制御部201からの指令に従い、室内分岐
配管用温度検出手段102、又は室外分岐配管用温度検出
手段104において検出された各分岐冷媒配管出口温度の
一定時間分(本実施例では5分間)の温度データを記憶
させる温度データ記憶部である。
Reference numeral 202 denotes every predetermined time (every 10 seconds in this embodiment)
A timing signal generator for outputting a timing signal to the control unit 201, 203 is a branch refrigerant detected in the indoor branch pipe temperature detecting means 102, or the outdoor branch pipe temperature detecting means 104 in accordance with a command from the control unit 201. This is a temperature data storage unit that stores temperature data for a certain time (5 minutes in the present embodiment) of the pipe outlet temperature.

【0032】204は制御部201からの指令に従い、温度デ
ータ記憶部203に記憶された過去5分間の検出温度デー
タTij(i=1〜4,j=1〜30)に基づいて、各分岐
冷媒配管出口温度Tijの平均値Mi、及び分散値Diを算
出する分岐冷媒状態演算部である。
In accordance with a command from the control unit 201, reference numeral 204 denotes each branched refrigerant based on the detected temperature data Tij (i = 1 to 4, j = 1 to 30) for the past 5 minutes stored in the temperature data storage unit 203. It is a branch refrigerant state calculation unit that calculates an average value Mi and a dispersion value Di of the pipe outlet temperature Tij.

【0033】205は制御部201からの指令に従い、第1〜
第4温度検出手段10〜13による検出冷媒温度に基づいて
蒸発器出口での過熱度を算出する過熱度算出手段、206
は過熱度算出手段205で求められた過熱度の一定時間分
(本実施例では5分間)の過熱度データを記憶させる過
熱度データ記憶部である。
Reference numeral 205 designates a first to a first instruction in accordance with a command from the control unit 201.
A superheat degree calculating means for calculating the superheat degree at the evaporator outlet based on the refrigerant temperature detected by the fourth temperature detecting means 10 to 13, 206
Is a superheat degree data storage unit for storing superheat degree data for a certain time (5 minutes in this embodiment) of the superheat degree calculated by the superheat degree calculating means 205.

【0034】207は制御部201に接続されたROMであ
り、制御部201はROM207に格納されたプログラムに基
づいて、電子膨張弁4、室内分岐配管用膨張弁101、室
外分岐配管用膨張弁103等を制御している。
Reference numeral 207 is a ROM connected to the control unit 201, and the control unit 201 is based on a program stored in the ROM 207, and the electronic expansion valve 4, the indoor branch pipe expansion valve 101, and the outdoor branch pipe expansion valve 103. Etc. are controlled.

【0035】ここで、電子膨張弁4、室内分岐配管用膨
張弁101、及び室外分岐配管用膨張弁103は、制御部201
からの制御パルスにより、その開閉度が夫々調整可能と
なっており、本実施例では完全閉状態での開閉度を0、
完全開状態での開閉度を200とし、その間の開閉度を200
ステップ分割した値で制御されており、初期値として10
0ステップに設定されている。
Here, the electronic expansion valve 4, the expansion valve 101 for indoor branch piping, and the expansion valve 103 for outdoor branch piping are controlled by the control unit 201.
The degree of opening and closing can be adjusted individually by the control pulse from, and in the present embodiment, the degree of opening and closing in the completely closed state is 0,
The degree of opening and closing in the fully open state is 200, and the degree of opening and closing between them is 200.
It is controlled by the value divided into steps, and the initial value is 10
It is set to 0 steps.

【0036】また、制御部201では、冷房運転時か暖房
運転時かを判断し、タイミング信号発生部202からの入
力信号に基づいて、冷房運転時には各室内分岐配管用温
度検出手段102において検出された冷媒温度を各分岐冷
媒配管出口温度Tijとして温度データ記憶部203に格納
させ、暖房運転時には各室外分岐配管用温度検出手段10
4において検出された冷媒温度を各分岐冷媒配管出口温
度Tijとして温度データ記憶部203に格納させている。
Further, the control unit 201 determines whether it is during the cooling operation or the heating operation, and based on the input signal from the timing signal generation unit 202, it is detected by the temperature detecting means 102 for each indoor branch pipe during the cooling operation. The stored refrigerant temperature is stored in the temperature data storage unit 203 as each branch refrigerant pipe outlet temperature Tij, and during the heating operation, each outdoor branch pipe temperature detecting means 10
The refrigerant temperature detected in 4 is stored in the temperature data storage unit 203 as each branch refrigerant pipe outlet temperature Tij.

【0037】尚、分岐冷媒状態演算部204では、下記に
示す数式に従い温度データ記憶部203に格納されている
データに基づいて、各分岐冷媒配管出口温度Tijの平均
値Mi、及び分散値Diを算出している。従って、これに
より各分岐冷媒配管出口温度の冷媒状態が検出されるこ
とになる。
The branch refrigerant state calculation unit 204 calculates the average value Mi and the dispersion value Di of each branch refrigerant pipe outlet temperature Tij on the basis of the data stored in the temperature data storage unit 203 according to the following formula. It is calculated. Therefore, the refrigerant state at the outlet temperature of each branch refrigerant pipe is thus detected.

【0038】[0038]

【数1】 [Equation 1]

【0039】ここで、各分岐冷媒配管出口温度Tijの平
均値Mi、及び分散値Diに基づく冷媒状態検出について
説明する。
Here, the refrigerant state detection based on the average value Mi and the dispersion value Di of each branch refrigerant pipe outlet temperature Tij will be described.

【0040】上述したように、蒸発器の分岐冷媒配管出
口では冷媒が図7に示す気液2相状態(図中b領域)、
若しくは気体状態(図中c領域)となるが、各分岐冷媒
配管出口の冷媒が気体状態であれば、各分岐冷媒配管出
口温度Tijの平均値Miから全ての分岐冷媒配管出口の
冷媒状態が検出でき、各分岐冷媒配管の冷媒流量状態を
把握することが可能となる。
As described above, at the outlet of the branch refrigerant pipe of the evaporator, the refrigerant is in the gas-liquid two-phase state shown in FIG. 7 (region b in the figure),
Alternatively, although it is in a gas state (region c in the drawing), if the refrigerant at each branch refrigerant pipe outlet is in a gas state, the refrigerant states at all branch refrigerant pipe outlets are detected from the average value Mi of each branch refrigerant pipe outlet temperature Tij. Therefore, it is possible to grasp the refrigerant flow rate state of each branch refrigerant pipe.

【0041】一方、各分岐冷媒配管出口の冷媒が気液2
相状態の場合には、図7b領域に示すように分岐冷媒配
管出口での冷媒温度が殆ど変化しないため、どの分岐冷
媒配管の冷媒流量が多いのか、或るいは少ないのか冷媒
温度からは分からない。
On the other hand, the refrigerant at the outlet of each branch refrigerant pipe is gas-liquid 2
In the case of the phase state, as shown in the area of FIG. 7b, the refrigerant temperature at the outlet of the branch refrigerant pipe hardly changes, so it is not known from the refrigerant temperature which refrigerant flow amount of the branch refrigerant pipe is high or low. .

【0042】しかし、気液2相状態の場合には、冷媒中
の液体の混合比率が大きいほど冷媒温度のバラツキ、即
ち分散値が大きくなっている。これは、冷媒中の液体粒
子が気体粒子に比べて温度のバラツキが大きくなるため
であると考えられる。
However, in the gas-liquid two-phase state, the greater the mixing ratio of the liquid in the refrigerant, the greater the variation of the refrigerant temperature, that is, the dispersion value. It is considered that this is because the liquid particles in the refrigerant have a larger temperature variation than the gas particles.

【0043】従って、気液2相状態の場合には、冷媒中
の液体の混合比率が小さくなるほど、即ち図7b領域の
右側方向へ冷媒状態が移行するに従い各分岐冷媒配管出
口温度Tijの分散値Diが小さくなるので、各分岐冷媒
配管出口の分散値Diから冷媒流量の状態を検出するこ
とが可能となる。
Therefore, in the case of the gas-liquid two-phase state, as the mixing ratio of the liquid in the refrigerant becomes smaller, that is, as the refrigerant state shifts to the right in the region of FIG. 7b, the dispersion value of each branch refrigerant pipe outlet temperature Tij. Since Di becomes small, it becomes possible to detect the state of the refrigerant flow rate from the dispersion value Di at each branch refrigerant pipe outlet.

【0044】次に、以上の構成による本発明の冷媒流量
制御の動作について図4のメインルーチン、及び図5の
サブルーチンにより説明する。
Next, the operation of the refrigerant flow rate control of the present invention having the above configuration will be described with reference to the main routine of FIG. 4 and the subroutine of FIG.

【0045】図4において、先ず冷凍機が現在、冷房運
転設定されているか暖房運転設定されているかを判断
し、設定運転モードにて冷凍機の運転を開始させる(S
1)。
In FIG. 4, first, it is judged whether the refrigerator is currently set to the cooling operation or the heating operation, and the operation of the refrigerator is started in the set operation mode (S).
1).

【0046】そして、冷凍機が冷房運転時の場合には蒸
発器として動作する室内熱交換器1を、暖房運転時の場
合には蒸発器として動作する室外熱交換器2を温度検出
対象とし(ステップS3)、次のステップS5に進む。
尚、以下のステップでは、室内熱交換器1を温度検出対
象とする冷房運転時の場合について説明する。
When the refrigerator is in the cooling operation, the indoor heat exchanger 1 which operates as an evaporator is targeted for temperature detection, and when the refrigerator is in heating operation, the outdoor heat exchanger 2 which operates as an evaporator is targeted for temperature detection ( Step S3) and then the next step S5.
In the following steps, the case of the cooling operation in which the indoor heat exchanger 1 is the temperature detection target will be described.

【0047】ステップS5では、10秒間隔でタイミング
信号を出力するタイミング信号発生部202の起動を開始
させ、次のステップS7にて、タイミング信号発生部20
2からタイミング信号が新たに60個入力されたか、即ち1
0分間経過したがどうか判断し次に進む。
In step S5, the timing signal generator 202 that outputs a timing signal at 10-second intervals is started, and in step S7, the timing signal generator 20 is started.
60 new timing signals from 2 are input, that is, 1
0 minutes have passed, judge whether or not to proceed.

【0048】ここで、ステップS7において冷凍機を10
分間動作させた後、次のステップに進ませているのは、
冷媒状態が不安定である冷凍機の動作開始直後に冷媒流
量制御を行わせないためである。これにより、より正確
な冷媒流量制御が可能となる。
In step S7, the refrigerator 10
After operating for a minute, the next step is
This is because the refrigerant flow rate control is not performed immediately after the operation of the refrigerator in which the refrigerant state is unstable is started. As a result, more accurate refrigerant flow rate control becomes possible.

【0049】次のステップS9では、第1、第2温度検
出手段10,11により検出された検出温度に基づいて、蒸
発器の過熱度SH(SH=t2−t1,t1;第1温度検出手段10
による検出温度,t2;第2温度検出手段11による検出温
度)を算出し、目標過熱度SH T(本実施例では、SHTを4
℃に設定している)との偏差e(=SHT−SH)を求め
る。尚、暖房運転時には、室外熱交換器2が蒸発器とし
て動作するため、蒸発器の過熱度SH0は第3、第4温度
検出手段12,13による検出温度差t4−t3(t3;第3温度
検出手段12による検出温度,t4;第4温度検出手段13に
よる検出温度)として求められる。
In the next step S9, the first and second temperature detections are performed.
Based on the temperature detected by the output means 10 and 11,
Generator superheat SH (SH = t2−t1, T1First temperature detecting means 10
Temperature detected by t2Temperature detected by the second temperature detecting means 11
Degree) and calculate the target superheat SH T(In this embodiment, SHT4
Deviation (set to ℃) e (= SHT−SH)
It During the heating operation, the outdoor heat exchanger 2 serves as an evaporator.
Since it operates by0Is the third and fourth temperature
Temperature difference t detected by the detection means 12 and 13Four−t3(T3; Third temperature
Temperature detected by the detection means 12, tFourThe fourth temperature detecting means 13
Detected temperature).

【0050】次に、偏差e0として偏差eを設定し(S1
1)、タイミング信号発生部202からタイミング信号が新
たに3個入力されたか、即ち30秒経過したかどうか判断
し次に進む(S13)。
Next, the deviation e is set as the deviation e 0 (S1
1), it is determined whether or not three new timing signals have been input from the timing signal generation unit 202, that is, whether 30 seconds have elapsed, and the process proceeds to the next (S13).

【0051】そして、次のステップS15では、蒸発器の
過熱度制御を行い、ステップS17に進む。このステップ
S15では、具体的には上記ステップS9と同様の方法に
より、第1,第2温度検出手段10,11により検出された
検出温度に基づいて、現在の蒸発器の過熱度SHと、目標
過熱度SHTとの偏差eを求め、偏差e0と現在の偏差eと
の変化量de(=e−e0)に基づいて電子膨張弁4の弁
操作量dvを決定し、その決定された弁操作量dvにより電
子膨張弁4を駆動する。ここで、弁操作量dvは下記のル
ールに従って算出している。
Then, in the next step S15, the degree of superheat of the evaporator is controlled, and the process proceeds to step S17. In this step S15, specifically, in the same manner as in step S9, based on the detected temperatures detected by the first and second temperature detecting means 10 and 11, the current superheat degree SH of the evaporator and the target The deviation e from the degree of superheat SH T is obtained, and the valve operation amount dv of the electronic expansion valve 4 is determined based on the variation de (= e−e 0 ) between the deviation e 0 and the current deviation e. The electronic expansion valve 4 is driven by the valve operation amount dv. Here, the valve operation amount dv is calculated according to the following rule.

【0052】偏差eが正の場合には弁操作量dv=−1
に設定し、電子膨張弁4の開閉度を小さくし、偏差eが
負の場合には弁操作量dv=1に設定し、電子膨張弁4の
開閉度を大きくする。
When the deviation e is positive, the valve operation amount dv = -1
To set the opening degree of the electronic expansion valve 4 to be small, and when the deviation e is negative, the valve operation amount dv is set to 1 to increase the opening degree of the electronic expansion valve 4.

【0053】偏差eが正で変化量deが負の場合、又は
偏差eが負で変化量deが正の場合、即ち過熱度SHが目標
過熱度SHTへの収束方向に変化している場合には、弁操
作量dv=0に設定し、電子膨張弁4の開閉度を変更しな
い。
When the deviation e is positive and the change amount de is negative, or when the deviation e is negative and the change amount de is positive, that is, when the superheat degree SH changes in the direction of convergence to the target superheat degree SH T. , The valve operation amount dv is set to 0, and the opening / closing degree of the electronic expansion valve 4 is not changed.

【0054】そして、次のステップS17では、過熱度SH
を過熱度データとして過熱度データ記憶部205に格納
し、次のステップS19に進む。
Then, in the next step S17, the superheat degree SH
Is stored in the superheat degree data storage unit 205 as superheat degree data, and the process proceeds to the next step S19.

【0055】ステップS19では、過熱度データ記憶部20
5に過去5分間の過熱度データが格納されたかどうか、
即ち過去10個分の過熱度データが格納されたかどうか判
断し、YESの場合には次のステップS21に進み、NOの場
合にはステップS11に戻る。
In step S19, the superheat degree data storage unit 20
Whether 5 has stored the superheat data for the past 5 minutes,
That is, it is determined whether or not the past ten superheat data have been stored. If YES, the process proceeds to the next step S21, and if NO, the process returns to step S11.

【0056】次のステップS21では、過熱度データ記憶
部205に格納されている過去5分間の過熱度データを読
み出し、そのバラツキが一定以上(本実施例では、3℃
に設定している)かどうか判断し、YESの場合にはステ
ップS11に戻り、NOの場合には次のステップS23に進
み、後述する蒸発器内部の各分岐冷媒配管Li(i=1
〜4)の冷媒流量調整サブルーチンを実行させる。尚、
この場合のバラツキの設定値としては1〜3℃の範囲内
であれば、その他の値であっても構わない。
In the next step S21, the superheat degree data for the past 5 minutes stored in the superheat degree data storage unit 205 is read out and the variation thereof is equal to or more than a certain value (3 ° C. in this embodiment).
If YES, the process returns to step S11, and if NO, the process proceeds to step S23, where each branch refrigerant pipe Li (i = 1) inside the evaporator to be described later.
The refrigerant flow rate adjustment subroutine of 4) is executed. still,
The variation setting value in this case may be any other value as long as it is within the range of 1 to 3 ° C.

【0057】ここで、蒸発器の過熱度データの経時的変
化が所定範囲以内の場合にのみ、各分岐冷媒配管Liの
冷媒流量調整を行わせているのは、電子膨張弁4の開閉
度制御による蒸発器の冷媒流量制御が安定状態として、
蒸発器内部の各分岐冷媒配管Liの冷媒流量調整を行
い、迅速、且つ正確に各分岐冷媒配管出口の冷媒状態を
均等に制御するためである。
Here, the reason why the refrigerant flow rate of each branch refrigerant pipe Li is adjusted only when the temporal change of the superheat data of the evaporator is within a predetermined range is that the degree of opening / closing of the electronic expansion valve 4 is controlled. As a stable state of the refrigerant flow rate control of the evaporator by
This is because the refrigerant flow rate of each branch refrigerant pipe Li inside the evaporator is adjusted and the refrigerant state at each branch refrigerant pipe outlet is uniformly controlled quickly and accurately.

【0058】そして、次のステップS25では、上記ステ
ップS15と同様の蒸発器の過熱度制御を行い、ステップ
S27に進む。
Then, in the next step S25, the superheat degree control of the evaporator is performed in the same manner as in step S15, and the process proceeds to step S27.

【0059】ステップS27では、冷凍機の運転停止指令
が入力されたかどうか判断し、YESの場合には冷凍機の
運転を停止させ、NOの場合にはステップS29に進む。
In step S27, it is determined whether or not an instruction to stop the operation of the refrigerator is input. If YES, the operation of the refrigerator is stopped, and if NO, the process proceeds to step S29.

【0060】ステップS29では、タイミング信号発生部
202からタイミング信号が新たに12個入力されたか、即
ち2分間経過したかどうか判断しステップS25に戻り、
再び蒸発器の過熱度制御を行わせる。
In step S29, the timing signal generator
It is judged whether or not 12 new timing signals have been input from 202, that is, whether or not 2 minutes have elapsed, and the process returns to step S25,
The superheat degree control of the evaporator is performed again.

【0061】次に、上記ステップS23で実行する冷媒流
量調整サブルーチンの内容について、図5に従い説明す
る。
Next, the contents of the refrigerant flow rate adjustment subroutine executed in step S23 will be described with reference to FIG.

【0062】先ず、タイミング信号発生部202からのタ
イミング信号入力毎に室内分岐配管用温度検出手段102
により各分岐冷媒配管Liの吐出冷媒の温度Tij(i=1
〜4,j=1〜30)を検出し、一定時間(本実施例では
5分間)の検出温度データを温度データ記憶部203に格
納する(S101)。
First, the temperature detecting means 102 for the indoor branch pipe is provided for each timing signal input from the timing signal generator 202.
Therefore, the temperature Tij (i = 1) of the refrigerant discharged from each branch refrigerant pipe Li
˜4, j = 1 to 30) is detected, and the detected temperature data for a fixed time (5 minutes in this embodiment) is stored in the temperature data storage unit 203 (S101).

【0063】次に、温度データ記憶部203に格納されて
いる検出温度データTijを読み出し、分岐冷媒状態演算
部204にて各分岐冷媒配管Liの吐出冷媒温度の平均値M
i、及び分散値Diを算出し、その結果を温度データ記憶
部203に格納する(S103)。
Next, the detected temperature data Tij stored in the temperature data storage unit 203 is read out, and the average value M of the discharge refrigerant temperature of each branch refrigerant pipe Li is read by the branch refrigerant state calculation unit 204.
i and the variance value Di are calculated, and the result is stored in the temperature data storage unit 203 (S103).

【0064】そして、次のステップS105では各分岐冷
媒配管Liの平均値Miのバラツキが所定範囲内(本実施
例では1℃としている)にあるかどうか、即ち各分岐冷
媒配管Liの吐出冷媒が気液2相状態にあるかどうか判
断し、YESの場合にはステップS107に進み、NOの場合に
はステップS113に進む。
Then, in the next step S105, whether the variation of the average value Mi of each branch refrigerant pipe Li is within a predetermined range (1 ° C. in this embodiment), that is, the discharge refrigerant of each branch refrigerant pipe Li is It is determined whether the gas-liquid two-phase state is present. If YES, the process proceeds to step S107, and if NO, the process proceeds to step S113.

【0065】ステップS107では、各分岐冷媒配管Liの
分散値Diのバラツキが所定範囲内(本実施例では1と
している)にあるかどうか、即ち各分岐冷媒配管Liの
吐出冷媒の冷媒状態が均等になっているかどうか判断
し、YESの場合には図4に示すメインルーチン(ステッ
プS25)に戻り、NOの場合にはステップS109に進む。
In step S107, it is determined whether the dispersion value Di of each branch refrigerant pipe Li is within a predetermined range (1 in this embodiment), that is, the refrigerant state of the discharge refrigerant of each branch refrigerant pipe Li is equal. If YES, the process returns to the main routine (step S25) shown in FIG. 4, and if NO, the process proceeds to step S109.

【0066】ステップS109では、2番目に小さい分散
値Diを有する分岐冷媒配管Liを標準分岐冷媒配管Li0
とし、ステップS111に進む。
In step S109, the branch refrigerant pipe Li having the second smallest dispersion value Di is replaced with the standard branch refrigerant pipe Li 0.
Then, the process proceeds to step S111.

【0067】ステップS111では、標準分岐冷媒配管以
外の3本の分岐冷媒配管に設けられた各室内分岐配管用
膨張弁101の弁操作量dv1を決定し、その決定された各弁
操作量dv1により各室内分岐配管用膨張弁101を駆動し、
ステップS101に戻る。
In step S111, the valve operation amount dv 1 of each indoor branch pipe expansion valve 101 provided in the three branch refrigerant pipes other than the standard branch refrigerant pipes is determined, and the determined valve operation amount dv 1 is determined. By driving the expansion valve 101 for each branch pipe by 1
Return to step S101.

【0068】ここで、弁操作量dv1は、分散値Diが標準
分散値Di0より大きい場合には弁操作量dv1=−1に設
定し、各室内分岐配管用膨張弁101の開閉度を小さく
し、小さい場合には弁操作量dv1=1に設定し、各室内
分岐配管用膨張弁101の開閉度を大きくする。
Here, the valve operation amount dv 1 is set to the valve operation amount dv 1 = -1 when the dispersion value Di is larger than the standard dispersion value Di 0 , and the opening / closing degree of each indoor branch pipe expansion valve 101 is set. Is made small, and when it is small, the valve operation amount dv 1 = 1 is set, and the opening / closing degree of each indoor branch pipe expansion valve 101 is increased.

【0069】一方、ステップS113では、2番目に大き
い平均値Miを有する分岐冷媒配管Liを標準分岐冷媒配
管Li0とし、ステップS115に進む。
On the other hand, in step S113, the branch refrigerant pipe Li having the second largest average value Mi is set as the standard branch refrigerant pipe Li 0, and the process proceeds to step S115.

【0070】ステップS115では、標準分岐冷媒配管以
外の3本の分岐冷媒配管に設けられた各室内分岐配管用
膨張弁101の弁操作量dv2を決定し、その決定された各弁
操作量dv2により各室内分岐配管用膨張弁101を駆動し、
ステップS101に戻る。
In step S115, the valve operation amount dv 2 of each indoor branch pipe expansion valve 101 provided in the three branch refrigerant pipes other than the standard branch refrigerant pipes is determined, and the determined valve operation amount dv is determined. By driving the expansion valve 101 for each indoor branch pipe by 2
Return to step S101.

【0071】ここで、弁操作量dv2は平均値Miが標準平
均値Mi0より小さい場合には弁操作量dv2=−1に設定
し、各室内分岐配管用膨張弁101の開閉度を小さくし、
大きい場合には弁操作量dv2=1に設定し、各室内分岐
配管用膨張弁101の開閉度を大きくする。
[0071] Here, the valve operating amount dv 2 set on the valve operation amount dv 2 = -1 if the average value Mi is less than the standard average value Mi 0, the opening degree of the indoor branch piping expansion valve 101 Make it smaller,
If it is larger, the valve operation amount dv 2 is set to 1 to increase the opening / closing degree of each indoor branch pipe expansion valve 101.

【0072】以上の動作を実行させることにより、蒸発
機内部の各分岐冷媒配管出口の冷媒状態が均等になるよ
うに各分岐冷媒配管への冷媒流量が制御され、且つ全て
の各分岐冷媒配管出口で均等に過熱度がとれるように制
御されることになる。
By performing the above operation, the refrigerant flow rate to each branch refrigerant pipe is controlled so that the refrigerant state at each branch refrigerant pipe outlet inside the evaporator becomes uniform, and all the branch refrigerant pipe outlets are controlled. Will be controlled so that the degree of superheat can be taken evenly.

【0073】尚、上記実施例では、過熱度制御を行わせ
た蒸気圧縮式冷凍機について説明したが、この他の冷媒
流量制御を行わせた場合、例えば、上記図6において四
方弁9出口での冷媒温度が目標温度となるように電子膨
張弁4の開閉度を調整する四方弁出口温度制御を行わせ
た蒸気圧縮式冷凍機についても本発明を適用することが
できる。
In the above embodiment, the vapor compression refrigerator in which the superheat degree is controlled has been described. However, in the case where other refrigerant flow rate control is performed, for example, at the outlet of the four-way valve 9 in FIG. The present invention can also be applied to a vapor compression refrigerator in which the four-way valve outlet temperature control for adjusting the opening / closing degree of the electronic expansion valve 4 is performed so that the refrigerant temperature becomes the target temperature.

【0074】[0074]

【発明の効果】以上のとおり本発明によれば、各分岐冷
媒配管の吐出冷媒温度の平均値、及びバラツキに基づい
て各分岐配管用膨張弁の開閉度を制御するので、各分岐
冷媒配管出口の冷媒状態が均等になるように各分岐冷媒
配管への冷媒流量が制御され、冷凍機の設計上の能力を
有効に活用することができる。
As described above, according to the present invention, since the opening / closing degree of each expansion valve for each branch pipe is controlled based on the average value of the discharge refrigerant temperature of each branch refrigerant pipe and the variation, each branch refrigerant pipe outlet The flow rate of the refrigerant to each branch refrigerant pipe is controlled so that the refrigerant state is uniform, and the design capacity of the refrigerator can be effectively utilized.

【0075】また、蒸発器出口の過熱度に基づいて電子
膨張弁の開閉度を制御し、且つ各分岐配管用膨張弁の開
閉度制御することにより、過熱度制御による蒸発器での
有効な熱交換を行うことが可能となる。
Further, by controlling the degree of opening / closing of the electronic expansion valve based on the degree of superheat at the outlet of the evaporator and by controlling the degree of opening / closing of each branch pipe expansion valve, effective heat in the evaporator is controlled by superheat control. It becomes possible to exchange.

【0076】更に、電子膨張弁の開閉度制御によって、
所定時間内での過熱度のバラツキが一定範囲内となった
後に、各分岐配管用膨張弁の開閉度制御を行うことによ
り、過熱度制御による蒸発器の冷媒流量制御を安定状態
とした後に、各分岐配管用膨張弁の開閉度制御が行わ
れ、迅速、且つ正確に各分岐冷媒配管出口の冷媒状態を
均等に制御することが可能となる。
Further, by controlling the opening / closing degree of the electronic expansion valve,
After the variation of the superheat degree within a predetermined time is within a certain range, by performing the opening / closing degree control of each branch pipe expansion valve, after stabilizing the refrigerant flow rate control of the evaporator by the superheat degree control, The degree of opening and closing of each branch pipe expansion valve is controlled, and the refrigerant state at each branch refrigerant pipe outlet can be quickly and accurately controlled uniformly.

【0077】更に加えて、蒸気圧縮式冷凍機を運転開始
後、所定時間経過後に電子膨張弁の開閉度制御、及び各
分岐配管用膨張弁の開閉度制御することにより、循環冷
媒の状態が安定させた後に冷媒流量制御が行われ、正確
な冷媒流量制御が可能となる。
In addition, the state of the circulating refrigerant is stabilized by controlling the opening / closing degree of the electronic expansion valve and the opening / closing degree of each branch pipe expansion valve after a lapse of a predetermined time after starting the operation of the vapor compression refrigerator. After this, the refrigerant flow rate control is performed, and accurate refrigerant flow rate control becomes possible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の蒸気圧縮式冷凍機の蒸発器として動作
する室内熱交換器内部の概略構造図である。
FIG. 1 is a schematic structural diagram of the inside of an indoor heat exchanger that operates as an evaporator of a vapor compression refrigerator of the present invention.

【図2】本発明の蒸気圧縮式冷凍機の蒸発器として動作
する室外熱交換器内部の概略構造図である。
FIG. 2 is a schematic structural diagram of the inside of an outdoor heat exchanger that operates as an evaporator of a vapor compression refrigerator of the present invention.

【図3】本発明の冷媒流量制御を行うための概略構成ブ
ロック図である。
FIG. 3 is a schematic block diagram for performing a refrigerant flow rate control of the present invention.

【図4】本発明の冷媒流量制御の動作を説明するメイン
ルーチンである。
FIG. 4 is a main routine for explaining the operation of the refrigerant flow rate control of the present invention.

【図5】図3実施例の蒸発器内部の各分岐冷媒配管の冷
媒流量調整の動作を説明するサブルーチンである。
5 is a subroutine for explaining the operation of adjusting the refrigerant flow rate of each branch refrigerant pipe inside the evaporator of FIG. 3 embodiment.

【図6】蒸気圧縮式冷凍機の冷媒回路の概念図である。FIG. 6 is a conceptual diagram of a refrigerant circuit of a vapor compression refrigerator.

【図7】蒸発器内部における理想的な冷媒温度変化図で
ある。
FIG. 7 is an ideal refrigerant temperature change diagram inside the evaporator.

【図8】従来の蒸気圧縮式冷凍機の蒸発器として動作す
る室内熱交換器内部の概略構造図である。
FIG. 8 is a schematic structural diagram of the interior of an indoor heat exchanger that operates as an evaporator of a conventional vapor compression refrigerator.

【符号の説明】[Explanation of symbols]

1 室内熱交換器 2 室外熱交換器 3 圧縮機 4 電子膨張弁 5 室外機 6 室内機 7 冷媒配管 8 配管 9 四方弁 10 第1温度検出手段 11 第2温度検出手段 12 第3温度検出手段 13 第4温度検出手段 101 室内分岐配管用膨張弁 102 室内分岐配管用温度検出手段 103 室外分岐配管用膨張弁 104 室外分岐配管用温度検出手段 201 制御部 202 タイミング信号発生部 203 温度データ記憶部 204 分岐冷媒状態演算部 205 過熱度算出手段 206 過熱度データ記憶部 207 ROM 1 Indoor heat exchanger 2 Outdoor heat exchanger 3 Compressor 4 Electronic expansion valve 5 Outdoor unit 6 Indoor unit 7 Refrigerant pipe 8 Piping 9 Four-way valve 10 First temperature detecting means 11 Second temperature detecting means 12 Third temperature detecting means 13 Fourth temperature detecting means 101 Expansion valve for indoor branch piping 102 Temperature detecting means for indoor branch piping 103 Expansion valve for outdoor branch piping 104 Temperature detecting means for outdoor branch piping 201 Control section 202 Timing signal generating section 203 Temperature data storage section 204 Branch Refrigerant state calculation unit 205 Superheat degree calculation means 206 Superheat degree data storage unit 207 ROM

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】圧縮機と、凝縮器と、内部が複数本の分岐
冷媒配管に分岐されている蒸発器とが冷媒配管により接
続された蒸気圧縮式冷凍機において、 前記各分岐冷媒配管の冷媒吐出側に夫々設けられ、吐出
冷媒温度を検出する分岐配管用温度検出手段と、 前記各分岐冷媒配管の冷媒流入側に夫々設けられ、開閉
度が調整可能な分岐配管用膨張弁と、 前記各分岐配管用温度検出手段による検出温度に基づい
て、所定時間内での前記各分岐冷媒配管の吐出冷媒温度
の平均値、及びバラツキを算出する分岐冷媒状態演算手
段と、 該分岐冷媒状態演算部により求められた前記各分岐冷媒
配管の吐出冷媒温度の平均値、及びバラツキに基づい
て、前記各分岐配管用膨張弁の開閉度を制御する制御手
段と、を備えていることを特徴とする蒸気圧縮式冷凍機
の冷媒流量制御装置。
1. A vapor compression refrigerator in which a compressor, a condenser, and an evaporator whose inside is branched into a plurality of branch refrigerant pipes are connected by a refrigerant pipe, wherein the refrigerant of each branch refrigerant pipe is Branch pipe temperature detection means respectively provided on the discharge side, for detecting the discharge refrigerant temperature, branch pipe expansion valves respectively provided on the refrigerant inflow side of each of the branch refrigerant pipes, the degree of opening and closing of which is adjustable, Based on the temperature detected by the branch pipe temperature detecting means, a branch refrigerant state calculating means for calculating the average value of the discharge refrigerant temperature of each of the branch refrigerant pipes within a predetermined time and the variation, and the branch refrigerant state calculating part. Based on the average value of the discharge refrigerant temperature of each branch refrigerant pipe obtained, and based on the variation, control means for controlling the opening and closing degree of each expansion valve for each branch pipe, vapor compression, characterized in that Freezing Flow control device for machine.
【請求項2】圧縮機と、凝縮器と、開閉度が調整可能な
電子膨張弁と、内部が複数本の分岐冷媒配管に分岐され
ている蒸発器とが冷媒配管により接続された蒸気圧縮式
冷凍機において、 前記蒸発器の冷媒流入側、及び吐出側に夫々設けられた
温度検出手段と、 該温度検出手段の検出温度に基づいて、前記蒸発器出口
の過熱度を算出する過熱度算出手段と、 前記各分岐冷媒配管の冷媒吐出側に夫々設けられ、吐出
冷媒温度を検出する分岐配管用温度検出手段と、 前記各分岐冷媒配管の冷媒流入側に夫々設けられ、開閉
度が調整可能な分岐配管用膨張弁と、 前記各分岐配管用温度検出手段による検出温度に基づい
て、所定時間内での前記各分岐冷媒配管の吐出冷媒温度
の平均値、及びバラツキを算出する分岐冷媒状態演算部
と、 前記過熱度算出手段により求められた過熱度に基づい
て、前記電子膨張弁の開閉度を制御すると共に、前記分
岐冷媒状態演算部により求められた前記各分岐冷媒配管
の吐出冷媒温度の平均値、及びバラツキに基づいて、前
記各分岐配管用膨張弁の開閉度を夫々制御する制御手段
と、を備えていることを特徴とする蒸気圧縮式冷凍機の
冷媒流量制御装置。
2. A vapor compression system in which a compressor, a condenser, an electronic expansion valve whose degree of opening and closing is adjustable, and an evaporator whose inside is branched into a plurality of branched refrigerant pipes are connected by a refrigerant pipe. In the refrigerator, temperature detecting means respectively provided on the refrigerant inflow side and the discharge side of the evaporator, and superheat degree calculating means for calculating the superheat degree at the evaporator outlet based on the temperature detected by the temperature detecting means. A branch pipe temperature detection means for detecting the discharge refrigerant temperature, respectively provided on the refrigerant discharge side of each of the branch refrigerant pipes, respectively provided on the refrigerant inflow side of each of the branch refrigerant pipes, the degree of opening and closing is adjustable Branch pipe expansion valve, based on the temperature detected by the temperature detecting means for each branch pipe, the average value of the discharge refrigerant temperature of each branch refrigerant pipe within a predetermined time, and a branch refrigerant state calculation unit for calculating the variation And the superheat calculation Based on the degree of superheat obtained by means, while controlling the degree of opening and closing of the electronic expansion valve, the average value of the discharge refrigerant temperature of each branch refrigerant pipe obtained by the branch refrigerant state calculation unit, and based on the variation And a control means for controlling the degree of opening / closing of each of the branch pipe expansion valves, respectively, and a refrigerant flow rate control device for a vapor compression refrigerator.
【請求項3】前記制御手段は、前記電子膨張弁の開閉度
制御によって、所定時間内での前記過熱度のバラツキが
一定範囲内となった後に、前記各分岐配管用膨張弁の開
閉度制御を行うことを特徴とする請求項1または2記載
の蒸気圧縮式冷凍機の冷媒流量制御装置。
3. The control means controls the degree of opening / closing of the expansion valve for each branch pipe after the variation of the degree of superheat within a predetermined time is within a certain range by controlling the degree of opening / closing of the electronic expansion valve. The refrigerant flow rate control device for a vapor compression refrigerator according to claim 1 or 2, characterized in that.
【請求項4】前記制御手段は、前記電子膨張弁の開閉度
制御によって、所定時間内での前記過熱度のバラツキが
1〜3℃の範囲内となった後に、前記各分岐配管用膨張
弁の開閉度制御を行うことを特徴とする請求項3記載の
蒸気圧縮式冷凍機の冷媒流量制御装置。
4. The expansion valve for each branch pipe after the variation of the degree of superheat within a predetermined time is within a range of 1 to 3 ° C. by controlling the opening / closing degree of the electronic expansion valve. 4. The refrigerant flow rate control device for a vapor compression refrigerator according to claim 3, wherein the opening / closing degree control is performed.
【請求項5】前記制御手段は、蒸気圧縮式冷凍機を運転
開始させ、所定時間経過後に実行することを特徴とする
請求項1ないし3記載の蒸気圧縮式冷凍機の冷媒流量制
御装置。
5. The refrigerant flow rate control device for a vapor compression refrigerator according to claim 1, wherein the control means starts the operation of the vapor compression refrigerator and executes the operation after a predetermined time has elapsed.
JP2040094A 1994-02-17 1994-02-17 Refrigerant flow rate controller for vapor compression type refrigerator Pending JPH07229655A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2040094A JPH07229655A (en) 1994-02-17 1994-02-17 Refrigerant flow rate controller for vapor compression type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2040094A JPH07229655A (en) 1994-02-17 1994-02-17 Refrigerant flow rate controller for vapor compression type refrigerator

Publications (1)

Publication Number Publication Date
JPH07229655A true JPH07229655A (en) 1995-08-29

Family

ID=12025979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2040094A Pending JPH07229655A (en) 1994-02-17 1994-02-17 Refrigerant flow rate controller for vapor compression type refrigerator

Country Status (1)

Country Link
JP (1) JPH07229655A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2234362A1 (en) * 2002-04-29 2005-06-16 Samsung Electronics Co. Ltd. Multiple machine-group air conditioner
JP2008128628A (en) * 2006-11-24 2008-06-05 Hitachi Appliances Inc Refrigerating device
JP2012172920A (en) * 2011-02-22 2012-09-10 Toyo Eng Works Ltd Refrigeration system
JP2012172919A (en) * 2011-02-22 2012-09-10 Toyo Eng Works Ltd Refrigeration system
US20170167810A1 (en) * 2013-11-28 2017-06-15 Alfa Laval Corporate Ab System and method for dynamic control of a heat exchanger
JPWO2018193518A1 (en) * 2017-04-18 2019-11-21 三菱電機株式会社 Air conditioner
CN114111114A (en) * 2021-11-22 2022-03-01 珠海格力电器股份有限公司 Heat exchanger assembly, control method thereof and air conditioning system
EP4269909A1 (en) * 2022-04-26 2023-11-01 IGLOO Spolka z ograniczona odpowiedzialnoscia System for distributing refrigerant to a heat exchanger and method for operation thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2234362A1 (en) * 2002-04-29 2005-06-16 Samsung Electronics Co. Ltd. Multiple machine-group air conditioner
JP2008128628A (en) * 2006-11-24 2008-06-05 Hitachi Appliances Inc Refrigerating device
JP2012172920A (en) * 2011-02-22 2012-09-10 Toyo Eng Works Ltd Refrigeration system
JP2012172919A (en) * 2011-02-22 2012-09-10 Toyo Eng Works Ltd Refrigeration system
US20170167810A1 (en) * 2013-11-28 2017-06-15 Alfa Laval Corporate Ab System and method for dynamic control of a heat exchanger
JPWO2018193518A1 (en) * 2017-04-18 2019-11-21 三菱電機株式会社 Air conditioner
CN114111114A (en) * 2021-11-22 2022-03-01 珠海格力电器股份有限公司 Heat exchanger assembly, control method thereof and air conditioning system
EP4269909A1 (en) * 2022-04-26 2023-11-01 IGLOO Spolka z ograniczona odpowiedzialnoscia System for distributing refrigerant to a heat exchanger and method for operation thereof

Similar Documents

Publication Publication Date Title
US9513041B2 (en) Air conditioner
EP2730859B1 (en) Refrigeration cycle device
EP3051219B1 (en) Outdoor unit of air conditioner and air conditioner
JP2004218879A (en) Air conditioner and its control method
JP2001091099A (en) Heat exchanger
WO2005003649A1 (en) Expansion valve control method for multiple type airconditioner
CN112254217A (en) Air conditioner and fresh air fan rotating speed adjusting method
JPH07229655A (en) Refrigerant flow rate controller for vapor compression type refrigerator
JP3737357B2 (en) Water heater
JP2000297970A (en) Controller for heat pump
JP6638468B2 (en) Air conditioner
JP2018031527A (en) Air conditioning device
JP2004101129A (en) Control method for refrigerator and refrigeration device
JP2004156844A (en) Air conditioner and its control method
JP2021055931A (en) Heat pump cycle device
JP2018071893A (en) Air conditioner
JPH0627588B2 (en) Air conditioner
JP2550649B2 (en) Refrigeration equipment
US5782099A (en) Method for controlling an absorption system
JPH062982A (en) Absorption room cooling/heating system and controlling method therefor
JP2014119147A (en) Air conditioner
JPH081343B2 (en) Air conditioner
JP3588144B2 (en) Operating number control of absorption chillers installed in parallel
JP2001201198A (en) Method for controlling air conditioner
JP7415750B2 (en) heat pump cycle equipment