JP2018123991A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2018123991A
JP2018123991A JP2017014935A JP2017014935A JP2018123991A JP 2018123991 A JP2018123991 A JP 2018123991A JP 2017014935 A JP2017014935 A JP 2017014935A JP 2017014935 A JP2017014935 A JP 2017014935A JP 2018123991 A JP2018123991 A JP 2018123991A
Authority
JP
Japan
Prior art keywords
indoor
heat exchange
unit
temperature
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017014935A
Other languages
Japanese (ja)
Other versions
JP6822177B2 (en
Inventor
恭平 辻本
Kyohei Tsujimoto
恭平 辻本
良樹 大嶋
Yoshiki Oshima
良樹 大嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2017014935A priority Critical patent/JP6822177B2/en
Publication of JP2018123991A publication Critical patent/JP2018123991A/en
Application granted granted Critical
Publication of JP6822177B2 publication Critical patent/JP6822177B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner capable of determining whether a connection of refrigerant piping or a connection of wiring is correctly made without reference to a difference in heat exchange quantity of an indoor heat exchanger of each indoor unit.SOLUTION: A CPU 210 fully opens only an expansion valve 100a corresponding to an indoor unit 5a after taking in and storing a before-determination heat exchange temperature TBE of each indoor unit, and also drives an indoor fan 54a at a determination-time face rotating speed Rf=Rfd extracted by referring to a piping/wiring connection table 400. Then the CPU 210 takes in an after-full-opening heat exchange temperature TAFa from the indoor unit 5a a predetermined time tp after the indoor fan 54a is actuated at the determination-time fan rotating speed Rfd, and then determines whether the temperature difference obtained by subtracting the after-full-opening heat exchange temperature TAFa from the before-determination heat exchange temperature TBEa is equal to or larger than a threshold temperature difference Tth. The CPU 210 makes a correct/incorrect determination OK when the temperature difference is equal to or larger than the threshold temperature difference Tth or a correct/incorrect determination NG when the temperature difference is smaller than the threshold temperature difference Tth.SELECTED DRAWING: Figure 4

Description

本発明は、室外機と複数台の室内機が冷媒配管で接続された空気調和装置に関する。   The present invention relates to an air conditioner in which an outdoor unit and a plurality of indoor units are connected by a refrigerant pipe.

1台の室外機と複数台の室内機で構成される空気調和装置は、室外機と各室内機がガス管および膨張弁を備えた液管からなる冷媒配管で接続されるとともに、室外機と各室内機と各膨張弁が相互に配線で接続される。このような空気調和装置では、設置後に冷媒配管の接続あるいは配線の接続が正しいか否かを確認する必要がある。   An air conditioner composed of one outdoor unit and a plurality of indoor units is connected to the outdoor unit and each indoor unit by a refrigerant pipe composed of a liquid pipe having a gas pipe and an expansion valve. Each indoor unit and each expansion valve are connected to each other by wiring. In such an air conditioner, it is necessary to check whether or not the connection of the refrigerant pipe or the connection of the wiring is correct after installation.

特許文献1には、1台の室外機と少なくとも2台の室内機が、ガス管および膨張弁を備えた液管からなる冷媒配管や配線で接続されてなるマルチ型空気調和機で、冷媒配管の接続あるいは配線の接続の正誤判定を行う方法が開示されている。具体的には、冷房運転時の正誤判定では、いずれか1個の膨張弁を除く全ての膨張弁を全閉としてから一定時間が経過した後に、全ての液温度と各室内機が設置された部屋の室温全てを検出し、各室内機における室温と液温度の温度差をそれぞれ算出する。全閉とされていない膨張弁に対応する室内機の液温度は室温より低くなっているため、当該室内機における室温と液温度の温度差が大きくなる。従って、室温と液温度の温度差が最も大きい室内機が全閉とされている膨張弁に対応するものであるか否かを確認することで、冷媒配管と配線のうちのいずれかの接続が誤っているか否かを判定できる。   Patent Document 1 discloses a multi-type air conditioner in which one outdoor unit and at least two indoor units are connected by a refrigerant pipe or wiring consisting of a liquid pipe having a gas pipe and an expansion valve. A method for determining whether or not the connection or the wiring connection is correct is disclosed. Specifically, in the correctness determination at the time of cooling operation, all the liquid temperatures and each indoor unit are installed after a certain time has elapsed since all the expansion valves except one of the expansion valves are fully closed. All room temperatures in the room are detected, and the temperature difference between the room temperature and the liquid temperature in each indoor unit is calculated. Since the liquid temperature of the indoor unit corresponding to the expansion valve that is not fully closed is lower than the room temperature, the temperature difference between the room temperature and the liquid temperature in the indoor unit becomes large. Therefore, by checking whether the indoor unit with the largest temperature difference between the room temperature and the liquid temperature corresponds to an expansion valve that is fully closed, the connection of either the refrigerant pipe or the wiring is It can be determined whether it is wrong.

一方、暖房運転時の正誤判定では、まず、全ての膨張弁を開いて冷凍サイクルが安定した後に各室内機の室内熱交換器温度(以降、熱交温度と記載)を検出する。その後、いずれか1個の膨張弁のみ全閉とし、一定時間が経過した後に全ての熱交温度を検出して、いずれか1個の膨張弁のみ全閉とする前後の各室内機における熱交温度の温度差をそれぞれ算出する。全閉とされた膨張弁に対応する室内機では熱交温度が低下する。従って、いずれか1個の膨張弁のみ全閉とする前後の熱交温度の温度差が最も大きい室内機が全閉とされている膨張弁に対応するものであるか否かを確認することで、冷媒配管と配線のうちのいずれかの接続が誤っているか否かを判定できる。   On the other hand, in the correctness / incorrectness determination during the heating operation, first, after all the expansion valves are opened and the refrigeration cycle is stabilized, the indoor heat exchanger temperature (hereinafter referred to as heat exchange temperature) of each indoor unit is detected. Thereafter, only one of the expansion valves is fully closed, and after a certain period of time, all the heat exchange temperatures are detected, and heat exchange in each indoor unit before and after only one of the expansion valves is fully closed. Each temperature difference is calculated. In the indoor unit corresponding to the expansion valve that is fully closed, the heat exchange temperature decreases. Therefore, by confirming whether the indoor unit with the largest temperature difference between the heat exchange temperatures before and after only one expansion valve is fully closed corresponds to the expansion valve that is fully closed. It can be determined whether or not any one of the refrigerant pipe and the wiring is wrongly connected.

特開2012−17886号公報JP 2012-17886 A

特許文献1に記載のマルチ型空気調和機では、暖房運転時は熱交温度の変化をみて冷媒配管の接続あるいは配線の接続の正誤判定を行っている。このとき、室内熱交換器が他の室内熱交換器より大きい室内機や、室内熱交換器の大きさは他の室内機と変わらないが室外機と接続される冷媒配管が他の室内機と比べて長い室内機、例えば、は冷媒配管が一番短い(例:5m)の4倍以上の長さの冷媒配管で接続されている室内機では、他の室内機と比べて室内熱交換器における熱交換量(単位時間当たりに冷媒と室内空気との間で交換される熱量)が少ないため、膨張弁を全閉とした後の熱交温度の変化が遅くなる。   In the multi-type air conditioner described in Patent Document 1, during the heating operation, whether or not the refrigerant pipes are connected or the wirings are connected is determined based on the change in the heat exchange temperature. At this time, the indoor heat exchanger is larger than other indoor heat exchangers, and the size of the indoor heat exchanger is the same as other indoor units, but the refrigerant pipe connected to the outdoor unit is different from the other indoor units. Compared to other indoor units, indoor heat exchangers are longer indoor units, for example, indoor units that are connected by refrigerant pipes that are four times longer than the shortest refrigerant pipe (for example, 5 m). Since there is little heat exchange amount (the amount of heat exchanged between the refrigerant and room air per unit time), the change in heat exchange temperature after the expansion valve is fully closed becomes slow.

上記のような、他の室内機と比べて熱交換量の少ない室内機が存在する空気調和装置で、特許文献1に記載の暖房運転での冷媒配管の接続あるいは配線の接続の正誤判定を行うと、熱交換量の少ない室内機に対応する膨張弁を全閉として全ての室内機における膨張弁を閉じる前後の熱交温度の温度差を検出するときに、当該室内機における温度差が小さくて他の室内機における温度差と大きな違いが生じない恐れがあり、冷媒配管の接続あるいは配線の接続の正誤判定を行えない恐れがあった。   In the air conditioner in which there is an indoor unit with a small amount of heat exchange as compared with other indoor units as described above, whether the refrigerant pipe connection or the wiring connection in the heating operation described in Patent Document 1 is correct or incorrect is determined. When the temperature difference in the heat exchange temperature before and after closing the expansion valves in all the indoor units is fully closed with the expansion valve corresponding to the indoor unit having a small heat exchange amount being detected, the temperature difference in the indoor unit is small. There is a possibility that a large difference from a temperature difference in other indoor units does not occur, and there is a possibility that correctness / incorrectness determination of refrigerant pipe connection or wiring connection cannot be performed.

本発明は以上述べた問題点を解決するものであって、各室内機の室内熱交換器における熱交換量の違いに関わらず、冷媒配管の接続あるいは配線の接続の正誤判定を行える空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and is an air conditioner that can determine whether a refrigerant pipe is connected or a wiring is connected correctly regardless of a difference in heat exchange amount in an indoor heat exchanger of each indoor unit. The purpose is to provide.

上記の課題を解決するために、本発明の空気調和装置は、室外機と、複数台の室内機と、これら複数台の室内機の台数に対応した数の流量調整手段と、制御手段を有する。室外機と複数台の室内機と流量調整手段は冷媒配管で接続され、室外機と複数台の室内機は室内機配線で接続され、室外機と流量調整手段は流量調整手段配線で接続される。複数台の室内機は、室内熱交換器と、室内ファンと、室内熱交換器の温度である熱交温度を検出する熱交温度検出手段を有する。   In order to solve the above problems, an air conditioner of the present invention includes an outdoor unit, a plurality of indoor units, a number of flow rate adjusting units corresponding to the number of the plurality of indoor units, and a control unit. . The outdoor unit and the plurality of indoor units and the flow rate adjusting means are connected by refrigerant piping, the outdoor unit and the plurality of indoor units are connected by the indoor unit wiring, and the outdoor unit and the flow rate adjusting means are connected by the flow rate adjusting means wiring. . The plurality of indoor units have an indoor heat exchanger, an indoor fan, and a heat exchange temperature detecting means for detecting a heat exchange temperature that is the temperature of the indoor heat exchanger.

制御手段は、少なくとも1台の室内機の室内熱交換器における熱交換量が他の室内機における室内熱交換器の熱交換量と異なる場合に、冷媒配管と室内機配線と流量調整手段配線の接続の正誤を判定する正誤判定を行うとき、全ての流量調整手段を開いて暖房運転を行い、暖房運転状態が安定した後の各室内熱交換器の熱交温度である判定前熱交温度を検出する。また、制御手段は、判定前熱交温度を検出した後、特定の1個の流量調整手段を閉じるとともに当該流量調整手段に対応する室内機の室内ファンを当該室内機の室内熱交換器の熱交換量に応じた回転数である判定時ファン回転数で駆動して所定時間が経過すれば、当該全閉とした流量調整手段に対応する室内機の室内熱交換器の熱交温度である全閉後熱交温度を検出する。そして、制御手段は、複数の判定前熱交温度のうち全閉とした流量調整手段に対応する室内機の判定前熱交温度から全閉後熱交温度を減じた温度差が、予め定められた閾温度差以上であれば、冷媒配管と室内機配線と流量調整手段配線の接続は正しく、温度差が閾温度差未満であれば、冷媒配管と室内機配線と流量調整手段配線のうちのいずれか1つの接続は誤りであると判定する。   When the heat exchange amount in the indoor heat exchanger of at least one indoor unit is different from the heat exchange amount of the indoor heat exchanger in another indoor unit, the control means is configured to connect the refrigerant pipe, the indoor unit wiring, and the flow rate adjusting unit wiring. When performing correct / incorrect determination to determine whether the connection is correct or not, all the flow rate adjusting means are opened to perform heating operation, and the pre-determination heat exchange temperature that is the heat exchange temperature of each indoor heat exchanger after the heating operation state is stabilized. To detect. In addition, after detecting the pre-determination heat exchange temperature, the control unit closes one specific flow rate adjusting unit and sets the indoor fan of the indoor unit corresponding to the flow rate adjusting unit to the heat of the indoor heat exchanger of the indoor unit. When a predetermined time has elapsed after driving with the fan speed at the time of determination, which is the speed corresponding to the exchange amount, the total heat exchange temperature of the indoor heat exchanger of the indoor unit corresponding to the fully closed flow rate adjusting means The heat exchange temperature is detected after closing. The control means has a predetermined temperature difference obtained by subtracting the post-closed heat exchanger temperature from the pre-determined heat exchanger temperature of the indoor unit corresponding to the flow rate adjusting means that is fully closed among the plurality of pre-determined heat exchanger temperatures. If the temperature difference is not less than the threshold temperature difference, the refrigerant pipe, the indoor unit wiring, and the flow rate adjusting means wiring are correctly connected. It is determined that any one connection is incorrect.

上記のように構成した本発明の空気調和装置は、各室内機の室内熱交換器における熱交換量に応じた室内ファンによる風量として冷媒配管の接続あるいは配線の接続の正誤判定を行うので、室内熱交換器における熱交換量の違いに関わらず、冷媒配管の接続あるいは配線の接続の正誤判定を行える。   The air conditioner of the present invention configured as described above performs the correctness / incorrectness determination of refrigerant pipe connection or wiring connection as the air volume by the indoor fan according to the heat exchange amount in the indoor heat exchanger of each indoor unit. Regardless of the amount of heat exchange in the heat exchanger, it is possible to determine whether the refrigerant pipe connection or the wiring connection is correct.

本発明の実施形態である空気調和装置の説明図であり、(A)が冷媒回路図、(B)が室外機制御手段と各室内機の配線接続を示すブロック図である。It is explanatory drawing of the air conditioning apparatus which is embodiment of this invention, (A) is a refrigerant circuit figure, (B) is a block diagram which shows the wiring connection of an outdoor unit control means and each indoor unit. 本発明の実施形態における、判定時室内ファン回転数テーブルである。It is a determination time indoor fan rotation speed table in the embodiment of the present invention. 本発明の実施形態における、配管・配線接続判定テーブルである。It is a piping and wiring connection determination table in the embodiment of the present invention. 本発明の実施形態における、暖房運転時の配管・配線の接続の正誤判定に関わる処理を示すフローチャートである。It is a flowchart which shows the process in connection with the correctness determination of the connection of piping and wiring at the time of heating operation in embodiment of this invention.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に3台の室内機が冷媒配管および配線で並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an explanation will be given by taking as an example an air conditioner in which three indoor units are connected in parallel to one outdoor unit by refrigerant piping and wiring, and all the indoor units can simultaneously perform a cooling operation or a heating operation. . The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1(A)に示すように、本実施形態における空気調和装置1は、3個の液側閉鎖弁26a〜26cと3個のガス側閉鎖弁27a〜27cを有する1台の室外機2と、3台の室内機5a〜5cの合計3台の室内機と、3個の膨張弁100a〜100cを備える膨張弁ボックス100を有する。詳細は後述するが、室内機5a〜5cそれぞれの室内熱交換器における熱交換量が異なり、室内機5cの熱交換量が一番少なく、室内機5bの熱交換量が一番多い。そして、室内機5aの熱交換量は室内機5bと室内機5cの間の量である。そして、室外機2と室内機5a〜5cと膨張弁ボックス100が、3本の液管8a、8b、8cと3本のガス管9a、9b、9cからなる冷媒配管で、また、第1配線250a、第1枝配線250aa〜250ac、第2配線250b、および、第2枝配線250ba〜250bcで、並列に接続されている。   As shown in FIG. 1 (A), the air conditioner 1 in the present embodiment includes one outdoor unit 2 having three liquid side shutoff valves 26a to 26c and three gas side shutoff valves 27a to 27c. It has an expansion valve box 100 including a total of three indoor units of three indoor units 5a to 5c and three expansion valves 100a to 100c. Although details will be described later, the heat exchange amounts in the indoor heat exchangers of the indoor units 5a to 5c are different, the heat exchange amount of the indoor unit 5c is the smallest, and the heat exchange amount of the indoor unit 5b is the largest. And the heat exchange amount of the indoor unit 5a is the amount between the indoor unit 5b and the indoor unit 5c. The outdoor unit 2, the indoor units 5a to 5c, and the expansion valve box 100 are refrigerant pipes including three liquid pipes 8a, 8b, 8c and three gas pipes 9a, 9b, 9c, and the first wiring. The first branch wirings 250aa to 250ac, the second wiring 250b, and the second branch wirings 250ba to 250bc are connected in parallel.

具体的には、液管8aの一端は室内機5aの液管接続部52aに接続され、液管8aの他端は室外機2の液側閉鎖弁26aに接続されている。また、液管8bの一端は室内機5bの液管接続部52bに接続され、液管8bの他端は室外機2の液側閉鎖弁26bに接続されている。そして、液管8cの一端は室内機5cの液管接続部52cに接続され、液管8cの他端は室外機2の液側閉鎖弁26cに接続されている。そして、膨張弁ボックス100の膨張弁100aが液管8aに設けられ、膨張弁100bが液管8bに設けられ、膨張弁100cが液管8cに設けられている。   Specifically, one end of the liquid pipe 8a is connected to the liquid pipe connection part 52a of the indoor unit 5a, and the other end of the liquid pipe 8a is connected to the liquid side closing valve 26a of the outdoor unit 2. One end of the liquid pipe 8b is connected to the liquid pipe connecting portion 52b of the indoor unit 5b, and the other end of the liquid pipe 8b is connected to the liquid side closing valve 26b of the outdoor unit 2. One end of the liquid pipe 8c is connected to the liquid pipe connection portion 52c of the indoor unit 5c, and the other end of the liquid pipe 8c is connected to the liquid side closing valve 26c of the outdoor unit 2. The expansion valve 100a of the expansion valve box 100 is provided in the liquid pipe 8a, the expansion valve 100b is provided in the liquid pipe 8b, and the expansion valve 100c is provided in the liquid pipe 8c.

ガス管9aの一端は室内機5aのガス管接続部53aに接続され、ガス管9aの他端は室外機2のガス側閉鎖弁27aに接続されている。また、ガス管9bの一端は室内機5bのガス管接続部53bに接続され、ガス管9bの他端は室外機2のガス側閉鎖弁27bに接続されている。そして、ガス管9cの一端は室内機5cのガス管接続部53cに接続され、ガス管9cの他端は室外機2のガス側閉鎖弁27cに接続されている。   One end of the gas pipe 9a is connected to the gas pipe connection part 53a of the indoor unit 5a, and the other end of the gas pipe 9a is connected to the gas side closing valve 27a of the outdoor unit 2. Further, one end of the gas pipe 9b is connected to the gas pipe connection part 53b of the indoor unit 5b, and the other end of the gas pipe 9b is connected to the gas side closing valve 27b of the outdoor unit 2. One end of the gas pipe 9c is connected to the gas pipe connection portion 53c of the indoor unit 5c, and the other end of the gas pipe 9c is connected to the gas side closing valve 27c of the outdoor unit 2.

以上のように、室外機2に室内機5a〜5cが、膨張弁100a〜100cが設けられた液管8a〜8cと、ガス管9a〜9cでそれぞれ接続されて、空気調和装置1の冷媒回路10が構成されている。   As described above, the indoor units 5a to 5c are connected to the outdoor unit 2 by the liquid pipes 8a to 8c provided with the expansion valves 100a to 100c and the gas pipes 9a to 9c, respectively, and the refrigerant circuit of the air conditioner 1 10 is configured.

第1配線250aの一端は、後述する室外機2の室外機制御手段200の通信部230と接続され、第1配線250aの他端は、第1枝配線250aa〜250acの各々の一端と接続されている。そして、第1枝配線250aaの他端は室内機5aの図示しない制御手段と、第1枝配線250abの他端は室内機5bの図示しない制御手段と、第1枝配線250acの他端は室内機5cの図示しない制御手段とそれぞれ接続されている。これら第1配線250aおよび第1枝配線250aa〜250acが、本発明の室内機配線である。   One end of the first wiring 250a is connected to the communication unit 230 of the outdoor unit control means 200 of the outdoor unit 2 described later, and the other end of the first wiring 250a is connected to one end of each of the first branch wirings 250aa to 250ac. ing. The other end of the first branch wiring 250aa is the control means (not shown) of the indoor unit 5a, the other end of the first branch wiring 250ab is the control means (not shown) of the indoor unit 5b, and the other end of the first branch wiring 250ac is the room. It is connected to control means (not shown) of the machine 5c. The first wiring 250a and the first branch wirings 250aa to 250ac are the indoor unit wiring of the present invention.

第2配線250bの一端は、室外機制御手段200の通信部230と接続され、第2配線250bの他端は、第2枝配線250ba〜250bcの各々の一端と接続されている。そして、第2枝配線250baの他端は膨張弁100aと、第2枝配線250bbの他端は膨張弁100bと、第2枝配線250bcの他端は膨張弁100cとそれぞれ接続されている。これら第2配線250bおよび第2枝配線250ba〜250bcが、本発明の膨張弁ボックス配線である。
<室外機2の構成>
One end of the second wiring 250b is connected to the communication unit 230 of the outdoor unit control means 200, and the other end of the second wiring 250b is connected to one end of each of the second branch wirings 250ba to 250bc. The other end of the second branch wiring 250ba is connected to the expansion valve 100a, the other end of the second branch wiring 250bb is connected to the expansion valve 100b, and the other end of the second branch wiring 250bc is connected to the expansion valve 100c. The second wiring 250b and the second branch wirings 250ba to 250bc are the expansion valve box wiring of the present invention.
<Configuration of outdoor unit 2>

まず、室外機2について説明する。室外機2は、圧縮機21と、四方弁22と、室外熱交換器23と、3個の膨張弁24a〜24cと、アキュムレータ24と、室外ファン25と、上述した3個の液側閉鎖弁26a〜26cおよび3個のガス側閉鎖弁27a〜27cと、室外機制御手段200を備えている。そして、室外ファン25および室外機制御手段200を除くこれら各装置が、以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室外機冷媒回路20を構成している。   First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a four-way valve 22, an outdoor heat exchanger 23, three expansion valves 24a to 24c, an accumulator 24, an outdoor fan 25, and the three liquid-side closing valves described above. 26a to 26c, three gas side closing valves 27a to 27c, and an outdoor unit control means 200. And these each apparatus except the outdoor fan 25 and the outdoor unit control means 200 are mutually connected by each refrigerant | coolant piping explained in full detail below, and the outdoor unit refrigerant circuit 20 which makes a part of refrigerant circuit 10 is comprised. Yes.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで運転能力を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出口と四方弁22のポートaが吐出管41で接続されている。また、圧縮機21の冷媒吸入側とアキュムレータ24の冷媒流出側が吸入管42で接続されている。   The compressor 21 is a variable capacity compressor that can be driven with a motor (not shown) whose rotation speed is controlled by an inverter to vary the driving capacity. A refrigerant discharge port of the compressor 21 and a port a of the four-way valve 22 are connected by a discharge pipe 41. The refrigerant suction side of the compressor 21 and the refrigerant outlet side of the accumulator 24 are connected by a suction pipe 42.

四方弁22は、冷媒の流れる方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。上述したように、ポートaと圧縮機21の冷媒吐出口が吐出管41で接続されている。ポートbと室外熱交換器23の一方の冷媒出入口が冷媒配管43で接続されている。ポートcとアキュムレータ24の冷媒流入側が冷媒配管46で接続されている。そして、ポートdには室外機ガス管45の一端が接続されている。   The four-way valve 22 is a valve for switching the direction in which the refrigerant flows, and includes four ports a, b, c, and d. As described above, the port a and the refrigerant discharge port of the compressor 21 are connected by the discharge pipe 41. The refrigerant outlet 43 is connected to the port b and one refrigerant inlet / outlet of the outdoor heat exchanger 23. The port c and the refrigerant inflow side of the accumulator 24 are connected by a refrigerant pipe 46. One end of the outdoor unit gas pipe 45 is connected to the port d.

室外機ガス管45の他端には、3本の室外機ガス分管45a〜45cの各々の一端が接続されている。室外機ガス分管45aの他端はガス側閉鎖弁27aに接続されている。室外機ガス分管45bの他端はガス側閉鎖弁27bに接続されている。室外機ガス分管45cの他端はガス側閉鎖弁27cに接続されている。   One end of each of the three outdoor unit gas distribution pipes 45 a to 45 c is connected to the other end of the outdoor unit gas pipe 45. The other end of the outdoor unit gas distribution pipe 45a is connected to the gas-side closing valve 27a. The other end of the outdoor unit gas distribution pipe 45b is connected to the gas side shut-off valve 27b. The other end of the outdoor unit gas distribution pipe 45c is connected to the gas side closing valve 27c.

室外熱交換器23は、室外ファン25の回転により図示しない吸込口から室外機2の内部に取り込まれた外気と冷媒を熱交換させる。上述したように、室外熱交換器23の一方の冷媒出入口と四方弁22のポートbが冷媒配管43で接続されている。また、室外熱交換器23の他方の冷媒出入口には室外機液管44の一端が接続されている。室外熱交換器23は、冷媒回路10が冷房サイクルとなる場合は凝縮器として機能し、冷媒回路10が暖房サイクルとなる場合は蒸発器として機能する。   The outdoor heat exchanger 23 exchanges heat between the outside air taken into the outdoor unit 2 from the suction port (not shown) and the refrigerant by the rotation of the outdoor fan 25. As described above, one refrigerant inlet / outlet of the outdoor heat exchanger 23 and the port b of the four-way valve 22 are connected by the refrigerant pipe 43. One end of the outdoor unit liquid pipe 44 is connected to the other refrigerant inlet / outlet of the outdoor heat exchanger 23. The outdoor heat exchanger 23 functions as a condenser when the refrigerant circuit 10 is in a cooling cycle, and functions as an evaporator when the refrigerant circuit 10 is in a heating cycle.

室外機液管44の他端には、3本の室外機液分管44a〜44cの各々の一端が接続されている。室外機液分管44aの他端は液側閉鎖弁26aに接続されている。室外機液分管44bの他端は液側閉鎖弁26bに接続されている。室外機液分管44cの他端は液側閉鎖弁26cに接続されている。   One end of each of the three outdoor unit liquid distribution tubes 44 a to 44 c is connected to the other end of the outdoor unit liquid tube 44. The other end of the outdoor unit liquid distribution pipe 44a is connected to the liquid side closing valve 26a. The other end of the outdoor unit liquid distribution pipe 44b is connected to the liquid side closing valve 26b. The other end of the outdoor unit liquid distribution pipe 44c is connected to the liquid side closing valve 26c.

アキュムレータ24は、上述したように、冷媒流入側と四方弁22のポートcが冷媒配管46で接続され、冷媒流出側と圧縮機21の冷媒吸入口が吸入管42で接続されている。アキュムレータ24は、流入した冷媒をガス冷媒と液冷媒とに分離し、ガス冷媒のみを吸入管42を介して圧縮機21に吸入させる。   As described above, in the accumulator 24, the refrigerant inflow side and the port c of the four-way valve 22 are connected by the refrigerant pipe 46, and the refrigerant outflow side and the refrigerant suction port of the compressor 21 are connected by the suction pipe 42. The accumulator 24 separates the inflowing refrigerant into a gas refrigerant and a liquid refrigerant and causes the compressor 21 to suck only the gas refrigerant through the suction pipe 42.

室外ファン25は、室外熱交換器23の近傍に配置される樹脂材で形成されたプロペラファンであり、図示しないファンモータによって室外ファン25が回転することで、室外機2に設けられた図示しない吸込口から室外機2の内部に外気を取り込み、室外熱交換器23を流れる冷媒と熱交換した外気を室外機2に設けられた図示しない吹出口から室外機2の外部へ放出する。   The outdoor fan 25 is a propeller fan formed of a resin material disposed in the vicinity of the outdoor heat exchanger 23, and the outdoor fan 25 is rotated by a fan motor (not shown) so as to be provided in the outdoor unit 2 (not shown). Outside air is taken into the interior of the outdoor unit 2 from the suction port, and the outside air heat-exchanged with the refrigerant flowing in the outdoor heat exchanger 23 is discharged to the outside of the outdoor unit 2 from a blower outlet (not shown) provided in the outdoor unit 2.

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1(A)に示すように、吐出管41には、圧縮機21から吐出される冷媒の圧力を検出する高圧センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1A, a discharge pipe 41 includes a high-pressure sensor 31 that detects the pressure of refrigerant discharged from the compressor 21, and a discharge temperature sensor that detects the temperature of refrigerant discharged from the compressor 21. 33 is provided.

冷媒配管46におけるアキュムレータ24の冷媒流入側近傍には、圧縮機21に吸入される冷媒の圧力を検出する低圧センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34が設けられている。   Near the refrigerant inflow side of the accumulator 24 in the refrigerant pipe 46, there are a low pressure sensor 32 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor 34 that detects the temperature of the refrigerant sucked into the compressor 21. Is provided.

室外機液管44における室外熱交換器23の近傍には、室外熱交換器23が蒸発器として機能する際に室外熱交換器23に流入する冷媒の温度を検出する冷媒温度センサ35が設けられている。また、室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ38が設けられている。   A refrigerant temperature sensor 35 that detects the temperature of the refrigerant flowing into the outdoor heat exchanger 23 when the outdoor heat exchanger 23 functions as an evaporator is provided in the vicinity of the outdoor heat exchanger 23 in the outdoor unit liquid pipe 44. ing. In addition, an outdoor air temperature sensor 38 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided near the suction port (not shown) of the outdoor unit 2.

室外機液分管44aにおける膨張弁24aと液側閉鎖弁26aの間には、室外機液分管44aを流れる冷媒の温度を検出する液側温度センサ36aが設けられている。室外機液分管44bにおける膨張弁24bと液側閉鎖弁26bの間には、室外機液分管44bを流れる冷媒の温度を検出する液側温度センサ36bが設けられている。室外機液分管44cにおける膨張弁24cと液側閉鎖弁26cの間には、室外機液分管44cを流れる冷媒の温度を検出する液側温度センサ36cが設けられている。   Between the expansion valve 24a and the liquid side closing valve 26a in the outdoor unit liquid distribution pipe 44a, a liquid side temperature sensor 36a for detecting the temperature of the refrigerant flowing through the outdoor unit liquid distribution pipe 44a is provided. Between the expansion valve 24b and the liquid side closing valve 26b in the outdoor unit liquid distribution pipe 44b, a liquid side temperature sensor 36b for detecting the temperature of the refrigerant flowing through the outdoor unit liquid distribution pipe 44b is provided. Between the expansion valve 24c and the liquid side closing valve 26c in the outdoor unit liquid distribution pipe 44c, a liquid side temperature sensor 36c for detecting the temperature of the refrigerant flowing through the outdoor unit liquid distribution pipe 44c is provided.

また、室外機2には、本発明の制御手段である室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納された制御基板に搭載されており、図1(B)に示すように、CPU210と、記憶部220と、通信部230と、センサ入力部240とを備えている。   Further, the outdoor unit 2 is provided with an outdoor unit control means 200 which is a control means of the present invention. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2, and as shown in FIG. 1B, a CPU 210, a storage unit 220, a communication unit 230, The sensor input unit 240 is provided.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン25の駆動状態、室内機5aや室内機5b、5cから送信される運転情報(運転/停止情報や設定温度情報等を含む)等を記憶する。通信部230は、前述したように第1配線250aおよび第1枝配線250aa〜250acによって室内機5a〜室内機5cと接続されるとともに、第2配線250bおよび第2枝配線250ba〜250bcによって膨張弁ボックス100の膨張弁100a〜100cと接続されている。つまり、通信部230は、第1配線250aおよび第1枝配線250aa〜250acを介して室内機5a〜室内機5cと通信を行うとともに、第2配線250bおよび第2枝配線250ba〜250bcを介して膨張弁ボックス100に信号を送信するインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。   The storage unit 220 includes a ROM and a RAM, and includes detection values corresponding to control programs for the outdoor unit 2 and detection signals from various sensors, driving states of the compressor 21 and the outdoor fan 25, the indoor unit 5a and the indoor unit. Operation information (including operation / stop information, set temperature information, etc.) transmitted from 5b and 5c is stored. As described above, the communication unit 230 is connected to the indoor unit 5a to the indoor unit 5c by the first wiring 250a and the first branch wirings 250aa to 250ac, and is connected to the expansion valve by the second wiring 250b and the second branch wirings 250ba to 250bc. The expansion valves 100 a to 100 c of the box 100 are connected. That is, the communication unit 230 communicates with the indoor units 5a to 5c via the first wiring 250a and the first branch wirings 250aa to 250ac, and via the second wiring 250b and the second branch wirings 250ba to 250bc. It is an interface for transmitting a signal to the expansion valve box 100. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210.

CPU210は、センサ入力部240を介して各種センサでの検出値を定期的(例えば、30秒毎)に取り込むとともに、室内機5a〜5cから第1配線250aおよび第1枝配線250aa〜250acを介して送信される運転開始/停止を示す運転状態や運転情報(設定温度や室内温度等)を含んだ信号が通信部230を介して入力される。CPU210は、これら入力された各種情報に基づいて、圧縮機21や室外ファン25の駆動制御を行うとともに、第2配線250bおよび第2枝配線250ba〜250bcを介して膨張弁ボックス100の膨張弁100a〜100cの開度調整を行う。
<膨張弁ボックス100の構成>
The CPU 210 fetches detection values from various sensors periodically (for example, every 30 seconds) via the sensor input unit 240, and from the indoor units 5a to 5c via the first wiring 250a and the first branch wirings 250aa to 250ac. A signal including an operation state indicating operation start / stop and operation information (set temperature, indoor temperature, etc.) transmitted via the communication unit 230 is input. The CPU 210 controls the drive of the compressor 21 and the outdoor fan 25 based on the various pieces of input information, and expands the expansion valve 100a of the expansion valve box 100 via the second wiring 250b and the second branch wirings 250ba to 250bc. Adjust the opening of ~ 100c.
<Configuration of expansion valve box 100>

次に、膨張弁ボックス100について説明する。膨張弁ボックス100は3個の膨張弁100a〜100cを有しており、膨張弁100aは液管8aに、膨張弁100bは液管8bに、膨張弁100cは液管8cに、それぞれ設けられている。また、膨張弁100aは第2配線250bと第2枝配線250baで、膨張弁100bは第2配線250bと第2枝配線250bbで、膨張弁100cは第2配線250bと第2枝配線250bcでそれぞれ室外機2の通信部230に接続されている。膨張弁100a〜100cは、図示しないパルスモータにより駆動される電子膨張弁であり、第2配線250bと第2枝配線250ba〜250bcを介して室外機2から送信されるパルスモータに与えられるパルス数によってそれぞれの開度が調整されることで、室内機5a〜室内機5cに流れる冷媒量がそれぞれ調整される。
<室内機5a〜5cの構成>
Next, the expansion valve box 100 will be described. The expansion valve box 100 includes three expansion valves 100a to 100c. The expansion valve 100a is provided in the liquid pipe 8a, the expansion valve 100b is provided in the liquid pipe 8b, and the expansion valve 100c is provided in the liquid pipe 8c. Yes. The expansion valve 100a includes a second wiring 250b and a second branch wiring 250ba, the expansion valve 100b includes a second wiring 250b and a second branch wiring 250bb, and the expansion valve 100c includes a second wiring 250b and a second branch wiring 250bc. It is connected to the communication unit 230 of the outdoor unit 2. The expansion valves 100a to 100c are electronic expansion valves driven by a pulse motor (not shown), and the number of pulses given to the pulse motor transmitted from the outdoor unit 2 via the second wiring 250b and the second branch wirings 250ba to 250bc. The amount of refrigerant flowing through each of the indoor units 5a to 5c is adjusted by adjusting the respective opening degrees.
<Configuration of indoor units 5a to 5c>

次に、室内機5a〜5cについて説明する。室内機5a〜5cは、室内熱交換器51a〜51cと、液管接続部52a〜52cと、ガス管接続部53a〜53cと、室内ファン54a〜54cを備えている。そして、室内ファン54a〜54cを除くこれら各構成装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路10の一部をなす室内機冷媒回路50a〜50cを構成している。   Next, the indoor units 5a to 5c will be described. The indoor units 5a to 5c include indoor heat exchangers 51a to 51c, liquid pipe connection parts 52a to 52c, gas pipe connection parts 53a to 53c, and indoor fans 54a to 54c. These constituent devices other than the indoor fans 54 a to 54 c are connected to each other through refrigerant pipes that will be described in detail below, thereby constituting indoor unit refrigerant circuits 50 a to 50 c that form part of the refrigerant circuit 10.

尚、前述したように室内機5a〜室内機5cは室内熱交換器51a〜51cにおける熱交換量がそれぞれ異なるが、熱交換量以外については、室内機5a〜5cは全て同じ構成を有するため、以下の説明では室内機5aについてのみ構成の説明を行い、室内機5b、5cの構成については説明を省略する。尚、図1(A)では、室内機5aの構成装置に付与した番号の末尾をaからbあるいはcにそれぞれ変更したものが、室内機5aの構成装置と対応する室内機5b、5cの構成装置となる。   As described above, the indoor units 5a to 5c have different heat exchange amounts in the indoor heat exchangers 51a to 51c, but the indoor units 5a to 5c all have the same configuration except for the heat exchange amount. In the following description, only the configuration of the indoor unit 5a will be described, and description of the configuration of the indoor units 5b and 5c will be omitted. In FIG. 1A, the numbers assigned to the constituent devices of the indoor unit 5a are changed from “a” to “b” or “c”, respectively, so that the configurations of the indoor units 5b and 5c corresponding to the constituent devices of the indoor unit 5a are obtained. It becomes a device.

室内熱交換器51aは、冷媒と、室内ファン54aの回転により室内機5aに備えられた図示しない吸込口から室内機5aの内部に取り込まれた室内空気を熱交換させるものである。室内熱交換器51aの一方の冷媒出入口と液管接続部52aが室内機液管71aで接続されている。室内熱交換器51aの他方の冷媒出入口とガス管接続部53aが室内機ガス管72aで接続されている。尚、液管接続部52aやガス管接続部53aには、各冷媒配管が溶接やフレアナット等によって接続されている。
室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。
The indoor heat exchanger 51a exchanges heat between the refrigerant and indoor air taken into the indoor unit 5a from a suction port (not shown) provided in the indoor unit 5a by rotation of the indoor fan 54a. One refrigerant inlet / outlet of the indoor heat exchanger 51a and the liquid pipe connecting portion 52a are connected by an indoor unit liquid pipe 71a. The other refrigerant inlet / outlet of the indoor heat exchanger 51a and the gas pipe connecting portion 53a are connected by an indoor unit gas pipe 72a. Each refrigerant pipe is connected to the liquid pipe connecting part 52a and the gas pipe connecting part 53a by welding, a flare nut or the like.
The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.

室内ファン54aは、室内熱交換器51aの近傍に配置される樹脂材で形成されたクロスフローファンであり、図示しないファンモータによって回転することで、図示しない吸込口から室内機5aの内部に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を室内機5aに備えられた図示しない吹出口から室内へ供給する。   The indoor fan 54a is a cross flow fan formed of a resin material disposed in the vicinity of the indoor heat exchanger 51a, and is rotated by a fan motor (not shown) to enter the indoor unit 5a from the suction port (not shown). Air is taken in and the indoor air heat-exchanged with the refrigerant in the indoor heat exchanger 51a is supplied to the room from an unillustrated air outlet provided in the indoor unit 5a.

以上説明した構成の他に、室内機5aには下記のセンサが設けられている。室内熱交換器51aには、室内熱交換器51aの温度すなわち熱交温度を検出する熱交温度センサ61aが備えられている。また、室内機5aの図示しない吸込口付近には、室内機5aの内部に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ62aが備えられている。   In addition to the configuration described above, the indoor unit 5a is provided with the following sensors. The indoor heat exchanger 51a is provided with a heat exchange temperature sensor 61a that detects the temperature of the indoor heat exchanger 51a, that is, the heat exchange temperature. Also, an indoor temperature sensor 62a for detecting the temperature of indoor air flowing into the indoor unit 5a, that is, the indoor temperature, is provided near the suction port (not shown) of the indoor unit 5a.

また、図示と詳細な説明は省略するが、室内機5aには室内機制御手段が備えられている。室内機制御手段は、CPUと記憶部と通信部とセンサ入力部を備えている。記憶部は、ROMやRAMで構成されており、室内機5aの制御プログラムや各種センサからの検出信号に対応した検出値、室内ファン54aの制御状態等を記憶している。通信部は、第1配線250aおよび第1枝配線250aaによって、室外機2の通信部230と接続されており、第1配線250aおよび第1枝配線250aaを介して室外機2との通信を行うインターフェイスである。   Moreover, although illustration and detailed description are abbreviate | omitted, the indoor unit 5a is provided with the indoor unit control means. The indoor unit control means includes a CPU, a storage unit, a communication unit, and a sensor input unit. The storage unit includes a ROM and a RAM, and stores a control program for the indoor unit 5a, detection values corresponding to detection signals from various sensors, a control state of the indoor fan 54a, and the like. The communication unit is connected to the communication unit 230 of the outdoor unit 2 through the first wiring 250a and the first branch wiring 250aa, and communicates with the outdoor unit 2 through the first wiring 250a and the first branch wiring 250aa. Interface.

センサ入力部は、室内機5aの各種センサでの検出結果を取り込んでCPUに出力する。CPUは、前述した室内機5aの各センサでの検出結果をセンサ入力部を介して取り込む。また、CPUは、室外機2から送信される制御に関わる信号を通信部、第1配線250aおよび第1枝配線250aaを介して取り込む。また、CPUは、取り込んだ検出結果や制御信号に基づいて、室内ファン54aの駆動制御を行う。さらには、CPUは、使用者が図示しないリモコンを操作して設定した設定温度と、室内温度センサ62aで検出した室温との温度差を算出し、算出した温度差に基づいた要求能力を通信部、第1配線250aおよび第1枝配線250aaを介して室外機2の室外機制御手段200に送信する。
<冷媒回路10の動作>
The sensor input unit captures detection results of various sensors of the indoor unit 5a and outputs them to the CPU. The CPU takes in the detection result of each sensor of the indoor unit 5a described above via the sensor input unit. In addition, the CPU captures a signal related to control transmitted from the outdoor unit 2 via the communication unit, the first wiring 250a, and the first branch wiring 250aa. Further, the CPU performs drive control of the indoor fan 54a based on the acquired detection result and control signal. Further, the CPU calculates a temperature difference between the set temperature set by the user by operating a remote controller (not shown) and the room temperature detected by the room temperature sensor 62a, and the required capacity based on the calculated temperature difference is transmitted to the communication unit. And transmitted to the outdoor unit control means 200 of the outdoor unit 2 through the first wiring 250a and the first branch wiring 250aa.
<Operation of Refrigerant Circuit 10>

次に、本実施形態の空気調和装置1が空調運転を行うときの冷媒回路10における冷媒の流れや各部の動作を、図1(A)を用いて説明する。尚、以下の説明では、室内機5a〜5cが暖房運転を行う場合について説明し、空気調和装置1が冷房運転を行う場合については詳細な説明を省略する。また、図1(A)における矢印は、冷媒回路10における暖房運転時の冷媒の流れを示している。   Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 10 when the air-conditioning apparatus 1 of the present embodiment performs the air conditioning operation will be described with reference to FIG. In the following description, the case where the indoor units 5a to 5c perform the heating operation will be described, and the detailed description will be omitted when the air conditioner 1 performs the cooling operation. Moreover, the arrow in FIG. 1 (A) has shown the flow of the refrigerant | coolant at the time of the heating operation in the refrigerant circuit 10. FIG.

空気調和装置1が暖房運転を行う場合、四方弁22が図1(A)に実線で示す状態、すなわち、四方弁22のポートaとポートdが連通するように、また、ポートbとポートcが連通するように切り換えられる。これにより、冷媒回路10が図1(A)に矢印で示す方向に冷媒が流れる状態となり、室外熱交換器23が蒸発器として機能するとともに、室内熱交換器51a〜51cがそれぞれ凝縮器として機能する暖房サイクルとなる。   When the air conditioner 1 performs the heating operation, the four-way valve 22 is in the state indicated by the solid line in FIG. 1A, that is, the port a and the port d of the four-way valve 22 communicate with each other, and the port b and the port c. Is switched to communicate. Thereby, the refrigerant circuit 10 enters a state in which the refrigerant flows in the direction indicated by the arrow in FIG. 1A, the outdoor heat exchanger 23 functions as an evaporator, and the indoor heat exchangers 51a to 51c each function as a condenser. It becomes a heating cycle.

上記のような冷媒回路10の状態で圧縮機21が起動すると、圧縮機21から吐出された高圧の冷媒は吐出管41から四方弁22に流入し、四方弁22から室外機ガス管45を流れて室外機ガス分管45a〜45cに分流する。室外機ガス分管45a〜45cに分流した冷媒は、ガス側閉鎖弁27a〜27cを介してガス管9a〜9cに流入する。   When the compressor 21 is started in the state of the refrigerant circuit 10 as described above, the high-pressure refrigerant discharged from the compressor 21 flows into the four-way valve 22 from the discharge pipe 41 and flows through the outdoor unit gas pipe 45 from the four-way valve 22. To the outdoor unit gas distribution pipes 45a to 45c. The refrigerant branched into the outdoor unit gas distribution pipes 45a to 45c flows into the gas pipes 9a to 9c via the gas side closing valves 27a to 27c.

ガス管9aを流れる冷媒は、室内機5aのガス管接続部53aを介して室内機5aに流入する。室内機5aに流入した冷媒は、室内機ガス管72aを流れて室内熱交換器51aに流入し、室内ファン54aの回転により室内機5aの内部に取り込まれた室内空気と熱交換を行って凝縮する。また、ガス管9bを流れる冷媒は、室内機5bのガス管接続部53bを介して室内機5bに流入する。室内機5bに流入した冷媒は、室内機ガス管72bを流れて室内熱交換器51bに流入し、室内ファン54bの回転により室内機5bの内部に取り込まれた室内空気と熱交換を行って凝縮する。そして、ガス管9cを流れる冷媒は、室内機5cのガス管接続部53cを介して室内機5cに流入する。室内機5cに流入した冷媒は、室内機ガス管72cを流れて室内熱交換器51cに流入し、室内ファン54cの回転により室内機5cの内部に取り込まれた室内空気と熱交換を行って凝縮する。   The refrigerant flowing through the gas pipe 9a flows into the indoor unit 5a through the gas pipe connection part 53a of the indoor unit 5a. The refrigerant flowing into the indoor unit 5a flows through the indoor unit gas pipe 72a, flows into the indoor heat exchanger 51a, and condenses by exchanging heat with the indoor air taken into the indoor unit 5a by the rotation of the indoor fan 54a. To do. Moreover, the refrigerant | coolant which flows through the gas pipe 9b flows in into the indoor unit 5b via the gas pipe connection part 53b of the indoor unit 5b. The refrigerant flowing into the indoor unit 5b flows through the indoor unit gas pipe 72b and flows into the indoor heat exchanger 51b, and condenses by exchanging heat with the indoor air taken into the indoor unit 5b by the rotation of the indoor fan 54b. To do. And the refrigerant | coolant which flows through the gas pipe 9c flows in into the indoor unit 5c via the gas pipe connection part 53c of the indoor unit 5c. The refrigerant flowing into the indoor unit 5c flows through the indoor unit gas pipe 72c and flows into the indoor heat exchanger 51c, and condenses by exchanging heat with the indoor air taken into the indoor unit 5c by the rotation of the indoor fan 54c. To do.

このように、室内熱交換器51a〜51cがそれぞれ凝縮器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行った室内空気が図示しない室内機5a〜5cの吹出口から室内に吹き出されることによって、室内機5a〜5cが設置された各部屋の暖房が行われる。   Thus, the indoor heat exchangers 51a to 51c each function as a condenser, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchangers 51a to 51c enters the room from the outlets of the indoor units 5a to 5c (not shown). By blowing out, each room in which the indoor units 5a to 5c are installed is heated.

室内熱交換器51aから流出した冷媒は室内機液管71aを流れ、液管接続部52aを介して液管8aに流出する。液管8aを流れる冷媒は、膨張弁100aで減圧されて液側閉鎖弁26aを介して室外機2に流入し、液側閉鎖弁26aから室外機液分管44aに流入する。また、室内熱交換器51bから流出した冷媒は室内機液管71bを流れ、液管接続部52bを介して液管8bに流出する。液管8bを流れる冷媒は、膨張弁100bで減圧されて液側閉鎖弁26bを介して室外機2に流入し、液側閉鎖弁26bから室外機液分管44bに流入する。そして、室内熱交換器51cから流出した冷媒は室内機液管71cを流れ、液管接続部52cを介して液管8cに流出する。液管8cを流れる冷媒は、膨張弁100cで減圧されて液側閉鎖弁26cを介して室外機2に流入し、液側閉鎖弁26cから室外機液分管44cに流入する。   The refrigerant that has flowed out of the indoor heat exchanger 51a flows through the indoor unit liquid pipe 71a, and flows out to the liquid pipe 8a through the liquid pipe connecting portion 52a. The refrigerant flowing through the liquid pipe 8a is decompressed by the expansion valve 100a, flows into the outdoor unit 2 through the liquid side closing valve 26a, and flows into the outdoor unit liquid distribution pipe 44a from the liquid side closing valve 26a. In addition, the refrigerant that has flowed out of the indoor heat exchanger 51b flows through the indoor unit liquid pipe 71b, and flows out to the liquid pipe 8b through the liquid pipe connecting portion 52b. The refrigerant flowing through the liquid pipe 8b is decompressed by the expansion valve 100b, flows into the outdoor unit 2 through the liquid side closing valve 26b, and flows into the outdoor unit liquid distribution pipe 44b from the liquid side closing valve 26b. And the refrigerant | coolant which flowed out from the indoor heat exchanger 51c flows through the indoor unit liquid pipe 71c, and flows out into the liquid pipe 8c through the liquid pipe connection part 52c. The refrigerant flowing through the liquid pipe 8c is decompressed by the expansion valve 100c, flows into the outdoor unit 2 through the liquid side closing valve 26c, and flows into the outdoor unit liquid distribution pipe 44c from the liquid side closing valve 26c.

室外機液分管44a〜44cのそれぞれを流れる冷媒は、室外機液管44で合流する。室外機液管44で合流した冷媒は、室外機液管44を流れて室外熱交換器23に流入する。室外熱交換器23に流入した冷媒は、室外ファン25の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。   The refrigerant flowing through each of the outdoor unit liquid distribution pipes 44 a to 44 c merges in the outdoor unit liquid pipe 44. The refrigerant merged in the outdoor unit liquid pipe 44 flows through the outdoor unit liquid pipe 44 and flows into the outdoor heat exchanger 23. The refrigerant flowing into the outdoor heat exchanger 23 evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 25.

室外熱交換器23から冷媒配管43に流出した冷媒は、四方弁22、冷媒配管46、アキュムレータ28、吸入管42の順に流れ、圧縮機21に吸入されて再び圧縮される。   The refrigerant that flows out of the outdoor heat exchanger 23 into the refrigerant pipe 43 flows in the order of the four-way valve 22, the refrigerant pipe 46, the accumulator 28, and the suction pipe 42, and is sucked into the compressor 21 and compressed again.

尚、空気調和装置1が冷房運転を行う場合、CPU210は、四方弁22を破線で示す状態、すなわち、四方弁22のポートaとポートbが連通するよう、また、ポートcとポートdが連通するように切り換える。これにより、冷媒回路100は、室外熱交換器23が凝縮器として機能するとともに室内熱交換器51a〜51cがそれぞれ蒸発器として機能する冷房サイクルとなる。
<冷媒配管や配線の接続の正誤判定>
When the air conditioner 1 performs the cooling operation, the CPU 210 indicates the state where the four-way valve 22 is indicated by a broken line, that is, the port a and the port b of the four-way valve 22 communicate with each other, and the port c and the port d communicate with each other. Switch to Thereby, the refrigerant circuit 100 becomes a cooling cycle in which the outdoor heat exchanger 23 functions as a condenser and the indoor heat exchangers 51a to 51c each function as an evaporator.
<Correcting of refrigerant piping and wiring connections>

次に、図2乃至図4を用いて、本実施形態の空気調和装置1で冷媒回路10を暖房サイクルとして、冷媒配管8a〜8cの接続、あるいは、配線250の接続、あるいは、配線250a〜250dの接続の正誤を判定する(以降、特に必要な場合を除き単に「正誤判定」と記載する)方法について説明する。ここで、接続の正誤判定とは、室外機2と各室内機5a〜5cが、図1に示すとおりに、冷媒配管8a〜8cと、第1配線250aおよび第1枝配線250aa〜250ac、第2配線250bおよび第2枝配線250ba〜250bcで接続されているか否かを判定することである。言い換えると、冷媒配管8a〜8c、第1配線250aおよび第1枝配線250aa〜250ac、第2配線250bおよび第2枝配線250ba〜250bcのうちのいずれか1つが誤って接続されているか否かを判定することである。   Next, with reference to FIGS. 2 to 4, the refrigerant circuit 10 is used as a heating cycle in the air-conditioning apparatus 1 of the present embodiment, the refrigerant pipes 8 a to 8 c are connected, the wiring 250 is connected, or the wirings 250 a to 250 d. A method for determining whether or not the connection is correct (hereinafter simply referred to as “correction determination” unless otherwise required) will be described. Here, the correct / incorrect determination of the connection means that the outdoor unit 2 and each of the indoor units 5a to 5c have the refrigerant pipes 8a to 8c, the first wiring 250a and the first branch wirings 250aa to 250ac, the first, as shown in FIG. It is to determine whether or not the two wirings 250b and the second branch wirings 250ba to 250bc are connected. In other words, whether or not any one of the refrigerant pipes 8a to 8c, the first wiring 250a and the first branch wirings 250aa to 250ac, the second wiring 250b and the second branch wirings 250ba to 250bc is erroneously connected. It is to judge.

正誤判定の具体的な方法は、次の通りである。冬季や寒冷地等に空気調和装置1を設置したとき、まず、冷媒回路10が暖房サイクルとされ、圧縮機21が所定回転数で起動され、室内ファン54a〜54cがそれぞれ所定回転数で起動され、膨張弁100a〜100cがそれぞれ所定の開度とされて、冷媒回路10を安定させる。   The specific method of correct / incorrect determination is as follows. When the air conditioner 1 is installed in winter or in a cold region, first, the refrigerant circuit 10 is set to a heating cycle, the compressor 21 is started at a predetermined speed, and the indoor fans 54a to 54c are started at a predetermined speed. The expansion valves 100a to 100c are each set to a predetermined opening to stabilize the refrigerant circuit 10.

尚、圧縮機21の所定回転数とは、例えば、凝縮器として機能する室内熱交換器51a〜51cにおけるそれぞれの凝縮温度(熱交温度センサ61a〜61cで検出できる)が室温(室内温度センサ62a〜62cで検出できる)+15℃の温度となる回転数である。また、室内ファン54a〜54cの所定回転数とは、室内熱交換器51a〜51cにおける凝縮温度を室温+15℃とでき、かつ、蒸発器として機能する室外熱交換器23で着霜が発生しない程度の低い回転数である。また、膨張弁100a〜100cの所定開度とは、例えば、全開と全閉の中間の開度である。そして、冷媒回路10が安定するとは、例えば、凝縮温度が室温+15℃に到達して5分が経過した状態である。   The predetermined rotation speed of the compressor 21 is, for example, the respective condensation temperatures (detectable by the heat exchange temperature sensors 61a to 61c) in the indoor heat exchangers 51a to 51c functioning as condensers at room temperature (the indoor temperature sensor 62a). The number of rotations is a temperature of + 15 ° C. The predetermined number of rotations of the indoor fans 54a to 54c is such that the condensation temperature in the indoor heat exchangers 51a to 51c can be set to room temperature + 15 ° C. and frost formation does not occur in the outdoor heat exchanger 23 functioning as an evaporator. The rotation speed is low. Moreover, the predetermined opening degree of the expansion valves 100a to 100c is, for example, an opening degree intermediate between full opening and full closing. The refrigerant circuit 10 is stabilized when, for example, the condensation temperature reaches room temperature + 15 ° C. and 5 minutes have elapsed.

冷媒回路10が安定すれば、このときの室内機5a〜5cの熱交温度センサ61a〜61cで熱交温度(以降、判定前熱交温度と記載)が検出され、その後膨張弁100a〜100cのうちいずれか1つが全閉とされるとともに、全閉とした膨張弁100a〜100cに対応する室内機5a〜5cの室内ファン54a〜54cが、図2に示す判定時室内ファン回転数テーブル300から抽出した回転数とされる。   If the refrigerant circuit 10 is stabilized, the heat exchange temperature sensors 61a to 61c of the indoor units 5a to 5c at this time detect heat exchange temperatures (hereinafter referred to as pre-judgment heat exchange temperatures), and then the expansion valves 100a to 100c. Any one of them is fully closed, and the indoor fans 54a to 54c of the indoor units 5a to 5c corresponding to the fully closed expansion valves 100a to 100c are determined from the determination-time indoor fan rotation speed table 300 shown in FIG. The extracted number of rotations.

ここで、判定時室内ファン回転数テーブル300は、予め試験等を行って求められて室外機制御手段200の記憶部220に記憶されているものであり、室外機2に接続される(ことが想定される)室内機の熱交換量(以降、熱交換量Haと記載)に応じて、正誤判定時の室内ファン回転数(以降、判定時回転数Rf(単位:rpm)と記載)を定めたものである。   Here, the determination-time indoor fan rotation speed table 300 is obtained by performing a test or the like in advance and stored in the storage unit 220 of the outdoor unit control means 200, and is connected to the outdoor unit 2 ( The indoor fan rotation speed at the time of correct / incorrect determination (hereinafter referred to as the determination rotation speed Rf (unit: rpm)) is determined in accordance with the heat exchange amount of the indoor unit (assumed to be referred to as the heat exchange amount Ha). It is a thing.

熱交換量Haとは、室内熱交換器において単位時間当たりに冷媒と室内空気との間で交換される熱量を意味し、流入する冷媒量が同じで室内熱交換器の大きさが異なる場合や、室内熱交換器の大きさが同じであっても室外機と接続される冷媒配管の長さが室内機毎に異なって、各室内機に流入する冷媒量が異なる場合に、熱交換量Haに違いが生じる。従って、各室内熱交換器に流入する冷媒量や風量が同じである場合、熱交換量Haが小さい室内熱交換器は、熱交換量Haが大きい室内熱交換器と比べて、熱交温度の単位時間当たりの変化量が小さくなる。   The heat exchange amount Ha means the amount of heat exchanged between the refrigerant and the room air per unit time in the indoor heat exchanger, and the amount of refrigerant flowing in is the same and the size of the indoor heat exchanger is different. When the indoor heat exchanger has the same size and the length of the refrigerant pipe connected to the outdoor unit is different for each indoor unit, and the amount of refrigerant flowing into each indoor unit is different, the heat exchange amount Ha There is a difference. Therefore, when the amount of refrigerant and the amount of air flowing into each indoor heat exchanger are the same, the indoor heat exchanger with a small heat exchange amount Ha has a heat exchange temperature higher than that of an indoor heat exchanger with a large heat exchange amount Ha. The amount of change per unit time is small.

上記内容を踏まえて、判定時室内ファン回転数テーブル300では、熱交換量Haが小さいほど判定時ファン回転数Rfが大きくなるように設定されている。具体的には、熱交換量Haが一番小さい値Aであるときの判定時ファン回転数Rfは一番大きい値Rfaとされており、熱交換量HaがA→Dと大きくなるのにつれて判定時ファン回転数RfはRfa→Rfdと小さくなるように定められている。そして、熱交換量Haが値Dより大きいときの判定時ファン回転数Rfは全て同じRfdとされている。これは、正誤判定を行う際に、熱交換量HaがDより大きい室内機では判定時ファン回転数RfをRfd以上としなくても正誤判定が行えることが判明しているためである。   Based on the above, the determination-time indoor fan rotation speed table 300 is set so that the determination-time fan rotation speed Rf increases as the heat exchange amount Ha decreases. Specifically, the fan rotation speed Rf at the time of determination when the heat exchange amount Ha is the smallest value A is the largest value Rfa, and the determination is made as the heat exchange amount Ha increases from A → D. The hour fan rotational speed Rf is determined so as to decrease from Rfa → Rfd. The determination fan rotation speeds Rf when the heat exchange amount Ha is larger than the value D are all the same Rfd. This is because, when performing correctness determination, it is known that correctness determination can be performed for indoor units in which the heat exchange amount Ha is greater than D without determining the fan rotation speed Rf during determination to be equal to or greater than Rfd.

また、膨張弁100a〜100cのいずれかが全閉とされた後は、この状態が所定時間(例えば、5分。以降、所定時間tpと記載)維持される。この所定時間tpは、全閉とされたいずれかの膨張弁100a〜100cに対応する室内熱交換器51a〜51cにおいて、熱交温度センサ61a〜61cで検出する熱交温度が、膨張弁100a〜100cのいずれかの全閉による冷媒流入の遮断によって低下するまでに必要な時間であり、予め試験等を行って求められて記憶部220に記憶されているものである。   Further, after any of the expansion valves 100a to 100c is fully closed, this state is maintained for a predetermined time (for example, 5 minutes, hereinafter referred to as a predetermined time tp). During the predetermined time tp, in the indoor heat exchangers 51a to 51c corresponding to any of the expansion valves 100a to 100c that are fully closed, the heat exchange temperatures detected by the heat exchange temperature sensors 61a to 61c are the expansion valves 100a to 100c. This is the time required to decrease due to the interruption of the refrigerant inflow due to any full closure of 100c, which is obtained in advance through a test or the like and stored in the storage unit 220.

熱交換量Haが小さい室内熱交換器に流入する風量が、熱交換量Haが大きい室内熱交換器と同じ風量であれば、熱交換量Haが小さい室内熱交換器における膨張弁の全閉前後の熱交温度の低下度合は、熱交換量Haが大きい室内熱交換器における膨張弁の全閉前後の熱交温度の低下度合と比べて小さい。しかし、上述したように、熱交換量Haが小さいほど判定時ファン回転数Rfが大きくなるように設定すれば、熱交換量Haが小さい室内熱交換器でも熱交換量Haが大きい室内熱交換器と同等の膨張弁の全閉前後の熱交温度の低下度合とできる。   If the amount of air flowing into the indoor heat exchanger with a small heat exchange amount Ha is the same as that of the indoor heat exchanger with a large heat exchange amount Ha, before and after the expansion valve is fully closed in the indoor heat exchanger with a small heat exchange amount Ha The degree of decrease in the heat exchange temperature is smaller than the degree of decrease in the heat exchange temperature before and after the expansion valve is fully closed in the indoor heat exchanger having a large heat exchange amount Ha. However, as described above, if setting is made so that the fan rotation speed Rf at the time of determination increases as the heat exchange amount Ha decreases, an indoor heat exchanger with a large heat exchange amount Ha even in an indoor heat exchanger with a small heat exchange amount Ha. The degree of decrease in the heat exchange temperature before and after the fully closed expansion valve can be obtained.

膨張弁100a〜100cのうちの1つが全閉とされて所定時間tpが経過した後、全閉とされた膨張弁100a〜100cに対応する室内機5a〜5cの熱交温度センサ61a〜61cで検出した熱交温度(以降、全閉後熱交温度と記載)が取り込まれて、当該室内機の判定前熱交温度から全閉後熱交温度を減じた温度差が算出される。そして、この温度差が所定の閾温度差(例えば、5℃、以降、閾温度差Tthと記載)以上であれば、全閉とされた膨張弁100a〜100cに対応する室内熱交換器51a〜51cに流入する冷媒量が減少したことによって全閉後熱交温度が大きく低下したと考えられるので、全閉とされた膨張弁100a〜100cと熱交温度を取り込んだ室内機5a〜5cの間の冷媒配管や配線の接続は正しいと判定できる。   After one of the expansion valves 100a to 100c is fully closed and a predetermined time tp has elapsed, the heat exchange temperature sensors 61a to 61c of the indoor units 5a to 5c corresponding to the fully closed expansion valves 100a to 100c are used. The detected heat exchange temperature (hereinafter referred to as heat exchange temperature after full closure) is taken in, and a temperature difference is calculated by subtracting the heat exchange temperature after full closure from the heat exchange temperature before judgment of the indoor unit. And if this temperature difference is more than a predetermined threshold temperature difference (for example, 5 ° C., hereinafter referred to as threshold temperature difference Tth), the indoor heat exchangers 51a to 51c corresponding to the fully closed expansion valves 100a to 100c. Since it is considered that the heat exchange temperature after the fully closed state is greatly reduced due to a decrease in the amount of refrigerant flowing into the 51c, between the expansion valves 100a to 100c that are fully closed and the indoor units 5a to 5c that incorporate the heat exchange temperature. It can be determined that the refrigerant piping and wiring connections are correct.

これとは反対に、膨張弁100a〜100cのうちの1つが全閉とされて所定時間tpが経過した後、全閉とされた膨張弁100a〜100cに対応する室内機5a〜5cの熱交温度センサ61a〜61cで検出した全閉後熱交温度を当該室内機の判定前熱交温度から減じた温度差が、所定の閾温度Tth差未満であれば、当該室内機の室内熱交換器に流入する冷媒量がほとんど変化していない、つまり、当該室内機に対応する膨張弁が全閉とされていないか、あるいは、全閉とされた膨張弁100a〜100cに対応しない室内機5a〜5cの熱交温度を取り込んでいると考えられるので、全閉とされた膨張弁100a〜100cと熱交温度を取り込んだ室内機5a〜5cの間の冷媒配管あるいは配線のいずれかの接続が誤っていると判定できる。   On the contrary, after one of the expansion valves 100a to 100c is fully closed and the predetermined time tp has elapsed, the heat exchange of the indoor units 5a to 5c corresponding to the fully closed expansion valves 100a to 100c is performed. If the temperature difference obtained by subtracting the fully-closed heat exchange temperature detected by the temperature sensors 61a to 61c from the pre-determination heat exchange temperature of the indoor unit is less than a predetermined threshold temperature Tth difference, the indoor heat exchanger of the indoor unit The amount of refrigerant flowing into the indoor unit 5a is not changed, that is, the expansion valve corresponding to the indoor unit is not fully closed, or the indoor units 5a to 5a are not corresponding to the fully closed expansion valves 100a to 100c. Since it is considered that the heat exchange temperature of 5c is taken in, either the refrigerant piping or the wiring between the expansion valves 100a to 100c that are fully closed and the indoor units 5a to 5c that take in the heat exchange temperature is incorrect. Determined Kill.

以上説明した正誤判定の結果を、本実施形態の空気調和装置1では図3に示す配管・配線接続判定テーブル400として記憶部220に記憶している。この配管・配線接続判定テーブル400では、室内機5a〜5c毎に、熱交換量Ha、判定時ファン回転数Rf、判定前熱交温度(以降、判定前熱交温度TBE(単位:℃)と記載。室内機5a〜5c個別に言及する必要がある場合は、TBEa〜TBEcと記載)、全閉後熱交温度(以降、全閉後熱交温度TAF(単位:℃)と記載。室内機5a〜5c個別に言及する必要がある場合は、TAFa〜TAFcと記載)、および判定結果が記憶されている。   In the air-conditioning apparatus 1 of the present embodiment, the correct / error determination result described above is stored in the storage unit 220 as the piping / wiring connection determination table 400 shown in FIG. In the piping / wiring connection determination table 400, for each of the indoor units 5a to 5c, the heat exchange amount Ha, the fan rotation speed Rf during determination, the heat exchange temperature before determination (hereinafter referred to as the heat exchange temperature TBE before determination (unit: ° C.)) Description: When it is necessary to refer to the indoor units 5a to 5c individually, they are described as TBEa to TBEc), heat exchange temperature after full closure (hereinafter, heat exchange temperature TAF (unit: ° C) after full closure). 5a to 5c are described as TAFa to TAFc), and the determination result is stored.

上述した配管・配線接続判定テーブル400において、熱交換量Haは空気調和装置1の設置時に作業者によって入力された値が記憶されるものである。また、判定時ファン回転数Rfは、判定時室内ファン回転数テーブル300を参照し、記憶した室内機5a〜5cの熱交換量Haに応じた判定時ファン回転数Rfを抽出し、これを室内機5a〜5c毎に記憶する。尚、判定時ファン回転数Rfは、本実施形態のように判定時室内ファン回転数テーブル300を参照して抽出した値を記憶するのではなく、熱交換量Haと同様に作業者によって入力された値を記憶してもよい。また、室外機2に接続される室内機が予め判明している場合は、室外機2の出荷時等に熱交換量Haと判定時ファン回転数Rfを予め記憶していてもよい。   In the piping / wiring connection determination table 400 described above, the heat exchange amount Ha is a value stored by the operator when the air conditioner 1 is installed. The determination-time fan rotation speed Rf refers to the determination-time indoor fan rotation speed table 300, extracts the determination-time fan rotation speed Rf corresponding to the stored heat exchange amount Ha of the indoor units 5a to 5c, It memorize | stores for every machine 5a-5c. The determination-time fan rotation speed Rf is not stored as a value extracted by referring to the determination-time indoor fan rotation speed table 300 as in the present embodiment, but is input by the operator in the same manner as the heat exchange amount Ha. May be stored. When the indoor unit connected to the outdoor unit 2 is known in advance, the heat exchange amount Ha and the determination-time fan rotation speed Rf may be stored in advance when the outdoor unit 2 is shipped.

一方、判定前熱交温度TBEと全閉後熱交温度TAFと判定結果は、正誤判定を行って室内機5a〜5c毎に記憶されるものであり、判定前熱交温度TBEは膨張弁100a〜100cの全閉前の所定開度時における熱交温度センサ61a〜61cの検出値であり、全閉後熱交温度TAFは膨張弁100a〜100cの全閉後における熱交温度センサ61a〜61cの検出値である。また、判定結果は、判定前熱交温度TBEから全閉後熱交温度TAFを減じた温度差と閾温度差を比較した結果に応じて「OK」あるいは「NG」と判定された結果が記憶されるものである。   On the other hand, the pre-determination heat exchange temperature TBE, the fully-closed heat exchange temperature TAF, and the determination result are stored for each of the indoor units 5a to 5c by making a correct / incorrect determination, and the pre-determination heat exchange temperature TBE is the expansion valve 100a. Is the detected value of the heat exchange temperature sensors 61a to 61c at a predetermined opening degree before the fully closed state of 100c, and the heat exchange temperature TAF after the fully closed state is a heat exchange temperature sensor 61a to 61c after the expansion valves 100a to 100c are fully closed. Is the detected value. Further, the determination result is stored as a result determined to be “OK” or “NG” depending on the result of comparing the temperature difference obtained by subtracting the heat exchange temperature TAF after fully-closed from the heat exchange temperature TBE before judgment and the threshold temperature difference. It is what is done.

尚、本実施形態における配管・配線接続判定テーブル400では、一例として、室内機5aについては、熱交換量HaはD、判定時ファン回転数Rfは判定時室内ファン回転数テーブル300を参照し熱交換量Ha=Dに対応する回転数であるRfd、判定前熱交温度TBEが30℃、全閉後熱交温度TAFが22℃、判定前熱交温度TBEと全閉後熱交温度TAFの温度差が8℃であり閾温度差Tthである5℃より大きいため判定結果が「OK」である場合を示している。つまり、室外機2と室内機5aと膨張弁100aでの冷媒配管や配線の接続が正しい(図1に示す通り、液管8aと第1配線250aおよび第1枝配線250aaで室外機2と室内機5aが、また、第2配線250bおよび第2枝配線250baで室外機2と膨張弁100aが接続されている)場合を示している。   In the piping / wiring connection determination table 400 according to the present embodiment, as an example, for the indoor unit 5a, the heat exchange amount Ha is D, and the determination fan rotation speed Rf is determined by referring to the determination indoor fan rotation speed table 300. Rfd which is the rotation speed corresponding to the exchange amount Ha = D, the heat exchange temperature TBE before judgment is 30 ° C., the heat exchange temperature TAF after full closure is 22 ° C., the heat exchange temperature TBE before judgment and the heat exchange temperature TAF after full closure Since the temperature difference is 8 ° C. and larger than the threshold temperature difference Tth of 5 ° C., the determination result is “OK”. That is, the refrigerant pipes and wiring connections in the outdoor unit 2, the indoor unit 5a, and the expansion valve 100a are correct (as shown in FIG. 1, the outdoor unit 2 and the indoors are connected by the liquid pipe 8a, the first wiring 250a, and the first branch wiring 250aa. The machine 5a also shows the case where the outdoor unit 2 and the expansion valve 100a are connected by the second wiring 250b and the second branch wiring 250ba).

また、室内機5bについては、熱交換量HaはE、判定時ファン回転数Rfは判定時室内ファン回転数テーブル300を参照し熱交換量Ha=Eに対応する回転数であるRfd、判定前熱交温度TBEが30℃、全閉後熱交温度TAFが28℃、判定前熱交温度TBEと全閉後熱交温度TAFの温度差が2℃であり閾温度差Tthである5℃より小さいため判定結果が「NG」である場合を示している。   For the indoor unit 5b, the heat exchange amount Ha is E, the fan rotation speed Rf at the time of determination is Rfd, which is the rotation speed corresponding to the heat exchange amount Ha = E with reference to the indoor fan speed table 300 at the time of determination, and before the determination. The heat exchange temperature TBE is 30 ° C., the heat exchange temperature TAF after full closure is 28 ° C., and the temperature difference between the heat exchange temperature TBE before judgment and the heat exchange temperature TAF after full closure is 2 ° C., which is a threshold temperature difference Tth of 5 ° C. Since it is small, the determination result is “NG”.

さらには、室内機5cについては、熱交換量HaはB、判定時ファン回転数Rfは判定時室内ファン回転数テーブル300を参照し熱交換量Ha=Bに対応する回転数であるRfb、判定前熱交温度TBEが30℃、全閉後熱交温度TAFが29℃、判定前熱交温度TBEと全閉後熱交温度TAFの温度差が1℃であり閾温度差Tthである5℃より小さいため判定結果が「NG」である場合を示している。   Furthermore, for the indoor unit 5c, the heat exchange amount Ha is B, and the determination fan rotation speed Rf is Rfb, which is the rotation speed corresponding to the heat exchange amount Ha = B with reference to the determination indoor fan rotation speed table 300, determination. The pre-heat exchange temperature TBE is 30 ° C., the heat exchange temperature TAF after full closure is 29 ° C., the temperature difference between the heat exchange temperature TBE before judgment and the heat exchange temperature TAF after full closure is 1 ° C., and the threshold temperature difference Tth is 5 ° C. Since it is smaller, the determination result is “NG”.

つまり、室内機5bと室内機5cにおいては、図1に示す通りではなく、液管8bと液管8cが誤って接続(液管8bで室外機2と室内機5cが接続され、液管8cで室外機2と室内機5bが接続)されているか、あるいは、第1枝配線250abと第1枝配線250acが誤って接続(第1枝配線250abで室外機2と室内機5cが接続され、第1枝配線250acで室外機2と室内機5bが接続)されているか、あるいは、第2枝配線250bbと第2枝配線250bcが誤って接続(第2枝配線250bbで室外機2と膨張弁100cが接続され、第2枝配線250bcで室外機2と膨張弁100bが接続)されていて、室内機5bと室内機5cにおける冷媒配管あるいは配線のいずれかの接続が誤りである場合を示している。   That is, in the indoor unit 5b and the indoor unit 5c, the liquid pipe 8b and the liquid pipe 8c are not connected as shown in FIG. 1 (the outdoor unit 2 and the indoor unit 5c are connected by the liquid pipe 8b, and the liquid pipe 8c Or the first branch wiring 250ab and the first branch wiring 250ac are erroneously connected (the outdoor branch 2 and the indoor unit 5c are connected by the first branch wiring 250ab, The outdoor unit 2 and the indoor unit 5b are connected by the first branch wiring 250ac), or the second branch wiring 250bb and the second branch wiring 250bc are erroneously connected (the outdoor unit 2 and the expansion valve by the second branch wiring 250bb). 100c is connected, and the outdoor unit 2 and the expansion valve 100b are connected by the second branch wiring 250bc), and the connection of either the refrigerant pipe or the wiring in the indoor unit 5b and the indoor unit 5c is incorrect. Yes.

以上のように、膨張弁100a〜100cを全閉とする前後の熱交温度である判定前熱交温度TBEと全閉後熱交温度TAFの温度差を用いて正誤判定を行うときに、図2に示す判定時室内ファン回転数テーブル300を用いて室内機5a〜5cの熱交換量Haに応じた判定時ファン回転数Rfを選択する。これにより、室内熱交換器51a〜51の熱交換量Haに違いがあっても、冷媒配管や配線の接続が正しい場合は、膨張弁100a〜100cの全閉前後で室内熱交換器51a〜51における熱交温度が全て同じように変化する。従って、確実に冷媒配管や配線の接続の正誤判定を行うことができる。
<正誤判定の処理の流れ>
As described above, when correct / incorrect determination is performed using the temperature difference between the pre-determination heat exchange temperature TBE and the post-full-close heat exchange temperature TAF, which are the heat exchange temperatures before and after the expansion valves 100a to 100c are fully closed, The determination-time indoor fan rotation speed table 300 shown in FIG. 2 is used to select a determination-time fan rotation speed Rf according to the heat exchange amount Ha of the indoor units 5a to 5c. Thereby, even if there is a difference in the heat exchange amount Ha of the indoor heat exchangers 51a to 51, if the connection of the refrigerant piping and wiring is correct, the indoor heat exchangers 51a to 51 before and after the expansion valves 100a to 100c are fully closed. The heat exchange temperatures at all change in the same way. Therefore, it is possible to reliably determine whether the refrigerant pipe and the wiring are connected correctly.
<Flow of correct / incorrect determination processing>

次に、図4を用いて、暖房運転で正誤判定を行う際の処理について説明する。尚、図4において、STは処理のステップを表し、これに続く数字はステップ番号を表している。また、図4では、本発明に関わる処理を中心に説明しており、これ以外の処理、例えば主に室外機2(の室外機制御手段200)が行う冷媒回路10の圧力や温度に関わる制御といった空気調和装置1の一般的な制御に関わる処理については説明を省略する。   Next, processing when performing correctness determination in the heating operation will be described with reference to FIG. In FIG. 4, ST represents a process step, and the number following this represents a step number. Further, FIG. 4 mainly illustrates the processing related to the present invention, and other processing, for example, control related to the pressure and temperature of the refrigerant circuit 10 mainly performed by the outdoor unit 2 (outdoor unit control means 200). Description of the processing related to the general control of the air conditioner 1 will be omitted.

室外機制御手段200のCPU210は正誤判定を開始すると、圧縮機21を所定回転数で起動するとともに、室内機5a〜5cに対し室内ファン54a〜54cの各々の起動時回転数である所定回転数を含む室内ファン起動信号を送信する(ST1)。前述したように、圧縮機21の所定回転数は、凝縮器として機能する室内熱交換器51a〜51cにおける凝縮温度が室温+15℃の温度となる回転数である。また、室内ファン54a〜54cのそれぞれの所定回転数は、室内熱交換器51a〜51cにおける凝縮温度を室温+15℃とでき、かつ、蒸発器として機能する室外熱交換器23で着霜が発生しない程度の低い回転数である。   When the CPU 210 of the outdoor unit control means 200 starts the right / wrong determination, the compressor 21 is started at a predetermined rotational speed, and the predetermined rotational speed that is the rotational speed when each of the indoor fans 54a to 54c is started with respect to the indoor units 5a to 5c. An indoor fan activation signal including is transmitted (ST1). As described above, the predetermined rotational speed of the compressor 21 is the rotational speed at which the condensation temperature in the indoor heat exchangers 51a to 51c functioning as a condenser becomes a temperature of room temperature + 15 ° C. Moreover, each predetermined rotation speed of indoor fan 54a-54c can make the condensation temperature in indoor heat exchanger 51a-51c be room temperature +15 degreeC, and frost formation does not generate | occur | produce in the outdoor heat exchanger 23 which functions as an evaporator. The rotation speed is low.

次に、CPU210は、膨張弁ボックス100の膨張弁100a〜100cに所定開度を含む開度信号を送信する(ST2)。前述したように、膨張弁100a〜100cの所定開度は、全開と全閉の中間の開度である。   Next, the CPU 210 transmits an opening degree signal including a predetermined opening degree to the expansion valves 100a to 100c of the expansion valve box 100 (ST2). As described above, the predetermined opening degree of the expansion valves 100a to 100c is an intermediate opening degree between full opening and full closing.

次に、CPU210は、冷凍サイクルが安定したか否かを判断する(ST3)。前述したように、冷凍サイクルが安定するとは、凝縮温度が室温+15℃に到達して5分が経過した状態である。CPU210は、図示しないタイマー機能を有しており、高圧センサ31で検出した高圧をセンサ入力部240を介して取り込み、取り込んだ高圧を用いて算出した凝縮温度が室温+15℃に到達した時点でタイマー計測を開始し、凝縮温度が室温+15℃に到達してから5分経過するか否かを確認する。尚、CPU210は、上記タイマー計測が終了すれば、タイマーをリセットする。   Next, CPU 210 determines whether or not the refrigeration cycle is stable (ST3). As described above, the refrigeration cycle is stable when the condensation temperature reaches room temperature + 15 ° C. and 5 minutes have elapsed. The CPU 210 has a timer function (not shown), takes in the high pressure detected by the high-pressure sensor 31 via the sensor input unit 240, and when the condensation temperature calculated using the taken-in high pressure reaches room temperature + 15 ° C. Start measurement and check if 5 minutes have passed since the condensation temperature reached room temperature + 15 ° C. In addition, CPU210 will reset a timer, if the said timer measurement is complete | finished.

冷凍サイクルが安定していなければ(ST3−No)、CPU210は、ST3に処理を戻して冷凍サイクルが安定するのを待つ。冷凍サイクルが安定すれば(ST3−Yes)、CPU210は、熱交温度センサ61a〜61cの各々が検出した室内機5a〜5cの熱交温度である判定前熱交温度TBE(TBEa〜TBEc)を含む信号を、室内機5a〜5cから受信する(ST4)。CPU210は、受信した信号に含まれる判定前熱交温度TBEa〜TBEcを、室内機5a〜5cに対応付けて記憶部220にある配管・配線接続判定テーブル400に記憶する。   If the refrigeration cycle is not stable (ST3-No), the CPU 210 returns to ST3 and waits for the refrigeration cycle to stabilize. If the refrigeration cycle is stabilized (ST3-Yes), the CPU 210 uses the pre-determination heat exchange temperature TBE (TBEa to TBEc) that is the heat exchange temperature of the indoor units 5a to 5c detected by the heat exchange temperature sensors 61a to 61c. The included signal is received from the indoor units 5a to 5c (ST4). The CPU 210 stores the pre-determination heat exchange temperatures TBEa to TBEc included in the received signal in the piping / wiring connection determination table 400 in the storage unit 220 in association with the indoor units 5a to 5c.

次に、CPU210は、室内機5aに対応する膨張弁100aに向けて、当該膨張弁を全閉とする旨を含む全閉信号を送信する(ST5)。ここで、全閉信号には、膨張弁100aの全閉に対応するパルス数(0パルス)が含まれている。   Next, the CPU 210 transmits a fully closed signal including that the expansion valve is fully closed toward the expansion valve 100a corresponding to the indoor unit 5a (ST5). Here, the fully closed signal includes the number of pulses (0 pulse) corresponding to the fully closed state of the expansion valve 100a.

次に、CPU210は、配管・配線接続テーブル400を参照して抽出した室内機5aの判定時ファン回転数Rf=Rfdを含む信号を、室内機5aに向けて送信し、タイマー計測を開始する(ST6)。   Next, the CPU 210 transmits a signal including the fan rotation speed Rf = Rfd at the time of determination of the indoor unit 5a extracted with reference to the piping / wiring connection table 400 to the indoor unit 5a, and starts timer measurement ( ST6).

次に、CPU210は、ST6の処理を開始してから所定時間tpが経過したか否かを判断する(ST7)。所定時間tpが経過していなければ(ST7−No)、CPU210は、ST7に処理を戻す。   Next, CPU 210 determines whether or not a predetermined time tp has elapsed since the processing of ST6 was started (ST7). If the predetermined time tp has not elapsed (ST7-No), the CPU 210 returns the process to ST7.

所定時間tpが経過していれば(ST7−Yes)、CPU210は、タイマーをリセットして室内機5a〜5cのいずれかから送信された、全閉後熱交温度TAFを含む信号を受信する(ST8)。CPU210は、上記信号から全閉後熱交温度TAFを抽出しこれを全閉後熱交温度TAFaとして、室内機5aに対応付けて記憶部220にある配管・配線接続判定テーブル400に記憶する。   If the predetermined time tp has elapsed (ST7-Yes), the CPU 210 resets the timer and receives a signal including the fully-closed heat exchange temperature TAF transmitted from any of the indoor units 5a to 5c ( ST8). The CPU 210 extracts the post-fully-closed heat exchange temperature TAF from the signal and stores it as the post-fully-closed heat exchange temperature TAFa in the piping / wiring connection determination table 400 in the storage unit 220 in association with the indoor unit 5a.

次に、CPU210は、記憶部220から判定前熱交温度TBEaと全閉後熱交温度TAFaを読み出し、判定前熱交温度TBEaから全閉後熱交温度TAFaを減じた温度差が閾温度差Tth以上であるか否かを判断する(ST9)。   Next, the CPU 210 reads the pre-judgment heat exchange temperature TBEa and the fully-closed heat exchange temperature TAFa from the storage unit 220, and the temperature difference obtained by subtracting the post-closed heat-exchange temperature TAFa from the pre-judgment heat exchange temperature TBEa is the threshold temperature difference. It is determined whether it is equal to or greater than Tth (ST9).

温度差が閾温度差Tth以上であれば(ST9−Yes)、CPU210は、正誤判定の結果をOK、つまり、室外機2と室内機5aおよび室外機2と膨張弁100aは、図1に示すように液管8a、第1配線250aおよび第1枝配線250aa、第2配線250bおよび第2枝配線250baで正しく接続されていると判定し、ST12に処理を進める。一方、温度差が閾温度差Tth未満であれば(ST9−No)、CPU210は、正誤判定の結果をNG、つまり、室外機2と室内機5aおよび室外機2と膨張弁100aを接続する液管8a、第1配線250aおよび第1枝配線250aa、第2配線250bおよび第2枝配線250baのうちのいずれかが誤っていると判定し、ST12に処理を進める。   If the temperature difference is equal to or greater than the threshold temperature difference Tth (ST9-Yes), the CPU 210 indicates the correct / incorrect determination result, that is, the outdoor unit 2 and the indoor unit 5a, and the outdoor unit 2 and the expansion valve 100a are shown in FIG. Thus, it is determined that the liquid pipe 8a, the first wiring 250a, the first branch wiring 250aa, the second wiring 250b, and the second branch wiring 250ba are correctly connected, and the process proceeds to ST12. On the other hand, if the temperature difference is less than the threshold temperature difference Tth (ST9-No), the CPU 210 sets NG as a result of the correctness determination, that is, the liquid that connects the outdoor unit 2 and the indoor unit 5a and the outdoor unit 2 and the expansion valve 100a. It is determined that any of the tube 8a, the first wiring 250a, the first branch wiring 250aa, the second wiring 250b, and the second branch wiring 250ba is incorrect, and the process proceeds to ST12.

ST12以降の処理については、CPU210は、上述したST5〜ST11までと同じ処理を室内機5bについて実行し(ST12〜ST18が該当する処理)、その次にST5〜ST11までと同じ処理を室内機5cについて実行する(ST19〜ST25が該当する処理)。各室内機5b、5cについての正誤判定の処理は、室内機5aの場合と同じであるため、説明は省略する。   For the processing after ST12, the CPU 210 executes the same processing as the above-described ST5 to ST11 for the indoor unit 5b (processing corresponding to ST12 to ST18), and then performs the same processing as ST5 to ST11 for the indoor unit 5c. (Processing corresponding to ST19 to ST25). The correctness / incorrectness determination process for each of the indoor units 5b and 5c is the same as that for the indoor unit 5a, and a description thereof will be omitted.

ST24もしくはST25の処理を終えたCPU210は、正誤判定に関わる処理を終了する。 CPU210 which completed the process of ST24 or ST25 complete | finishes the process regarding a correct / incorrect determination.

尚、以上説明した本発明の実施形態では、全閉とした膨張弁100a〜100cに対応する室内機5a〜5cの全閉後熱交温度TAFのみを検出し、当該室内機のみ判定前熱交温度TBEと全閉後熱交温度TAFの温度差を求めて閾温度差Tthと比較することで正誤判定を行っている。しかし、これに限られず、膨張弁100a〜100cのいずれかを全閉とした後に全ての全閉後熱交温度TAFを検出し、全ての室内機5a〜5cで判定前熱交温度TBEと全閉後熱交温度TAFの温度差を求めて、温度差が一番大きくなる室内機が全閉とした膨張弁に対応するものか否かを確認した後に、当該温度差を閾温度差Tthと比較してもよい。   In the embodiment of the present invention described above, only the heat exchange temperature TAF after full closing of the indoor units 5a to 5c corresponding to the fully closed expansion valves 100a to 100c is detected, and only the indoor unit before the determination heat exchange is detected. Whether the temperature TBE and the heat exchange temperature TAF after full closure are obtained is compared with the threshold temperature difference Tth to make a correct / incorrect determination. However, the present invention is not limited to this. After any of the expansion valves 100a to 100c is fully closed, all the post-closed heat exchange temperatures TAF are detected, and all the indoor units 5a to 5c detect the heat exchange temperature TBE before the determination and the total heat exchange temperature TBE. After obtaining the temperature difference of the heat exchange temperature TAF after closing and confirming whether the indoor unit with the largest temperature difference corresponds to an expansion valve that is fully closed, the temperature difference is referred to as a threshold temperature difference Tth. You may compare.

以上説明したように、本発明の空気調和装置1では、冷媒回路10を暖房サイクルとして冷媒配管や配線の接続の正誤判定を行うときに、室内機5a〜5cの熱交換量Haに応じた判定時ファン回転数Rfで室内ファン54a〜54cを駆動する。これにより、室内熱交換器51a〜51cにおいて、熱交換量Haに応じた風量として正誤判定を行えるので、膨張弁100a〜100cの全閉前後で室内熱交換器51a〜51における熱交温度が全て同じように変化するつまり、各室内機5a〜5cにおける判定前熱交温度TBEと全閉後熱交温度TAFの温度差を全て適切な値とできるので、いかなる熱交換量Haを有する室内機5a〜5cが室外機2に接続されていても正誤判定を行うことができる。   As described above, in the air conditioner 1 of the present invention, when the refrigerant circuit 10 is used as a heating cycle and the correctness determination of the connection of the refrigerant piping and wiring is performed, the determination according to the heat exchange amount Ha of the indoor units 5a to 5c. The indoor fans 54a to 54c are driven at the hour fan rotational speed Rf. Thereby, in the indoor heat exchangers 51a to 51c, correctness / incorrectness can be determined as the air volume according to the heat exchange amount Ha, so that the heat exchange temperatures in the indoor heat exchangers 51a to 51 are all before and after the expansion valves 100a to 100c are fully closed. In other words, since the temperature difference between the pre-determining heat exchange temperature TBE and the fully-closed heat exchange temperature TAF can be set to an appropriate value in each of the indoor units 5a to 5c, the indoor unit 5a having any heat exchange amount Ha. Even if ˜5c is connected to the outdoor unit 2, the correctness / incorrectness determination can be performed.

1 空気調和装置
2 室外機
5a〜5c 室内機
21 圧縮機
23 室外熱交換器
51a〜51c 室内熱交換器
54a〜54c 室内ファン
61a〜61c 熱交温度センサ
100 膨張弁ボックス
100a〜100c 膨張弁
200 室外機制御部
210 CPU
220 記憶部
240 センサ入力部
250a 第1配線
250aa〜250ac 第1枝配線
250b 第2配線
250ba〜250bc 第2枝配線
300 判定時室内ファン回転数テーブル
400 配管・配線組合判定テーブル
Ha、Haa〜Hac 熱交換量
Rf、Rfa〜Rfc 室内ファン回転数
TBE、TBEa〜TBEc 判定前熱交温度
TAF、TAFa〜TAFc 全閉後熱交温度
Tth 閾温度
tp 所定時間
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 5a-5c Indoor unit 21 Compressor 23 Outdoor heat exchanger 51a-51c Indoor heat exchanger 54a-54c Indoor fan 61a-61c Heat exchange temperature sensor 100 Expansion valve box 100a-100c Expansion valve 200 Outdoor Machine control unit 210 CPU
220 Storage Unit 240 Sensor Input Unit 250a First Wiring 250aa-250ac First Branch Wiring 250b Second Wiring 250ba-250bc Second Branch Wiring 300 Indoor Fan Rotation Speed Table 400 Judgment / Wiring Combination Determination Table Ha, Haa-Hac Heat Exchange amount Rf, Rfa to Rfc Indoor fan speed TBE, TBEa to TBEc Heat exchange temperature before judgment TAF, TAFa to TAFc Heat exchange temperature after full closure Tth threshold temperature tp Predetermined time

Claims (1)

室外機と、複数台の室内機と、同複数台の室内機の台数に対応した数の流量調整手段と、制御手段を有する空気調和装置であって、
前記室外機と前記複数台の室内機と前記流量調整手段は冷媒配管で接続され、
前記室外機と前記複数台の室内機は室内機配線で接続され、
前記室外機と前記流量調整手段は流量調整手段配線で接続され、
前記複数台の室内機は、室内熱交換器と、室内ファンと、前記室内熱交換器の温度である熱交温度を検出する熱交温度検出手段を有し、
前記制御手段は、
少なくとも1台の室内機の室内熱交換器における熱交換量が他の室内機における室内熱交換器の熱交換量と異なる場合に、前記冷媒配管と前記室内機配線と前記流量調整手段配線の接続の正誤を判定する正誤判定を行うとき、
全ての前記流量調整手段を開いて暖房運転を行い、暖房運転状態が安定した後の前記各室内熱交換器の熱交温度である判定前熱交温度を検出し、
前記判定前熱交温度を検出した後、特定の1個の流量調整手段を閉じるとともに当該流量調整手段に対応する室内機の室内ファンを当該室内機の室内熱交換器の熱交換量に応じた回転数である判定時ファン回転数で駆動して所定時間が経過すれば、当該全閉とした流量調整手段に対応する室内機の室内熱交換器の熱交温度である全閉後熱交温度を検出し、
複数の前記判定前熱交温度のうち前記全閉とした流量調整手段に対応する室内機の判定前熱交温度から前記全閉後熱交温度を減じた温度差が、予め定められた閾温度差以上であれば、前記冷媒配管と前記室内機配線と前記流量調整手段配線の接続は正しく、前記温度差が前記閾温度差未満であれば、前記冷媒配管と前記室内機配線と前記流量調整手段配線のうちのいずれか1つの接続は誤りであると判定する、
ことを特徴とする空気調和装置。
An air conditioner having an outdoor unit, a plurality of indoor units, a number of flow rate adjusting units corresponding to the number of the plurality of indoor units, and a control unit,
The outdoor unit, the plurality of indoor units and the flow rate adjusting means are connected by a refrigerant pipe,
The outdoor unit and the plurality of indoor units are connected by indoor unit wiring,
The outdoor unit and the flow rate adjusting means are connected by a flow rate adjusting means wiring,
The plurality of indoor units have an indoor heat exchanger, an indoor fan, and a heat exchange temperature detecting means for detecting a heat exchange temperature that is a temperature of the indoor heat exchanger,
The control means includes
When the heat exchange amount in the indoor heat exchanger of at least one indoor unit is different from the heat exchange amount of the indoor heat exchanger in another indoor unit, the refrigerant pipe, the indoor unit wiring, and the flow rate adjusting unit wiring are connected When performing correct / incorrect judgment,
All the flow rate adjusting means are opened to perform the heating operation, and the pre-determination heat exchange temperature that is the heat exchange temperature of each indoor heat exchanger after the heating operation state is stabilized,
After detecting the pre-determination heat exchange temperature, the specific one flow rate adjusting unit is closed and the indoor fan of the indoor unit corresponding to the flow rate adjusting unit is set according to the heat exchange amount of the indoor heat exchanger of the indoor unit. When it is driven at the fan rotation speed at the time of determination that is the rotation speed and the predetermined time elapses, the heat exchange temperature after full closing, which is the heat exchange temperature of the indoor heat exchanger of the indoor unit corresponding to the flow adjustment means that is fully closed Detect
A temperature difference obtained by subtracting the post-fully closed heat exchanger temperature from the pre-determined heat exchanger temperature of the indoor unit corresponding to the fully closed flow rate adjusting means among the plurality of pre-determined heat exchanger temperatures is a predetermined threshold temperature. If the difference is greater than or equal to the difference, the refrigerant pipe, the indoor unit wiring, and the flow rate adjusting unit wiring are correctly connected, and if the temperature difference is less than the threshold temperature difference, the refrigerant pipe, the indoor unit wiring, and the flow rate adjustment. Determining that any one of the means wirings is in error;
An air conditioner characterized by that.
JP2017014935A 2017-01-31 2017-01-31 Air conditioner Active JP6822177B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017014935A JP6822177B2 (en) 2017-01-31 2017-01-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017014935A JP6822177B2 (en) 2017-01-31 2017-01-31 Air conditioner

Publications (2)

Publication Number Publication Date
JP2018123991A true JP2018123991A (en) 2018-08-09
JP6822177B2 JP6822177B2 (en) 2021-01-27

Family

ID=63111249

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017014935A Active JP6822177B2 (en) 2017-01-31 2017-01-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP6822177B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243059A (en) * 2019-06-19 2019-09-17 广东美的暖通设备有限公司 Control method, air conditioner and computer readable storage medium
CN110454936A (en) * 2019-08-05 2019-11-15 广东美的制冷设备有限公司 Air conditioner and its control method, device
CN111271847A (en) * 2019-07-17 2020-06-12 宁波奥克斯电气股份有限公司 Air conditioner control method for improving low-temperature heating capacity
CN113280470A (en) * 2021-06-10 2021-08-20 宁波奥克斯电气股份有限公司 Four-way valve fault detection method and device and air conditioner
CN114110910A (en) * 2020-08-25 2022-03-01 广东美的制冷设备有限公司 Branch box self-checking method and device, storage medium and branch box
CN114838461A (en) * 2022-05-16 2022-08-02 美的集团武汉暖通设备有限公司 Control method of multi-split air conditioner, multi-split air conditioner and storage medium

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110243059A (en) * 2019-06-19 2019-09-17 广东美的暖通设备有限公司 Control method, air conditioner and computer readable storage medium
CN110243059B (en) * 2019-06-19 2021-03-02 广东美的暖通设备有限公司 Control method, air conditioner, and computer-readable storage medium
CN111271847A (en) * 2019-07-17 2020-06-12 宁波奥克斯电气股份有限公司 Air conditioner control method for improving low-temperature heating capacity
CN111271847B (en) * 2019-07-17 2021-07-13 宁波奥克斯电气股份有限公司 Air conditioner control method for improving low-temperature heating capacity
CN110454936A (en) * 2019-08-05 2019-11-15 广东美的制冷设备有限公司 Air conditioner and its control method, device
CN114110910A (en) * 2020-08-25 2022-03-01 广东美的制冷设备有限公司 Branch box self-checking method and device, storage medium and branch box
CN113280470A (en) * 2021-06-10 2021-08-20 宁波奥克斯电气股份有限公司 Four-way valve fault detection method and device and air conditioner
CN113280470B (en) * 2021-06-10 2022-05-13 宁波奥克斯电气股份有限公司 Four-way valve fault detection method and device and air conditioner
CN114838461A (en) * 2022-05-16 2022-08-02 美的集团武汉暖通设备有限公司 Control method of multi-split air conditioner, multi-split air conditioner and storage medium
CN114838461B (en) * 2022-05-16 2024-02-20 美的集团武汉暖通设备有限公司 Control method of multi-split air conditioner, multi-split air conditioner and storage medium

Also Published As

Publication number Publication date
JP6822177B2 (en) 2021-01-27

Similar Documents

Publication Publication Date Title
JP2018123991A (en) Air conditioner
CN105937796B (en) Air conditioner
CN107588474B (en) Air conditioning apparatus
JP5858824B2 (en) Multi-type air conditioner
EP3279580B1 (en) Air-conditioning device
JP2017062049A (en) Air conditioner
JP2015117854A (en) Air conditioning system
JP6610287B2 (en) Air conditioner
JP7000902B2 (en) Air conditioner
JP2016138733A (en) Air conditioning device
JP2018013301A (en) Air conditioner
JP7009808B2 (en) Air conditioner
EP3591311B1 (en) Refrigeration cycle device
JP6848528B2 (en) Air conditioner
JP6458666B2 (en) Air conditioner
JP2019113246A (en) Air conditioner
JP2008039388A (en) Multi-type air conditioner
JP2018159520A (en) Air conditioner
JP2018115805A (en) Air conditioner
JP2014173816A (en) Multi-type air conditioner
JP2018071893A (en) Air conditioner
WO2019181315A1 (en) Air conditioner
JP2017142017A (en) Air conditioner
KR101152936B1 (en) A multi air conditioner system and a pipe connection searching method of the multi air conditioner system
JP6672860B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201221

R151 Written notification of patent or utility model registration

Ref document number: 6822177

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151