JP6766595B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP6766595B2
JP6766595B2 JP2016212732A JP2016212732A JP6766595B2 JP 6766595 B2 JP6766595 B2 JP 6766595B2 JP 2016212732 A JP2016212732 A JP 2016212732A JP 2016212732 A JP2016212732 A JP 2016212732A JP 6766595 B2 JP6766595 B2 JP 6766595B2
Authority
JP
Japan
Prior art keywords
indoor
heat exchanger
outdoor
refrigerant
outdoor heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016212732A
Other languages
Japanese (ja)
Other versions
JP2018071893A (en
Inventor
博俊 竹内
博俊 竹内
慎太郎 真田
慎太郎 真田
賢一 ▲高▼野
賢一 ▲高▼野
亮 ▲高▼岡
亮 ▲高▼岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2016212732A priority Critical patent/JP6766595B2/en
Publication of JP2018071893A publication Critical patent/JP2018071893A/en
Application granted granted Critical
Publication of JP6766595B2 publication Critical patent/JP6766595B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも1台の室外機に複数台の室内機が冷媒配管で接続されたマルチ型空気調和装置に係わり、より詳細には、停止中の室内機から発生する冷媒音を低減しつつ、除霜運転中の冷媒循環量不足を抑制できる空気調和装置に関する。 The present invention relates to a multi-type air conditioner in which a plurality of indoor units are connected to at least one outdoor unit by a refrigerant pipe, and more specifically, while reducing the refrigerant noise generated from the stopped indoor unit. The present invention relates to an air conditioner capable of suppressing a shortage of refrigerant circulation during defrosting operation.

1台の室外機に複数台の室内機が並列に接続されるマルチ型空気調和装置において、暖房運転中に室外熱交換器に霜が付着した場合に、冷媒回路を冷房サイクルで運転させて除霜を行うリバース除霜運転が行われている。除霜運転は、室外熱交換器の温度が所定温度以上に上昇したとき、又は、除霜運転開始から予め定められた所定時間を経過したときに終了し、冷媒回路を暖房サイクルで運転させて暖房運転に復帰する。
従来、暖房運転中に複数台の室内機のうちいずれかを運転停止させる場合、当該室内機に対応する膨張弁は全閉若しくは微小開度となっていた。また、その後除霜運転が行われても当該室内機に対応する膨張弁は全閉若しくは微小開度の状態を維持していた。
そのため、運転停止中の室内機の台数が多いと、除霜運転時に室内機の室内熱交換器で吸熱される熱が少なくなり、除霜に費やす時間が長くなってしまうだけでなく、冷媒回路内の低圧が大きく低下し、この結果、低圧保護動作によって空気調和装置が異常停止してしまうという不具合があった。
In a multi-type air conditioner in which multiple indoor units are connected in parallel to one outdoor unit, if frost adheres to the outdoor heat exchanger during heating operation, the refrigerant circuit is operated in a cooling cycle to remove it. A reverse defrosting operation that frosts is performed. The defrosting operation ends when the temperature of the outdoor heat exchanger rises above a predetermined temperature, or when a predetermined predetermined time has elapsed from the start of the defrosting operation, and the refrigerant circuit is operated in a heating cycle. Return to heating operation.
Conventionally, when any one of a plurality of indoor units is stopped during the heating operation, the expansion valve corresponding to the indoor unit is fully closed or has a minute opening. Further, even if the defrosting operation was subsequently performed, the expansion valve corresponding to the indoor unit was maintained in a fully closed state or a state of a minute opening.
Therefore, if the number of indoor units that are stopped is large, the heat absorbed by the indoor heat exchanger of the indoor unit during defrosting operation is reduced, which not only increases the time spent for defrosting, but also the refrigerant circuit. There was a problem that the low pressure inside was greatly reduced, and as a result, the air conditioner stopped abnormally due to the low pressure protection operation.

これを回避するために、除霜運転時、運転停止中の室内機に対応する膨張弁を全開に制御する方法がある(例えば、特許文献1)。この方法であれば、運転停止中の室内機の台数が多い場合であっても除霜運転時に室内機の室内熱交換器で吸熱される熱を十分に確保できる。 In order to avoid this, there is a method of controlling the expansion valve corresponding to the indoor unit that is stopped during the defrosting operation to the full open (for example, Patent Document 1). With this method, even when the number of indoor units stopped is large, it is possible to sufficiently secure the heat absorbed by the indoor heat exchanger of the indoor unit during the defrosting operation.

しかし、運転停止中の室内機に対応する膨張弁の開度を全開にすると、当該運転停止中の室内機の室内熱交換器内を流れる冷媒の量が増加する。当該運転停止中の室内機の室内熱交換器内を流れる冷媒の量が増加すると、当該運転停止中の室内機から発生する冷媒音が増大し、ユーザに不快感を与えてしまう。
また、除霜運転時、運転停止中の室内機に対応する膨張弁が冷媒音を考慮して予め定めた固定の開度となるように制御する方法も考えられるが、除霜運転時に必要な室内機一台当たりの室内熱交換器での吸熱量は、室内機の接続台数や運転台数によって異なるため、このような方法では着霜量に応じた膨張弁の開度制御に改良の余地がある。
However, when the opening degree of the expansion valve corresponding to the indoor unit whose operation is stopped is fully opened, the amount of the refrigerant flowing in the indoor heat exchanger of the indoor unit whose operation is stopped increases. When the amount of the refrigerant flowing in the indoor heat exchanger of the indoor unit during the operation stop increases, the refrigerant noise generated from the indoor unit during the operation stop increases, which causes discomfort to the user.
It is also conceivable to control the expansion valve corresponding to the indoor unit that is stopped during the defrosting operation so that it has a predetermined fixed opening in consideration of the refrigerant noise, but it is necessary during the defrosting operation. Since the amount of heat absorbed by the indoor heat exchanger per indoor unit differs depending on the number of connected indoor units and the number of operating units, there is room for improvement in the opening control of the expansion valve according to the amount of frost formation by such a method. is there.

特開平5−203296号公報Japanese Patent Application Laid-Open No. 5-203296

本発明は以上述べた問題点を解決するものであって、運転停止中の室内機の台数が多い場合であっても、除霜運転時に室内機の室内熱交換器で吸熱される熱を十分に確保しつつ、運転停止中の室内機から発生する冷媒音を低減する空気調和装置を提供することを目的とする。 The present invention solves the above-mentioned problems, and even when the number of indoor units stopped is large, the heat absorbed by the indoor heat exchanger of the indoor unit during the defrosting operation is sufficiently sufficient. It is an object of the present invention to provide an air conditioner that reduces the refrigerant noise generated from an indoor unit that is stopped while ensuring the above.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機と、室外熱交換器と、前記室外熱交換器を流通する冷媒の温度である室外熱交温度を検出する室外熱交温度検出手段と、外気温度を検出する外気温度検出手段とを有する室外機と、室内熱交換器を有する室内機と、を有し、1台の前記室外機に対して複数の室内機が冷媒配管で並列に接続された空気調和装置であって、前記室内機の各々に対応して接続された膨張弁と、暖房運転時に、前記圧縮機、前記室内熱交換器、前記膨張弁、前記室外熱交換器の順で冷媒が循環する冷媒回路と、前記冷媒回路に備えられ、除霜運転中に、圧縮機から吐出された冷媒を前記室外熱交換器に向かうように冷媒の流れを切り替える流路切替手段と、前記圧縮機と、前記膨張弁と、前記流路切替手段とを制御する制御手段と、を備え、前記制御手段は、暖房運転を行っているときに前記室外熱交換器で霜が発生しているか否かを判定する着霜判定を行い、前記着霜判定において、前記室外熱交換器で霜が発生していると判定した場合、前記室外熱交温度と前記外気温度と前記圧縮機の回転数から着霜量を推定し、当該着霜量に基づいて、前記着霜判定時に運転停止していた前記室内機に対応する前記膨張弁の適正開度を決定したのち前記除霜運転を実行し、前記除霜運転中において、前記着霜判定時に運転停止していた前記室内機に対応する前記膨張弁の開度を前記適正開度となるように制御する。 In order to solve the above problems, the air conditioner of the present invention detects the outdoor heat exchange temperature, which is the temperature of the compressor, the outdoor heat exchanger, and the refrigerant flowing through the outdoor heat exchanger. It has an outdoor unit having a temperature detecting means, an outside air temperature detecting means for detecting the outside air temperature, and an indoor unit having an indoor heat exchanger, and a plurality of indoor units are used as a refrigerant for one outdoor unit. An air conditioner connected in parallel by piping, and an expansion valve connected to each of the indoor units, and the compressor, the indoor heat exchanger, the expansion valve, and the outdoor during heating operation. A refrigerant circuit in which the refrigerant circulates in the order of the heat exchanger, and a flow provided in the refrigerant circuit that switches the flow of the refrigerant so that the refrigerant discharged from the compressor is directed to the outdoor heat exchanger during the defrosting operation. A path switching means, a compressor, an expansion valve, and a control means for controlling the flow path switching means are provided, and the control means is used by the outdoor heat exchanger during a heating operation. A frost formation determination is performed to determine whether or not frost is generated, and when it is determined in the frost formation determination that frost is being generated in the outdoor heat exchanger, the outdoor heat exchange temperature and the outside air temperature are determined. The amount of frost formation is estimated from the rotation speed of the compressor, and based on the amount of frost formation, the appropriate opening degree of the expansion valve corresponding to the indoor unit that was stopped at the time of the frost formation determination is determined. The defrosting operation is executed, and during the defrosting operation, the opening degree of the expansion valve corresponding to the indoor unit that was stopped at the time of the frost formation determination is controlled to be the appropriate opening degree.

また、好ましくは、前記圧縮機の回転数に基づいて、前記着霜量を変更する。 Further, preferably, the amount of frost formation is changed based on the rotation speed of the compressor.

上記のように構成した本発明の空気調和装置によれば、運転停止中の室内機の台数が多い場合であっても、除霜運転時に室内機の室内熱交換器で吸熱される熱を十分に確保しつつ、運転停止中の室内機から発生する冷媒音を低減できる。 According to the air conditioner of the present invention configured as described above, even when the number of indoor units stopped is large, the heat absorbed by the indoor heat exchanger of the indoor unit during the defrosting operation is sufficient. It is possible to reduce the refrigerant noise generated from the indoor unit when the operation is stopped, while ensuring the above.

本発明の実施形態である空気調和装置の説明図であり、(A)が冷媒回路図、(B)が室外機制御手段および室内機制御手段のブロック図である。It is explanatory drawing of the air conditioner which is embodiment of this invention, (A) is a refrigerant circuit diagram, (B) is a block diagram of an outdoor unit control means and an indoor unit control means. 本発明の実施形態における、室外機制御手段での処理を説明するフローチャートである。It is a flowchart explaining the process by the outdoor unit control means in embodiment of this invention. 本発明の実施形態における、室外機制御手段での処理を説明するテーブルである。It is a table explaining the process by the outdoor unit control means in embodiment of this invention. 本発明の実施形態における、室外機制御手段での処理を説明するテーブルである。It is a table explaining the process by the outdoor unit control means in embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に4台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行えるマルチ型の空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, a multi-type air conditioner in which four indoor units are connected in parallel to one outdoor unit and all the indoor units can be simultaneously cooled or heated will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

図1(A)に示すように、本実施形態における空気調和装置1は、1台の室外機2と、室外機2に第1液管8a、第2液管8b、第3液管8c、第4液管8d、および、ガス管9で並列に接続された4台の室内機5a〜5dとを備えている。 As shown in FIG. 1A, the air conditioner 1 in the present embodiment includes one outdoor unit 2 and the outdoor unit 2 with a first liquid pipe 8a, a second liquid pipe 8b, and a third liquid pipe 8c. It includes a fourth liquid pipe 8d and four indoor units 5a to 5d connected in parallel by a gas pipe 9.

上記各構成要素は次のように接続されている。第1液管8aの一端が室外機2の第1液側閉鎖弁28aに、他端が室内機5aの液側閉鎖弁53aにそれぞれ接続されている。また、第2液管8bの一端が室外機2の第2液側閉鎖弁28bに、他端が室内機5bの液側閉鎖弁53bにそれぞれ接続されている。また、第3液管8cの一端が室外機2の第3液側閉鎖弁28cに、他端が室内機5cの液側閉鎖弁53cにそれぞれ接続されている。また、第4液管8dの一端が室外機2の第4液側閉鎖弁28dに、他端が室内機5dの液側閉鎖弁53dにそれぞれ接続されている。また、ガス管9は一端が室外機2のガス側閉鎖弁29に、他端が分岐して室内機5a〜5dの各ガス側閉鎖弁54a〜54dにそれぞれ接続されている。このように、室外機2と室内機5a〜5dとが第1液管8a、第2液管8b、第3液管8c、第4液管8d、および、ガス管9で接続されて、空気調和装置1の冷媒回路10が構成されている。 Each of the above components is connected as follows. One end of the first liquid pipe 8a is connected to the first liquid side closing valve 28a of the outdoor unit 2, and the other end is connected to the liquid side closing valve 53a of the indoor unit 5a. Further, one end of the second liquid pipe 8b is connected to the second liquid side closing valve 28b of the outdoor unit 2, and the other end is connected to the liquid side closing valve 53b of the indoor unit 5b. Further, one end of the third liquid pipe 8c is connected to the third liquid side closing valve 28c of the outdoor unit 2, and the other end is connected to the liquid side closing valve 53c of the indoor unit 5c. Further, one end of the fourth liquid pipe 8d is connected to the fourth liquid side closing valve 28d of the outdoor unit 2, and the other end is connected to the liquid side closing valve 53d of the indoor unit 5d. Further, one end of the gas pipe 9 is connected to the gas side closing valve 29 of the outdoor unit 2, and the other end is branched and connected to the gas side closing valves 54a to 54d of the indoor units 5a to 5d. In this way, the outdoor unit 2 and the indoor units 5a to 5d are connected by the first liquid pipe 8a, the second liquid pipe 8b, the third liquid pipe 8c, the fourth liquid pipe 8d, and the gas pipe 9, and the air is connected. The refrigerant circuit 10 of the harmonizing device 1 is configured.

まず、図1(A)を用いて、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、第1室外膨張弁24aと、第2室外膨張弁24bと、第3室外膨張弁24cと、第4室外膨張弁24dと、室外ファン27と、一端に第1液管8aが接続された第1閉鎖弁28aと、一端に第2液管8bが接続された第2閉鎖弁28bと、一端に第3液管8cが接続された第3閉鎖弁28cと、一端に第4液管8dが接続された第4閉鎖弁28dと、一端にガス管9が接続されたガス側閉鎖弁29と、室外機制御手段200とを備えている。そして、室外ファン27および室外機制御手段200を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路20を構成している。 First, the outdoor unit 2 will be described with reference to FIG. 1 (A). The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a first outdoor expansion valve 24a, a second outdoor expansion valve 24b, a third outdoor expansion valve 24c, and a fourth outdoor expansion. A valve 24d, an outdoor fan 27, a first closing valve 28a to which a first liquid pipe 8a is connected to one end, a second closing valve 28b to which a second liquid pipe 8b is connected to one end, and a third liquid at one end. A third closing valve 28c to which a pipe 8c is connected, a fourth closing valve 28d to which a fourth liquid pipe 8d is connected to one end, a gas side closing valve 29 to which a gas pipe 9 is connected to one end, and an outdoor unit control. It is equipped with means 200. Then, each of these devices except the outdoor fan 27 and the outdoor unit control means 200 is connected to each other by the refrigerant pipes described in detail below to form the outdoor unit refrigerant circuit 20 forming a part of the refrigerant circuit 10. ..

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaと吐出管41で接続されている。また、圧縮機21の冷媒吸入側は、後述する四方弁22のポートcと吸入管42で接続されている。 The compressor 21 is a variable capacity compressor whose operating capacity can be changed by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to the port a of the four-way valve 22 described later by a discharge pipe 41. Further, the refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22, which will be described later, by a suction pipe 42.

四方弁22は、冷媒の流れる方向を切り換えるための流路切替手段であり、a、b、c、dの4つのポートを備えている。ポートaは、圧縮機21の冷媒吐出側と吐出管41で接続されている。ポートdは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、圧縮機21の冷媒吸入側と吸入管42で接続されている。そして、ポートbは、ガス側閉鎖弁29と室外機ガス管44で接続されている。 The four-way valve 22 is a flow path switching means for switching the flow direction of the refrigerant, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by a discharge pipe 41. The port d is connected to one of the refrigerant inlets and outlets of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant suction side of the compressor 21 by a suction pipe 42. The port b is connected to the gas side closing valve 29 by the outdoor unit gas pipe 44.

室外熱交換器23は、後述する室外ファン27の回転により図示しない吸込口から室外機2の内部に取り込まれた外気と冷媒とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は上述したように冷媒配管43で四方弁22のポートdに接続され、他方の冷媒出入口には室外機液管45の一端が接続されている。室外熱交換器23は、冷媒回路10が冷房サイクルとなる場合は凝縮器として機能し、冷媒回路10が暖房サイクルとなる場合は蒸発器として機能する。 The outdoor heat exchanger 23 exchanges heat between the outside air taken into the outdoor unit 2 and the refrigerant from a suction port (not shown) by the rotation of the outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port d of the four-way valve 22 by the refrigerant pipe 43, and one end of the outdoor unit liquid pipe 45 is connected to the other refrigerant inlet / outlet. The outdoor heat exchanger 23 functions as a condenser when the refrigerant circuit 10 is in the cooling cycle, and functions as an evaporator when the refrigerant circuit 10 is in the heating cycle.

室外機液管45の他端には、第1液分管46aの一端と第2液分管46bの一端と第3液分管46cの一端と第4液分管46dの一端が各々接続されている。また、第1液分管46aの他端は第1液側閉鎖弁28aと接続され、第2液分管46bの他端は第2液側閉鎖弁28bと接続され、第3液分管46cの他端は第3液側閉鎖弁28cと接続され、第4液分管46dの他端は第4液側閉鎖弁28dと接続されている。 One end of the first liquid dividing pipe 46a, one end of the second liquid dividing pipe 46b, one end of the third liquid dividing pipe 46c, and one end of the fourth liquid dividing pipe 46d are connected to the other end of the outdoor unit liquid pipe 45, respectively. Further, the other end of the first liquid branch pipe 46a is connected to the first liquid side closing valve 28a, the other end of the second liquid branch pipe 46b is connected to the second liquid side closing valve 28b, and the other end of the third liquid branch pipe 46c. Is connected to the third liquid side closing valve 28c, and the other end of the fourth liquid branch pipe 46d is connected to the fourth liquid side closing valve 28d.

第1液分管46aには、第1室外膨張弁24aが設けられている。また、第2液分管46bには、第2室外膨張弁24bが設けられている。また、第3液分管46cには、第3室外膨張弁24cが設けられている。さらには、第4液分管46dには、第4室外膨張弁24dが設けられている。 The first liquid branch pipe 46a is provided with a first outdoor expansion valve 24a. Further, the second liquid branch pipe 46b is provided with a second outdoor expansion valve 24b. Further, the third liquid branch pipe 46c is provided with a third outdoor expansion valve 24c. Further, the fourth liquid branch pipe 46d is provided with a fourth outdoor expansion valve 24d.

第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、第4室外膨張弁24dは、各々電子膨張弁である。第1室外膨張弁24aの開度を調節することで、後述する室内機5aの室内熱交換器51aを流れる冷媒量を調節する。第2室外膨張弁24bの開度を調節することで、後述する室内機5bの室内熱交換器51bを流れる冷媒量を調節する。第3室外膨張弁24cの開度を調節することで、後述する室内機5cの室内熱交換器51cを流れる冷媒量を調節する。第4室外膨張弁24dの開度を調節することで、後述する室内機5dの室内熱交換器51dを流れる冷媒量を調節する。 The first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d are electronic expansion valves, respectively. By adjusting the opening degree of the first outdoor expansion valve 24a, the amount of refrigerant flowing through the indoor heat exchanger 51a of the indoor unit 5a described later is adjusted. By adjusting the opening degree of the second outdoor expansion valve 24b, the amount of refrigerant flowing through the indoor heat exchanger 51b of the indoor unit 5b, which will be described later, is adjusted. By adjusting the opening degree of the third outdoor expansion valve 24c, the amount of refrigerant flowing through the indoor heat exchanger 51c of the indoor unit 5c described later is adjusted. By adjusting the opening degree of the fourth outdoor expansion valve 24d, the amount of refrigerant flowing through the indoor heat exchanger 51d of the indoor unit 5d, which will be described later, is adjusted.

室外ファン27は、樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで、図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。 The outdoor fan 27 is made of a resin material and is arranged in the vicinity of the outdoor heat exchanger 23. The outdoor fan 27 is rotated by a fan motor (not shown) to take in outside air from a suction port (not shown) into the outdoor unit 2 and exchange heat with the refrigerant in the outdoor heat exchanger 23 from an outlet (not shown) to the outdoor unit. Release to the outside of 2.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する高圧センサ31と、圧縮機21から吐出される冷媒の温度である吐出温度を検出する吐出温度センサ33とが設けられている。吸入管42には、圧縮機21に吸入される冷媒の圧力である吸入圧力を検出する低圧センサ32と、圧縮機21に吸入される冷媒の温度である吸入温度を検出する吸入温度センサ34とが設けられている。室外熱交換器23には、室外熱交換器23の温度を検出する室外熱交温度センサ35が設けられている。 In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, the discharge pipe 41 has a high pressure sensor 31 that detects the discharge pressure, which is the pressure of the refrigerant discharged from the compressor 21, and the temperature of the refrigerant discharged from the compressor 21. A discharge temperature sensor 33 that detects the discharge temperature is provided. The suction pipe 42 includes a low pressure sensor 32 that detects the suction pressure that is the pressure of the refrigerant sucked into the compressor 21, and a suction temperature sensor 34 that detects the suction temperature that is the temperature of the refrigerant sucked into the compressor 21. Is provided. The outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 35 that detects the temperature of the outdoor heat exchanger 23.

第1液分管46aにおける、第1室外膨張弁24aと第1液側閉鎖弁28aとの間には、この間の第1液分管46aを流れる冷媒の温度を検出する第1液温度センサ38aが設けられている。第2液分管46bにおける、第2室外膨張弁24bと第2液側閉鎖弁28bとの間には、この間の第2液分管46bを流れる冷媒の温度を検出する第2液温度センサ38bが設けられている。第3室外膨張弁24cと第3液側閉鎖弁28cとの間には、この間の第3液分管46cを流れる冷媒の温度を検出する第3液温度センサ38cが設けられている。第4室外膨張弁24dと第4液側閉鎖弁28dとの間には、この間の第4液分管46dを流れる冷媒の温度を検出する第4液温度センサ38dが設けられている。そして、室外機2の図示しない吸込口付近には、室外機2内に流入する外気の温度、すなわち外気温度を検出する外気温度センサ100が備えられている。 A first liquid temperature sensor 38a for detecting the temperature of the refrigerant flowing through the first liquid dividing pipe 46a between the first outdoor expansion valve 24a and the first liquid side closing valve 28a in the first liquid dividing pipe 46a is provided. Has been done. A second liquid temperature sensor 38b for detecting the temperature of the refrigerant flowing through the second liquid dividing pipe 46b between the second outdoor expansion valve 24b and the second liquid side closing valve 28b in the second liquid dividing pipe 46b is provided. Has been done. Between the third outdoor expansion valve 24c and the third liquid side closing valve 28c, a third liquid temperature sensor 38c that detects the temperature of the refrigerant flowing through the third liquid branch pipe 46c between them is provided. Between the 4th outdoor expansion valve 24d and the 4th liquid side closing valve 28d, a 4th liquid temperature sensor 38d for detecting the temperature of the refrigerant flowing through the 4th liquid branch pipe 46d between them is provided. An outside air temperature sensor 100 for detecting the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature is provided in the vicinity of the suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU210と、記憶部220と、通信部230とを備えている。 Further, the outdoor unit 2 is provided with an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board housed in an electrical component box (not shown) of the outdoor unit 2, and as shown in FIG. 1B, the CPU 210, the storage unit 220, and the communication unit 230 It has.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態、後述する各種テーブル等を記憶する。通信部230は、室内機5a〜5dとの通信を行うインターフェイスである。 The storage unit 220 is composed of a ROM and a RAM, and stores detection values corresponding to the control program of the outdoor unit 2 and detection signals from various sensors, the control state of the compressor 21 and the outdoor fan 27, various tables described later, and the like. Remember. The communication unit 230 is an interface for communicating with the indoor units 5a to 5d.

CPU210は、各種センサでの検出値を取り込むとともに、室内機5a〜5dから送信される運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号が通信部230を介して入力される。CPU210は、これら取り込んだ各種検出値や入力された各種情報に基づいて、第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24cおよび第4室外膨張弁24dの開度制御や、圧縮機21や室外ファン27の駆動制御、四方弁22の切り換え制御を行う。また、CPU210は、図1(C)に示すように、着霜量判定手段211、パルス算出手段212、膨張弁制御手段213を備えている。これらは、後述する制御で用いられる。 The CPU 210 captures the values detected by various sensors, and the operation information signal including the operation start / stop signal and the operation information (set temperature, room temperature, etc.) transmitted from the indoor units 5a to 5d is transmitted via the communication unit 230. Is entered. The CPU 210 controls the opening degree of the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d based on the various detected values taken in and the various input information. It also controls the drive of the compressor 21 and the outdoor fan 27, and controls the switching of the four-way valve 22. Further, as shown in FIG. 1C, the CPU 210 includes a frost formation amount determining means 211, a pulse calculating means 212, and an expansion valve controlling means 213. These are used in the control described later.

次に、4台の室内機5a〜5dについて説明する。尚、室内機5a〜5dの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5c、5dについては説明を省略する。また、図1(A)では、室内機5aの構成装置に付与した番号の末尾をaからb、cおよびdにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5c、5dの構成装置となる。 Next, the four indoor units 5a to 5d will be described. Since the configurations of the indoor units 5a to 5d are all the same, in the following description, only the configuration of the indoor unit 5a will be described, and the description of the other indoor units 5b, 5c, and 5d will be omitted. Further, in FIG. 1A, the numbers assigned to the constituent devices of the indoor unit 5a are changed from a to b, c and d, respectively, and the indoor units 5b and 5c corresponding to the constituent devices of the outdoor unit 5a are shown. It becomes a constituent device of 5d.

室内機5aは、室内熱交換器51aと、第1液管8aがそれぞれ接続された液側閉鎖弁53aおよび分岐したガス管9の他端がそれぞれ接続されたガス側閉鎖弁54aと、室内ファン55aと、室内機制御手段500aとを備えている。そして、室内ファン55aおよび室内機制御手段500aを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路50aを構成している。 The indoor unit 5a includes an indoor heat exchanger 51a, a liquid side closing valve 53a to which the first liquid pipe 8a is connected, a gas side closing valve 54a to which the other end of the branched gas pipe 9 is connected, and an indoor fan. It includes 55a and indoor unit control means 500a. Then, each of these devices except the indoor fan 55a and the indoor unit control means 500a is connected to each other by the refrigerant pipes described in detail below to form the indoor unit refrigerant circuit 50a forming a part of the refrigerant circuit 10. ..

室内熱交換器51aは、後述する室内ファン55aの回転により室内機5aに備えられた図示しない吸込口から室内機5aの内部に取り込まれた室内空気と冷媒を熱交換させるものであり、一方の冷媒出入口が液側閉鎖弁53aに室内機液管71aで接続され、他方の冷媒出入口がガス側閉鎖弁54aに室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。 The indoor heat exchanger 51a exchanges heat between the indoor air taken into the indoor unit 5a and the refrigerant from a suction port (not shown) provided in the indoor unit 5a by rotating the indoor fan 55a, which will be described later. The refrigerant inlet / outlet is connected to the liquid side closing valve 53a by the indoor unit liquid pipe 71a, and the other refrigerant inlet / outlet is connected to the gas side closing valve 54a by the indoor unit gas pipe 72a. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.

室内ファン55aは、室内熱交換器51aの近傍に配置される樹脂材で形成されたクロスフローファンであり、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内部に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を室内機5aに備えられた図示しない吹出口から室内へ供給する。 The indoor fan 55a is a cross-flow fan made of a resin material arranged in the vicinity of the indoor heat exchanger 51a, and is rotated by a fan motor (not shown) to enter the interior of the indoor unit 5a from a suction port (not shown). The indoor air that takes in air and exchanges heat with the refrigerant in the indoor heat exchanger 51a is supplied into the room from an outlet (not shown) provided in the indoor unit 5a.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内熱交換器51aには、室内熱交換器51aの温度を検出する室内熱交温度センサ61aが設けられている。また、室内機ガス管72aには第1ガス温度センサ63aが設けられている。さらに、室内機5aの図示しない吸込口付近には、室内機5a内に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ62aが備えられている。 In addition to the configuration described above, the indoor unit 5a is provided with various sensors. The indoor heat exchanger 51a is provided with an indoor heat exchange temperature sensor 61a that detects the temperature of the indoor heat exchanger 51a. Further, the indoor unit gas pipe 72a is provided with a first gas temperature sensor 63a. Further, an indoor temperature sensor 62a for detecting the temperature of the indoor air flowing into the indoor unit 5a, that is, the indoor temperature is provided in the vicinity of the suction port (not shown) of the indoor unit 5a.

また、室内機5aには、室内機制御手段500aが備えられている。制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aとを備えている。 Further, the indoor unit 5a is provided with an indoor unit control means 500a. The control means 500a is mounted on a control board housed in an electrical component box (not shown) of the indoor unit 5a, and includes a CPU 510a, a storage unit 520a, and a communication unit 530a as shown in FIG. 1 (B). ing.

記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。 The storage unit 520a is composed of a ROM and a RAM, and stores a control program of the indoor unit 5a, detection values corresponding to detection signals from various sensors, setting information related to air conditioning operation by the user, and the like. The communication unit 530a is an interface for communicating with the outdoor unit 2 and other indoor units 5b and 5c.

CPU510aは、各種センサでの検出値を取り込むとともに、使用者が図示しないリモコンを操作して設定した運転条件やタイマー運転設定等を含んだ信号が図示しないリモコン受光部を介して入力される。CPU510aは、これら取り込んだ各種検出値や入力された各種情報に基づいて室内ファン55aの駆動制御を行う。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号を、通信部530aを介して室外機2に送信する。 The CPU 510a captures the detection values of various sensors, and a signal including operating conditions and timer operation settings set by the user by operating a remote controller (not shown) is input via a remote controller light receiving unit (not shown). The CPU 510a controls the drive of the indoor fan 55a based on the various detected values taken in and the various input information. Further, the CPU 510a transmits an operation information signal including an operation start / stop signal and operation information (set temperature, room temperature, etc.) to the outdoor unit 2 via the communication unit 530a.

次に、本実施形態における空気調和装置1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5dが暖房運転を行う場合について説明し、冷房運転/除霜運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は、暖房運転時の冷媒の流れを示している。 Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air conditioning device 1 in the present embodiment will be described with reference to FIG. 1 (A). In the following description, the case where the indoor units 5a to 5d perform the heating operation will be described, and the detailed description will be omitted when the indoor units 5a to 5d perform the cooling operation / defrosting operation. Further, the arrow in FIG. 1A indicates the flow of the refrigerant during the heating operation.

図1(A)に示すように、室内機5a〜5dが暖房運転を行う場合、つまり、冷媒回路10が暖房サイクルとなる場合は、室外機2では、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートdとポートcとが連通するよう、切り換えられる。これにより、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器51a〜51dが凝縮器として機能する。 As shown in FIG. 1A, when the indoor units 5a to 5d perform the heating operation, that is, when the refrigerant circuit 10 is in the heating cycle, in the outdoor unit 2, the four-way valve 22 is shown by a solid line, that is, , The port a and the port b of the four-way valve 22 are switched to communicate with each other, and the port d and the port c are switched to communicate with each other. As a result, the outdoor heat exchanger 23 functions as an evaporator, and the indoor heat exchangers 51a to 51d function as condensers.

圧縮機21から吐出された高圧の冷媒は、吐出管41から四方弁22を介して室外機ガス管44に流入し、室外機ガス管44からガス側閉鎖弁29を介してガス管9に流入する。ガス管9に流入した冷媒は分岐して、ガス側閉鎖弁54a〜54dを介して室内機5a〜5dに流入する。 The high-pressure refrigerant discharged from the compressor 21 flows from the discharge pipe 41 into the outdoor unit gas pipe 44 via the four-way valve 22, and flows from the outdoor unit gas pipe 44 into the gas pipe 9 via the gas side closing valve 29. To do. The refrigerant that has flowed into the gas pipe 9 branches and flows into the indoor units 5a to 5d via the gas side closing valves 54a to 54d.

室内機5a〜5dに流入した冷媒は、室内機ガス管72a〜72dを流れて室内熱交換器51a〜51dに流入する。室内熱交換器51a〜51dに流入した冷媒は、室内ファン55a〜55dの回転により図示しない吸込口から室内機5a〜5dの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a〜51dが凝縮器として機能し、室内熱交換器51a〜51dで冷媒と熱交換を行って暖められた室内空気が図示しない吹出口から室内機5a〜5dが設置されている部屋に吹き出されることによって、各部屋の暖房が行われる。 The refrigerant that has flowed into the indoor units 5a to 5d flows through the indoor unit gas pipes 72a to 72d and flows into the indoor heat exchangers 51a to 51d. The refrigerant that has flowed into the indoor heat exchangers 51a to 51d exchanges heat with the indoor air taken into the indoor units 5a to 5d from a suction port (not shown) due to the rotation of the indoor fans 55a to 55d to condense. In this way, the indoor heat exchangers 51a to 51d function as condensers, and the indoor heat exchangers 51a to 51d exchange heat with the refrigerant to heat the indoor air, and the indoor units 5a to 5d are connected from an outlet (not shown). Each room is heated by blowing it into the installed room.

室内熱交換器51a〜51dから流出した冷媒は室内機液管71a〜71dを流れ、液側閉鎖弁53a〜53dを介して第1液管8a、第2液管8b、第3液管8c、および第4液管8dに流入する。第1液管8a、第2液管8b、第3液管8c、および第4液管8dから第1液側閉鎖弁28a、第2液側閉鎖弁28b、第3液側閉鎖弁28c、および第4液側閉鎖弁28dを介して室外機2に流入した冷媒は、第1液分管46a、第2液分管46b、第3液分管46c、および第4液分管46dを流れて第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dを通過して減圧された後、室外機液管45に流入する。 The refrigerant flowing out from the indoor heat exchangers 51a to 51d flows through the indoor unit liquid pipes 71a to 71d, and passes through the liquid side closing valves 53a to 53d to the first liquid pipe 8a, the second liquid pipe 8b, and the third liquid pipe 8c. And flows into the fourth liquid pipe 8d. The first liquid pipe 8a, the second liquid pipe 8b, the third liquid pipe 8c, and the fourth liquid pipe 8d to the first liquid side closing valve 28a, the second liquid side closing valve 28b, the third liquid side closing valve 28c, and The refrigerant that has flowed into the outdoor unit 2 via the fourth liquid side closing valve 28d flows through the first liquid branch pipe 46a, the second liquid branch pipe 46b, the third liquid branch pipe 46c, and the fourth liquid branch pipe 46d and expands to the first outdoor side. After passing through the valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d, the pressure is reduced, and then the pressure flows into the outdoor unit liquid pipe 45.

室外機液管45から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から流出した冷媒は、冷媒配管43を流れて四方弁22に流入し四方弁22から吸入管42へと流れ、圧縮機21に吸入されて再び圧縮される。 The refrigerant flowing from the outdoor unit liquid pipe 45 into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant flowing out of the outdoor heat exchanger 23 flows through the refrigerant pipe 43, flows into the four-way valve 22, flows from the four-way valve 22 to the suction pipe 42, is sucked into the compressor 21, and is compressed again.

尚、室内機5a〜5dが冷房運転あるいは除霜運転を行う場合、つまり、冷媒回路10が冷房サイクルとなる場合は、室外機2では、四方弁22が破線で示す状態、すなわち、四方弁22のポートaとポートdとが連通するよう、また、ポートcとポートbとが連通するよう、切り換えられる。これにより、室外熱交換器23が凝縮器として機能するとともに、室内熱交換器51a〜51dが蒸発器として機能する。 When the indoor units 5a to 5d perform a cooling operation or a defrosting operation, that is, when the refrigerant circuit 10 is in a cooling cycle, the four-way valve 22 is shown by a broken line in the outdoor unit 2, that is, the four-way valve 22. It is switched so that the port a and the port d of the above can communicate with each other, and the port c and the port b can communicate with each other. As a result, the outdoor heat exchanger 23 functions as a condenser, and the indoor heat exchangers 51a to 51d function as an evaporator.

次に、図1〜図4を用いて、本実施形態の空気調和装置1が除霜運転を行っているときの、第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dの開度制御について詳細に説明する。 Next, using FIGS. 1 to 4, the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, and the third outdoor expansion valve when the air conditioner 1 of the present embodiment is performing the defrosting operation. The opening degree control of the 24c and the fourth outdoor expansion valve 24d will be described in detail.

尚、以下の説明では、暖房運転時において室外熱交温度センサ35で検出する室外熱交換器23での蒸発温度をTc、外気温度センサ100で検出する外気温度をToとする。 In the following description, the evaporation temperature of the outdoor heat exchanger 23 detected by the outdoor heat exchange temperature sensor 35 during the heating operation is Tc, and the outside air temperature detected by the outside air temperature sensor 100 is To.

また、室外熱交温度センサ35で検出する室外熱交換器の蒸発温度Teは所定時間毎(例えば、30秒)に常時検出され、記憶部220に記憶される。また、今回検出した室外熱交換器の蒸発温度Teと前回検出した蒸発温度Te0の差(Te−Te0)である蒸発温度低下幅をΔTeする。また、CPU210では、圧縮機21が前回運転を開始してからの連続運転積算時間を計測しており、この連続運転積算時間をtとする。 Further, the evaporation temperature Te of the outdoor heat exchanger detected by the outdoor heat exchange temperature sensor 35 is constantly detected at predetermined time intervals (for example, 30 seconds) and stored in the storage unit 220. Further, the evaporation temperature decrease width, which is the difference (Te-Te0) between the evaporation temperature Te of the outdoor heat exchanger detected this time and the evaporation temperature Te0 detected last time, is ΔTe. Further, the CPU 210 measures the continuous operation integrated time since the compressor 21 started the previous operation, and this continuous operation integrated time is set to t.

空気調和装置1が暖房運転を行っているとき、以下の条件のうちいずれかを満たした場合、CPU210は、四方弁22の切り替え制御を行い、除霜運転を開始する。
(1)室外熱交換器の蒸発温度Tcが閾温度Te1以下
(2)室外熱交換器の蒸発温度Tcが閾温度Te2以下であって、蒸発温度低下幅ΔTeが閾値ΔTet以上
(3)室外熱交換器の蒸発温度Tcが閾温度Te2以下であって、圧縮機21の連続運転積算時間tが閾時間t1以上
閾温度Te1は、暖房運転中の室外熱交換器23に霜が付着している可能性が高くなる室外熱交換器23の温度であって、予め試験等によって求められて記憶部220に記憶されている。尚、閾温度Te1は、外気温度センサ100で検出する外気温度Toに応じて変化させても良い。
また、閾温度Te2は、閾温度Te1よりも所定温度(例えば2℃)高い値が設定される。
また、閾値ΔTetと閾時間t0は、予め試験等によって求められて記憶部220に記憶されている。
従来、室内機5a〜5dのうち、例えば室内機5b〜5dが運転停止している場合、室内機5b〜5dに対応する膨張弁24b〜24dは冷媒音の発生を防ぐため全閉となるように開度制御され、その後除霜運転が行われても全閉の状態を維持していた。そのため、除霜運転時には室内機5aの室内熱交換器51aでしか吸熱されず、室外熱交換器23における放熱量が少なくなる。よって、除霜に費やす時間が長くなってしまうだけでなく、冷媒流量が減ることにより冷媒回路内の低圧が大きく低下し、この結果、低圧保護動作によって空気調和装置が異常停止してしまうという不具合があった。
これを回避するために、除霜運転時、運転停止中の室内機5b〜5dに対応する膨張弁24b〜24dを全開に制御し、運転停止中の室内機の台数が多い場合であっても除霜運転時に室内機の室内熱交換器で吸熱される熱を十分に確保できるようにする方法がある。
When any of the following conditions is satisfied when the air conditioner 1 is performing the heating operation, the CPU 210 controls the switching of the four-way valve 22 and starts the defrosting operation.
(1) The evaporation temperature Tc of the outdoor heat exchanger is the threshold temperature Te1 or less (2) The evaporation temperature Tc of the outdoor heat exchanger is the threshold temperature Te2 or less, and the evaporation temperature decrease width ΔTe is the threshold ΔTet or more (3) Outdoor heat The evaporation temperature Tc of the exchanger is equal to or less than the threshold temperature Te2, and the continuous operation integrated time t of the compressor 21 is equal to or greater than the threshold time t1. At the threshold temperature Te1, frost is attached to the outdoor heat exchanger 23 during the heating operation. The temperature of the outdoor heat exchanger 23, which is highly likely, is determined in advance by a test or the like and is stored in the storage unit 220. The threshold temperature Te1 may be changed according to the outside air temperature To detected by the outside air temperature sensor 100.
Further, the threshold temperature Te2 is set to a value higher than the threshold temperature Te1 by a predetermined temperature (for example, 2 ° C.).
Further, the threshold value ΔTet and the threshold time t0 are obtained in advance by a test or the like and stored in the storage unit 220.
Conventionally, among the indoor units 5a to 5d, for example, when the indoor units 5b to 5d are stopped, the expansion valves 24b to 24d corresponding to the indoor units 5b to 5d are fully closed to prevent the generation of refrigerant noise. The opening was controlled, and the fully closed state was maintained even after the defrosting operation was performed. Therefore, during the defrosting operation, heat is absorbed only by the indoor heat exchanger 51a of the indoor unit 5a, and the amount of heat radiated by the outdoor heat exchanger 23 is reduced. Therefore, not only the time spent for defrosting becomes long, but also the low pressure in the refrigerant circuit drops significantly due to the decrease in the refrigerant flow rate, and as a result, the air conditioner abnormally stops due to the low pressure protection operation. was there.
In order to avoid this, during the defrosting operation, the expansion valves 24b to 24d corresponding to the indoor units 5b to 5d that are stopped are controlled to be fully open, and even when the number of indoor units that are stopped is large. There is a method of ensuring sufficient heat absorbed by the indoor heat exchanger of the indoor unit during the defrosting operation.

しかし、運転停止中の室内機5b〜5dに対応する膨張弁24b〜24dの開度を全開にすると、運転停止中の室内機5b〜5dの室内熱交換器51b〜51d内を流れる冷媒の量が増加する。運転停止中の室内機5b〜5dの室内熱交換器51b〜51d内を流れる冷媒の量が増加すると、運転停止中の室内機5b〜5dから発生する冷媒音が増大し、ユーザに不快感を与えてしまう。
また、除霜運転時、運転停止中の室内機5b〜5dに対応する膨張弁24b〜24dが冷媒音を考慮して予め定めた固定の開度となるように制御する方法も考えられるが、除霜運転時に必要な室内機一台当たりの室内熱交換器51b〜51dでの吸熱量は、室内機5の接続台数や運転台数によって異なるため、このような方法では着霜量に応じた膨張弁の開度制御に改良の余地がある。
However, when the opening degree of the expansion valves 24b to 24d corresponding to the indoor units 5b to 5d that are stopped is fully opened, the amount of refrigerant flowing in the indoor heat exchangers 51b to 51d of the indoor units 5b to 5d that are stopped. Will increase. When the amount of refrigerant flowing in the indoor heat exchangers 51b to 51d of the indoor units 5b to 5d that are stopped is increased, the refrigerant noise generated from the indoor units 5b to 5d that is stopped is increased, which makes the user uncomfortable. I will give it.
Further, during the defrosting operation, a method of controlling the expansion valves 24b to 24d corresponding to the indoor units 5b to 5d that are stopped so as to have a predetermined fixed opening degree in consideration of the refrigerant noise is also conceivable. Since the amount of heat absorbed by the indoor heat exchangers 51b to 51d per indoor unit required for defrosting operation differs depending on the number of connected indoor units 5 and the number of operating units, such a method expands according to the amount of frost formation. There is room for improvement in valve opening control.

そこで、本発明では、室外熱交換器23に付着した霜の量(着霜量)を推定し、着霜量および室内機5の運転台数に基づいて停止中の室内機5b〜5dに対応する膨張弁24b〜24dの開度を設定している。これによって、運転停止中の室内機5の台数が多い場合であっても、除霜運転時に室内機5の室内熱交換器51で吸熱される熱を十分に確保しつつ、運転停止中の室内機5から発生する冷媒音を低減できる。 Therefore, in the present invention, the amount of frost adhering to the outdoor heat exchanger 23 (frost formation amount) is estimated, and the indoor units 5b to 5d that are stopped are supported based on the frost formation amount and the number of operating indoor units 5. The opening degree of the expansion valves 24b to 24d is set. As a result, even when the number of indoor units 5 that are stopped is large, the room that is stopped while sufficiently securing the heat absorbed by the indoor heat exchanger 51 of the indoor unit 5 during the defrosting operation. The refrigerant noise generated from the machine 5 can be reduced.

以下、図2を用いて本発明に関わる処理について詳細に説明する。尚、図2に示すフローチャートでは、STは処理のステップを表し、これに続く数字はステップ番号を表している。また、図2では、本発明に関わる処理を中心に説明しており、空気調和装置1が除霜運転以外を行うときの処理や、使用者の指示した設定温度や風量などの運転条件に対応した冷媒回路10の制御、等といった一般的な処理については説明を省略する。 Hereinafter, the process according to the present invention will be described in detail with reference to FIG. In the flowchart shown in FIG. 2, ST represents a processing step, and the number following the ST represents a step number. Further, FIG. 2 mainly describes the processing related to the present invention, and corresponds to the processing when the air conditioner 1 performs other than the defrosting operation and the operating conditions such as the set temperature and the air volume instructed by the user. The description of general processing such as control of the refrigerant circuit 10 is omitted.

図2のフローチャートによる処理は、空気調和装置1の冷媒回路10が暖房サイクルの状態となっているときに行われる。CPU210は、室外熱交換器23が着霜しているか否かを判定する着霜判定を行う(ST11)。着霜判定では、前述した条件(1)〜(3)の条件のうちいずれか一つを満たした場合に室外熱交換器23が着霜したと判断する。室外熱交換器23が着霜したと判断した場合(ST11−YES)、CPU210は、蒸発温度Te、外気温度To、圧縮機21の回転数Ncpを用いて室外熱交換器23に付着した霜の量(着霜量)の度合いを示す着霜レベルVfを抽出する(ST11)。室外熱交換器23が着霜していないと判断した場合(ST11−NO)、ステップST11を繰り返す。 The process according to the flowchart of FIG. 2 is performed when the refrigerant circuit 10 of the air conditioner 1 is in the heating cycle state. The CPU 210 performs a frost formation determination for determining whether or not the outdoor heat exchanger 23 is frosted (ST11). In the frost formation determination, it is determined that the outdoor heat exchanger 23 has frosted when any one of the above-mentioned conditions (1) to (3) is satisfied. When it is determined that the outdoor heat exchanger 23 has frosted (ST11-YES), the CPU 210 uses the evaporation temperature Te, the outside air temperature To, and the rotation speed Ncp of the compressor 21 to remove the frost adhering to the outdoor heat exchanger 23. The frost formation level Vf indicating the degree of the amount (frost formation amount) is extracted (ST11). When it is determined that the outdoor heat exchanger 23 is not frosted (ST11-NO), step ST11 is repeated.

ステップST12では、CPU210は、着霜判定時に外気温度センサ100から外気温度Toを、室外熱交温度センサ35から蒸発温度Teを、そして圧縮機21の回転数Ncpをそれぞれ取得する。CPU210は、取得した外気温度Toと蒸発温度Teから、外気温度Toと室外熱交換器23の蒸発温度Teとの差(To−Te)である温度差ΔTを抽出する。CPU210は、温度差ΔTと圧縮機21の回転数Ncpを用いて室外熱交換器23に付着した霜の量の度合いを示す着霜レベルVfを図3に示すテーブルを用いて抽出する。記憶部220には、予め試験等により求められた圧縮機21の回転数Ncpと着霜レベルVfとの対応関係を規定したテーブルが記憶されている。着霜レベルVfは、数値が大きい程室外熱交換器23に付着した霜の量が多いことを示しており、本実施例では1〜5の5段階の数値で表している。着霜判定時の温度差ΔTが大きい程着霜量が大きい。そのため、温度差ΔTが大きい程着霜レベルVfには大きい数が設定される。また、同じ温度差ΔTであっても暖房運転中の室外熱交換器23に流入する冷媒の量が多ければ着霜量も多くなる。そのため、圧縮機21の回転数Ncpが高い程着霜レベルVfには大きい数が設定される。また、冷媒密度に与える影響を考慮して外気温度Toに応じて着霜レベルVfを変更している。具体的には、当該テーブルは複数の外気温度Toの範囲に対して用意されており、図3(A)は外気温度がTo<−20℃の時のテーブル、図3(B)は外気温度が−20℃≦To<−10℃の時のテーブル、図3(C)は外気温度が−10℃≦Toの時のテーブルをそれぞれ示す。例えば、外気温度が−15℃で温度差ΔTが4deg、圧縮機の回転数Ncpが80rpsの場合は、着霜レベルVfは「3」となる。
ステップST12の処理を終えたCPU210は、抽出した着霜レベルVfと着霜判定時の室内機5の運転台数Nuoに基づいて停止中の室内機5b〜5dに対応する膨張弁24b〜24dの適正開度を決定する(ST13)。詳細には、CPU210は、図4に示すテーブルを用いて停止中の室内機5b〜5dに対応する膨張弁24b〜24dの適正開度を決定する。記憶部220には、予め試験等により求められた着霜レベルVfと着霜判定時の室内機5の運転台数Nuoとの対応関係を規定したテーブルが記憶されている。着霜判定時において、停止中の室内機5が多い程室外熱交換器23に流れる冷媒の量は少なくなる。そのため、着霜判定時の室内機5の運転台数が少ない程大きい開度が設定されている。例えば、着霜レベルVfが「4」、着霜判定時の室内機5の運転台数が「1」の場合における膨張弁24b〜24dの適正開度は、全閉状態から「200パルス」を加算した開度となる。
In step ST12, the CPU 210 acquires the outside air temperature To from the outside air temperature sensor 100, the evaporation temperature Te from the outdoor heat exchange temperature sensor 35, and the rotation speed Ncp of the compressor 21 at the time of frost formation determination. The CPU 210 extracts the temperature difference ΔT, which is the difference (To—Te) between the outside air temperature To and the evaporation temperature Te of the outdoor heat exchanger 23, from the acquired outside air temperature To and evaporation temperature Te. The CPU 210 uses the temperature difference ΔT and the rotation speed Ncp of the compressor 21 to extract the frost formation level Vf indicating the degree of the amount of frost adhering to the outdoor heat exchanger 23 using the table shown in FIG. The storage unit 220 stores a table that defines the correspondence between the rotation speed Ncp of the compressor 21 and the frost formation level Vf, which are previously obtained by a test or the like. The larger the value of the frost formation level Vf, the larger the amount of frost adhering to the outdoor heat exchanger 23, and in this embodiment, it is represented by a numerical value of 5 steps from 1 to 5. The larger the temperature difference ΔT at the time of frost formation determination, the larger the frost formation amount. Therefore, the larger the temperature difference ΔT, the larger the frost formation level Vf is set. Further, even if the temperature difference is the same ΔT, if the amount of the refrigerant flowing into the outdoor heat exchanger 23 during the heating operation is large, the amount of frost formation is also large. Therefore, the higher the rotation speed Ncp of the compressor 21, the larger the frost formation level Vf is set. Further, the frost formation level Vf is changed according to the outside air temperature To in consideration of the influence on the refrigerant density. Specifically, the table is prepared for a plurality of outside air temperature To ranges, FIG. 3 (A) is a table when the outside air temperature is To <-20 ° C, and FIG. 3 (B) is an outside air temperature. Shows a table when -20 ° C ≤ To <-10 ° C, and FIG. 3C shows a table when the outside air temperature is -10 ° C ≤ To. For example, when the outside air temperature is −15 ° C., the temperature difference ΔT is 4 deg, and the compressor rotation speed Ncp is 80 rps, the frost formation level Vf is “3”.
The CPU 210 that has completed the process of step ST12 determines the appropriateness of the expansion valves 24b to 24d corresponding to the stopped indoor units 5b to 5d based on the extracted frost level Vf and the operating number Nuo of the indoor unit 5 at the time of frost determination. The opening degree is determined (ST13). Specifically, the CPU 210 uses the table shown in FIG. 4 to determine the appropriate opening degree of the expansion valves 24b to 24d corresponding to the indoor units 5b to 5d that are stopped. The storage unit 220 stores a table that defines the correspondence relationship between the frost formation level Vf obtained in advance by a test or the like and the operating number Nuo of the indoor unit 5 at the time of frost formation determination. At the time of frost formation determination, the more the indoor unit 5 is stopped, the smaller the amount of refrigerant flowing through the outdoor heat exchanger 23. Therefore, the smaller the number of indoor units 5 in operation at the time of frost formation determination, the larger the opening degree is set. For example, when the frost level Vf is "4" and the number of indoor units 5 in operation at the time of frost determination is "1", the appropriate opening degree of the expansion valves 24b to 24d is "200 pulses" added from the fully closed state. It becomes the opening.

ステップST13の処理を終えたCPU210は、着霜判定時に停止していた室内機5b〜dに対応する膨張弁24b〜24dの開度をステップST13で決定した適正開度に設定しつつ、四方弁22の切り替え制御を行い、冷房サイクルとして除霜運転を開始する(ST14)。詳細には、まず圧縮機21を停止してから四方弁22の切り替え制御を行い、膨張弁24b〜24dの開度を適正開度に設定し、圧縮機21を起動させる。 The CPU 210 that has completed the process of step ST13 sets the opening degree of the expansion valves 24b to 24d corresponding to the indoor units 5b to d that were stopped at the time of the frost formation determination to the appropriate opening degree determined in step ST13, and sets the four-way valve. The switching control of 22 is performed, and the defrosting operation is started as a cooling cycle (ST14). Specifically, first, the compressor 21 is stopped, then the four-way valve 22 is switched, the opening degrees of the expansion valves 24b to 24d are set to an appropriate opening degree, and the compressor 21 is started.

次に、CPU210は、ステップST14で除霜運転を開始してからの経過時間tが所定時間t0(例えば、15分)となったか否かを判定する(ST15)。所定時間t0は、除霜運転の積算時間であり、長く除霜運転を継続していると室内温度が下がっていくので、快適性の低下を最小限にしつつ除霜を行える時間が設定される。経過時間tが所定時間t0となった場合(ST15−YES)、CPU210は、四方弁22の切り替え制御を行い(ST16)、暖房サイクルとして暖房運転に復帰する。経過時間tが所定時間t0となっていない場合(ST15−NO)、ステップST15を繰り返す。 Next, the CPU 210 determines whether or not the elapsed time t since the start of the defrosting operation in step ST14 has reached the predetermined time t0 (for example, 15 minutes) (ST15). The predetermined time t0 is the integrated time of the defrosting operation, and since the indoor temperature drops if the defrosting operation is continued for a long time, the time during which the defrosting can be performed while minimizing the decrease in comfort is set. .. When the elapsed time t becomes the predetermined time t0 (ST15-YES), the CPU 210 controls the switching of the four-way valve 22 (ST16) and returns to the heating operation as a heating cycle. If the elapsed time t is not the predetermined time t0 (ST15-NO), step ST15 is repeated.

以上説明したように、本実施形態の空気調和装置1では、暖房運転中に除霜運転を行うときに、着霜判定時の蒸発温度Te、外気温度To、圧縮機21の回転数Ncpを用いて室外熱交換器23に付着した霜の量(着霜量)を推定し、着霜量および室内機5の運転台数に基づいて停止中の室内機5b〜5dに対応する膨張弁24b〜24dの開度を設定している。これによって、運転停止中の室内機5の台数が多い場合であっても、除霜運転時に室内機5の室内熱交換器51で吸熱される熱を十分に確保しつつ、運転停止中の室内機5から発生する冷媒音を低減できる。 As described above, in the air conditioner 1 of the present embodiment, when the defrosting operation is performed during the heating operation, the evaporation temperature Te at the time of frost formation determination, the outside air temperature To, and the rotation speed Ncp of the compressor 21 are used. The amount of frost adhering to the outdoor heat exchanger 23 (frost formation amount) is estimated, and the expansion valves 24b to 24d corresponding to the stopped indoor units 5b to 5d are based on the frost formation amount and the number of indoor units 5 in operation. The opening degree of is set. As a result, even when the number of indoor units 5 that are stopped is large, the room that is stopped while sufficiently securing the heat absorbed by the indoor heat exchanger 51 of the indoor unit 5 during the defrosting operation. The refrigerant noise generated from the machine 5 can be reduced.

1 空気調和装置
2 室外機
5a〜5c 室内機
8a〜8c第1〜第3液管
23 室外熱交換器
24a 第1室外膨張弁
24b 第2室外膨張弁
24c 第3室外膨張弁
31 高圧センサ
32 低圧センサ
33 吐出温度センサ
34 吸入温度センサ
35 室外熱交温度センサ
1 Air conditioner 2 Outdoor unit 5a to 5c Indoor unit 8a to 8c 1st to 3rd liquid pipes 23 Outdoor heat exchanger 24a 1st outdoor expansion valve 24b 2nd outdoor expansion valve 24c 3rd outdoor expansion valve 31 High pressure sensor 32 Low pressure Sensor 33 Discharge temperature sensor 34 Suction temperature sensor 35 Outdoor heat exchange temperature sensor

Claims (2)

圧縮機と、室外熱交換器と、前記室外熱交換器を流通する冷媒の温度である室外熱交温度を検出する室外熱交温度検出手段と、外気温度を検出する外気温度検出手段とを有する室外機と、
室内熱交換器を有する室内機と、を有し、
1台の前記室外機に対して複数の室内機が冷媒配管で並列に接続された空気調和装置であって、
前記室内機の各々に対応して接続された膨張弁と、
暖房運転時に、前記圧縮機、前記室内熱交換器、前記膨張弁、前記室外熱交換器の順で冷媒が循環する冷媒回路と、
前記冷媒回路に備えられ、除霜運転中に、圧縮機から吐出された冷媒を前記室外熱交換器に向かうように冷媒の流れを切り替える流路切替手段と、
前記圧縮機と、前記膨張弁と、前記流路切替手段とを制御する制御手段と、を備え、
前記制御手段は、暖房運転を行っているときに前記室外熱交換器で霜が発生しているか否かを判定する着霜判定を行い、
前記着霜判定において、前記室外熱交換器で霜が発生していると判定した場合、少なくとも前記室外熱交温度と前記外気温度とから着霜量を推定し、
当該着霜量と前記着霜判定時の前記室内機の運転台数に基づいて、前記着霜判定時に運転停止していた前記室内機に対応する前記膨張弁の適正開度を決定したのち前記除霜運転を実行し、
前記除霜運転中において、前記着霜判定時に運転停止していた前記室内機に対応する前記膨張弁の開度を前記適正開度とする空気調和装置。
It has a compressor, an outdoor heat exchanger, an outdoor heat exchange temperature detecting means for detecting the outdoor heat exchange temperature which is the temperature of the refrigerant flowing through the outdoor heat exchanger, and an outside air temperature detecting means for detecting the outside air temperature. Outdoor unit and
With an indoor unit having an indoor heat exchanger,
An air conditioner in which a plurality of indoor units are connected in parallel to one outdoor unit by a refrigerant pipe.
Expansion valves connected to each of the indoor units,
A refrigerant circuit in which the refrigerant circulates in the order of the compressor, the indoor heat exchanger, the expansion valve, and the outdoor heat exchanger during the heating operation.
A flow path switching means provided in the refrigerant circuit and switching the flow of the refrigerant so that the refrigerant discharged from the compressor is directed to the outdoor heat exchanger during the defrosting operation.
A control means for controlling the compressor, the expansion valve, and the flow path switching means is provided.
The control means performs a frost formation determination for determining whether or not frost is generated in the outdoor heat exchanger during the heating operation.
When it is determined in the frost formation determination that frost is generated in the outdoor heat exchanger, the amount of frost formation is estimated from at least the outdoor heat exchange temperature and the outside air temperature.
Based on the amount of frost formation and the number of indoor units operating at the time of the frost formation determination, the appropriate opening degree of the expansion valve corresponding to the indoor unit that was stopped at the time of the frost formation determination is determined, and then the removal is performed. Perform a frost operation,
An air conditioner in which the opening degree of the expansion valve corresponding to the indoor unit that was stopped at the time of the frost formation determination during the defrosting operation is set to the appropriate opening degree.
前記圧縮機の回転数に基づいて、前記着霜量を変更することを特徴とする請求項1に記載の空気調和装置。
The air conditioner according to claim 1, wherein the amount of frost formation is changed based on the rotation speed of the compressor.
JP2016212732A 2016-10-31 2016-10-31 Air conditioner Active JP6766595B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016212732A JP6766595B2 (en) 2016-10-31 2016-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016212732A JP6766595B2 (en) 2016-10-31 2016-10-31 Air conditioner

Publications (2)

Publication Number Publication Date
JP2018071893A JP2018071893A (en) 2018-05-10
JP6766595B2 true JP6766595B2 (en) 2020-10-14

Family

ID=62114878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016212732A Active JP6766595B2 (en) 2016-10-31 2016-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP6766595B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109631248B (en) * 2018-11-16 2021-05-25 青岛海尔空调电子有限公司 Multi-split air conditioner refrigeration oil return noise reduction control method and system
CN111981638B (en) * 2020-08-21 2021-08-24 Tcl空调器(中山)有限公司 Control method of expansion valve, defrosting device, air conditioner and storage medium

Also Published As

Publication number Publication date
JP2018071893A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
JP6693312B2 (en) Air conditioner
US9651294B2 (en) Outdoor unit of air conditioner and air conditioner
US9175890B2 (en) Outdoor unit for air-conditioning apparatus, and air-conditioning apparatus
JP6138711B2 (en) Air conditioner
EP3051219B1 (en) Outdoor unit of air conditioner and air conditioner
JP2017122557A (en) Air conditioner
JP6848528B2 (en) Air conditioner
JP2016061456A (en) Air conditioning device
JP2018128158A (en) Air conditioner
JP6766595B2 (en) Air conditioner
JP6733424B2 (en) Air conditioner
JP2017156003A (en) Air conditioner
JP2016090092A (en) Air conditioner
JP6638468B2 (en) Air conditioner
JP2017089950A (en) Air Conditioning System
JP2000297970A (en) Controller for heat pump
JP7017182B2 (en) Air conditioner
JP6465332B2 (en) Heat pump hot water supply system
JP2018013301A (en) Air conditioner
JP2019113246A (en) Air conditioner
JP2019138599A (en) Air conditioner
JP2018017479A (en) Air conditioner
JP6728749B2 (en) Air conditioner
JP2016161235A (en) Refrigeration cycle device
JP7408942B2 (en) air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200831

R151 Written notification of patent or utility model registration

Ref document number: 6766595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151