JP2000297970A - Controller for heat pump - Google Patents

Controller for heat pump

Info

Publication number
JP2000297970A
JP2000297970A JP11106207A JP10620799A JP2000297970A JP 2000297970 A JP2000297970 A JP 2000297970A JP 11106207 A JP11106207 A JP 11106207A JP 10620799 A JP10620799 A JP 10620799A JP 2000297970 A JP2000297970 A JP 2000297970A
Authority
JP
Japan
Prior art keywords
compressor
degree
expansion valve
superheat
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11106207A
Other languages
Japanese (ja)
Other versions
JP4231149B2 (en
Inventor
Toshio Fukuda
敏男 福田
Yasuhisa Hasegawa
泰久 長谷川
Takashi Komori
隆史 小森
Keiji Matsumoto
圭司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Diesel Engine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Diesel Engine Co Ltd filed Critical Yanmar Diesel Engine Co Ltd
Priority to JP10620799A priority Critical patent/JP4231149B2/en
Publication of JP2000297970A publication Critical patent/JP2000297970A/en
Application granted granted Critical
Publication of JP4231149B2 publication Critical patent/JP4231149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a controller for a heat pump, which is capable of converging the quantities of state of necessary refrigerant to an objective value in a short period of time even when the number of sets of operated indoor machines is increased or decreased. SOLUTION: In a heat pump, a plurality of sets of indoor machines are connected to one set of outdoor machine while the quantities of state of refrigerant, flowing through the refrigerating circuit of a heat pump, is regulated by controlling the rotating number of a compressor and the opening of an expansion valve. An estimating device, operating the number of rotation of the compressor and the opening of the expansion valve to converge the discharging pressure and a superheating degree in the outlet port of the compressor to predetermined values when the operating capacity of an operating indoor machine is fluctuated, is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ヒートポンプの制
御装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat pump control device.

【0002】[0002]

【従来の技術】一般にヒートポンプでは、1つの室外機
に対して複数の室内機が接続される。従来は、冷媒の圧
縮機吐出圧を目標吐出圧に収束させかつ過熱度を目標過
熱度に収束させる制御として定常運転時においても、起
動時や室内機運転容量の増減が生じた直後のような過渡
応答時においてもフィードバック制御のみであった。
2. Description of the Related Art Generally, in a heat pump, a plurality of indoor units are connected to one outdoor unit. Conventionally, even during steady-state operation as control for converging the compressor discharge pressure of the refrigerant to the target discharge pressure and converging the superheat degree to the target superheat degree, such as at startup or immediately after an increase or decrease in the indoor unit operating capacity has occurred. Even during transient response, only feedback control was performed.

【0003】[0003]

【発明が解決しようとする課題】しかし稼動する室内機
の運転容量が増減した際に、従来のフィードバック制御
のみでは圧縮機出口における冷媒の吐出圧や蒸発器出口
における過熱度といった冷媒状態量が変化するまで時間
が掛かり、その間、検出値である吐出圧や過熱度が変化
しないので、フィードバック制御が有効に働かない。ま
た、一旦変化が現れてからでは再度目標値に収束するま
でに時間がかかる。本発明の課題は、稼動する室内機運
転容量が増減しても短時間で冷媒の圧縮機出口における
吐出圧や蒸発器出口における過熱度といった状態量を目
標値に収束させるヒートポンプの制御装置を提供するこ
とである。
However, when the operating capacity of an operating indoor unit is increased or decreased, the refrigerant discharge quantity at the outlet of the compressor or the degree of superheat at the outlet of the evaporator changes only with the conventional feedback control. It takes a long time to perform the process, and during that time, the discharge pressure and the degree of superheat, which are the detected values, do not change, so that the feedback control does not work effectively. Also, once a change appears, it takes time to converge to the target value again. An object of the present invention is to provide a heat pump control device that converges a state quantity such as a discharge pressure of a refrigerant at a compressor outlet or a degree of superheat at an evaporator outlet to a target value in a short time even if the operating capacity of an operating indoor unit increases or decreases. It is to be.

【0004】また、吐出圧を一定に保つために圧縮機回
転数を変更すると冷媒の過熱度も変動してしまい、ま
た、冷媒の過熱度を一定に保つために膨張弁開度を変更
すると吐出圧も変動してしまうため、フィードバック制
御のみでは目標値に収束するまでに時間が掛かってしま
う。本発明のもう一つの課題は、圧縮機回転数の過熱度
への影響、膨張弁開度の吐出圧への影響を除去するヒー
トポンプの制御装置を提供することことである。
[0004] When the rotational speed of the compressor is changed to keep the discharge pressure constant, the degree of superheat of the refrigerant also fluctuates. When the degree of opening of the expansion valve is changed to keep the degree of superheat of the refrigerant constant, the discharge is changed. Since the pressure also fluctuates, it takes time to converge to the target value only with the feedback control. Another object of the present invention is to provide a heat pump control device that eliminates the influence of the compressor speed on the degree of superheat and the effect of the opening degree of the expansion valve on the discharge pressure.

【0005】[0005]

【課題を解決するための手段】請求項1の発明は、1台
の室外機に複数台の室内機が接続されかつ圧縮機回転数
及び膨張弁開度を制御することにより冷凍回路内を流れ
る冷媒の状態量を調整するヒートポンプにおいて、稼動
する室内機運転容量が変動した際に、圧縮機出口におけ
る吐出圧と蒸発器出口における過熱度を所定値に収束さ
せる圧縮機回転数と膨張弁開度を算出する予測器を設け
たことを特徴とするヒートポンプの制御装置である。
According to a first aspect of the present invention, a plurality of indoor units are connected to one outdoor unit, and flow in the refrigeration circuit by controlling a compressor speed and an expansion valve opening. In a heat pump that adjusts the state quantity of the refrigerant, when the operating capacity of the operating indoor unit fluctuates, the compressor rotation speed and the expansion valve opening that converge the discharge pressure at the compressor outlet and the degree of superheat at the evaporator outlet to predetermined values. Is a control device for a heat pump, comprising a predictor for calculating the heat pump.

【0006】請求項2の発明は、圧縮機回転数の変更に
よる蒸発器出口における過熱度への影響を排除するデカ
ップラを設けた請求項1に記載のヒートポンプの制御装
置である。
According to a second aspect of the present invention, there is provided a heat pump control device according to the first aspect, further comprising a decoupler for eliminating an influence on a degree of superheat at an evaporator outlet due to a change in the number of rotations of the compressor.

【0007】請求項3の発明は、膨張弁開度の変更によ
る圧縮機出口における吐出圧への影響を排除するデカッ
プラを設けた請求項1に記載のヒートポンプの制御装置
である。
According to a third aspect of the present invention, there is provided a heat pump control device according to the first aspect, further comprising a decoupler for eliminating an influence on a discharge pressure at a compressor outlet due to a change in the opening degree of the expansion valve.

【0008】[0008]

【発明の実施の形態】図1は、本発明のヒートポンプ制
御装置100の信号伝達経路図である。図1に示すよう
にヒートポンプ制御装置100は、後述する冷凍回路9
0に対してPIDコントローラ15からの制御信号と予
測器30からの制御信号が入力され、最適な圧縮機6
(図2)の回転数と膨張弁5又は膨張弁7〜9(図2)
の開度が設定される。冷凍回路90において冷媒の吐出
圧と過熱度を計測し、この計測した吐出圧と過熱度が目
標吐出圧及び目標過熱度に収束するまで圧縮機6の回転
数と膨張弁5又は膨張弁7〜9の開度が再度設定され
る。
FIG. 1 is a signal transmission path diagram of a heat pump control device 100 according to the present invention. As shown in FIG. 1, the heat pump control device 100 includes a refrigeration circuit 9 described later.
0, the control signal from the PID controller 15 and the control signal from the predictor 30 are input, and the optimum compressor 6
(FIG. 2) rotation speed and expansion valve 5 or expansion valves 7 to 9 (FIG. 2)
Is set. The refrigerant discharge pressure and the degree of superheat are measured in the refrigeration circuit 90, and the rotational speed of the compressor 6 and the expansion valve 5 or the expansion valve 7 to 7 until the measured discharge pressure and the degree of superheat converge on the target discharge pressure and the target degree of superheat. 9 is set again.

【0009】図1において、信号は矢印の向きに伝達さ
れ、かつ集結部20、21で信号が集結し、分岐部22
で信号は分岐する。PIDコントローラ15で圧縮機6
(図2)の回転数と膨張弁5、7〜9(図2)の開度を
制御する制御信号を冷凍回路90へ入力する。
In FIG. 1, the signal is transmitted in the direction of the arrow, and the signals are collected by the concentrating portions 20 and 21 to form a branching portion 22.
The signal branches at. Compressor 6 with PID controller 15
A control signal for controlling the rotation speed of (FIG. 2) and the degree of opening of the expansion valves 5, 7 to 9 (FIG. 2) is input to the refrigeration circuit 90.

【0010】また、予測器30の記憶部(図示せず)に
は、圧縮機回転数に対する吐出圧力の伝達関数(図5の
1)、圧縮機回転数に対する過熱度の伝達関数(図5
のG2)、膨張弁開度に対する吐出圧力の伝達関数(図
5のG3)、膨張弁開度に対する過熱度の伝達関数(図
5のG4)、室内機運転容量に対する吐出圧力の伝達関
数(図5のG5)及び室内機運転容量に対する過熱度の
伝達関数(図5のG6)、が予め記憶されている。
The storage unit (not shown) of the predictor 30 stores a transfer function of the discharge pressure with respect to the compressor speed (G 1 in FIG. 5) and a transfer function of the superheat degree with respect to the compressor speed (FIG. 5).
G 2 ), transfer function of discharge pressure to expansion valve opening (G 3 in FIG. 5), transfer function of superheat to expansion valve opening (G 4 in FIG. 5), transmission of discharge pressure to indoor unit operating capacity The function (G 5 in FIG. 5) and the transfer function of the degree of superheat with respect to the indoor unit operating capacity (G 6 in FIG. 5) are stored in advance.

【0011】図2は、暖房時の冷凍回路90の冷媒の流
通経路図である。図2に示すように、冷凍回路90は、
1つの室外機1と3つの室内機2、3、4から構成され
ている。図2では室外機1に対して3つの室内機2、
3、4が接続されているが、必要に応じて室内機数を変
更しても差し支えない。
FIG. 2 is a diagram showing the flow of refrigerant in the refrigeration circuit 90 during heating. As shown in FIG. 2, the refrigeration circuit 90 includes:
It is composed of one outdoor unit 1 and three indoor units 2, 3, and 4. In FIG. 2, three indoor units 2 are compared to the outdoor unit 1,
Although 3 and 4 are connected, the number of indoor units may be changed as needed.

【0012】室外機1は、膨張弁5、蒸発器として作用
する熱交換器10及び圧縮機6で構成されている。室内
機2は、凝縮器として作用する熱交換器11と膨張弁7
から構成されている。室内機3及び4も室内機2と同様
にそれぞれ凝縮器として作用する熱交換器12、13と
膨張弁8、9から構成されている。
The outdoor unit 1 includes an expansion valve 5, a heat exchanger 10 acting as an evaporator, and a compressor 6. The indoor unit 2 includes a heat exchanger 11 acting as a condenser and an expansion valve 7.
It is composed of Like the indoor unit 2, the indoor units 3 and 4 also include heat exchangers 12 and 13 and expansion valves 8 and 9 that function as condensers, respectively.

【0013】各室内機2〜4の膨張弁7〜9は、それぞ
れ室外機1の膨張弁5と配管で接続されており、また、
室外機1の圧縮機6は、各室内機2〜4の熱交換器11
〜13と配管で接続されている。図2に示すように、室
外機1と室内機2〜4は、閉じた回路(冷凍回路90)
を形成しており、冷媒は冷凍回路90を矢印の向きに流
れる。
The expansion valves 7 to 9 of the indoor units 2 to 4 are connected to the expansion valve 5 of the outdoor unit 1 by piping, respectively.
The compressor 6 of the outdoor unit 1 is connected to the heat exchanger 11 of each of the indoor units 2 to 4.
To 13 are connected by piping. As shown in FIG. 2, the outdoor unit 1 and the indoor units 2 to 4 have a closed circuit (refrigeration circuit 90).
Is formed, and the refrigerant flows through the refrigeration circuit 90 in the direction of the arrow.

【0014】図3は、冷房時の冷凍回路90の冷媒の流
通経路図である。図3の冷凍回路は、図2の冷凍回路と
構成は同じであり、矢印で示す冷媒の流通する方向のみ
が逆になっている。このとき、室外機1の熱交換器10
は凝縮器として作用し、室内機2〜4の熱交換器11〜
13は蒸発器として作用する。
FIG. 3 is a diagram showing the flow of refrigerant in the refrigeration circuit 90 during cooling. The refrigeration circuit of FIG. 3 has the same configuration as that of the refrigeration circuit of FIG. 2, and only the direction of flow of the refrigerant indicated by the arrow is reversed. At this time, the heat exchanger 10 of the outdoor unit 1
Acts as a condenser and heat exchangers 11 to 11 of indoor units 2 to 4
13 acts as an evaporator.

【0015】図2の冷凍回路90を例にとって以下説明
する。冷凍回路90内を流れる適切な冷媒の状態量は、
外気温度・冷凍回路90を構成する配管の長さ・室内設
定温度、各室内機の定格容量及び稼動させる室内機数等
の要素で決まる室内機運転容量で決定される。
A description will be given below by taking the refrigeration circuit 90 of FIG. 2 as an example. An appropriate state quantity of the refrigerant flowing in the refrigeration circuit 90 is:
It is determined by the indoor unit operating capacity determined by factors such as the outside air temperature, the length of the piping constituting the refrigeration circuit 90, the indoor set temperature, the rated capacity of each indoor unit, and the number of indoor units to be operated.

【0016】圧縮機6の回転数を増減させると、冷凍回
路90内を流通する圧縮機6の出口における冷媒の吐出
圧が変化する。逆に、稼動する室内機の運転容量が変化
した際に圧縮機6の回転数を調整すると、冷凍回路90
内を流通する圧縮機6の出口における冷媒の吐出圧を一
定に保つことができる。
When the rotation speed of the compressor 6 is increased or decreased, the discharge pressure of the refrigerant at the outlet of the compressor 6 flowing in the refrigeration circuit 90 changes. Conversely, if the rotation speed of the compressor 6 is adjusted when the operating capacity of the operating indoor unit changes, the refrigeration circuit 90
The discharge pressure of the refrigerant at the outlet of the compressor 6 flowing inside can be kept constant.

【0017】また、膨張弁5の開度を変化させると、熱
交換器10(暖房時の蒸発器)又は熱交換器11〜13
(冷房時の蒸発器)出口における過熱度が変化する。逆
に稼動する室内機の運転容量が変化した際に、膨張弁5
(又は膨張弁7、8、9)の開度を調整すると、過熱度
を一定に保つことができる。
When the opening degree of the expansion valve 5 is changed, the heat exchanger 10 (evaporator for heating) or the heat exchangers 11 to 13
(Evaporator during cooling) The degree of superheat at the outlet changes. Conversely, when the operating capacity of the operating indoor unit changes, the expansion valve 5
By adjusting the degree of opening of the expansion valves (or expansion valves 7, 8, 9), the degree of superheat can be kept constant.

【0018】また、圧縮機回転数の変化は過熱度にも干
渉し、膨張弁開度の変化は吐出圧にも干渉する。従っ
て、吐出圧と過熱度を一定に保つためには、これらの干
渉を除去する必要がある。
Further, a change in the compressor rotation speed also interferes with the degree of superheat, and a change in the opening degree of the expansion valve also interferes with the discharge pressure. Therefore, in order to keep the discharge pressure and the degree of superheat constant, it is necessary to remove these interferences.

【0019】図5の破線枠91は、過熱度、吐出圧力、
圧縮機回転数、膨張弁開度及び室内機運転容量の相関関
係を示したものである。G1は圧縮機回転数と吐出圧の
関係を示す伝達関数であり、G2は圧縮機回転数と過熱
度の関係を示す伝達関数である。G3は膨張弁開度と吐
出圧の関係を示す伝達関数であり、G4は膨張弁開度と
過熱度の関係を示す伝達関数である。また、G5は室内
機運転容量と吐出圧の関係を示す伝達関数であり、G6
は室内機運転容量と過熱度の関係を示す伝達関数であ
る。
The dashed frame 91 in FIG. 5 indicates the degree of superheat, discharge pressure,
4 shows a correlation among a compressor rotation speed, an expansion valve opening degree, and an indoor unit operating capacity. G 1 is a transfer function indicating the relationship between the compressor speed and the discharge pressure, and G 2 is a transfer function indicating the relationship between the compressor speed and the degree of superheat. G 3 are a transfer function showing a relationship between expansion valve and the discharge pressure, G 4 is a transfer function representing the degree of superheat of the relationship between the expansion valve opening. Also, G 5 is the transfer function showing the relationship between the indoor unit operation capacity and discharge pressure, G 6
Is a transfer function indicating the relationship between the indoor unit operating capacity and the degree of superheat.

【0020】稼動する室内機運転容量が変動した際にお
いて、圧縮機6出口における冷媒吐出圧と蒸発器(暖房
時には熱交換器10、冷房時には熱交換器11〜13)
出口における過熱度を室内機運転容量が変動する前の吐
出圧と過熱度のままに保つことにより、稼動する室内機
の能力を発揮する(冷房又は暖房効果を奏する)ことが
できる。そこで冷媒の吐出圧と過熱度を一定に保つよう
に圧縮機6の回転数と膨張弁5の開度を制御する。その
制御方法を以下に説明する。
When the operating capacity of the operating indoor unit fluctuates, the refrigerant discharge pressure at the outlet of the compressor 6 and the evaporator (the heat exchanger 10 for heating and the heat exchangers 11 to 13 for cooling)
By maintaining the degree of superheat at the outlet at the discharge pressure and the degree of superheat before the indoor unit operation capacity fluctuates, the capability of the operating indoor unit can be exhibited (cooling or heating effect can be achieved). Therefore, the rotation speed of the compressor 6 and the opening of the expansion valve 5 are controlled so that the discharge pressure and the degree of superheat of the refrigerant are kept constant. The control method will be described below.

【0021】稼動中の室内機に停止信号が入力された
り、停止中の室内機に稼動開始信号が入力されると稼動
する室内機の台数が変わる。その停止信号及び稼動開始
信号は、例えば人手でエアコンスイッチをON又はOF
Fにすることにより、または室温を一定(例えば20
℃)に保つ自動制御機構により予測器30(図1)へ伝
達される。
When a stop signal is input to an operating indoor unit or an operation start signal is input to a stopped indoor unit, the number of operating indoor units changes. The stop signal and the operation start signal are, for example, manually turned ON or OFF of the air conditioner switch.
F or a constant room temperature (eg, 20
° C) to the predictor 30 (Fig. 1) by an automatic control mechanism.

【0022】例えば、図2の室内機2、3の2台が稼動
していたところ、室内機4を稼動させる稼動開始信号が
予測器30に入力されると、予測器30は稼動する室内
機の台数が1台増加したことによる吐出圧の落ち込み方
と過熱度の変動量を推定し、圧縮機回転数が推定した落
ち込み量を相殺するだけの回転数となるようにかつ膨張
弁開度が推定した変動量を相殺するだけの開度となるよ
うに伝達関数G1〜G6がモデルとして組込まれた予測器
30により圧縮機6の回転数と膨張弁5の開度を設定す
る。予測器30による制御は吐出圧と過熱度の両方が設
定値に収束するまで繰り返される。
For example, when two of the indoor units 2 and 3 in FIG. 2 are operating and an operation start signal for operating the indoor unit 4 is input to the predictor 30, the predictor 30 is activated. The amount of discharge pressure drop and the degree of superheat fluctuation due to the increase in the number of the compressors by one, and the expansion valve opening is adjusted so that the compressor rotation speed becomes a rotation speed enough to offset the estimated drop amount. The rotation speed of the compressor 6 and the opening of the expansion valve 5 are set by the predictor 30 in which the transfer functions G 1 to G 6 are incorporated as a model so that the opening is such that the estimated amount of change is offset. The control by the predictor 30 is repeated until both the discharge pressure and the degree of superheat converge on the set values.

【0023】膨張弁5は、室内機2〜4の全ての熱交換
器11〜13を通過する冷媒流量に影響を及ぼすため、
図3の冷房時においては、常時全開状態にしておき、各
室内機2〜3に設けた膨張弁7〜9の開度を調整するこ
とにより冷媒流量を調整する。逆に図2の暖房時におい
ては、膨張弁7〜9は全開にしておき、膨張弁5の開度
を調整することにより冷媒流量を調整する。
The expansion valve 5 affects the flow rate of the refrigerant passing through all the heat exchangers 11 to 13 of the indoor units 2 to 4.
During the cooling shown in FIG. 3, the refrigerant flow rate is adjusted by keeping the full open state at all times and adjusting the opening degrees of the expansion valves 7 to 9 provided in the indoor units 2 to 3. Conversely, during the heating shown in FIG. 2, the expansion valves 7 to 9 are fully opened, and the flow rate of the refrigerant is adjusted by adjusting the opening of the expansion valve 5.

【0024】図4は、ヒートポンプ制御装置100の動
作の流れ図である。図4において、室内機の稼動台数に
変更があると予測器30(図1)が作動する。図4にお
いて破線で囲った部分が予測器30の動作である。
FIG. 4 is a flowchart of the operation of the heat pump control device 100. In FIG. 4, when there is a change in the number of operating indoor units, the predictor 30 (FIG. 1) operates. In FIG. 4, the part surrounded by a broken line is the operation of the predictor 30.

【0025】図示しない検出器により吐出圧と過熱度を
検出し、検出した値を結合部20へ送り、この検出した
値と目標値との差をPIDコントローラ15へ入力す
る。PIDコントローラ15は、これら入力された目標
値との偏差により再度圧縮機回転数と膨張弁開度を設定
する。この作業を繰り返すことにより吐出圧と過熱度を
目標値に収束させるフィードバック制御を行う。
The discharge pressure and the degree of superheat are detected by a detector (not shown), the detected values are sent to the coupling section 20, and the difference between the detected value and the target value is input to the PID controller 15. The PID controller 15 sets the compressor speed and the expansion valve opening again based on the deviation from these input target values. By repeating this operation, feedback control for converging the discharge pressure and the degree of superheat to the target values is performed.

【0026】図4において、非干渉制御とは、圧縮機回
転数と膨張弁開度は各々過熱度と吐出圧に影響を及ぼす
が、これを圧縮機回転数の過熱度への干渉を除去し、か
つ膨張弁開度の吐出圧への干渉を除去する制御をいう。
In FIG. 4, the non-interference control means that the compressor speed and the expansion valve opening affect the degree of superheat and discharge pressure, respectively. And control for removing interference of the opening degree of the expansion valve with the discharge pressure.

【0027】図5のデカップラ50、51が、圧縮機回
転数が過熱度に及ぼす影響と膨張弁開度が吐出圧に及ぼ
す影響を除去する非干渉制御を行うための演算部であ
る。デカップラ50を用いることにより圧縮機回転数の
過熱度への干渉つまりG2の干渉を除去し、デカップラ
51を用いることにより膨張弁開度の吐出圧への干渉つ
まりG3の干渉を除去することができる。
The decouplers 50 and 51 in FIG. 5 are operation units for performing non-interference control for eliminating the effect of the compressor speed on the degree of superheat and the effect of the opening degree of the expansion valve on the discharge pressure. Decoupler 50 interference i.e. the interference of G 2 to the compressor rotational speed of the superheat is removed by using a removing interference i.e. the interference of G 3 to the discharge pressure of the expansion valve opening degree by using a decoupler 51 Can be.

【0028】図4の流れ図における予測器30が作動す
る(稼動する室内機運転容量が変わる)までは、デカッ
プラ50、51による非干渉制御とPIDコントローラ
15によるフィードバック制御が繰り返し行われる。稼
動する室内機の運転容量が変動すると、予測器30(図
1)が目標過熱度及び目標吐出圧を実現する圧縮機回転
数と膨張弁開度を予測する制御が付加される。
Until the predictor 30 operates in the flowchart of FIG. 4 (operating indoor unit operating capacity changes), non-interference control by the decouplers 50 and 51 and feedback control by the PID controller 15 are repeatedly performed. When the operating capacity of the operating indoor unit fluctuates, the predictor 30 (FIG.
In 1), control for predicting the compressor rotation speed and the expansion valve opening for realizing the target superheat degree and the target discharge pressure is added.

【0029】吐出圧と過熱度が目標範囲内に収束する
と、吐出圧と過熱度は目標値に達したものと見なし、予
測器30を停止させ、PIDコントローラ15によるフ
ィードバック制御と、デカップラ50、51による非干
渉制御を行う。
When the discharge pressure and the degree of superheat converge within the target range, it is considered that the discharge pressure and the degree of superheat have reached the target values, the predictor 30 is stopped, the feedback control by the PID controller 15 and the decouplers 50 and 51 are performed. Perform non-interference control.

【0030】[0030]

【発明の効果】請求項1の発明によると、予測器30に
より室内機の運転容量が変動しても吐出圧と過熱度への
影響を予め推定することができるので、従来よりも早く
吐出圧と過熱度を一定に保つことができ、極めて短時間
で冷凍回路90内を流通する冷媒の状態量を調整するこ
とができる。
According to the first aspect of the present invention, even if the operating capacity of the indoor unit fluctuates, the influence on the discharge pressure and the degree of superheat can be estimated in advance by the predictor 30, so that the discharge pressure is earlier than in the prior art. And the degree of superheat can be kept constant, and the state quantity of the refrigerant flowing through the refrigeration circuit 90 can be adjusted in a very short time.

【0031】請求項2、3の発明では、デカップラ5
0、51を備えることにより、圧縮機回転数が過熱度に
及ぼす影響と膨張弁開度が吐出圧に及ぼす影響を除去す
ることができるので、冷凍回路90内を流通する冷媒の
状態量を調整するための時間を短縮することができ、吐
出圧と過熱度を一定に保ち易くなる。
According to the second and third aspects of the present invention, the decoupler 5
By providing 0 and 51, it is possible to eliminate the influence of the compressor rotation speed on the degree of superheat and the effect of the opening degree of the expansion valve on the discharge pressure. Therefore, the state quantity of the refrigerant flowing through the refrigeration circuit 90 is adjusted. The discharge pressure and the degree of superheat can be easily kept constant.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明のヒートポンプ制御装置の信号伝達経
路図である。
FIG. 1 is a signal transmission path diagram of a heat pump control device of the present invention.

【図2】 暖房時の冷凍回路の冷媒の流通経路図であ
る。
FIG. 2 is a diagram showing a circulation path of a refrigerant in a refrigeration circuit during heating.

【図3】 冷房時の冷凍回路の冷媒の流通経路図であ
る。
FIG. 3 is a diagram showing a refrigerant flow path of a refrigeration circuit during cooling.

【図4】 ヒートポンプ制御装置の動作の流れ図であ
る。
FIG. 4 is a flowchart of the operation of the heat pump control device.

【図5】 圧縮機回転数が過熱度に及ぼす影響と膨張弁
開度が吐出圧に及ぼす影響を除去するためにデカップラ
を設けた信号系統図である。
FIG. 5 is a signal system diagram provided with a decoupler in order to eliminate the effect of the compressor speed on the degree of superheat and the effect of the opening degree of the expansion valve on the discharge pressure.

【符号の説明】[Explanation of symbols]

1 室外機 2〜4 室内機 5、7〜9 膨張弁 6 圧縮機 10 熱交換器(蒸発器(暖房時)) 11〜13 熱交換器(蒸発器(冷房時)) 30 予測器 50、51 デカップラ 90 冷凍回路 Reference Signs List 1 outdoor unit 2-4 indoor unit 5, 7-9 expansion valve 6 compressor 10 heat exchanger (evaporator (for heating)) 11-13 heat exchanger (evaporator (for cooling)) 30 predictor 50, 51 Decoupler 90 refrigeration circuit

───────────────────────────────────────────────────── フロントページの続き (72)発明者 長谷川 泰久 愛知県春日井市牛山町1464 (72)発明者 小森 隆史 大阪府大阪市北区茶屋町1番32号 ヤンマ ーディーゼル株式会社内 (72)発明者 松本 圭司 大阪府大阪市北区茶屋町1番32号 ヤンマ ーディーゼル株式会社内 Fターム(参考) 3L092 GA02 HA12 JA05 KA06 KA15 LA05 LA07  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Yasuhisa Hasegawa 1464 Ushiyama-cho, Kasugai-shi, Aichi (72) Inventor Takashi Komori 1-32 Chaya-cho, Kita-ku, Osaka-shi, Osaka Yanmar Diesel Co., Ltd. (72) Inventor Keiji Matsumoto 1-32 Chayamachi, Kita-ku, Osaka City, Osaka Prefecture F-term in Yanmar Diesel Co., Ltd. (Reference) 3L092 GA02 HA12 JA05 KA06 KA15 LA05 LA07

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 1台の室外機に複数台の室内機が接続さ
れかつ圧縮機回転数及び膨張弁開度を制御することによ
り冷凍回路内を流れる冷媒の状態量を調整するヒートポ
ンプにおいて、稼動する室内機の運転容量が変動した際
に、圧縮機出口における吐出圧と蒸発器出口における過
熱度を所定値に収束させる圧縮機回転数と膨張弁開度を
算出する予測器を設けたことを特徴とするヒートポンプ
の制御装置。
1. A heat pump in which a plurality of indoor units are connected to one outdoor unit, and a state quantity of a refrigerant flowing in a refrigeration circuit is adjusted by controlling a compressor rotation speed and an expansion valve opening. When the operating capacity of the indoor unit changes, a predictor for calculating a compressor rotation speed and an expansion valve opening to converge the discharge pressure at the compressor outlet and the superheat at the evaporator outlet to predetermined values is provided. Characteristic heat pump control device.
【請求項2】 圧縮機回転数の変更による蒸発器出口に
おける過熱度への影響を排除するデカップラを設けた請
求項1に記載のヒートポンプの制御装置。
2. The heat pump control device according to claim 1, further comprising a decoupler for eliminating an influence on a degree of superheat at an evaporator outlet due to a change in a compressor rotation speed.
【請求項3】 膨張弁開度の変更による圧縮機出口にお
ける吐出圧への影響を排除するデカップラを設けた請求
項1に記載のヒートポンプの制御装置。
3. The heat pump control device according to claim 1, further comprising a decoupler for eliminating an influence on a discharge pressure at a compressor outlet due to a change in an expansion valve opening.
JP10620799A 1999-04-14 1999-04-14 Heat pump control device Expired - Fee Related JP4231149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10620799A JP4231149B2 (en) 1999-04-14 1999-04-14 Heat pump control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10620799A JP4231149B2 (en) 1999-04-14 1999-04-14 Heat pump control device

Publications (2)

Publication Number Publication Date
JP2000297970A true JP2000297970A (en) 2000-10-24
JP4231149B2 JP4231149B2 (en) 2009-02-25

Family

ID=14427725

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10620799A Expired - Fee Related JP4231149B2 (en) 1999-04-14 1999-04-14 Heat pump control device

Country Status (1)

Country Link
JP (1) JP4231149B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009004761A1 (en) * 2007-06-29 2009-01-08 Daikin Industries, Ltd. Freezing device
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8539786B2 (en) 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
US8849613B2 (en) 2007-10-05 2014-09-30 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
WO2019017299A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Air conditioning system
CN111895630A (en) * 2020-07-31 2020-11-06 广东Tcl智能暖通设备有限公司 Air conditioner operation control method, air conditioner and storage medium
CN113686000A (en) * 2020-05-19 2021-11-23 广东美的暖通设备有限公司 Control method of air conditioner, air conditioner and computer storage medium
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7233161B2 (en) 2016-11-07 2023-03-06 日本製鉄株式会社 Side seal device, twin roll type continuous casting device, and method for producing thin cast slab

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009014210A (en) * 2007-06-29 2009-01-22 Daikin Ind Ltd Refrigerating device
AU2008272365B2 (en) * 2007-06-29 2011-07-28 Daikin Industries, Ltd. Refrigeration apparatus
WO2009004761A1 (en) * 2007-06-29 2009-01-08 Daikin Industries, Ltd. Freezing device
US8849613B2 (en) 2007-10-05 2014-09-30 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9683563B2 (en) 2007-10-05 2017-06-20 Emerson Climate Technologies, Inc. Vibration protection in a variable speed compressor
US9021823B2 (en) 2007-10-05 2015-05-05 Emerson Climate Technologies, Inc. Compressor assembly having electronics cooling system and method
US9541907B2 (en) 2007-10-08 2017-01-10 Emerson Climate Technologies, Inc. System and method for calibrating parameters for a refrigeration system with a variable speed compressor
US8539786B2 (en) 2007-10-08 2013-09-24 Emerson Climate Technologies, Inc. System and method for monitoring overheat of a compressor
US9057549B2 (en) 2007-10-08 2015-06-16 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9476625B2 (en) 2007-10-08 2016-10-25 Emerson Climate Technologies, Inc. System and method for monitoring compressor floodback
US9494354B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US9494158B2 (en) 2007-10-08 2016-11-15 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8459053B2 (en) 2007-10-08 2013-06-11 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US8418483B2 (en) 2007-10-08 2013-04-16 Emerson Climate Technologies, Inc. System and method for calculating parameters for a refrigeration system with a variable speed compressor
US10077774B2 (en) 2007-10-08 2018-09-18 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
US10962009B2 (en) 2007-10-08 2021-03-30 Emerson Climate Technologies, Inc. Variable speed compressor protection system and method
CN110691948A (en) * 2017-07-20 2020-01-14 大金工业株式会社 Air conditioning system
JP2019020112A (en) * 2017-07-20 2019-02-07 ダイキン工業株式会社 Air conditioning system
AU2018302611B2 (en) * 2017-07-20 2021-02-25 Daikin Industries, Ltd. Air conditioning system
WO2019017299A1 (en) * 2017-07-20 2019-01-24 ダイキン工業株式会社 Air conditioning system
US11371743B2 (en) 2017-07-20 2022-06-28 Daikin Industries, Ltd. Air conditioning system
US11206743B2 (en) 2019-07-25 2021-12-21 Emerson Climate Technolgies, Inc. Electronics enclosure with heat-transfer element
US11706899B2 (en) 2019-07-25 2023-07-18 Emerson Climate Technologies, Inc. Electronics enclosure with heat-transfer element
CN113686000A (en) * 2020-05-19 2021-11-23 广东美的暖通设备有限公司 Control method of air conditioner, air conditioner and computer storage medium
CN113686000B (en) * 2020-05-19 2022-08-30 广东美的暖通设备有限公司 Control method of air conditioner, air conditioner and computer storage medium
CN111895630A (en) * 2020-07-31 2020-11-06 广东Tcl智能暖通设备有限公司 Air conditioner operation control method, air conditioner and storage medium
CN111895630B (en) * 2020-07-31 2022-04-22 广东Tcl智能暖通设备有限公司 Air conditioner operation control method, air conditioner and storage medium

Also Published As

Publication number Publication date
JP4231149B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
JP3888403B2 (en) Method and apparatus for controlling air conditioner
AU2014201333B2 (en) Outdoor unit of air conditioner and air conditioner
JP4248099B2 (en) Control method of refrigerator or hot and cold water machine
JP2000297970A (en) Controller for heat pump
JP6766595B2 (en) Air conditioner
JP6638468B2 (en) Air conditioner
JP3249099B2 (en) Multi-room air conditioner having two or more bypass lines and method of controlling bypass amount thereof
JP2021055931A (en) Heat pump cycle device
WO2019215878A1 (en) Air conditioner
JPH07229655A (en) Refrigerant flow rate controller for vapor compression type refrigerator
JP2019113246A (en) Air conditioner
JP3485679B2 (en) Air conditioner
JPH0627588B2 (en) Air conditioner
JP3348465B2 (en) Binary refrigeration equipment
JPH1038422A (en) Air conditioner
JPH022064B2 (en)
JPH09210492A (en) Electric expansion valve control device for multi-room type air conditioner
JP7512639B2 (en) Air Conditioning Equipment
JP7443887B2 (en) air conditioner
JPH0282045A (en) Control device for air conditioner
JPH081343B2 (en) Air conditioner
JPH0760007B2 (en) Air conditioner
JPH09170803A (en) Controller for air conditioner
JP2999870B2 (en) Engine driven air conditioner
JPH025318Y2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees