JP7017182B2 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP7017182B2
JP7017182B2 JP2021008384A JP2021008384A JP7017182B2 JP 7017182 B2 JP7017182 B2 JP 7017182B2 JP 2021008384 A JP2021008384 A JP 2021008384A JP 2021008384 A JP2021008384 A JP 2021008384A JP 7017182 B2 JP7017182 B2 JP 7017182B2
Authority
JP
Japan
Prior art keywords
indoor
expansion valve
temperature
fully closed
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021008384A
Other languages
Japanese (ja)
Other versions
JP2021063652A (en
Inventor
博俊 竹内
慎太郎 真田
亮 ▲高▼岡
賢一 ▲高▼野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2021008384A priority Critical patent/JP7017182B2/en
Publication of JP2021063652A publication Critical patent/JP2021063652A/en
Application granted granted Critical
Publication of JP7017182B2 publication Critical patent/JP7017182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、少なくとも1台の室外機に複数台の室内機が冷媒配管で接続されたマルチ型空気調和装置に関する。 The present invention relates to a multi-type air conditioner in which a plurality of indoor units are connected to at least one outdoor unit by a refrigerant pipe.

圧縮機と、室外熱交換器とを有する室外機と、室内熱交換器を有する室内機と、室内機の各々に対応して接続された膨張弁とを含み、1台の室外機に対して複数の室内機が冷媒配管で並列に接続されたマルチ型空気調和装置では、各室内機に対応する膨張弁の開度を調整することで、要求された能力を発揮するために必要な量の冷媒を各室内機へ分配している。このような、マルチ型空気調和装置において、膨張弁によって室内機へ流す冷媒の量を極少流量に制御する場合がある。例えば、暖房運転中の室内機と運転停止中の室内機が混在している状態では、室内熱交換器への冷媒の溜り込みを防ぐために、運転停止中の室内機に対応する膨張弁の開度を冷媒がわずかに流れる程度の開度に設定している。また、冷媒流量が少ない低負荷時にも開度は小さく設定される。能力の大きい室内機を接続する場合は高負荷時の大流量を確保するために大口径の膨張弁を接続するが、大口径の膨張弁で上述したような少流量を実現するためには、全閉に近い開度まで制御できるようにする必要がある。 For one outdoor unit, including an outdoor unit having a compressor and an outdoor heat exchanger, an indoor unit having an indoor heat exchanger, and an expansion valve connected corresponding to each of the indoor units. In a multi-type air conditioner in which multiple indoor units are connected in parallel by refrigerant pipes, the amount required to achieve the required capacity is achieved by adjusting the opening of the expansion valve corresponding to each indoor unit. The refrigerant is distributed to each indoor unit. In such a multi-type air conditioner, the amount of the refrigerant flowing to the indoor unit by the expansion valve may be controlled to a minimum flow rate. For example, in a state where an indoor unit during heating operation and an indoor unit during operation stop are mixed, an expansion valve corresponding to the indoor unit during operation stop is opened in order to prevent the refrigerant from accumulating in the indoor heat exchanger. The degree is set to the degree at which the refrigerant flows slightly. Further, the opening degree is set small even when the load is low and the flow rate of the refrigerant is small. When connecting an indoor unit with a large capacity, a large-diameter expansion valve is connected to secure a large flow rate at high load, but in order to realize the small flow rate as described above with a large-diameter expansion valve, It is necessary to be able to control the opening close to full closure.

このように、要求された冷媒流量に応じたきめ細かい制御を行うには、膨張弁の開度を全閉に近い開度まで制御できるようにする必要がある
従来、膨張弁の製造誤差や開閉動作を繰り返し行ったことによる制御開度と実開度とのずれを考慮して、通常は全閉に近い開度の領域を全閉パルス領域として運転制御では用いないようにしていた。しかし大口径の膨張弁で少流量を実現するために全閉パルス領域を制御で用いた場合、上述の開度誤差によって空気調和装置の運転中に膨張弁が全閉になってしまう可能性がある。膨張弁が全閉となったまま暖房運転が継続されると、室内空間で暖気が生成されないだけでなく、圧縮機に吸入される冷媒の量が不足するため吐出温度が急激に上昇し、圧縮機が保護停止してしまう。一度保護停止となった圧縮機は所定時間(15~30分)再起動が禁止される。
In this way, in order to perform fine control according to the required refrigerant flow rate, it is necessary to be able to control the opening degree of the expansion valve to an opening close to fully closed. Conventionally, manufacturing errors and opening / closing operations of the expansion valve. In consideration of the difference between the control opening and the actual opening due to the repeated operation, normally, the region of the opening close to the fully closed is set as the fully closed pulse region and is not used in the operation control. However, when the fully closed pulse region is used for control in order to realize a small flow rate with a large-diameter expansion valve, the expansion valve may be fully closed during the operation of the air conditioner due to the above-mentioned opening error. be. If the heating operation is continued with the expansion valve fully closed, not only warm air is not generated in the interior space, but also the amount of refrigerant sucked into the compressor is insufficient, so the discharge temperature rises sharply and compression occurs. The machine will stop protecting. Once the protection is stopped, the compressor is prohibited from restarting for a predetermined time (15 to 30 minutes).

従来、膨張弁の製造誤差に対応するために、圧縮機を一定周波数で運転し、膨張弁の開度を徐々に開きながら室内熱交換器の温度を検出することで全閉開度を検出し、検出された全閉開度を制御範囲の下限に設定する方法がある(例えば、特許文献1)。この方法であれば、膨張弁の開度を全閉に近い開度まで制御でき、流量の調節範囲が広く、大流量を確保できる大口径の膨張弁を用いて空気調和装置のきめ細かい制御を行うことができる。 Conventionally, in order to cope with the manufacturing error of the expansion valve, the compressor is operated at a constant frequency, and the fully closed opening is detected by detecting the temperature of the indoor heat exchanger while gradually opening the opening of the expansion valve. , There is a method of setting the detected fully closed opening degree to the lower limit of the control range (for example, Patent Document 1). With this method, the opening of the expansion valve can be controlled to an opening close to fully closed, the flow rate adjustment range is wide, and the air conditioner is finely controlled using a large-diameter expansion valve that can secure a large flow rate. be able to.

しかし、従来の方法は、運転停止中若しくは起動時に行うものであり、運転中に膨張弁の開閉動作を繰り返し行ったことによって膨張弁に制御開度と実開度とのずれが生じた場合対応できない。 However, the conventional method is performed when the operation is stopped or started, and it corresponds to the case where the expansion valve has a deviation between the control opening and the actual opening due to repeated opening and closing operations of the expansion valve during the operation. Can not.

特開平11-159893号公報Japanese Unexamined Patent Publication No. 11-159893

本発明は以上述べた問題点を解決するものであって、流量の調節範囲が広く大流量を確保できる大口径の膨張弁を用いて、運転中に膨張弁の開閉動作を繰り返し行ったことによって膨張弁に制御開度と実開度とのずれが生じた場合であっても、保護停止をなることを防ぎ、きめ細かい制御を行うことが可能な空気調和装置を提供することを目的とする。 The present invention solves the above-mentioned problems by repeatedly opening and closing the expansion valve during operation by using a large-diameter expansion valve that has a wide flow rate adjustment range and can secure a large flow rate. It is an object of the present invention to provide an air conditioner capable of finely controlling the expansion valve by preventing the protection stop even when the control opening and the actual opening deviate from each other.

上記の課題を解決するために、本発明の空気調和装置は、圧縮機と、室外熱交換器と、前記圧縮機から吐出される冷媒の温度である吐出温度を検出する吐出温度検出手段を有する室外機と、室内熱交換器と、前記室内熱交換器を流通する冷媒の温度である室内熱交温度を検出する室内熱交温度検出手段と、室内温度を検出する室内温度検出手段を有する複数の室内機と、前記室内機の各々に対応して接続された膨張弁と、前記圧縮機、前記膨張弁を制御する制御部と、を有し、1台の前記室外機に対して複数の前記室内機が冷媒配管で並列に接続された空気調和装置であって、前記制御部は、前記空気調和装置が暖房運転しているとき、前記膨張弁が全閉になっているか否かを判定する膨張弁全閉判定を実施し、前記膨張弁全閉判定によって前記膨張弁が全閉になっていると判定したら、前記圧縮機を一時停止して全閉になっていると判定された当該膨張弁の初期化を行う。 In order to solve the above problems, the air conditioner of the present invention includes a compressor, an outdoor heat exchanger, and a discharge temperature detecting means for detecting a discharge temperature which is the temperature of the refrigerant discharged from the compressor. A plurality of outdoor units, an indoor heat exchanger, an indoor heat exchange temperature detecting means for detecting the indoor heat exchange temperature which is the temperature of the refrigerant flowing through the indoor heat exchanger, and an indoor temperature detecting means for detecting the indoor temperature. It has an indoor unit, an expansion valve connected to each of the indoor units, a compressor, and a control unit for controlling the expansion valve, and a plurality of the indoor units are provided for one outdoor unit. The indoor unit is an air conditioner connected in parallel by a refrigerant pipe, and the control unit determines whether or not the expansion valve is fully closed when the air conditioner is operating for heating. When it is determined that the expansion valve is fully closed by the expansion valve fully closed determination, the compressor is temporarily stopped and it is determined that the expansion valve is fully closed. Initialize the expansion valve.

上記した空気調和装置では、暖房運転中の室内機に対応する膨張弁が全閉になっているか否かを判定し、全閉になっていたら圧縮機を一時停止して当該膨張弁の初期化を行う。運転中の室内機が全閉になることは制御上あり得ない為、全閉になっているか否かを判定することで膨張弁に制御開度と実開度とのずれが生じていることが明らかとなる。運転中に膨張弁が制御開度と実開度とのずれによって全閉になった場合、圧縮機が保護停止する前に膨張弁24の初期化を行う。 In the above-mentioned air conditioner, it is determined whether or not the expansion valve corresponding to the indoor unit during heating operation is fully closed, and if it is fully closed, the compressor is temporarily stopped and the expansion valve is initialized. I do. Since it is impossible for the indoor unit to be fully closed during operation in terms of control, there is a discrepancy between the control opening and the actual opening of the expansion valve by determining whether or not it is fully closed. Becomes clear. When the expansion valve is fully closed due to the deviation between the control opening and the actual opening during operation, the expansion valve 24 is initialized before the compressor is protected and stopped.

上記のように構成した本発明の空気調和装置によれば、流量の調節範囲が広く大流量を確保できる大口径の膨張弁を用いて、運転中に膨張弁の開閉動作を繰り返し行ったことによって膨張弁に制御開度と実開度とのずれが生じた場合であっても、保護停止をなることを防ぎ、きめ細かい制御を行うことが可能となる。 According to the air conditioner of the present invention configured as described above, the expansion valve is repeatedly opened and closed during operation by using a large-diameter expansion valve that has a wide flow rate adjustment range and can secure a large flow rate. Even if there is a discrepancy between the control opening and the actual opening of the expansion valve, it is possible to prevent the protection stop and perform fine control.

本発明の実施形態である空気調和装置の説明図であり、(A)が冷媒回路図、(B)が室外機制御手段および室内機制御手段のブロック図である。It is explanatory drawing of the air conditioner which is an embodiment of this invention, (A) is a refrigerant circuit diagram, (B) is a block diagram of an outdoor unit control means and an indoor unit control means. 本発明の実施形態における、室外機制御手段での処理を説明するフローチャートである。It is a flowchart explaining the process by the outdoor unit control means in embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に4台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行えるマルチ型の空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. As an embodiment, a multi-type air conditioner in which four indoor units are connected in parallel to one outdoor unit and all the indoor units can be simultaneously cooled or heated will be described as an example. The present invention is not limited to the following embodiments, and various modifications can be made without departing from the gist of the present invention.

図1(A)に示すように、本実施形態における空気調和装置1は、1台の室外機2と、室外機2に第1液管8a、第2液管8b、第3液管8c、第4液管8d、および、ガス管9で並列に接続された4台の室内機5a~5dとを備えている。 As shown in FIG. 1A, the air conditioner 1 in the present embodiment has one outdoor unit 2, and the outdoor unit 2 has a first liquid pipe 8a, a second liquid pipe 8b, and a third liquid pipe 8c. It includes a fourth liquid pipe 8d and four indoor units 5a to 5d connected in parallel by a gas pipe 9.

上記各構成要素は次のように接続されている。第1液管8aの一端が室外機2の第1液側閉鎖弁28aに、他端が室内機5aの液側閉鎖弁53aにそれぞれ接続されている。また、第2液管8bの一端が室外機2の第2液側閉鎖弁28bに、他端が室内機5bの液側閉鎖弁53bにそれぞれ接続されている。また、第3液管8cの一端が室外機2の第3液側閉鎖弁28cに、他端が室内機5cの液側閉鎖弁53cにそれぞれ接続されている。また、第4液管8dの一端が室外機2の第4液側閉鎖弁28dに、他端が室内機5dの液側閉鎖弁53dにそれぞれ接続されている。また、ガス管9は一端が室外機2のガス側閉鎖弁29に、他端が分岐して室内機5a~5dの各ガス側閉鎖弁54a~54dにそれぞれ接続されている。このように、室外機2と室内機5a~5dとが第1液管8a、第2液管8b、第3液管8c、第4液管8d、および、ガス管9で接続されて、空気調和装置1の冷媒回路10が構成されている。 Each of the above components is connected as follows. One end of the first liquid pipe 8a is connected to the first liquid side closing valve 28a of the outdoor unit 2, and the other end is connected to the liquid side closing valve 53a of the indoor unit 5a. Further, one end of the second liquid pipe 8b is connected to the second liquid side closing valve 28b of the outdoor unit 2, and the other end is connected to the liquid side closing valve 53b of the indoor unit 5b. Further, one end of the third liquid pipe 8c is connected to the third liquid side closing valve 28c of the outdoor unit 2, and the other end is connected to the liquid side closing valve 53c of the indoor unit 5c. Further, one end of the fourth liquid pipe 8d is connected to the fourth liquid side closing valve 28d of the outdoor unit 2, and the other end is connected to the liquid side closing valve 53d of the indoor unit 5d. Further, one end of the gas pipe 9 is connected to the gas side closing valve 29 of the outdoor unit 2, and the other end is branched and connected to the gas side closing valves 54a to 54d of the indoor units 5a to 5d. In this way, the outdoor unit 2 and the indoor units 5a to 5d are connected by the first liquid pipe 8a, the second liquid pipe 8b, the third liquid pipe 8c, the fourth liquid pipe 8d, and the gas pipe 9, and the air is connected. The refrigerant circuit 10 of the harmonizer 1 is configured.

まず、図1(A)を用いて、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、第1室外膨張弁24aと、第2室外膨張弁24bと、第3室外膨張弁24cと、第4室外膨張弁24dと、室外ファン27と、一端に第1液管8aが接続された第1閉鎖弁28aと、一端に第2液管8bが接続された第2閉鎖弁28bと、一端に第3液管8cが接続された第3閉鎖弁28cと、一端に第4液管8dが接続された第4閉鎖弁28dと、一端にガス管9が接続されたガス側閉鎖弁29と、室外機制御手段200とを備えている。そして、室外ファン27および室外機制御手段200を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路20を構成している。 First, the outdoor unit 2 will be described with reference to FIG. 1 (A). The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, a first outdoor expansion valve 24a, a second outdoor expansion valve 24b, a third outdoor expansion valve 24c, and a fourth outdoor expansion. A valve 24d, an outdoor fan 27, a first closing valve 28a having a first liquid pipe 8a connected to one end, a second closing valve 28b having a second liquid pipe 8b connected to one end, and a third liquid having one end. A third shutoff valve 28c to which the pipe 8c is connected, a fourth shutoff valve 28d to which the fourth liquid pipe 8d is connected to one end, a gas side shutoff valve 29 to which the gas pipe 9 is connected to one end, and an outdoor unit control. It is equipped with means 200. Each of these devices except the outdoor fan 27 and the outdoor unit control means 200 is connected to each other by the refrigerant pipes described in detail below to form the outdoor unit refrigerant circuit 20 forming a part of the refrigerant circuit 10. ..

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側は、後述する四方弁22のポートaと吐出管41で接続されている。また、圧縮機21の冷媒吸入側は、後述する四方弁22のポートcと吸入管42で接続されている。 The compressor 21 is a variable capacity compressor whose operating capacity can be changed by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. The refrigerant discharge side of the compressor 21 is connected to the port a of the four-way valve 22, which will be described later, by a discharge pipe 41. Further, the refrigerant suction side of the compressor 21 is connected to the port c of the four-way valve 22, which will be described later, by a suction pipe 42.

四方弁22は、冷媒の流れる方向を切り換えるための流路切替手段であり、a、b、c、dの4つのポートを備えている。ポートaは、圧縮機21の冷媒吐出側と吐出管41で接続されている。ポートdは、室外熱交換器23の一方の冷媒出入口と冷媒配管43で接続されている。ポートcは、圧縮機21の冷媒吸入側と吸入管42で接続されている。そして、ポートbは、ガス側閉鎖弁29と室外機ガス管44で接続されている。 The four-way valve 22 is a flow path switching means for switching the flow direction of the refrigerant, and includes four ports a, b, c, and d. The port a is connected to the refrigerant discharge side of the compressor 21 by a discharge pipe 41. The port d is connected to one of the refrigerant inlets / outlets of the outdoor heat exchanger 23 by a refrigerant pipe 43. The port c is connected to the refrigerant suction side of the compressor 21 by a suction pipe 42. The port b is connected to the gas side closing valve 29 by an outdoor unit gas pipe 44.

室外熱交換器23は、後述する室外ファン27の回転により図示しない吸込口から室外機2の内部に取り込まれた外気と冷媒とを熱交換させるものである。室外熱交換器23の一方の冷媒出入口は上述したように冷媒配管43で四方弁22のポートdに接続され、他方の冷媒出入口には室外機液管45の一端が接続されている。室外熱交換器23は、冷媒回路10が冷房サイクルとなる場合は凝縮器として機能し、冷媒回路10が暖房サイクルとなる場合は蒸発器として機能する。 The outdoor heat exchanger 23 exchanges heat between the outside air taken into the inside of the outdoor unit 2 and the refrigerant from a suction port (not shown) by the rotation of the outdoor fan 27 described later. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 is connected to the port d of the four-way valve 22 by the refrigerant pipe 43, and one end of the outdoor unit liquid pipe 45 is connected to the other refrigerant inlet / outlet. The outdoor heat exchanger 23 functions as a condenser when the refrigerant circuit 10 is in the cooling cycle, and functions as an evaporator when the refrigerant circuit 10 is in the heating cycle.

室外機液管45の他端には、第1液分管aの一端と第2液分管46bの一端と第3液分管46cの一端と第4液分管46dの一端が各々接続されている。また、第1液分管46aの他端は第1液側閉鎖弁28aと接続され、第2液分管46bの他端は第2液側閉鎖弁28bと接続され、第3液分管46cの他端は第3液側閉鎖弁28cと接続され、第4液分管46dの他端は第4液側閉鎖弁28dと接続されている。 One end of the first liquid distribution pipe a, one end of the second liquid division pipe 46b, one end of the third liquid division pipe 46c, and one end of the fourth liquid division pipe 46d are connected to the other end of the outdoor unit liquid pipe 45, respectively. Further, the other end of the first liquid branch pipe 46a is connected to the first liquid side closing valve 28a, the other end of the second liquid branch pipe 46b is connected to the second liquid side closing valve 28b, and the other end of the third liquid branch pipe 46c. Is connected to the third liquid side closing valve 28c, and the other end of the fourth liquid branch pipe 46d is connected to the fourth liquid side closing valve 28d.

第1液分管46aには、第1室外膨張弁24aが設けられている。また、第2液分管46bには、第2室外膨張弁24bが設けられている。また、第3液分管46cには、第3室外膨張弁24cが設けられている。さらには、第4液分管46dには、第4室外膨張弁24dが設けられている。 The first liquid branch pipe 46a is provided with a first outdoor expansion valve 24a. Further, the second liquid branch pipe 46b is provided with a second outdoor expansion valve 24b. Further, the third liquid branch pipe 46c is provided with a third outdoor expansion valve 24c. Further, the fourth liquid branch pipe 46d is provided with a fourth outdoor expansion valve 24d.

第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、第4室外膨張弁24dは、各々電子膨張弁である。第1室外膨張弁24aの開度を調節することで、後述する室内機5aの室内熱交換器51aを流れる冷媒量を調節する。第2室外膨張弁24bの開度を調節することで、後述する室内機5bの室内熱交換器51bを流れる冷媒量を調節する。第3室外膨張弁24cの開度を調節することで、後述する室内機5cの室内熱交換器51cを流れる冷媒量を調節する。第4室外膨張弁24dの開度を調節することで、後述する室内機5dの室内熱交換器51dを流れる冷媒量を調節する。 The first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d are electronic expansion valves, respectively. By adjusting the opening degree of the first outdoor expansion valve 24a, the amount of refrigerant flowing through the indoor heat exchanger 51a of the indoor unit 5a, which will be described later, is adjusted. By adjusting the opening degree of the second outdoor expansion valve 24b, the amount of refrigerant flowing through the indoor heat exchanger 51b of the indoor unit 5b, which will be described later, is adjusted. By adjusting the opening degree of the third outdoor expansion valve 24c, the amount of refrigerant flowing through the indoor heat exchanger 51c of the indoor unit 5c described later is adjusted. By adjusting the opening degree of the fourth outdoor expansion valve 24d, the amount of refrigerant flowing through the indoor heat exchanger 51d of the indoor unit 5d, which will be described later, is adjusted.

室外ファン27は、樹脂材で形成されており、室外熱交換器23の近傍に配置されている。室外ファン27は、図示しないファンモータによって回転することで、図示しない吸込口から室外機2の内部へ外気を取り込み、室外熱交換器23において冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。 The outdoor fan 27 is made of a resin material and is arranged in the vicinity of the outdoor heat exchanger 23. The outdoor fan 27 is rotated by a fan motor (not shown) to take in outside air from a suction port (not shown) into the outdoor unit 2 and exchange heat with a refrigerant in the outdoor heat exchanger 23 from an outlet (not shown) to the outdoor unit. 2 is released to the outside.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力である吐出圧力を検出する高圧センサ31と、圧縮機21から吐出される冷媒の温度である吐出温度を検出する吐出温度センサ33とが設けられている。吸入管42には、圧縮機21に吸入される冷媒の圧力である吸入圧力を検出する低圧センサ32と、圧縮機21に吸入される冷媒の温度である吸入温度を検出する吸入温度センサ34とが設けられている。室外熱交換器23には、室外熱交換器23の温度を検出する室外熱交温度センサ35が設けられている。 In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, the discharge pipe 41 has a high pressure sensor 31 that detects the discharge pressure, which is the pressure of the refrigerant discharged from the compressor 21, and the temperature of the refrigerant discharged from the compressor 21. A discharge temperature sensor 33 for detecting the discharge temperature is provided. The suction pipe 42 includes a low pressure sensor 32 that detects the suction pressure that is the pressure of the refrigerant sucked into the compressor 21, and a suction temperature sensor 34 that detects the suction temperature that is the temperature of the refrigerant sucked into the compressor 21. Is provided. The outdoor heat exchanger 23 is provided with an outdoor heat exchange temperature sensor 35 that detects the temperature of the outdoor heat exchanger 23.

第1液分管46aにおける、第1室外膨張弁24aと第1液側閉鎖弁28aとの間には、この間の第1液分管46aを流れる冷媒の温度を検出する第1液温度センサ38aが設けられている。第2液分管46bにおける、第2室外膨張弁24bと第2液側閉鎖弁28bとの間には、この間の第2液分管46bを流れる冷媒の温度を検出する第2液温度センサ38bが設けられている。第3室外膨張弁24cと第3液側閉鎖弁28cとの間には、この間の第3液分管46cを流れる冷媒の温度を検出する第3液温度センサ38cが設けられている。第4室外膨張弁24dと第4液側閉鎖弁28dとの間には、この間の第4液分管46dを流れる冷媒の温度を検出する第4液温度センサ38dが設けられている。そして、室外機2の図示しない吸込口付近には、室外機2内に流入する外気の温度、すなわち外気温度を検出する外気温度センサ100が備えられている。 A first liquid temperature sensor 38a for detecting the temperature of the refrigerant flowing through the first liquid dividing pipe 46a between the first outdoor expansion valve 24a and the first liquid side closing valve 28a in the first liquid dividing pipe 46a is provided. Has been done. A second liquid temperature sensor 38b for detecting the temperature of the refrigerant flowing in the second liquid dividing pipe 46b between the second outdoor expansion valve 24b and the second liquid side closing valve 28b in the second liquid dividing pipe 46b is provided. Has been done. A third liquid temperature sensor 38c for detecting the temperature of the refrigerant flowing through the third liquid branch pipe 46c between the third outdoor expansion valve 24c and the third liquid side closing valve 28c is provided. A fourth liquid temperature sensor 38d for detecting the temperature of the refrigerant flowing through the fourth liquid branch pipe 46d between the fourth outdoor expansion valve 24d and the fourth liquid side closing valve 28d is provided. An outside air temperature sensor 100 for detecting the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature is provided in the vicinity of the suction port (not shown) of the outdoor unit 2.

また、室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU210と、記憶部220と、通信部230とを備えている。 Further, the outdoor unit 2 is provided with an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board housed in an electrical component box (not shown) of the outdoor unit 2, and as shown in FIG. 1 (B), the CPU 210, the storage unit 220, and the communication unit 230. It is equipped with.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン27の制御状態、後述する各種テーブル等を記憶する。通信部230は、室内機5a~5dとの通信を行うインターフェイスである。 The storage unit 220 is composed of a ROM and a RAM, and stores detection values corresponding to the control program of the outdoor unit 2 and detection signals from various sensors, the control state of the compressor 21 and the outdoor fan 27, various tables described later, and the like. Remember. The communication unit 230 is an interface for communicating with the indoor units 5a to 5d.

CPU210は、各種センサでの検出値を取り込むとともに、室内機5a~5dから送信される運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号が通信部230を介して入力される。CPU210は、これら取り込んだ各種検出値や入力された各種情報に基づいて、第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24cおよび第4室外膨張弁24dの開度制御や、圧縮機21や室外ファン27の駆動制御、四方弁22の切り換え制御を行う。また、CPU210は、図1(C)に示すように、着霜量判定手段211、パルス算出手段212、膨張弁制御手段213を備えている。これらは、後述する制御で用いられる。 The CPU 210 captures the detection values of various sensors, and the operation information signal including the operation start / stop signal and the operation information (set temperature, room temperature, etc.) transmitted from the indoor units 5a to 5d is transmitted via the communication unit 230. Is entered. The CPU 210 controls the opening degree of the first outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d based on the various detected values taken in and various input information. It also controls the drive of the compressor 21 and the outdoor fan 27, and controls the switching of the four-way valve 22. Further, as shown in FIG. 1C, the CPU 210 includes a frost formation amount determining means 211, a pulse calculating means 212, and an expansion valve controlling means 213. These are used in the control described later.

次に、4台の室内機5a~5dについて説明する。尚、室内機5a~5dの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5c、5dについては説明を省略する。また、図1(A)では、室内機5aの構成装置に付与した番号の末尾をaからb、cおよびdにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5c、5dの構成装置となる。 Next, the four indoor units 5a to 5d will be described. Since the configurations of the indoor units 5a to 5d are all the same, in the following description, only the configuration of the indoor unit 5a will be described, and the description of the other indoor units 5b, 5c, and 5d will be omitted. Further, in FIG. 1A, the numbers assigned to the constituent devices of the indoor unit 5a are changed from a to b, c and d, respectively, and the indoor units 5b and 5c corresponding to the constituent devices of the outdoor unit 5a are obtained. It becomes a constituent device of 5d.

室内機5aは、室内熱交換器51aと、第1液管8aがそれぞれ接続された液側閉鎖弁53aおよび分岐したガス管9の他端がそれぞれ接続されたガス側閉鎖弁54aと、室内ファン55aと、室内機制御手段500aとを備えている。そして、室内ファン55aおよび室内機制御手段500aを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路50aを構成している。 The indoor unit 5a includes an indoor heat exchanger 51a, a liquid side closing valve 53a to which the first liquid pipe 8a is connected, a gas side closing valve 54a to which the other end of the branched gas pipe 9 is connected, and an indoor fan. It includes 55a and indoor unit control means 500a. Each of these devices except the indoor fan 55a and the indoor unit control means 500a is connected to each other by the refrigerant pipes described in detail below to form the indoor unit refrigerant circuit 50a forming a part of the refrigerant circuit 10. ..

室内熱交換器51aは、後述する室内ファン55aの回転により室内機5aに備えられた図示しない吸込口から室内機5aの内部に取り込まれた室内空気と冷媒を熱交換させるものであり、一方の冷媒出入口が液側閉鎖弁53aに室内機液管71aで接続され、他方の冷媒出入口がガス側閉鎖弁54aに室内機ガス管72aで接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。 The indoor heat exchanger 51a exchanges heat between the indoor air taken into the indoor unit 5a and the refrigerant from a suction port (not shown) provided in the indoor unit 5a by rotating the indoor fan 55a, which will be described later. The refrigerant inlet / outlet is connected to the liquid side closing valve 53a by the indoor unit liquid pipe 71a, and the other refrigerant inlet / outlet is connected to the gas side closing valve 54a by the indoor unit gas pipe 72a. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.

室内ファン55aは、室内熱交換器51aの近傍に配置される樹脂材で形成されたクロスフローファンであり、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内部に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を室内機5aに備えられた図示しない吹出口から室内へ供給する。 The indoor fan 55a is a cross-flow fan made of a resin material arranged in the vicinity of the indoor heat exchanger 51a, and is rotated by a fan motor (not shown) to enter the interior of the indoor unit 5a from a suction port (not shown). The indoor air that takes in air and exchanges heat with the refrigerant in the indoor heat exchanger 51a is supplied into the room from an outlet (not shown) provided in the indoor unit 5a.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内熱交換器51aには、室内熱交換器51aの温度を検出する室内熱交温度センサ61aが設けられている。また、室内機ガス管72aにはガス温度センサ63aが設けられている。さらに、室内機5aの図示しない吸込口付近には、室内機5a内に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ62aが備えられている。 In addition to the configuration described above, the indoor unit 5a is provided with various sensors. The indoor heat exchanger 51a is provided with an indoor heat exchange temperature sensor 61a that detects the temperature of the indoor heat exchanger 51a. Further, the indoor unit gas pipe 72a is provided with a gas temperature sensor 63a. Further, an indoor temperature sensor 62a for detecting the temperature of the indoor air flowing into the indoor unit 5a, that is, the indoor temperature, is provided in the vicinity of the suction port (not shown) of the indoor unit 5a.

また、室内機5aには、室内機制御手段500aが備えられている。制御手段500aは、室内機5aの図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU510aと、記憶部520aと、通信部530aとを備えている。 Further, the indoor unit 5a is provided with an indoor unit control means 500a. The control means 500a is mounted on a control board housed in an electrical component box (not shown) of the indoor unit 5a, and includes a CPU 510a, a storage unit 520a, and a communication unit 530a as shown in FIG. 1 (B). ing.

記憶部520aは、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、使用者による空調運転に関する設定情報等を記憶する。通信部530aは、室外機2および他の室内機5b、5cとの通信を行うインターフェイスである。 The storage unit 520a is composed of a ROM and a RAM, and stores detection values corresponding to detection signals from the indoor unit 5a control program and various sensors, setting information related to air conditioning operation by the user, and the like. The communication unit 530a is an interface for communicating with the outdoor unit 2 and other indoor units 5b and 5c.

CPU510aは、各種センサでの検出値を取り込むとともに、使用者が図示しないリモコンを操作して設定した運転条件やタイマー運転設定等を含んだ信号が図示しないリモコン受光部を介して入力される。CPU510aは、これら取り込んだ各種検出値や入力された各種情報に基づいて室内ファン55aの駆動制御を行う。また、CPU510aは、運転開始/停止信号や運転情報(設定温度や室内温度等)を含んだ運転情報信号を、通信部530aを介して室外機2に送信する。 The CPU 510a captures the detection values of various sensors, and a signal including operating conditions and timer operation settings set by the user by operating a remote controller (not shown) is input via a remote controller light receiving unit (not shown). The CPU 510a controls the drive of the indoor fan 55a based on the various detected values captured and the various input information. Further, the CPU 510a transmits an operation information signal including an operation start / stop signal and operation information (set temperature, indoor temperature, etc.) to the outdoor unit 2 via the communication unit 530a.

次に、本実施形態における空気調和装置1の空調運転時の冷媒回路10における冷媒の流れや各部の動作について、図1(A)を用いて説明する。尚、以下の説明では、室内機5a~5dが暖房運転を行う場合について説明し、冷房運転/除霜運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は、暖房運転時の冷媒の流れを示している。 Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 during the air conditioning operation of the air conditioning device 1 in the present embodiment will be described with reference to FIG. 1 (A). In the following description, the case where the indoor units 5a to 5d perform the heating operation will be described, and the detailed description will be omitted when the indoor units 5a to 5d perform the cooling operation / defrosting operation. Further, the arrow in FIG. 1A indicates the flow of the refrigerant during the heating operation.

図1(A)に示すように、室内機5a~5dが暖房運転を行う場合、つまり、冷媒回路10が暖房サイクルとなる場合は、室外機2では、四方弁22が実線で示す状態、すなわち、四方弁22のポートaとポートbとが連通するよう、また、ポートdとポートcとが連通するよう、切り換えられる。これにより、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器51a~51dが凝縮器として機能する。 As shown in FIG. 1A, when the indoor units 5a to 5d perform the heating operation, that is, when the refrigerant circuit 10 is in the heating cycle, in the outdoor unit 2, the four-way valve 22 is shown by a solid line, that is, , The port a and the port b of the four-way valve 22 are switched so as to communicate with each other, and the port d and the port c are switched so as to communicate with each other. As a result, the outdoor heat exchanger 23 functions as an evaporator, and the indoor heat exchangers 51a to 51d function as a condenser.

圧縮機21から吐出された高圧の冷媒は、吐出管41から四方弁22を介して室外機ガス管44に流入し、室外機ガス管44からガス側閉鎖弁29を介してガス管9に流入する。ガス管9に流入した冷媒は分岐して、ガス側閉鎖弁54a~54dを介して室内機5a~5dに流入する。 The high-pressure refrigerant discharged from the compressor 21 flows from the discharge pipe 41 into the outdoor unit gas pipe 44 via the four-way valve 22, and flows from the outdoor unit gas pipe 44 into the gas pipe 9 via the gas side closing valve 29. do. The refrigerant flowing into the gas pipe 9 branches and flows into the indoor units 5a to 5d via the gas side closing valves 54a to 54d.

室内機5a~5dに流入した冷媒は、室内機ガス管72a~72dを流れて室内熱交換器51a~51dに流入する。室内熱交換器51a~51dに流入した冷媒は、室内ファン55a~55dの回転により図示しない吸込口から室内機5a~5dの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a~51dが凝縮器として機能し、室内熱交換器51a~51dで冷媒と熱交換を行って暖められた室内空気が図示しない吹出口から室内機5a~5dが設置されている部屋に吹き出されることによって、各部屋の暖房が行われる。 The refrigerant that has flowed into the indoor units 5a to 5d flows through the indoor unit gas pipes 72a to 72d and flows into the indoor heat exchangers 51a to 51d. The refrigerant flowing into the indoor heat exchangers 51a to 51d exchanges heat with the indoor air taken into the indoor units 5a to 5d from a suction port (not shown) due to the rotation of the indoor fans 55a to 55d to condense. In this way, the indoor heat exchangers 51a to 51d function as condensers, and the indoor heat exchangers 51a to 51d exchange heat with the refrigerant to warm the indoor air from the outlets (not shown) to the indoor units 5a to 5d. Each room is heated by blowing it into the installed room.

室内熱交換器51a~51dから流出した冷媒は室内機液管71a~71dを流れ、液側閉鎖弁53a~53dを介して第1液管8a、第2液管8b、第3液管8c、および第4液管8dに流入する。第1液管8a、第2液管8b、第3液管8c、および第4液管8dから第1液側閉鎖弁28a、第2液側閉鎖弁28b、第3液側閉鎖弁28c、および第4液側閉鎖弁28dを介して室外機2に流入した冷媒は、第1液分管46a、第2液分管46b、第3液分管46c、および第4液分管46dを流れて第1室外膨張弁24a、第2室外膨張弁24b、第3室外膨張弁24c、および第4室外膨張弁24dを通過して減圧された後、室外機液管45に流入する。 The refrigerant flowing out from the indoor heat exchangers 51a to 51d flows through the indoor unit liquid pipes 71a to 71d, and passes through the liquid side closing valves 53a to 53d to the first liquid pipe 8a, the second liquid pipe 8b, and the third liquid pipe 8c. And flows into the 4th liquid pipe 8d. The first liquid pipe 8a, the second liquid pipe 8b, the third liquid pipe 8c, and the fourth liquid pipe 8d to the first liquid side closing valve 28a, the second liquid side closing valve 28b, the third liquid side closing valve 28c, and The refrigerant that has flowed into the outdoor unit 2 via the fourth liquid side closing valve 28d flows through the first liquid branch pipe 46a, the second liquid branch pipe 46b, the third liquid branch pipe 46c, and the fourth liquid branch pipe 46d, and expands outside the first room. After passing through the valve 24a, the second outdoor expansion valve 24b, the third outdoor expansion valve 24c, and the fourth outdoor expansion valve 24d to reduce the pressure, the liquid flows into the outdoor unit liquid pipe 45.

室外機液管45から室外熱交換器23に流入した冷媒は、室外ファン27の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。室外熱交換器23から流出した冷媒は、冷媒配管43を流れて四方弁22に流入し四方弁22から吸入管42へと流れ、圧縮機21に吸入されて再び圧縮される。 The refrigerant flowing into the outdoor heat exchanger 23 from the outdoor unit liquid pipe 45 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 27. The refrigerant flowing out of the outdoor heat exchanger 23 flows through the refrigerant pipe 43, flows into the four-way valve 22, flows from the four-way valve 22 to the suction pipe 42, is sucked into the compressor 21, and is compressed again.

次に、図1~図2を用いて、本実施形態の空気調和装置1が膨張弁全閉判定をする際の室外機制御部200が行う制御ついて詳細に説明する。 Next, with reference to FIGS. 1 and 2, the control performed by the outdoor unit control unit 200 when the air conditioner 1 of the present embodiment determines that the expansion valve is fully closed will be described in detail.

尚、以下の説明では、暖房運転時において室内熱交温度センサ61a~61dで検出する室内熱交換器51a~51dでの室内熱交温度をTca~Tcd、ガス温度センサ63a~63dで検出する室内熱交入口温度をTha~Thd、室内温度センサ62a~62dで検出する室内温度をTia~Tid、吐出温度センサ33で検出する吐出温度をTdとする。 In the following description, the indoor heat exchange temperature in the indoor heat exchangers 51a to 51d detected by the indoor heat exchange temperature sensors 61a to 61d during the heating operation is detected by the Tca to Tcd and the gas temperature sensors 63a to 63d. The heat exchange inlet temperature is Tha to Thd, the indoor temperature detected by the indoor temperature sensors 62a to 62d is Tia to Tid, and the discharge temperature detected by the discharge temperature sensor 33 is Td.

また、室内熱交換器51a~51dの室内熱交温度Tca~Tcdと、室内熱交入口温度Tha~Thd及び室内温度Tia~Tidは所定時間毎(例えば、30秒)に常時検出される。検出された室内熱交温度Tca~Tcdと、室内熱交入口温度Tha~Thd及び室内温度Tia~Tidは、室内機制御部500a~500dの通信部530a~530dから室外機制御部200の通信部230を介して記憶部220に記憶される。 Further, the indoor heat exchange temperatures Tca to Tcd, the indoor heat exchange inlet temperatures Thea to Thd, and the indoor heat exchange temperatures Tia to Tid of the indoor heat exchangers 51a to 51d are constantly detected at predetermined time intervals (for example, 30 seconds). The detected indoor heat exchange temperatures Tca to Tcd, the indoor heat exchange inlet temperatures Tha to Thd, and the indoor temperature Tia to Tid are from the communication units 530a to 530d of the indoor unit control units 500a to 500d to the communication units of the outdoor unit control unit 200. It is stored in the storage unit 220 via 230.

マルチ型空気調和装置では、暖房運転中の室内機と運転停止中の室内機が混在している状態において、室内熱交換器への冷媒の溜り込みを防ぐために、運転停止中の室内機に対応する膨張弁の開度を冷媒がわずかに流れる程度の開度に設定している。また、冷媒流量が少ない低負荷時でも多く絞るために開度を小さく設定する。 The multi-type air conditioner supports indoor units that are not in operation in order to prevent refrigerant from accumulating in the indoor heat exchanger when indoor units that are in heating operation and indoor units that are not in operation are mixed. The opening degree of the expansion valve is set to such an opening degree that the refrigerant slightly flows. In addition, the opening is set small in order to throttle a large amount even when the load is low and the flow rate of the refrigerant is small.

能力の大きい室内機を接続する場合は高負荷時の大流量を確保するために大口径の膨張弁を接続するが、大口径の膨張弁で上述したような少流量を実現するためには、全閉に近い開度まで制御できる必要がある。 When connecting an indoor unit with a large capacity, a large-diameter expansion valve is connected to secure a large flow rate at high load, but in order to realize the small flow rate as described above with a large-diameter expansion valve, It is necessary to be able to control the opening close to full closure.

しかし、膨張弁の製造誤差や開閉動作を繰り返し行ったことによる制御開度と実開度とのずれを考慮して、通常は全閉に近い開度の領域を全閉パルス領域として運転制御では用いないようにしていた。全閉パルス領域を制御で用いた場合、上述の開度誤差によって空気調和装置の運転中に膨張弁が全閉になってしまう可能性がある。膨張弁が全閉となったまま暖房運転が継続されると、室内空間で暖気が生成されないだけでなく、圧縮機に吸入される冷媒の量が不足するため吐出温度が急激に上昇し、圧縮機が保護停止してしまう。一度保護停止となった圧縮機は所定時間(15~30分)再起動が禁止される。 However, in consideration of the manufacturing error of the expansion valve and the deviation between the control opening and the actual opening due to repeated opening and closing operations, the operation control usually sets the region of the opening close to fully closed as the fully closed pulse region. I tried not to use it. When the fully closed pulse region is used for control, the expansion valve may be fully closed during the operation of the air conditioner due to the above-mentioned opening error. If the heating operation is continued with the expansion valve fully closed, not only warm air is not generated in the interior space, but also the amount of refrigerant sucked into the compressor is insufficient, so the discharge temperature rises sharply and compression occurs. The machine will stop protecting. Once the protection is stopped, the compressor is prohibited from restarting for a predetermined time (15 to 30 minutes).

そこで、本発明では、暖房運転中の室内機5に対応する膨張弁24が全閉になっているか否かを判定し、全閉になっていたら圧縮機21を一時停止して当該膨張弁24の初期化を行う。これは、運転中の室内機5が全閉になることは制御上あり得ない為、膨張弁24に制御開度と実開度とのずれが生じていることが明らかとなるからである。運転中に膨張弁24が制御開度と実開度とのずれによって全閉になった場合、圧縮機21が保護停止する前に膨張弁24の初期化を行うことで、膨張弁の開度を全閉に近い開度まで制御でき、流量の調節範囲が広く、大流量を確保できる大口径の膨張弁を用いて空気調和装置のきめ細かい制御を行うことができる。 Therefore, in the present invention, it is determined whether or not the expansion valve 24 corresponding to the indoor unit 5 during the heating operation is fully closed, and if it is fully closed, the compressor 21 is temporarily stopped and the expansion valve 24 is fully closed. Initialize. This is because it is impossible for the indoor unit 5 to be fully closed during operation in terms of control, and it becomes clear that the expansion valve 24 has a deviation between the controlled opening degree and the actual opening degree. When the expansion valve 24 is fully closed due to the deviation between the control opening and the actual opening during operation, the expansion valve opening is opened by initializing the expansion valve 24 before the compressor 21 is protected and stopped. Can be controlled to an opening close to fully closed, the flow rate adjustment range is wide, and the air conditioner can be finely controlled by using a large-diameter expansion valve that can secure a large flow rate.

以下、図2を用いて本発明に関わる処理について詳細に説明する。尚、図2に示すフローチャートでは、STは処理のステップを表し、これに続く数字はステップ番号を表している。また、図2では、本発明に関わる処理を中心に説明しており、空気調和装置1が膨張弁全閉判定以外を行うときの処理や、使用者の指示した設定温度や風量などの運転条件に対応した冷媒回路10の制御、等といった一般的な処理については説明を省略する。 Hereinafter, the process according to the present invention will be described in detail with reference to FIG. In the flowchart shown in FIG. 2, ST represents a processing step, and the number following it represents a step number. Further, FIG. 2 mainly describes the process related to the present invention, the process when the air conditioner 1 performs a process other than the determination of the expansion valve fully closed, and the operating conditions such as the set temperature and the air volume instructed by the user. The description of general processing such as control of the refrigerant circuit 10 corresponding to the above will be omitted.

図2のフローチャートによる処理は、空気調和装置1の冷媒回路10が暖房サイクルの状態となっているとき繰り返し行われる。まず、CPU210は、室内熱交温度センサ61a~61dが検出した室内熱交換器51a~51dの室内熱交温度Tca~Tcdと、ガス温度センサ63a~63dが検出した室内熱交入口温度Tha~Thdと、室内温度センサ62a~62dが検出した室内温度Tia~Tidと、吐出温度センサ33が検出する吐出温度Tdを読み込む(ST10)。 The process according to the flowchart of FIG. 2 is repeated when the refrigerant circuit 10 of the air conditioner 1 is in the heating cycle state. First, the CPU 210 has the indoor heat exchange temperatures Tca to Tcd of the indoor heat exchangers 51a to 51d detected by the indoor heat exchange temperature sensors 61a to 61d and the indoor heat exchange inlet temperatures The to Thd detected by the gas temperature sensors 63a to 63d. Then, the indoor temperatures Tia to Tid detected by the indoor temperature sensors 62a to 62d and the discharge temperature Td detected by the discharge temperature sensor 33 are read (ST10).

ステップST10の処理を終えたCPU210は、現在暖房運転中の室内機の台数が複数台であるか否かを判定する(ST11)。現在暖房運転中の室内機の台数が複数台である場合(ST11-YES)、CPU210はステップST12に進んで膨張弁全閉判定を実施する。現在暖房運転中の室内機の台数が1台である場合(ST11-NO)、CPU210はステップST13に進んで膨張弁全閉判定を実施する。 The CPU 210 that has completed the process of step ST10 determines whether or not the number of indoor units currently in the heating operation is a plurality of units (ST11). When the number of indoor units currently in the heating operation is a plurality of units (ST11-YES), the CPU 210 proceeds to step ST12 to determine that the expansion valve is fully closed. When the number of indoor units currently in the heating operation is one (ST11-NO), the CPU 210 proceeds to step ST13 to determine that the expansion valve is fully closed.

ステップST12の膨張弁全閉判定では、ステップST10で検出した暖房運転中の複数台の室内機5に対応する室内熱交換器51の室内熱交入口温度Thの最大値Thmaxと最小値Thminの差(Thmax-Thmin)が第1の閾値ΔT1(例えば、5deg)以上となっているか否かを判定し、Thmax-Thmin≧ΔT1となっている場合は膨張弁24が全閉であると判断する。例えば、4台の室内機5a~5dのうち、室内機5a,5b,5cが暖房運転しているとする。室内機5aの室内熱交換器51aの室内熱交入口温度Thaと、室内機5bの室内熱交換器51bの室内熱交入口温度Thbと、室内機5cの室内熱交換器51cの室内熱交入口温度Thcとが、Tha>Thb>Thcの関係となっている場合、最大値Thmax=Thaとなり、最小値Thmin=Thcとなる。 In the expansion valve fully closed determination in step ST12, the difference between the maximum value Thmax and the minimum value Thmin of the indoor heat exchange inlet temperature Th of the indoor heat exchanger 51 corresponding to the plurality of indoor units 5 during the heating operation detected in step ST10. It is determined whether or not (Thhmax-Thmin) is equal to or greater than the first threshold value ΔT1 (for example, 5deg), and if Thmax−Thmin ≧ ΔT1, it is determined that the expansion valve 24 is fully closed. For example, it is assumed that of the four indoor units 5a to 5d, the indoor units 5a, 5b, and 5c are in heating operation. The indoor heat exchange inlet temperature Tha of the indoor heat exchanger 51a of the indoor unit 5a, the indoor heat exchange inlet temperature Thb of the indoor heat exchanger 51b of the indoor unit 5b, and the indoor heat exchange inlet of the indoor heat exchanger 51c of the indoor unit 5c. When the temperature Thc has a relationship of Tha> Thb> Thc, the maximum value Thmax = Tha and the minimum value Thmin = Thc.

第1の閾値ΔT1は予め試験等により定められ、記憶部220に記憶されている。暖房運転中の通常時(膨張弁24が全閉でない状態)は、室内熱交入口温度Thは吐出温度Tdに近い温度である。一方、膨張弁24が全閉となっているときは、室内熱交換器51内の冷媒の流れが滞るため、室内熱交入口温度Thは室温Tiに近づいていく。つまり、通常時と膨張弁全閉時とで室内熱交入口温度Thの差が大きい。そのため、暖房運転中の室内機5の室内熱交入口温度Thの最大値Thmaxと最小値Thminを比較して、その差が所定値以上となった場合、最小値Thminを検出した室内機5に対応する膨張弁24が全閉であると判断する。 The first threshold value ΔT1 is determined in advance by a test or the like and is stored in the storage unit 220. During normal operation during heating operation (a state in which the expansion valve 24 is not fully closed), the indoor heat exchange inlet temperature Th is a temperature close to the discharge temperature Td. On the other hand, when the expansion valve 24 is fully closed, the flow of the refrigerant in the indoor heat exchanger 51 is stagnant, so that the indoor heat exchange inlet temperature Th approaches room temperature Ti. That is, the difference in the indoor heat exchange inlet temperature Th is large between the normal time and the expansion valve fully closed. Therefore, when the maximum value Thmax and the minimum value Thmin of the indoor heat exchange inlet temperature Th of the indoor unit 5 during the heating operation are compared and the difference becomes more than a predetermined value, the indoor unit 5 that detects the minimum value Thmin is used. It is determined that the corresponding expansion valve 24 is fully closed.

ステップST13の膨張弁全閉判定では、暖房運転中の室内機5に対応する室内熱交換器51の室内熱交温度Tcと室内温度Tiの差(Tc-Ti)が第2の閾値ΔT2(例えば、4deg)未満となっている、且つ、吐出温度Tdが所定温度(例えば、100℃)超となっているか否かを判定し、Tc-Ti<ΔT2、且つ、Td>100℃となっている場合は膨張弁24が全閉であると判断する。 In the expansion valve fully closed determination in step ST13, the difference (Tc—Ti) between the indoor heat exchange temperature Tc and the indoor temperature Ti of the indoor heat exchanger 51 corresponding to the indoor unit 5 during the heating operation is the second threshold value ΔT2 (for example). It is determined whether or not the temperature is less than 4 deg) and the discharge temperature Td exceeds a predetermined temperature (for example, 100 ° C.), and Tc—Ti <ΔT2 and Td> 100 ° C. In this case, it is determined that the expansion valve 24 is fully closed.

第2の閾値ΔT2及び所定温度は予め試験等により定められ、記憶部220に記憶されている。暖房運転中の室内機5が1台のみの場合、暖房運転停止中の室内機5は膨張弁24が微開となっているため冷媒の流れは滞っている。暖房運転停止中の室内機5内に滞留した冷媒は室内空気と熱交換され徐々に温度が低下する。そのため、暖房運転停止中の室内機5に対応する室内熱交入口温度Thは室内温度Tiに近い温度を示し、「暖房運転中の室内機5が複数台の膨張弁全閉判定」と同じ判定方法は採用できない。一方、唯一の暖房運転中の室内機5に対応する膨張弁24が全閉となってしまった場合、他の停止中の室内機5に対応する膨張弁24は微開となっているので、冷媒が低圧側(室外熱交換器23側)に殆ど流れない状態である。冷媒が低圧側に流れないと、圧縮機21に吸入される冷媒量が減るため、圧縮機21から吐出される冷媒の温度である吐出温度Tdが過度に上昇する。そのため、暖房運転中の室内機5の室内熱交温度Tcと室内温度Tiの差が所定値未満、且つ、吐出温度Tdが所定温度超となったら、暖房運転中の室内機5に対応する膨張弁24が全閉であると判断する。 The second threshold value ΔT2 and the predetermined temperature are determined in advance by a test or the like and stored in the storage unit 220. When there is only one indoor unit 5 during the heating operation, the expansion valve 24 of the indoor unit 5 during the heating operation is slightly opened, so that the flow of the refrigerant is stagnant. The refrigerant staying in the indoor unit 5 in which the heating operation is stopped exchanges heat with the indoor air, and the temperature gradually decreases. Therefore, the indoor heat exchange inlet temperature Th corresponding to the indoor unit 5 in which the heating operation is stopped indicates a temperature close to the indoor temperature Ti, and the same determination as "determination that the indoor units 5 in the heating operation are fully closed with a plurality of expansion valves". The method cannot be adopted. On the other hand, when the expansion valve 24 corresponding to the only indoor unit 5 during the heating operation is fully closed, the expansion valve 24 corresponding to the other stopped indoor unit 5 is slightly opened. The refrigerant hardly flows to the low pressure side (outdoor heat exchanger 23 side). If the refrigerant does not flow to the low pressure side, the amount of the refrigerant sucked into the compressor 21 decreases, so that the discharge temperature Td, which is the temperature of the refrigerant discharged from the compressor 21, rises excessively. Therefore, when the difference between the indoor heat exchange temperature Tc and the indoor temperature Ti of the indoor unit 5 during the heating operation is less than a predetermined value and the discharge temperature Td exceeds the predetermined temperature, the expansion corresponding to the indoor unit 5 during the heating operation is performed. It is determined that the valve 24 is fully closed.

ステップST12の膨張弁全閉判定において、膨張弁24が全閉であると判断した場合(ST12-YES)、又は、ステップST13の膨張弁全閉判定において、膨張弁24が全閉であると判断した場合(ST13-YES)、CPU210は、圧縮機21を停止し(ST14)、全閉と判断された膨張弁24の初期化を行う(ST15)。膨張弁24の初期化は、膨張弁の開度を、一旦、全閉、全開あるいはこれら付近に設定された基準開度に戻し、その後、運転開始時に必要な予め定められた開度となるように制御されることで行われる。初期化時に、膨張弁24の開度が任意の開度にあっても、最大パルス数以上のパルスを減算あるいは加算することにより、膨張弁24の開度が必ず基準位置(全閉位置あるいは全開位置)となるので、膨張弁24の開閉を繰り返すうちに生じていた室外機制御部200で認識している累積パルス数と膨張弁24の実際の開度との間に生じた誤差を確実にリセットでき、運転開始の準備を行うことができる。 When it is determined that the expansion valve 24 is fully closed in the expansion valve fully closed determination in step ST12 (ST12-YES), or when it is determined in the expansion valve fully closed determination in step ST13 that the expansion valve 24 is fully closed. If this is the case (ST13-YES), the CPU 210 stops the compressor 21 (ST14) and initializes the expansion valve 24 determined to be fully closed (ST15). In the initialization of the expansion valve 24, the opening degree of the expansion valve is once returned to the reference opening degree set to fully closed, fully opened, or in the vicinity thereof, and then to be a predetermined opening degree required at the start of operation. It is done by being controlled by. Even if the opening of the expansion valve 24 is at an arbitrary opening at the time of initialization, the opening of the expansion valve 24 is always set to the reference position (fully closed position or fully open) by subtracting or adding pulses equal to or larger than the maximum number of pulses. (Position), so the error that occurred between the cumulative number of pulses recognized by the outdoor unit control unit 200 and the actual opening of the expansion valve 24, which occurred while repeatedly opening and closing the expansion valve 24, is ensured. It can be reset and ready to start operation.

ステップST15の処理を終えたCPU210は、圧縮機21を再起動して(ST16)、本フローチャートによる処理を終了する。なお、ステップST12の膨張弁全閉判定において、膨張弁24が全閉ではないと判断した場合(ST12-NO)、又は、ステップST13の膨張弁全閉判定において、膨張弁24が全閉ではないと判断した場合(ST13-NO)、本フローチャートによる処理を終了する。 The CPU 210 that has completed the process of step ST15 restarts the compressor 21 (ST16), and ends the process according to this flowchart. When it is determined in the expansion valve fully closed determination in step ST12 that the expansion valve 24 is not fully closed (ST12-NO), or in the expansion valve fully closed determination in step ST13, the expansion valve 24 is not fully closed. If it is determined (ST13-NO), the process according to this flowchart is terminated.

以上説明したように、本実施形態の空気調和装置1では、暖房運転しているとき、少なくとも室内熱交入口温度Th又は室内熱交温度Tcに基づいて、膨張弁24が全閉になっているか否かを判定する膨張弁全閉判定を実施し、膨張弁全閉判定によって膨張弁24が全閉になっていると判定したら、圧縮機21を一時停止して全閉になっていると判定された膨張弁24の初期化を行う。これによって、膨張弁の開閉動作を繰り返し行ったことによって膨張弁に制御開度と実開度とのずれが生じた場合であってもきめ細かい能力制御を行うことができる。膨張弁が全閉のまま運転が継続されることで、圧縮機21が保護停止してしまうことを防止できる。 As described above, in the air conditioning device 1 of the present embodiment, is the expansion valve 24 fully closed based on at least the indoor heat exchange inlet temperature Th or the indoor heat exchange temperature Tc during the heating operation? When the expansion valve fully closed determination is performed to determine whether or not the expansion valve is fully closed and it is determined by the expansion valve fully closed determination that the expansion valve 24 is fully closed, the compressor 21 is temporarily stopped and it is determined that the expansion valve 24 is fully closed. Initialization of the expanded valve 24 is performed. As a result, even when the expansion valve has a deviation between the control opening and the actual opening due to repeated opening and closing operations of the expansion valve, fine-tuned capacity control can be performed. By continuing the operation with the expansion valve fully closed, it is possible to prevent the compressor 21 from being protected and stopped.

なお、本実施形態では、室内機2の内部に設けられたガス温度センサ63で室内熱交入口温度Thを検出していたが、これに限定されるものではない。例えば、室外機2内部の室外機ガス管44が分岐しているものの場合、室外機ガス管44の各分岐管にガス温度センサ63を設けても良く、また、室外機2から延びる一本のガス管9を各室内機3に接続する複数本の配管に分岐する分岐ユニットが設けられているものの場合、当該分岐ユニット内の各分岐管にガス温度センサ63を設けても良い。 In the present embodiment, the indoor heat exchange inlet temperature Th is detected by the gas temperature sensor 63 provided inside the indoor unit 2, but the present invention is not limited to this. For example, when the outdoor unit gas pipe 44 inside the outdoor unit 2 is branched, a gas temperature sensor 63 may be provided in each branch pipe of the outdoor unit gas pipe 44, and one extending from the outdoor unit 2. When a branch unit is provided for branching to a plurality of pipes connecting the gas pipe 9 to each indoor unit 3, a gas temperature sensor 63 may be provided for each branch pipe in the branch unit.

1空気調和装置、2室外機、5室内機、8液管、9ガス管、10冷媒回路、20室外機冷媒回路、21圧縮機、22四方弁、23室外熱交換器、24室外膨張弁、27室外ファン、28液側閉鎖弁、29ガス側閉鎖弁、31高圧センサ、33吐出温度センサ、34吸入温度センサ、35室外熱交温センサ、38液温度センサ、41吐出管、42吸入管、43冷媒配管、44室外機ガス管、45室外機液管、46液分管、50室内機冷媒回路、51室内熱交換器、53液側閉鎖弁、54ガス側閉鎖弁、55室内ファン、61室内熱交温度センサ、62室内温度センサ、63ガス温度センサ、71室内機液管、72室内機ガス管、100外気温度センサ、200室外機制御手段、210CPU、220記憶部、230通信部、500室内機制御手段、510CPU、520記憶部、530通信部
1 air conditioner, 2 outdoor unit, 5 indoor unit, 8 liquid pipe, 9 gas pipe, 10 refrigerant circuit, 20 outdoor unit refrigerant circuit, 21 compressor, 22 four-way valve, 23 outdoor heat exchanger, 24 outdoor expansion valve, 27 outdoor fan, 28 liquid side closing valve, 29 gas side closing valve, 31 high pressure sensor, 33 discharge temperature sensor, 34 suction temperature sensor, 35 outdoor heat exchange temperature sensor, 38 liquid temperature sensor, 41 discharge pipe, 42 suction pipe, 43 refrigerant pipes, 44 outdoor unit gas pipes, 45 outdoor unit liquid pipes, 46 liquid branch pipes, 50 indoor unit refrigerant circuits, 51 indoor heat exchangers, 53 liquid side closing valves, 54 gas side closing valves, 55 indoor fans, 61 indoors. Heat exchange temperature sensor, 62 indoor temperature sensor, 63 gas temperature sensor, 71 indoor unit liquid pipe, 72 indoor unit gas pipe, 100 outside air temperature sensor, 200 outdoor unit control means, 210 CPU, 220 storage unit, 230 communication unit, 500 indoor units. Machine control means, 510 CPU, 520 storage unit, 530 communication unit

Claims (1)

圧縮機と、室外熱交換器と、前記圧縮機から吐出される冷媒の温度である吐出温度を検出する吐出温度検出手段を有する室外機と、
室内熱交換器と、前記室内熱交換器を流通する冷媒の温度である室内熱交温度を検出する室内熱交温度検出手段と、室内温度を検出する室内温度検出手段を有する複数の室内機と、
複数の前記室内機の各々に対応して接続された膨張弁と、
前記圧縮機、前記膨張弁を制御する制御部と、を有し、
1台の前記室外機に対して複数の前記室内機が冷媒配管で並列に接続された空気調和装置であって、
前記制御部は、
前記空気調和装置が暖房運転しているとき、
前記膨張弁が全閉になっているか否かを判定する膨張弁全閉判定を実施し、
前記膨張弁全閉判定によって前記膨張弁が全閉になっていると判定したら、
前記圧縮機を一時停止して全閉になっていると判定された当該膨張弁の初期化を行い、
前記膨張弁全閉判定は、
前記室内機が一台のみ暖房運転している場合は、
暖房運転中の前記室内機に対応する前記室内温度と前記室内熱交温度の差が予め定めた第2の閾値未満、且つ、前記吐出温度が所定温度超となったら、当該室内機に対応する前記膨張弁が全閉になっていると判定する、空気調和装置。
A compressor, an outdoor heat exchanger, and an outdoor unit having a discharge temperature detecting means for detecting a discharge temperature which is the temperature of the refrigerant discharged from the compressor.
An indoor heat exchanger, an indoor heat exchange temperature detecting means for detecting an indoor heat exchange temperature which is the temperature of a refrigerant flowing through the indoor heat exchanger, and a plurality of indoor units having an indoor temperature detecting means for detecting the indoor temperature. ,
Expansion valves connected to each of the plurality of indoor units,
It has the compressor and a control unit that controls the expansion valve.
An air conditioner in which a plurality of the indoor units are connected in parallel to one outdoor unit by a refrigerant pipe.
The control unit
When the air conditioner is operating for heating
An expansion valve fully closed determination is performed to determine whether or not the expansion valve is fully closed.
If it is determined by the expansion valve fully closed determination that the expansion valve is fully closed,
The compressor is temporarily stopped to initialize the expansion valve that is determined to be fully closed.
The expansion valve fully closed determination is
If only one indoor unit is operating for heating,
When the difference between the indoor temperature corresponding to the indoor unit during the heating operation and the indoor heat exchange temperature is less than a predetermined second threshold value and the discharge temperature exceeds a predetermined temperature, the indoor unit is supported. An air conditioner that determines that the expansion valve is fully closed .
JP2021008384A 2021-01-22 2021-01-22 Air conditioner Active JP7017182B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021008384A JP7017182B2 (en) 2021-01-22 2021-01-22 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021008384A JP7017182B2 (en) 2021-01-22 2021-01-22 Air conditioner

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017036850A Division JP6848528B2 (en) 2017-02-28 2017-02-28 Air conditioner

Publications (2)

Publication Number Publication Date
JP2021063652A JP2021063652A (en) 2021-04-22
JP7017182B2 true JP7017182B2 (en) 2022-02-08

Family

ID=75486184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021008384A Active JP7017182B2 (en) 2021-01-22 2021-01-22 Air conditioner

Country Status (1)

Country Link
JP (1) JP7017182B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117062929A (en) 2021-04-02 2023-11-14 日本制铁株式会社 Non-oriented electromagnetic steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274896A (en) 1999-03-24 2000-10-06 Tokyo Gas Co Ltd Method for sensing abnormality of expansion valve and air conditioner
JP2003254587A (en) 2002-02-28 2003-09-10 Matsushita Electric Ind Co Ltd Air conditioner
US20140012543A1 (en) 2012-07-03 2014-01-09 Samsung Electronics Co., Ltd. Diagnosis control method of air conditioner

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3356303B2 (en) * 1992-06-12 2002-12-16 東芝キヤリア株式会社 Refrigeration cycle control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000274896A (en) 1999-03-24 2000-10-06 Tokyo Gas Co Ltd Method for sensing abnormality of expansion valve and air conditioner
JP2003254587A (en) 2002-02-28 2003-09-10 Matsushita Electric Ind Co Ltd Air conditioner
US20140012543A1 (en) 2012-07-03 2014-01-09 Samsung Electronics Co., Ltd. Diagnosis control method of air conditioner

Also Published As

Publication number Publication date
JP2021063652A (en) 2021-04-22

Similar Documents

Publication Publication Date Title
JP6848528B2 (en) Air conditioner
US9651294B2 (en) Outdoor unit of air conditioner and air conditioner
JP6693312B2 (en) Air conditioner
JP6479162B2 (en) Air conditioner
JP6870382B2 (en) Air conditioner
EP3051219B1 (en) Outdoor unit of air conditioner and air conditioner
WO2012042692A1 (en) Refrigeration cycle device
JP2018123991A (en) Air conditioner
JP7017182B2 (en) Air conditioner
JP2011174639A (en) Air conditioner
JP2019020061A (en) Air-conditioner
JP6766595B2 (en) Air conditioner
JP2000297970A (en) Controller for heat pump
CN111886458B (en) Air conditioner
JP6465332B2 (en) Heat pump hot water supply system
JP7000902B2 (en) Air conditioner
JP2018013301A (en) Air conditioner
JP2020153603A (en) Air conditioner
WO2016002009A1 (en) Air conditioning apparatus
JP2019113246A (en) Air conditioner
JP2019100592A (en) Air conditioner
JP7262595B2 (en) air conditioner
WO2020196565A1 (en) Air conditioning device
JP2017142016A (en) Air conditioner
JP2003056933A (en) Multiple air conditioner

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220110