JP2016090092A - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
JP2016090092A
JP2016090092A JP2014222350A JP2014222350A JP2016090092A JP 2016090092 A JP2016090092 A JP 2016090092A JP 2014222350 A JP2014222350 A JP 2014222350A JP 2014222350 A JP2014222350 A JP 2014222350A JP 2016090092 A JP2016090092 A JP 2016090092A
Authority
JP
Japan
Prior art keywords
heat exchanger
outdoor heat
outdoor
pipe
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014222350A
Other languages
Japanese (ja)
Inventor
松永 隆廣
Takahiro Matsunaga
隆廣 松永
隆志 木村
Takashi Kimura
隆志 木村
久仁子 林
Kuniko Hayashi
久仁子 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu General Ltd
Original Assignee
Fujitsu General Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu General Ltd filed Critical Fujitsu General Ltd
Priority to JP2014222350A priority Critical patent/JP2016090092A/en
Publication of JP2016090092A publication Critical patent/JP2016090092A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Air-Conditioning Systems (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an air conditioner which does not interrupt a heating operation and which can shorten defrosting time.SOLUTION: When performing defrosting of a first outdoor heat exchanger 23a during a heating operation, a CPU switches so that a port a communicates with a port b of a four-way valve switching part, and a port c communicates with a port d. At this time, the CPU does not switch a second four-way valve 22b and a third four-way valve 25, and they are left to be the same as the heating operation. By switching only the first four-way valve 22a as stated before, the first outdoor heat exchanger 23a functions as a condenser, a second outdoor heat exchanger 23b functions as an evaporator, and indoor heat exchangers 51a-51c function as condensers. When the defrosting of the first outdoor heat exchanger 23a finishes, succeedingly, defrosting of the second outdoor heat exchanger 23b is performed by switching so that the first outdoor heat exchanger 23a functions as the evaporator and the second outdoor heat exchanger 23b functions as the condenser.SELECTED DRAWING: Figure 4

Description

本発明は、室外機と室内機が複数の冷媒配管で相互に接続された空気調和装置に関する。   The present invention relates to an air conditioner in which an outdoor unit and an indoor unit are connected to each other through a plurality of refrigerant pipes.

従来、室外機と室内機が複数の冷媒配管で相互に接続された空気調和装置が提案されている。この空気調和装置が暖房運転を行ない室外熱交換器の温度が0℃以下になると、室外熱交換器に着霜することがある。室外熱交換器に着霜すると、室外熱交換器への通風が霜によって阻害され、室外熱交換器における熱交換効率が低下する。従って、室外熱交換器で着霜が発生すれば、室外熱交換器から霜を取り除くために除霜運転を行う必要がある。   Conventionally, an air conditioner in which an outdoor unit and an indoor unit are connected to each other by a plurality of refrigerant pipes has been proposed. When this air conditioner performs heating operation and the temperature of the outdoor heat exchanger becomes 0 ° C. or less, the outdoor heat exchanger may be frosted. When frost is formed on the outdoor heat exchanger, ventilation to the outdoor heat exchanger is hindered by frost, and heat exchange efficiency in the outdoor heat exchanger is reduced. Therefore, if frost formation occurs in the outdoor heat exchanger, it is necessary to perform a defrosting operation in order to remove the frost from the outdoor heat exchanger.

除霜運転としては、蒸発器として機能していた室外熱交換器を凝縮器として機能するように切り替える、つまり、冷凍サイクルを暖房サイクルから冷房サイクルに切り替えて圧縮機から吐出される高温高圧の冷媒を室外熱交換器に流入させて霜を融かす、所謂逆サイクル除霜運転がある。しかし、逆サイクル除霜運転を行うときは冷凍サイクルが冷房サイクルとなって暖房運転が中断されるので、使用者の快適性を損なう恐れがある。   In the defrosting operation, the outdoor heat exchanger functioning as an evaporator is switched to function as a condenser, that is, a high-temperature and high-pressure refrigerant discharged from the compressor by switching the refrigeration cycle from the heating cycle to the cooling cycle. There is a so-called reverse cycle defrosting operation in which frost is melted by flowing into the outdoor heat exchanger. However, when the reverse cycle defrosting operation is performed, the refrigeration cycle becomes a cooling cycle and the heating operation is interrupted, which may impair the comfort of the user.

これに対し、例えば特許文献1に記載の空気調和装置のように、室外熱交換器を2つに分け、冷凍サイクルを暖房サイクルのままとして圧縮機から吐出される高温高圧の冷媒を各室外熱交換器に個別に流入させることで室外熱交換器を除霜するものも提案されている。   On the other hand, for example, as in the air conditioner described in Patent Document 1, the outdoor heat exchanger is divided into two, and the high-temperature and high-pressure refrigerant discharged from the compressor is left as the heating cycle while the refrigeration cycle remains as the heating cycle. There has also been proposed one that defrosts the outdoor heat exchanger by individually flowing into the exchanger.

特許文献1に記載の空気調和装置では、圧縮機の吐出側と、各室外熱交換器が蒸発器として機能する際の各々の冷媒入口側を開閉弁を備えたホットガスバイパス管で接続している。暖房運転を行っているときに室外熱交換器で着霜が発生すれば、一方の室外熱交換器に対応する開閉弁のみ開いて当該室外熱交換器に圧縮機から吐出された冷媒を流入させて除霜を行い、当該室外熱交換器の除霜終了に続いて他方の室外熱交換器に対応する開閉弁のみ開いて当該室外熱交換器に圧縮機から吐出された冷媒を流入させて除霜を行う。これにより、一方の室外熱交換器を除霜しているときも他方の室外熱交換器が蒸発器として機能し続けているので、暖房運転を中断することなく室外熱交換器の除霜が行える。   In the air conditioner described in Patent Document 1, the discharge side of the compressor and each refrigerant inlet side when each outdoor heat exchanger functions as an evaporator are connected by a hot gas bypass pipe provided with an open / close valve. Yes. If frost formation occurs in the outdoor heat exchanger during heating operation, only the open / close valve corresponding to one of the outdoor heat exchangers is opened to allow the refrigerant discharged from the compressor to flow into the outdoor heat exchanger. After the defrosting of the outdoor heat exchanger, only the open / close valve corresponding to the other outdoor heat exchanger is opened and the refrigerant discharged from the compressor is allowed to flow into the outdoor heat exchanger. Do frost. Thereby, even when one of the outdoor heat exchangers is defrosted, the other outdoor heat exchanger continues to function as an evaporator, so that the outdoor heat exchanger can be defrosted without interrupting the heating operation. .

特開2008−64381号公報JP 2008-64381 A

しかし、上述した2分割した室外熱交換器に個別に高温高圧の冷媒を流入させて除霜を行う空気調和装置では、冷凍サイクルを暖房サイクルのままとし順次室外熱交換器の冷媒流入側に圧縮機から吐出された冷媒を流入させて除霜を行う。除霜を行う室外熱交換器の霜を融かし当該室外熱交換器から流出した液冷媒あるいは気液二相冷媒が蒸発器を経ることなく、つまり、蒸発器で外気から吸熱することなく圧縮機に吸入される。これにより、一方の室外熱交換器を除霜しているときに圧縮機の吐出温度が低下して、他方の室外熱交換器の除霜に時間がかかるという問題があった。   However, in an air conditioner that performs defrosting by individually flowing high-temperature and high-pressure refrigerant into the above-described two-part outdoor heat exchanger, the refrigeration cycle remains in the heating cycle and the refrigerant is sequentially compressed to the refrigerant inflow side of the outdoor heat exchanger. The refrigerant discharged from the machine is introduced to perform defrosting. The frost of the outdoor heat exchanger that performs defrosting is melted and the liquid refrigerant or gas-liquid two-phase refrigerant flowing out of the outdoor heat exchanger is compressed without passing through the evaporator, that is, without absorbing heat from the outside air in the evaporator. Inhaled into the machine. Thereby, when one outdoor heat exchanger was defrosting, there existed a problem that the discharge temperature of a compressor fell and it took time for the defrost of the other outdoor heat exchanger.

本発明は以上述べた問題点を解決するものであって、暖房運転を中断することなく、かつ、除霜時間を短縮できる空気調和装置を提供することを目的とする。   The present invention solves the above-described problems, and an object thereof is to provide an air conditioner that can shorten the defrosting time without interrupting the heating operation.

上記の課題を解決するために、本発明の空気調和装置は、室外機と室内機が液管とガス管で接続されてなる冷媒回路と制御手段を有するものであって、室外機は、圧縮機と複数の室外熱交換器ユニットと高圧ガス管と低圧ガス管と室外機ガス管と室外機液管と第2流路切替手段を有し、圧縮機の冷媒吐出側と第2流路切替手段が高圧ガス管で接続され、圧縮機の冷媒吸入側と第2流路切替手段が低圧ガス管で接続され、ガス管と第2流路切替手段が室外機ガス管で接続され、液管と室外機液管が接続されている。また、室外熱交換器ユニットは、室外熱交換器と第1流路切換手段と高圧分管と低圧分管と液分管と接続配管を有し、室外熱交換器の一方の冷媒出入口と第1流路切換手段が接続配管で接続され、室外熱交換器の他方の冷媒出入口と室外機液管が液分管で接続され、高圧ガス管と第1流路切換手段が高圧分管で接続され、低圧ガス管と第1流路切換手段が低圧分管で接続されている。そして、制御手段は、暖房運転を行うとき、各室外熱交換器ユニットの室外熱交換器が蒸発器として機能するように各室外熱交換器ユニットの第1流路切替手段を切り替えるとともに、高圧ガス管と室外機ガス管が接続するように第2流路切替手段を切り替え、暖房運転中に除霜運転を行うとき、第1流路切替手段を切り替えて室外熱交換器を凝縮器として機能させて行う当該室外熱交換器の除霜を室外熱交換器ユニット毎に順次行うとともに、第2流路切替手段および除霜を行っていない室外熱交換器ユニットは暖房運転時の状態を維持するものである。   In order to solve the above-described problems, an air conditioner of the present invention includes a refrigerant circuit in which an outdoor unit and an indoor unit are connected by a liquid pipe and a gas pipe, and a control unit. And a plurality of outdoor heat exchanger units, a high pressure gas pipe, a low pressure gas pipe, an outdoor unit gas pipe, an outdoor unit liquid pipe, and a second flow path switching means, and a refrigerant discharge side of the compressor and a second flow path switching. The means is connected by a high pressure gas pipe, the refrigerant suction side of the compressor and the second flow path switching means are connected by a low pressure gas pipe, the gas pipe and the second flow path switching means are connected by an outdoor unit gas pipe, and the liquid pipe And outdoor unit liquid pipe are connected. The outdoor heat exchanger unit has an outdoor heat exchanger, a first flow path switching means, a high pressure distribution pipe, a low pressure distribution pipe, a liquid distribution pipe, and a connection pipe, and one refrigerant inlet / outlet and the first flow path of the outdoor heat exchanger. The switching means is connected by a connection pipe, the other refrigerant inlet / outlet of the outdoor heat exchanger and the outdoor unit liquid pipe are connected by a liquid distribution pipe, the high pressure gas pipe and the first flow path switching means are connected by a high pressure distribution pipe, and the low pressure gas pipe And the first flow path switching means are connected by a low-pressure branch pipe. The control means switches the first flow path switching means of each outdoor heat exchanger unit so that the outdoor heat exchanger of each outdoor heat exchanger unit functions as an evaporator, and performs high-pressure gas when performing the heating operation. When the second flow path switching means is switched so that the pipe and the outdoor unit gas pipe are connected and the defrosting operation is performed during the heating operation, the first flow path switching means is switched so that the outdoor heat exchanger functions as a condenser. The outdoor heat exchanger is defrosted sequentially for each outdoor heat exchanger unit, and the second flow path switching unit and the outdoor heat exchanger unit not performing defrosting maintain the state during heating operation. It is.

上記のように構成した本発明の空気調和装置によれば、暖房運転中に複数の室外熱交換器の除霜を行うときに、一部の室外熱交換器を除霜しつつ他の室外熱交換器で暖房運転を行うので、暖房運転を中断することなく室外熱交換器の除霜を行える。また、除霜する室外熱交換器から流出した冷媒が暖房を行う室外熱交換器で蒸発して圧縮機に吸入されるので、圧縮機の吐出温度が低下せず除霜時間を短縮できる。   According to the air conditioner of the present invention configured as described above, when performing defrosting of a plurality of outdoor heat exchangers during heating operation, other outdoor heat is defrosted while defrosting some of the outdoor heat exchangers. Since the heating operation is performed by the exchanger, the outdoor heat exchanger can be defrosted without interrupting the heating operation. Further, since the refrigerant flowing out from the outdoor heat exchanger to be defrosted is evaporated by the outdoor heat exchanger for heating and sucked into the compressor, the discharge temperature of the compressor is not lowered and the defrosting time can be shortened.

本発明の実施形態における空気調和装置が暖房運転を行うときの冷媒回路図である。It is a refrigerant circuit figure when the air conditioning apparatus in embodiment of this invention performs heating operation. 本発明の実施形態における空気調和装置が冷房運転を行うときの冷媒回路図である。It is a refrigerant circuit figure when the air conditioning apparatus in embodiment of this invention performs air_conditionaing | cooling operation. 本発明の実施形態における、室外機制御部の構成を説明するブロック図である。It is a block diagram explaining the structure of the outdoor unit control part in embodiment of this invention. 本発明の実施形態における、起動時ファン回転数テーブルである。It is a fan rotation speed table at the time of starting in embodiment of this invention. 第1室外熱交換器を除霜するときの冷媒回路図である。It is a refrigerant circuit figure when defrosting the 1st outdoor heat exchanger.

以下、本発明の実施の形態を、添付図面に基づいて詳細に説明する。実施形態としては、1台の室外機に3台の室内機が並列に接続され、全ての室内機で同時に冷房運転あるいは暖房運転が行える空気調和装置を例に挙げて説明する。尚、本発明は以下の実施形態に限定されることはなく、本発明の主旨を逸脱しない範囲で種々変形することが可能である。   Embodiments of the present invention will be described below in detail with reference to the accompanying drawings. As an embodiment, an air conditioning apparatus will be described as an example in which three indoor units are connected in parallel to one outdoor unit, and cooling operation or heating operation can be performed simultaneously in all indoor units. The present invention is not limited to the following embodiments, and can be variously modified without departing from the gist of the present invention.

図1を用いて、本実施形態における空気調和装置の構成について説明する。図1に示すように、本実施形態における空気調和装置1は、屋外に設置される1台の室外機2と、屋内に設置され、室外機2に液管8およびガス管9で並列に接続された3台の室内機5a〜5cを備えている。詳細には、液管8は、一端が室外機2の閉鎖弁26に、他端が分岐して室内機5a〜5cの各液管接続部53a〜53cに、それぞれ接続されている。また、ガス管9は、一端が室外機2の閉鎖弁27に、他端が分岐して室内機5a〜5cの各ガス管接続部54a〜54cに、それぞれ接続されている。以上により、空気調和装置1の冷媒回路100が構成されている。   The structure of the air conditioning apparatus in this embodiment is demonstrated using FIG. As shown in FIG. 1, an air conditioner 1 according to the present embodiment is installed indoors with one outdoor unit 2 and is connected indoors in parallel with a liquid pipe 8 and a gas pipe 9. The three indoor units 5a to 5c are provided. Specifically, the liquid pipe 8 has one end connected to the closing valve 26 of the outdoor unit 2 and the other end branched to be connected to the liquid pipe connecting portions 53a to 53c of the indoor units 5a to 5c. The gas pipe 9 has one end connected to the closing valve 27 of the outdoor unit 2 and the other end branched to be connected to the gas pipe connecting portions 54a to 54c of the indoor units 5a to 5c. The refrigerant circuit 100 of the air conditioner 1 is configured as described above.

まずは、室外機2について説明する。室外機2は、圧縮機21と、第1流路切替手段である第1四方弁22aおよび第2四方弁22bと、第1室外熱交換器23aと、第2室外熱交換器23bと、第1室外膨張弁24aと、第2室外膨張弁24bと、第2流路切替手段である第3四方弁25と、液管8の一端が接続された閉鎖弁26と、ガス管9の一端が接続された閉鎖弁27と、室外ファン28を備えている。そして、室外ファン28を除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室外機冷媒回路20を構成している。   First, the outdoor unit 2 will be described. The outdoor unit 2 includes a compressor 21, a first four-way valve 22a and a second four-way valve 22b, which are first flow path switching means, a first outdoor heat exchanger 23a, a second outdoor heat exchanger 23b, The one outdoor expansion valve 24a, the second outdoor expansion valve 24b, the third four-way valve 25 as the second flow path switching means, the closing valve 26 to which one end of the liquid pipe 8 is connected, and one end of the gas pipe 9 are A connected shut-off valve 27 and an outdoor fan 28 are provided. And these each apparatus except the outdoor fan 28 is mutually connected by each refrigerant | coolant piping explained in full detail below, and the outdoor unit refrigerant circuit 20 which makes a part of the refrigerant circuit 100 is comprised.

圧縮機21は、インバータにより回転数が制御される図示しないモータによって駆動されることで、運転容量を可変できる能力可変型圧縮機である。圧縮機21の冷媒吐出側には高圧ガス管41の一端が接続されており、高圧ガス管41の他端は第3四方弁25のポートpに接続されている。高圧ガス管41の接続点Aには、第1高圧分管41aの一端および第2高圧分管41bの一端が各々接続されている。第1高圧分管41aの他端は、第1四方弁22aのポートaに接続されている。第2高圧分管41bの他端は、後述する第2四方弁22bのポートeに接続されている。   The compressor 21 is a variable capacity compressor that can vary its operating capacity by being driven by a motor (not shown) whose rotation speed is controlled by an inverter. One end of the high-pressure gas pipe 41 is connected to the refrigerant discharge side of the compressor 21, and the other end of the high-pressure gas pipe 41 is connected to the port p of the third four-way valve 25. One end of the first high-pressure branch pipe 41a and one end of the second high-pressure branch pipe 41b are connected to the connection point A of the high-pressure gas pipe 41, respectively. The other end of the first high-pressure branch pipe 41a is connected to the port a of the first four-way valve 22a. The other end of the second high-pressure branch pipe 41b is connected to a port e of a second four-way valve 22b described later.

圧縮機21の冷媒吸入側には低圧ガス管42の一端が接続されており、低圧ガス管42の他端は第3四方弁25のポートrに接続されている。低圧ガス分管42の接続点Cには、第1低圧分管42aの一端が接続されており、第1低圧分管42aの他端は、第1四方弁22aのポートcに接続されている。また、低圧ガス分管42の接続点Dには、第2低圧分管42bの一端が接続されており、第2低圧分管42bの他端は、第2四方弁22bのポートgに接続されている。   One end of the low-pressure gas pipe 42 is connected to the refrigerant suction side of the compressor 21, and the other end of the low-pressure gas pipe 42 is connected to the port r of the third four-way valve 25. One end of the first low-pressure distribution pipe 42a is connected to the connection point C of the low-pressure gas distribution pipe 42, and the other end of the first low-pressure distribution pipe 42a is connected to the port c of the first four-way valve 22a. Further, one end of the second low-pressure distribution pipe 42b is connected to the connection point D of the low-pressure gas distribution pipe 42, and the other end of the second low-pressure distribution pipe 42b is connected to the port g of the second four-way valve 22b.

第1四方弁22aは、第1室外熱交換器23aにおける冷媒の流れ方向を切り換えるための弁であり、a、b、c、dの4つのポートを備えている。ポートaには、前述したように第1高圧分管41aが接続されている。ポートbは、第1室外熱交換器23aの一方の冷媒出入口と第1接続配管43aで接続されている。ポートcには、前述したように第1低圧分管42aが接続されている。ポートdには、第1キャピラリーチューブ37aを備えた第1バイパス管45aの一端が接続されており、第1バイパス管45aの他端は、接続点Eで第1低圧分管42aに接続されている。   The first four-way valve 22a is a valve for switching the flow direction of the refrigerant in the first outdoor heat exchanger 23a, and includes four ports a, b, c, and d. As described above, the first high-pressure branch pipe 41a is connected to the port a. The port b is connected to one refrigerant inlet / outlet of the first outdoor heat exchanger 23a by the first connection pipe 43a. As described above, the first low-pressure branch pipe 42a is connected to the port c. One end of a first bypass pipe 45a having a first capillary tube 37a is connected to the port d, and the other end of the first bypass pipe 45a is connected to the first low-pressure branch pipe 42a at a connection point E. .

第2四方弁22bは、第2室外熱交換器23bにおける冷媒の流れ方向を切り換えるための弁であり、e、f、g、hの4つのポートを備えている。ポートeには、前述したように第2高圧分管41bが接続されている。ポートfは、第2室外熱交換器23bの一方の冷媒出入口と第2接続配管43bで接続されている。ポートgには、前述したように第2低圧分管42bが接続されている。ポートhには、第2キャピラリーチューブ37bを備えた第2バイパス管45bの一端が接続されており、第2バイパス管45bの他端は、接続点Fで第2低圧分管42bに接続されている。   The second four-way valve 22b is a valve for switching the flow direction of the refrigerant in the second outdoor heat exchanger 23b, and includes four ports e, f, g, and h. As described above, the second high-pressure branch pipe 41b is connected to the port e. The port f is connected to one refrigerant inlet / outlet of the second outdoor heat exchanger 23b through the second connection pipe 43b. As described above, the second low-pressure branch pipe 42b is connected to the port g. One end of a second bypass pipe 45b having a second capillary tube 37b is connected to the port h, and the other end of the second bypass pipe 45b is connected to the second low-pressure branch pipe 42b at a connection point F. .

第1室外熱交換器23aおよび第2室外熱交換器23bは、冷媒と、後述する室外ファン28の回転により室外機2の内部に取り込まれた外気とを熱交換させるものである。第1室外熱交換器23aの一方の冷媒出入口は、前述したように第1四方弁22aのポートbに第1接続配管43aで接続され、他方の冷媒出入口には第1液分管44aの一端が接続されている。また、第2室外熱交換器23bの一方の冷媒出入口は、前述したように第2四方弁22bのポートfに第2接続配管43bで接続され、他方の冷媒出入口には第2液分管44bの一端が接続されている。第1液分管44aの他端と第2液分管44bの他端とは、接続点Bで各々室外機液管44の一端に接続され、室外機液管44の他端は閉鎖弁26に接続されている。   The first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b exchange heat between the refrigerant and the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28 described later. As described above, one refrigerant inlet / outlet of the first outdoor heat exchanger 23a is connected to the port b of the first four-way valve 22a by the first connection pipe 43a, and one end of the first liquid distribution pipe 44a is connected to the other refrigerant inlet / outlet. It is connected. Also, as described above, one refrigerant inlet / outlet of the second outdoor heat exchanger 23b is connected to the port f of the second four-way valve 22b by the second connection pipe 43b, and the other refrigerant inlet / outlet is connected to the second liquid distribution pipe 44b. One end is connected. The other end of the first liquid distribution pipe 44a and the other end of the second liquid distribution pipe 44b are each connected to one end of the outdoor unit liquid pipe 44 at a connection point B, and the other end of the outdoor unit liquid pipe 44 is connected to the closing valve 26. Has been.

尚、第1室外熱交換器23aと、第1四方弁22aと、第1高圧分管41aと、第1低圧分管42aと、第1接続配管43aと、第1液分管44aとで、第1室外熱交換器ユニット20aが構成され、第2室外熱交換器23bと、第2四方弁22bと、第2高圧分管41bと、第2低圧分管42bと、第2接続配管43bと、第2液分管44bとで、第2室外熱交換器ユニット20bが構成される。これら、第1室外熱交換器ユニット20aおよび第2室外熱交換器ユニット20bが、本発明の室外熱交換器ユニットである。   The first outdoor heat exchanger 23a, the first four-way valve 22a, the first high-pressure distribution pipe 41a, the first low-pressure distribution pipe 42a, the first connection pipe 43a, and the first liquid distribution pipe 44a The heat exchanger unit 20a is configured, the second outdoor heat exchanger 23b, the second four-way valve 22b, the second high-pressure distribution pipe 41b, the second low-pressure distribution pipe 42b, the second connection pipe 43b, and the second liquid distribution pipe. 44b constitutes a second outdoor heat exchanger unit 20b. The first outdoor heat exchanger unit 20a and the second outdoor heat exchanger unit 20b are the outdoor heat exchanger units of the present invention.

第1室外膨張弁24aおよび第2室外膨張弁24bは、各々電子膨張弁である。第1室外膨張弁24aは、第1液分管44aに設けられており、その開度が調整されることで、第1室外熱交換器23aに流入する冷媒量、あるいは、第1室外熱交換器23aから流出する冷媒量を調整する。第2室外膨張弁24bは、第2液分管44bに設けられており、その開度が調整されることで、第2室外熱交換器23bに流入する冷媒量、あるいは、第2室外熱交換器23bから流出する冷媒量を調整する。   Each of the first outdoor expansion valve 24a and the second outdoor expansion valve 24b is an electronic expansion valve. The first outdoor expansion valve 24a is provided in the first liquid distribution pipe 44a, and the amount of refrigerant flowing into the first outdoor heat exchanger 23a or the first outdoor heat exchanger is adjusted by adjusting the opening degree thereof. The amount of refrigerant flowing out of 23a is adjusted. The second outdoor expansion valve 24b is provided in the second liquid distribution pipe 44b, and the amount of refrigerant flowing into the second outdoor heat exchanger 23b or the second outdoor heat exchanger is adjusted by adjusting the opening degree thereof. The amount of refrigerant flowing out of 23b is adjusted.

第3四方弁25は、室外機ガス管47および閉鎖弁27を介して、高圧ガス管41とガス管9を接続する、あるいは、低圧ガス管42とガス管9を接続するための弁であり、p、q、r、sの4つのポートを備えている。ポートpには、前述したように高圧ガス管41が接続されている。ポートqは、閉鎖弁27と室外機ガス管47で接続されている。ポートrには、前述したように低圧ガス管42が接続されている。ポートsには、第3キャピラリーチューブ38を備えた第3バイパス管46の一端が接続されており、第3バイパス管46の他端は、接続点Gで低圧ガス管42に接続されている。   The third four-way valve 25 is a valve for connecting the high pressure gas pipe 41 and the gas pipe 9 via the outdoor unit gas pipe 47 and the closing valve 27 or connecting the low pressure gas pipe 42 and the gas pipe 9. , P, q, r, and s. As described above, the high-pressure gas pipe 41 is connected to the port p. The port q is connected to the closing valve 27 by an outdoor unit gas pipe 47. As described above, the low-pressure gas pipe 42 is connected to the port r. One end of a third bypass pipe 46 having a third capillary tube 38 is connected to the port s, and the other end of the third bypass pipe 46 is connected to the low-pressure gas pipe 42 at a connection point G.

室外ファン28は樹脂材で形成されており、第1室外熱交換器23aおよび第2室外熱交換器23bの近傍に配置されている。室外ファン28は、図示しないファンモータによって回転することで図示しない吸込口から室外機2の内部へ外気を取り込み、第1室外熱交換器23aや第2室外熱交換器23bにおいて冷媒と熱交換した外気を図示しない吹出口から室外機2の外部へ放出する。   The outdoor fan 28 is formed of a resin material, and is disposed in the vicinity of the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b. The outdoor fan 28 is rotated by a fan motor (not shown) to take outside air into the outdoor unit 2 from a suction port (not shown), and exchanges heat with the refrigerant in the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b. Outside air is discharged to the outside of the outdoor unit 2 from a blower outlet (not shown).

以上説明した構成の他に、室外機2には各種のセンサが設けられている。図1に示すように、高圧ガス管41における圧縮機21の吐出側近傍には、圧縮機21から吐出される冷媒の圧力を検出する吐出圧力センサ31と、圧縮機21から吐出される冷媒の温度を検出する吐出温度センサ33が設けられている。低圧ガス管42における圧縮機21の吸入側近傍には、圧縮機21に吸入される冷媒の圧力を検出する吸入圧力センサ32と、圧縮機21に吸入される冷媒の温度を検出する吸入温度センサ34が設けられている。   In addition to the configuration described above, the outdoor unit 2 is provided with various sensors. As shown in FIG. 1, in the vicinity of the discharge side of the compressor 21 in the high-pressure gas pipe 41, a discharge pressure sensor 31 that detects the pressure of the refrigerant discharged from the compressor 21, and the refrigerant discharged from the compressor 21 A discharge temperature sensor 33 for detecting the temperature is provided. Near the suction side of the compressor 21 in the low-pressure gas pipe 42, a suction pressure sensor 32 that detects the pressure of the refrigerant sucked into the compressor 21 and a suction temperature sensor that detects the temperature of the refrigerant sucked into the compressor 21. 34 is provided.

第1液分管44aにおける第1室外熱交換器23aと第1室外膨張弁44aとの間には、第1室外熱交換器23aに流入する、または、第1室外熱交換器23aから流出する冷媒の温度を検出する第1熱交温度センサ35aが設けられている。第2液分管44bにおける第2室外熱交換器23bと第2室外膨張弁44bとの間には、第2室外熱交換器23bに流入する、または、第2室外熱交換器23bから流出する冷媒の温度を検出する第2熱交温度センサ35bが設けられている。室外機2の図示しない吸込口付近には、室外機2の内部に流入する外気の温度、すなわち外気温度を検出する外気温度センサ36が備えられている。   Between the first outdoor heat exchanger 23a and the first outdoor expansion valve 44a in the first liquid distribution pipe 44a, the refrigerant flows into the first outdoor heat exchanger 23a or flows out from the first outdoor heat exchanger 23a. The 1st heat exchange temperature sensor 35a which detects the temperature of this is provided. A refrigerant that flows into or out of the second outdoor heat exchanger 23b between the second outdoor heat exchanger 23b and the second outdoor expansion valve 44b in the second liquid distribution pipe 44b. A second heat exchanger temperature sensor 35b is provided for detecting the temperature of the first heat exchanger. An outdoor air temperature sensor 36 that detects the temperature of the outside air flowing into the outdoor unit 2, that is, the outside air temperature, is provided in the vicinity of a suction port (not shown) of the outdoor unit 2.

室外機2には、室外機制御手段200が備えられている。室外機制御手段200は、室外機2の図示しない電装品箱に格納されている制御基板に搭載されている。図3に示すように、室外機制御手段200は、CPU210と、記憶部220と、通信部230と、センサ入力部240と、インバータ部250と、四方弁切替部260を備えている。   The outdoor unit 2 is provided with an outdoor unit control means 200. The outdoor unit control means 200 is mounted on a control board stored in an electrical component box (not shown) of the outdoor unit 2. As shown in FIG. 3, the outdoor unit control means 200 includes a CPU 210, a storage unit 220, a communication unit 230, a sensor input unit 240, an inverter unit 250, and a four-way valve switching unit 260.

記憶部220は、ROMやRAMで構成されており、室外機2の制御プログラムや各種センサからの検出信号に対応した検出値、圧縮機21や室外ファン28の制御状態等を記憶している。通信部230は、室内機5a〜5cとの通信を行うためのインターフェイスである。センサ入力部240は、室外機2の各種センサでの検出結果を取り込んでCPU210に出力する。インバータ部250は、圧縮機21の回転制御を行う。四方弁切替部260は、第1四方弁22a、第2四方弁22b、および第3四方弁25の各々に備えられた図示しないパイロット電磁弁への通電オンオフを行うことで、各四方弁の切り替えを行う。   The storage unit 220 includes a ROM and a RAM, and stores a control program for the outdoor unit 2, detection values corresponding to detection signals from various sensors, control states of the compressor 21 and the outdoor fan 28, and the like. The communication unit 230 is an interface for performing communication with the indoor units 5a to 5c. The sensor input unit 240 captures detection results from various sensors of the outdoor unit 2 and outputs them to the CPU 210. The inverter unit 250 performs rotation control of the compressor 21. The four-way valve switching unit 260 switches each four-way valve by turning on and off the pilot solenoid valve (not shown) provided in each of the first four-way valve 22a, the second four-way valve 22b, and the third four-way valve 25. I do.

CPU210は、前述した室外機2の各センサでの検出結果をセンサ入力部240を介して取り込む。また、CPU210は、室内機5a〜5cから送信される制御信号を通信部230を介して取り込む。CPU210は、取り込んだ検出結果や制御信号に基づいて、インバータ部250を介して圧縮機21の駆動制御や、四方弁切替部260を介して第1四方弁22a、第2四方弁22b、および第3四方弁25の切り替えを行う。また、CPU210は、取り込んだ検出結果や制御信号に基づいて、第1室外膨張弁24aおよび第2室外膨張弁24bの開度制御や室外ファン28の駆動制御を行う。   CPU210 takes in the detection result in each sensor of outdoor unit 2 mentioned above via sensor input part 240. FIG. In addition, the CPU 210 takes in control signals transmitted from the indoor units 5 a to 5 c via the communication unit 230. The CPU 210 controls the drive of the compressor 21 through the inverter unit 250 based on the detection results and control signals taken in, and the first four-way valve 22a, the second four-way valve 22b, and the second through the four-way valve switching unit 260. 3 The four-way valve 25 is switched. Further, the CPU 210 controls the opening degree of the first outdoor expansion valve 24a and the second outdoor expansion valve 24b and the drive control of the outdoor fan 28 based on the acquired detection result and control signal.

次に、3台の室内機5a〜5cについて説明する。3台の室内機5a〜5cは、それぞれ室内熱交換器51a〜51cと、室内膨張弁52a〜52cと、分岐した液管8の他端が接続された液管接続部53a〜53cと、分岐したガス管9の他端が接続されたガス管接続部54a〜54cと、室内ファン55a〜55cを備えている。そして、室内ファン55a〜55cを除くこれら各装置が以下で詳述する各冷媒配管で相互に接続されて、冷媒回路100の一部をなす室内機冷媒回路50a〜50cを構成している。   Next, the three indoor units 5a to 5c will be described. The three indoor units 5a to 5c are respectively branched into indoor heat exchangers 51a to 51c, indoor expansion valves 52a to 52c, and liquid pipe connection portions 53a to 53c to which the other ends of the branched liquid pipes 8 are connected. The gas pipe connecting portions 54a to 54c to which the other ends of the gas pipes 9 are connected are provided, and indoor fans 55a to 55c are provided. And these each apparatus except indoor fan 55a-55c is mutually connected by each refrigerant | coolant piping explained in full detail below, and comprises the indoor unit refrigerant circuit 50a-50c which makes a part of refrigerant circuit 100. FIG.

尚、室内機5a〜5cの構成は全て同じであるため、以下の説明では、室内機5aの構成についてのみ説明を行い、その他の室内機5b、5cについては説明を省略する。また、図1では、室内機5aの構成装置に付与した番号の末尾をaからbおよびcにそれぞれ変更したものが、室外機5aの構成装置と対応する室内機5b、5cの構成装置となる。   In addition, since the structure of all the indoor units 5a-5c is the same, in the following description, only the structure of the indoor unit 5a is demonstrated and description is abbreviate | omitted about the other indoor units 5b and 5c. Moreover, in FIG. 1, what changed the end of the number provided to the component apparatus of the indoor unit 5a from a to b and c becomes the component apparatus of the indoor units 5b and 5c corresponding to the component apparatus of the outdoor unit 5a. .

室内熱交換器51aは、冷媒と後述する室内ファン55aの回転により図示しない吸込口から室内機5aの内部に取り込まれた室内空気とを熱交換させるものであり、一方の冷媒出入口が液管接続部53aに室内機液管71aで接続され、他方の冷媒出入口がガス管接続部54aに室内機ガス管72aで接続されている。液管接続部53aやガス管接続部54aには、各冷媒配管が溶接やフレアナット等により接続されている。室内熱交換器51aは、室内機5aが冷房運転を行う場合は蒸発器として機能し、室内機5aが暖房運転を行う場合は凝縮器として機能する。   The indoor heat exchanger 51a exchanges heat between the refrigerant and room air taken into the interior of the indoor unit 5a through a suction port (not shown) by rotation of an indoor fan 55a, which will be described later. The indoor unit liquid pipe 71a is connected to the section 53a, and the other refrigerant inlet / outlet is connected to the gas pipe connecting section 54a through the indoor unit gas pipe 72a. Refrigerant pipes are connected to the liquid pipe connection portion 53a and the gas pipe connection portion 54a by welding, flare nuts, or the like. The indoor heat exchanger 51a functions as an evaporator when the indoor unit 5a performs a cooling operation, and functions as a condenser when the indoor unit 5a performs a heating operation.

室内膨張弁52aは、室内機液管71aに設けられている。室内膨張弁52aは電子膨張弁であり、その開度を調整することによって室内熱交換器51aに流れる冷媒量を調整することができる。室内膨張弁52aは、室内熱交換器51aが蒸発器として機能する場合は、その開度が要求される冷房能力に応じて調整され、室内熱交換器51aが凝縮器として機能する場合は、その開度が要求される暖房能力に応じて調整される。   The indoor expansion valve 52a is provided in the indoor unit liquid pipe 71a. The indoor expansion valve 52a is an electronic expansion valve, and the amount of refrigerant flowing through the indoor heat exchanger 51a can be adjusted by adjusting the opening degree thereof. When the indoor heat exchanger 51a functions as an evaporator, the indoor expansion valve 52a is adjusted according to the required cooling capacity, and when the indoor heat exchanger 51a functions as a condenser, The opening is adjusted according to the required heating capacity.

室内ファン55aは樹脂材で形成されており、室内熱交換器51aの近傍に配置されている。室内ファン55aは、図示しないファンモータによって回転することで、図示しない吸込口から室内機5a内に室内空気を取り込み、室内熱交換器51aにおいて冷媒と熱交換した室内空気を図示しない吹出口から室内へ供給する。   The indoor fan 55a is formed of a resin material and is disposed in the vicinity of the indoor heat exchanger 51a. The indoor fan 55a is rotated by a fan motor (not shown) to take indoor air into the indoor unit 5a from a suction port (not shown), and the indoor air exchanged with the refrigerant in the indoor heat exchanger 51a from the blower outlet (not shown) to the room. To supply.

以上説明した構成の他に、室内機5aには各種のセンサが設けられている。室内機液管71aにおける室内熱交換器51aと室内膨張弁52aとの間には、室内熱交換器51aに流入あるいは室内熱交換器51aから流出する冷媒の温度を検出する液側温度センサ61aが設けられている。室内機ガス管72aには、室内熱交換器51aから流出あるいは室内熱交換器51aに流入する冷媒の温度を検出するガス側温度センサ62aが設けられている。そして、室内機5aの図示しない吸込口付近には、室内機5a内に流入する室内空気の温度、すなわち室内温度を検出する室内温度センサ63aが備えられている。   In addition to the configuration described above, the indoor unit 5a is provided with various sensors. Between the indoor heat exchanger 51a and the indoor expansion valve 52a in the indoor unit liquid pipe 71a, a liquid side temperature sensor 61a that detects the temperature of the refrigerant flowing into or out of the indoor heat exchanger 51a. Is provided. The indoor unit gas pipe 72a is provided with a gas side temperature sensor 62a that detects the temperature of the refrigerant flowing out of the indoor heat exchanger 51a or flowing into the indoor heat exchanger 51a. An indoor temperature sensor 63a that detects the temperature of the indoor air flowing into the indoor unit 5a, that is, the indoor temperature, is provided in the vicinity of a suction port (not shown) of the indoor unit 5a.

図示は省略するが、室内機5aの電装品箱に格納された制御基板には、室内機制御手段が搭載されている。室内機制御手段には、液側温度センサ61aやガス側温度センサ62aや室内温度センサ63aで検出した検出値が入力され、また、使用者が図示しないリモコンを操作して設定した運転条件(設定温度や風量等)を含んだ信号が入力される。室内機制御手段は、これら入力された各種情報や後述する室外機制御手段200から送信される制御信号に基づいて、室内膨張弁52aの開度制御や、室内ファン55aの駆動制御を行う。   Although illustration is omitted, indoor unit control means is mounted on the control board stored in the electrical component box of the indoor unit 5a. The detected values detected by the liquid side temperature sensor 61a, the gas side temperature sensor 62a, and the room temperature sensor 63a are input to the indoor unit control means, and the operating conditions (settings) set by the user by operating a remote controller (not shown) A signal including temperature and air volume is input. The indoor unit control means controls the opening degree of the indoor expansion valve 52a and the drive control of the indoor fan 55a based on the inputted various information and a control signal transmitted from the outdoor unit control means 200 described later.

次に、本実施形態における空気調和装置1の運転時の冷媒回路100における冷媒の流れや各部の動作について、図1乃至図5を用いて説明する。本実施形態における空気調和装置1は、室内機5a〜5cが設置された室内の暖房を行う暖房運転と、室内機5a〜5cが設置された室内の冷房を行う冷房運転と、上述した暖房運転を行っているときに第1室外熱交換器23aや第2室外熱交換器23bに付着した霜を融かす除霜運転を行うことができる。   Next, the flow of the refrigerant and the operation of each part in the refrigerant circuit 100 during operation of the air-conditioning apparatus 1 in the present embodiment will be described with reference to FIGS. 1 to 5. The air conditioner 1 according to the present embodiment includes a heating operation for heating the room in which the indoor units 5a to 5c are installed, a cooling operation for cooling the room in which the indoor units 5a to 5c are installed, and the heating operation described above. When performing the defrosting operation, the frost adhered to the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b can be melted.

以下の説明では、まず、図1を用いて暖房運転時の空気調和装置1の動作について説明し、次に、図2を用いて冷房運転時の空気調和装置1の動作について説明する。最後に、図4および図5を用いて除霜運転時の空気調和装置1の動作について説明する。尚、図3を除いた各図において、矢印は冷媒回路100における冷媒の流れ方向を示し、凝縮器として機能する熱交換器はハッチングを付し、蒸発器として機能する熱交換器は白抜きで図示している。   In the following description, first, the operation of the air conditioner 1 during the heating operation will be described using FIG. 1, and then the operation of the air conditioner 1 during the cooling operation will be described using FIG. 2. Finally, operation | movement of the air conditioning apparatus 1 at the time of a defrost operation is demonstrated using FIG. 4 and FIG. In each of the drawings excluding FIG. 3, the arrows indicate the flow direction of the refrigerant in the refrigerant circuit 100, the heat exchanger that functions as a condenser is hatched, and the heat exchanger that functions as an evaporator is outlined. It is shown.

<暖房運転>
図1に示すように、暖房運転を行うとき、室外機制御手段200のCPU210は、四方弁切替部260を介して第1四方弁22aを実線で示す状態、すなわち、ポートaとポートdとが連通するように、また、ポートbとポートcとが連通するように切り替える。また、CPU210は、四方弁切替部260を介して第2四方弁22bを実線で示す状態、すなわち、ポートeとポートhとが連通するように、また、ポートfとポートgとが連通するように切り替える。さらには、CPU210は、四方弁切替部260を介して第3四方弁25を実線で示す状態、すなわち、ポートpとポートqとが連通するように、また、ポートrとポートsとが連通するように切り替えて、高圧ガス管41とガス管9を室外機ガス管47および閉鎖弁27を介して接続する。以上のように各四方弁を切り替えることによって、第1室外熱交換器23aおよび第2室外熱交換器23bが蒸発器として機能するとともに、室内熱交換器51a〜51cが凝縮器として機能する。
<Heating operation>
As shown in FIG. 1, when heating operation is performed, the CPU 210 of the outdoor unit control means 200 is in a state where the first four-way valve 22a is indicated by a solid line via the four-way valve switching unit 260, that is, the port a and the port d are It switches so that it may communicate and port b and port c communicate. In addition, the CPU 210 is in a state where the second four-way valve 22b is indicated by a solid line via the four-way valve switching unit 260, that is, the port e and the port h communicate with each other, and the port f and the port g communicate with each other. Switch to. Furthermore, the CPU 210 is in a state where the third four-way valve 25 is indicated by a solid line via the four-way valve switching unit 260, that is, the port p and the port q communicate with each other, and the port r and the port s communicate with each other. Thus, the high pressure gas pipe 41 and the gas pipe 9 are connected via the outdoor unit gas pipe 47 and the shut-off valve 27. By switching each four-way valve as described above, the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b function as evaporators, and the indoor heat exchangers 51a to 51c function as condensers.

冷媒回路100が図1に示す状態となっているとき、圧縮機21から吐出された冷媒は高圧ガス管41を流れ、第3四方弁25、室外機ガス管47、閉鎖弁27を介してガス管9に流入する。尚、高圧ガス管41を流れる冷媒は、接続点Aで第1高圧分管41aや第2高圧分管41bにも分流するが、第1高圧分管41aに流入した冷媒は、第1四方弁22a、第1バイパス管45aを介して接続点Eから第1低圧分管42aへと流れる際に、第1バイパス管45aに設けられた第1キャピラリーチューブ37aによって流量を大きく制限される。また、第2高圧分管41bに流入した冷媒は、第2四方弁22b、第2バイパス管45bを介して接続点Fから第2低圧分管42bへと流れる際に、第2バイパス管45bに設けられた第2キャピラリーチューブ37bによって流量を大きく制限される。   When the refrigerant circuit 100 is in the state shown in FIG. 1, the refrigerant discharged from the compressor 21 flows through the high-pressure gas pipe 41 and passes through the third four-way valve 25, the outdoor unit gas pipe 47, and the closing valve 27. It flows into the tube 9. The refrigerant flowing through the high pressure gas pipe 41 is also divided into the first high pressure branch pipe 41a and the second high pressure branch pipe 41b at the connection point A, but the refrigerant flowing into the first high pressure branch pipe 41a is the first four-way valve 22a, When flowing from the connection point E to the first low-pressure distribution pipe 42a through the first bypass pipe 45a, the flow rate is largely limited by the first capillary tube 37a provided in the first bypass pipe 45a. The refrigerant flowing into the second high-pressure distribution pipe 41b is provided in the second bypass pipe 45b when flowing from the connection point F to the second low-pressure distribution pipe 42b via the second four-way valve 22b and the second bypass pipe 45b. The flow rate is greatly limited by the second capillary tube 37b.

ガス管9に流入した冷媒は分流し、ガス管接続部54a〜54cを介して各室内機5a〜5cに流入する。各室内機5a〜5cに流入した冷媒は、室内機ガス管72a〜72cを流れて室内熱交換器51a〜51cに流入し、室内ファン55a〜55cの回転により室内機5a〜5cの内部に取り込まれた室内空気と熱交換を行って凝縮する。このように、室内熱交換器51a〜51cが凝縮器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a〜5cが設置された室内の暖房が行われる。   The refrigerant flowing into the gas pipe 9 is divided and flows into the indoor units 5a to 5c via the gas pipe connecting portions 54a to 54c. The refrigerant flowing into the indoor units 5a to 5c flows through the indoor unit gas pipes 72a to 72c, flows into the indoor heat exchangers 51a to 51c, and is taken into the indoor units 5a to 5c by the rotation of the indoor fans 55a to 55c. Heat exchanges with the room air and condenses. As described above, the indoor heat exchangers 51a to 51c function as condensers, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchangers 51a to 51c is blown into the room from a blowout port (not shown), thereby The room where the machines 5a to 5c are installed is heated.

室内熱交換器51a〜51cから流出した冷媒は室内機液管71a〜71cを流れ、室内膨張弁52a〜52cを通過して減圧される。減圧された冷媒は、液管接続部53a〜53cを介して液管8に流入する。液管8を流れ閉鎖弁26を介して室外機2に流入した冷媒は、室外機液管44を流れて接続点Bで第1液分管44aと第2液分管44bとに分流する。   The refrigerant flowing out of the indoor heat exchangers 51a to 51c flows through the indoor unit liquid pipes 71a to 71c, passes through the indoor expansion valves 52a to 52c, and is decompressed. The decompressed refrigerant flows into the liquid pipe 8 through the liquid pipe connecting portions 53a to 53c. The refrigerant flowing through the liquid pipe 8 and flowing into the outdoor unit 2 through the shut-off valve 26 flows through the outdoor unit liquid pipe 44 and is divided at the connection point B into the first liquid distribution pipe 44a and the second liquid distribution pipe 44b.

第1液分管44aに流入した冷媒は、第1室外膨張弁24aを通過するときに更に減圧される。第1室外膨張弁24aから第1室外熱交換器23aに流入した冷媒は、室外ファン28の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。第1室外熱交換器23aから流出した冷媒は、第1接続配管43a、第1四方弁22a、第1低圧分管42aを流れて、接続点Cから低圧ガス管42に流入する。   The refrigerant flowing into the first liquid distribution pipe 44a is further decompressed when passing through the first outdoor expansion valve 24a. The refrigerant flowing into the first outdoor heat exchanger 23a from the first outdoor expansion valve 24a evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28. The refrigerant that has flowed out of the first outdoor heat exchanger 23a flows through the first connection pipe 43a, the first four-way valve 22a, and the first low-pressure distribution pipe 42a, and flows into the low-pressure gas pipe 42 from the connection point C.

一方、第2液分管44bに流入した冷媒は、第2室外膨張弁24bを通過するときに更に減圧される。第2室外膨張弁24bから第2室外熱交換器23bに流入した冷媒は、室外ファン28の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。第2室外熱交換器23bから流出した冷媒は、第2接続配管43b、第2四方弁22b、第2低圧分管42bを流れて、接続点Dから低圧ガス管42に流入する。
第1低圧分管42aおよび第2低圧分管42bから低圧ガス管42に流入した冷媒は、圧縮機21に吸入されて再び圧縮される。
On the other hand, the refrigerant flowing into the second liquid distribution pipe 44b is further depressurized when passing through the second outdoor expansion valve 24b. The refrigerant flowing into the second outdoor heat exchanger 23b from the second outdoor expansion valve 24b evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28. The refrigerant that has flowed out of the second outdoor heat exchanger 23b flows through the second connection pipe 43b, the second four-way valve 22b, and the second low-pressure distribution pipe 42b, and flows into the low-pressure gas pipe 42 from the connection point D.
The refrigerant that has flowed into the low pressure gas pipe 42 from the first low pressure branch pipe 42a and the second low pressure branch pipe 42b is sucked into the compressor 21 and compressed again.

<冷房運転>
図2に示すように、冷房運転を行うとき、CPU210は、四方弁切替部260を介して第1四方弁22aを実線で示す状態、すなわち、ポートaとポートbとが連通するように、また、ポートcとポートdとが連通するように切り替える。また、CPU210は、四方弁切替部260を介して第2四方弁22bを実線で示す状態、すなわち、ポートeとポートfとが連通するように、また、ポートgとポートhとが連通するように切り替える。さらには、CPU210は、四方弁切替部260を介して第3四方弁25を実線で示す状態、すなわち、ポートpとポートsとが連通するように、また、ポートqとポートrとが連通するように切り替えて、低圧ガス管42とガス管9を室外機ガス管47および閉鎖弁27を介して接続する。以上のように各四方弁を切り替えることによって、第1室外熱交換器23aおよび第2室外熱交換器23bが凝縮器として機能するとともに、室内熱交換器51a〜51cが蒸発器として機能する。
<Cooling operation>
As shown in FIG. 2, when performing the cooling operation, the CPU 210 is configured so that the first four-way valve 22a is indicated by a solid line via the four-way valve switching unit 260, that is, the port a and the port b communicate with each other. The port c and the port d are switched so as to communicate with each other. In addition, the CPU 210 is in a state where the second four-way valve 22b is indicated by a solid line via the four-way valve switching unit 260, that is, the port e and the port f communicate with each other, and the port g and the port h communicate with each other. Switch to. Furthermore, the CPU 210 is in a state in which the third four-way valve 25 is indicated by a solid line via the four-way valve switching unit 260, that is, the port p and the port s communicate with each other, and the port q and the port r communicate with each other. The low-pressure gas pipe 42 and the gas pipe 9 are connected via the outdoor unit gas pipe 47 and the shut-off valve 27. By switching each four-way valve as described above, the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b function as condensers, and the indoor heat exchangers 51a to 51c function as evaporators.

冷媒回路100が図2に示す状態となっているとき、圧縮機21から吐出された冷媒は、高圧ガス管41を流れて接続点Aで第1高圧分管41aと第2高圧分管41bに分流する。尚、高圧ガス管41を流れる冷媒の一部は、第3四方弁25、第3バイパス管46を介して接続点Gから低圧ガス管42へ流れる際に、第3バイパス管46に設けられた第3キャピラリーチューブ38によって流量を大きく制限される。   When the refrigerant circuit 100 is in the state shown in FIG. 2, the refrigerant discharged from the compressor 21 flows through the high-pressure gas pipe 41 and is divided into the first high-pressure branch pipe 41a and the second high-pressure branch pipe 41b at the connection point A. . A part of the refrigerant flowing through the high-pressure gas pipe 41 is provided in the third bypass pipe 46 when flowing from the connection point G to the low-pressure gas pipe 42 via the third four-way valve 25 and the third bypass pipe 46. The flow rate is largely limited by the third capillary tube 38.

第1高圧分管41aを流れる冷媒は第1四方弁22aに流入し、第1四方弁22aから第1接続配管43aを流れて第1室外熱交換器23aに流入する。第1室外熱交換器23aに流入した冷媒は、室外ファン28の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。第1室外熱交換器23aから流出した冷媒は第1液分管44aを流れ、全開とされている第1室外膨張弁24aを介して接続点Bから室外機液管44に流入する。   The refrigerant flowing through the first high-pressure branch pipe 41a flows into the first four-way valve 22a, flows from the first four-way valve 22a through the first connection pipe 43a, and flows into the first outdoor heat exchanger 23a. The refrigerant flowing into the first outdoor heat exchanger 23 a is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28. The refrigerant flowing out of the first outdoor heat exchanger 23a flows through the first liquid distribution pipe 44a, and flows into the outdoor unit liquid pipe 44 from the connection point B through the fully opened first outdoor expansion valve 24a.

一方、第2吐出分管41bを流れる冷媒は第2四方弁22bに流入し、第2四方弁22bから第2接続配管43bを流れて第2室外熱交換器23bに流入する。第2室外熱交換器23bに流入した冷媒は、室外ファン28の回転により室外機2の内部に取り込まれた外気と熱交換を行って凝縮する。第2室外熱交換器23bから流出した冷媒は第2液分管44bを流れ、全開とされている第2室外膨張弁24bを介して接続点Bから室外機液管44に流入する。
第1液分管44aおよび第2液分管44bから室外機液管44に流入した冷媒は、閉鎖弁26を介して液管8に流入する。
On the other hand, the refrigerant flowing through the second discharge branch pipe 41b flows into the second four-way valve 22b, flows from the second four-way valve 22b through the second connection pipe 43b, and flows into the second outdoor heat exchanger 23b. The refrigerant flowing into the second outdoor heat exchanger 23 b is condensed by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28. The refrigerant flowing out of the second outdoor heat exchanger 23b flows through the second liquid distribution pipe 44b and flows into the outdoor unit liquid pipe 44 from the connection point B through the fully opened second outdoor expansion valve 24b.
The refrigerant that has flowed into the outdoor unit liquid pipe 44 from the first liquid distribution pipe 44 a and the second liquid distribution pipe 44 b flows into the liquid pipe 8 through the closing valve 26.

液管8を流れて分流し液管接続部53a〜53cを介して各室内機5a〜5cに流入した冷媒は、室内機液管71a〜71cを流れ、室内膨張弁52a〜52cを通過するときに減圧される。室内機液管71a〜71cから室内熱交換器51a〜51cに流入した冷媒は、室内ファン55a〜55cの回転により室内機5a〜5cの内部に取り込まれた室内空気と熱交換を行って蒸発する。このように、室内熱交換器51a〜51cが蒸発器として機能し、室内熱交換器51a〜51cで冷媒と熱交換を行った室内空気が図示しない吹出口から室内に吹き出されることによって、室内機5a〜5cが設置された室内の冷房が行われる。   When the refrigerant flowing through the liquid pipe 8 is divided and flows into the indoor units 5a to 5c via the liquid pipe connecting portions 53a to 53c, the refrigerant flows through the indoor unit liquid pipes 71a to 71c and passes through the indoor expansion valves 52a to 52c. The pressure is reduced to The refrigerant flowing into the indoor heat exchangers 51a to 51c from the indoor unit liquid tubes 71a to 71c evaporates by exchanging heat with the indoor air taken into the indoor units 5a to 5c by the rotation of the indoor fans 55a to 55c. . In this way, the indoor heat exchangers 51a to 51c function as evaporators, and the indoor air that has exchanged heat with the refrigerant in the indoor heat exchangers 51a to 51c is blown into the room from a blower outlet (not shown), thereby The room where the machines 5a to 5c are installed is cooled.

室内熱交換器51a〜51cから流出した冷媒は、室内機ガス管72a〜72cを流れガス管接続部54a〜54cを介してガス管9に流入する。ガス管9を流れ閉鎖弁27を介して室外機2に流入した冷媒は、室外機ガス管47、第3四方弁25を介して低圧ガス管42に流入し、低圧ガス管42を流れて圧縮機21に吸入されて再び圧縮される。   The refrigerant that has flowed out of the indoor heat exchangers 51a to 51c flows through the indoor unit gas pipes 72a to 72c and flows into the gas pipe 9 through the gas pipe connection portions 54a to 54c. The refrigerant that flows through the gas pipe 9 and flows into the outdoor unit 2 through the closing valve 27 flows into the low-pressure gas pipe 42 through the outdoor unit gas pipe 47 and the third four-way valve 25, and flows through the low-pressure gas pipe 42 to be compressed. It is sucked into the machine 21 and compressed again.

<除霜運転>
空気調和装置1が上述した暖房運転を行っているときに、例えば、第1熱交温度センサ35aや第2熱交温度センサ35bで検出した冷媒温度つまり第1熱交温度センサ35aや第2熱交温度センサ35bの温度が0℃以下でありかつ第1熱交温度センサ35aや第2熱交温度センサ35bの温度が外気温度センサ36で検出した外気温度より10℃以上低い状態が10分以上継続した場合や、前回除霜運転を終了してから3時間以上が経過している場合は、第1室外熱交換器23aや第2室外熱交換器23bに暖房能力に支障をきたす量の着霜が発生している恐れがある。
<Defrosting operation>
When the air conditioner 1 performs the heating operation described above, for example, the refrigerant temperature detected by the first heat exchange temperature sensor 35a or the second heat exchange temperature sensor 35b, that is, the first heat exchange temperature sensor 35a or the second heat exchange temperature sensor 35b. The state in which the temperature of the alternating temperature sensor 35b is 0 ° C. or lower and the temperature of the first heat exchanger temperature sensor 35a or the second heat exchanger temperature sensor 35b is 10 ° C. or higher lower than the outdoor air temperature detected by the outdoor air temperature sensor 36 is 10 minutes or longer If it continues or if more than 3 hours have passed since the last defrosting operation, the first outdoor heat exchanger 23a or the second outdoor heat exchanger 23b has an amount that will affect the heating capacity. There may be frost.

本実施形態の空気調和装置1では、第1室外熱交換器23aや第2室外熱交換器23bに着霜が発生しているとき、室内機5a〜5cの暖房運転を継続しつつ第1室外熱交換器23a、第2室外熱交換器23bの順で除霜を行う除霜運転を実行する。以下に、空気調和装置1の除霜運転について詳細に説明するが、まずは図4を用いて第1室外熱交換器23aを除霜する場合の空気調和装置1の動作を説明し、次に図5を用いて第2室外熱交換器23bを除霜する場合の空気調和装置1の動作を説明する。   In the air conditioning apparatus 1 of the present embodiment, when frost is generated in the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b, the indoor units 5a to 5c are kept in the heating operation while continuing the heating operation. A defrosting operation for performing defrosting in the order of the heat exchanger 23a and the second outdoor heat exchanger 23b is executed. Hereinafter, the defrosting operation of the air conditioner 1 will be described in detail. First, the operation of the air conditioner 1 when the first outdoor heat exchanger 23a is defrosted will be described with reference to FIG. The operation of the air conditioning apparatus 1 when the second outdoor heat exchanger 23b is defrosted using 5 will be described.

<第1室外熱交換器23aの除霜>
図4に示すように、暖房運転中に第1室外熱交換器23aの除霜を行うとき、CPU210は、四方弁切替部260を介して第1四方弁22aを実線で示す状態、すなわち、ポートaとポートbとが連通するように、また、ポートcとポートdとが連通するように切り替える。このとき、CPU210は、第2四方弁22bや第3四方弁25は切り替えず暖房運転のときのままとする。第1四方弁22aのみ上述したように切り替えることによって、第1室外熱交換器23aが凝縮器として機能し、第2室外熱交換器23bが蒸発器として機能し、室内熱交換器51a〜51cが凝縮器として機能する。
<Defrosting of the first outdoor heat exchanger 23a>
As shown in FIG. 4, when the first outdoor heat exchanger 23a is defrosted during the heating operation, the CPU 210 indicates a state in which the first four-way valve 22a is indicated by a solid line via the four-way valve switching unit 260, that is, the port Switching is performed so that a and port b communicate with each other, and port c and port d communicate with each other. At this time, the CPU 210 does not switch the second four-way valve 22b and the third four-way valve 25 and keeps the heating operation. By switching only the first four-way valve 22a as described above, the first outdoor heat exchanger 23a functions as a condenser, the second outdoor heat exchanger 23b functions as an evaporator, and the indoor heat exchangers 51a to 51c Functions as a condenser.

冷媒回路100が図4に示す状態となっているとき、圧縮機21から吐出された冷媒は高圧ガス管41を流れ、第3四方弁25、室外機ガス管47、閉鎖弁27を介してガス管9に流入する。ガス管9に流入した冷媒は分流し、ガス管接続部54a〜54cを介して各室内機5a〜5cに流入する。これ以降、室外機2に流入するまでの冷媒の流れは、前述した暖房運転を行う際と同じであるため、説明を省略する。   When the refrigerant circuit 100 is in the state shown in FIG. 4, the refrigerant discharged from the compressor 21 flows through the high-pressure gas pipe 41 and passes through the third four-way valve 25, the outdoor unit gas pipe 47, and the closing valve 27. It flows into the tube 9. The refrigerant flowing into the gas pipe 9 is divided and flows into the indoor units 5a to 5c via the gas pipe connecting portions 54a to 54c. Thereafter, the flow of the refrigerant until it flows into the outdoor unit 2 is the same as that in the heating operation described above, and thus the description thereof is omitted.

液管8を流れ閉鎖弁26を介して室外機2に流入した冷媒は、室外機液管44を流れて接続点Bから第2液分管44bへと流れる。第2液分管44bに流入した冷媒は、第2室外膨張弁24bを通過するときに更に減圧される。第2室外膨張弁24bから第2室外熱交換器23bに流入した冷媒は、室外ファン28の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。第2室外熱交換器23bから流出した冷媒は、第2接続配管43b、第2四方弁22b、第2低圧分管42bを流れて、接続点Dから低圧ガス管42に流入する。そして、低圧ガス管42に流入した冷媒は、圧縮機21に吸入されて再び圧縮される。   The refrigerant flowing through the liquid pipe 8 and flowing into the outdoor unit 2 through the closing valve 26 flows through the outdoor unit liquid pipe 44 and flows from the connection point B to the second liquid distribution pipe 44b. The refrigerant flowing into the second liquid distribution pipe 44b is further depressurized when passing through the second outdoor expansion valve 24b. The refrigerant flowing into the second outdoor heat exchanger 23b from the second outdoor expansion valve 24b evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28. The refrigerant that has flowed out of the second outdoor heat exchanger 23b flows through the second connection pipe 43b, the second four-way valve 22b, and the second low-pressure distribution pipe 42b, and flows into the low-pressure gas pipe 42 from the connection point D. Then, the refrigerant flowing into the low pressure gas pipe 42 is sucked into the compressor 21 and compressed again.

一方、接続点Aで高圧ガス管41から第1高圧分管41aに流入した冷媒は、第1四方弁22aから第1接続配管43aを流れて第1室外熱交換器23aに流入する。第1室外熱交換器23aに流入した冷媒は、第1室外熱交換器23aに付着している霜を融かして液冷媒あるいは気液二相冷媒となる。このように、凝縮器として機能している第1室外熱交換器23aに流入した冷媒が霜を融かし、第1室外熱交換器23aの除霜が行われる。
第1室外熱交換器23aから流出した冷媒は第1液分管44aを流れて第1室外膨張弁24aで減圧され、室内機5a〜5cから室外機2に流入し室外機液管44を流れてきた冷媒と接続点Bで合流する。
On the other hand, the refrigerant that has flowed from the high-pressure gas pipe 41 into the first high-pressure branch pipe 41a at the connection point A flows from the first four-way valve 22a through the first connection pipe 43a and into the first outdoor heat exchanger 23a. The refrigerant that has flowed into the first outdoor heat exchanger 23a melts frost adhering to the first outdoor heat exchanger 23a to become a liquid refrigerant or a gas-liquid two-phase refrigerant. Thus, the refrigerant that has flowed into the first outdoor heat exchanger 23a functioning as a condenser melts frost, and the first outdoor heat exchanger 23a is defrosted.
The refrigerant flowing out of the first outdoor heat exchanger 23a flows through the first liquid distribution pipe 44a, is decompressed by the first outdoor expansion valve 24a, flows into the outdoor unit 2 from the indoor units 5a to 5c, and flows through the outdoor unit liquid pipe 44. The refrigerant joins at the connection point B.

CPU210は、第1室外熱交換器23aの除霜を行っているとき、第1熱交温度センサ35aで検出した冷媒温度が10℃以上となっていれば、あるいは、第1室外熱交換器23aの除霜を開始してから所定時間(例えば5分)以上が経過していれば、第1室外熱交換器23aの除霜が完了したと判断し、続いて第2室外熱交換器23bの除霜を行う。   When the CPU 210 performs defrosting of the first outdoor heat exchanger 23a, if the refrigerant temperature detected by the first heat exchange temperature sensor 35a is 10 ° C. or higher, or the first outdoor heat exchanger 23a. If a predetermined time (for example, 5 minutes) has elapsed since the start of the defrosting, it is determined that the defrosting of the first outdoor heat exchanger 23a has been completed, and then the second outdoor heat exchanger 23b Perform defrosting.

<第2室外熱交換器23bの除霜>
図5に示すように、第1室外熱交換器23aの除霜終了後に第2室外熱交換器23bの除霜を行うとき、CPU210は、四方弁切替部260を介して第1四方弁22aを実線で示す状態、すなわち、ポートaとポートdとが連通するように、また、ポートbとポートcとが連通するように切り替える。また、CPU210は、四方弁切替部260を介して第2四方弁22bを実線で示す状態、すなわち、ポートeとポートfとが連通するように、また、ポートgとポートhとが連通するように切り替える。このとき、CPU210は、第3四方弁25は切り替えず暖房運転のときのままとする。第1四方弁22aと第2四方弁22bを上述したように切り替えることによって、第1室外熱交換器23aが蒸発器として機能し、第2室外熱交換器23bが凝縮器として機能し、室内熱交換器51a〜51cが凝縮器として機能する。
<Defrosting of the second outdoor heat exchanger 23b>
As shown in FIG. 5, when the second outdoor heat exchanger 23 b is defrosted after the defrosting of the first outdoor heat exchanger 23 a, the CPU 210 switches the first four-way valve 22 a via the four-way valve switching unit 260. The state shown by the solid line, that is, switching is performed so that the port a and the port d communicate with each other and the port b and the port c communicate with each other. In addition, the CPU 210 is in a state where the second four-way valve 22b is indicated by a solid line via the four-way valve switching unit 260, that is, the port e and the port f communicate with each other, and the port g and the port h communicate with each other. Switch to. At this time, the CPU 210 does not switch the third four-way valve 25 and keeps the heating operation. By switching the first four-way valve 22a and the second four-way valve 22b as described above, the first outdoor heat exchanger 23a functions as an evaporator, the second outdoor heat exchanger 23b functions as a condenser, The exchangers 51a to 51c function as a condenser.

冷媒回路100が図5に示す状態となっているとき、圧縮機21から吐出された冷媒は高圧ガス管41を流れ、第3四方弁25、室外機ガス管47、閉鎖弁27を介してガス管9に流入する。ガス管9に流入した冷媒は分流し、ガス管接続部54a〜54cを介して各室内機5a〜5cに流入する。これ以降、室外機2に流入するまでの冷媒の流れは、前述した暖房運転を行う際と同じであるため、説明を省略する。   When the refrigerant circuit 100 is in the state shown in FIG. 5, the refrigerant discharged from the compressor 21 flows through the high-pressure gas pipe 41 and passes through the third four-way valve 25, the outdoor unit gas pipe 47, and the closing valve 27. It flows into the tube 9. The refrigerant flowing into the gas pipe 9 is divided and flows into the indoor units 5a to 5c via the gas pipe connecting portions 54a to 54c. Thereafter, the flow of the refrigerant until it flows into the outdoor unit 2 is the same as that in the heating operation described above, and thus the description thereof is omitted.

液管8を流れ閉鎖弁26を介して室外機2に流入した冷媒は、室外機液管44を流れて接続点Bから第1液分管44aへと流れる。第1液分管44aに流入した冷媒は、第1室外膨張弁24aを通過するときに更に減圧される。第1室外膨張弁24aから第1室外熱交換器23aに流入した冷媒は、室外ファン28の回転により室外機2の内部に取り込まれた外気と熱交換を行って蒸発する。第1室外熱交換器23aから流出した冷媒は、第1接続配管43a、第1四方弁22a、第1低圧分管42aを流れて、接続点Cから低圧ガス管42に流入する。そして、低圧ガス管42に流入した冷媒は、圧縮機21に吸入されて再び圧縮される。   The refrigerant flowing through the liquid pipe 8 and flowing into the outdoor unit 2 through the shut-off valve 26 flows through the outdoor unit liquid pipe 44 and flows from the connection point B to the first liquid distribution pipe 44a. The refrigerant flowing into the first liquid distribution pipe 44a is further decompressed when passing through the first outdoor expansion valve 24a. The refrigerant flowing into the first outdoor heat exchanger 23a from the first outdoor expansion valve 24a evaporates by exchanging heat with the outside air taken into the outdoor unit 2 by the rotation of the outdoor fan 28. The refrigerant that has flowed out of the first outdoor heat exchanger 23a flows through the first connection pipe 43a, the first four-way valve 22a, and the first low-pressure distribution pipe 42a, and flows into the low-pressure gas pipe 42 from the connection point C. Then, the refrigerant flowing into the low pressure gas pipe 42 is sucked into the compressor 21 and compressed again.

一方、接続点Aで高圧ガス管41から第2高圧分管41bに流入した冷媒は、第2四方弁22bから第2接続配管43bを流れて第2室外熱交換器23bに流入する。第2室外熱交換器23bに流入した冷媒は、第2室外熱交換器23bで発生した霜を融かして液冷媒あるいは気液二相冷媒となる。このように、凝縮器として機能している第2室外熱交換器23bに流入した冷媒が霜を融かし、第2室外熱交換器23bの除霜が行われる。
第2室外熱交換器23bから流出した冷媒は第2液分管44bを流れて第2室外膨張弁24bで減圧され、室内機5a〜5cから室外機2に流入し室外機液管44を流れてきた冷媒と接続点Bで合流する。
On the other hand, the refrigerant that has flowed from the high pressure gas pipe 41 into the second high pressure branch pipe 41b at the connection point A flows from the second four-way valve 22b through the second connection pipe 43b and into the second outdoor heat exchanger 23b. The refrigerant flowing into the second outdoor heat exchanger 23b melts the frost generated in the second outdoor heat exchanger 23b to become a liquid refrigerant or a gas-liquid two-phase refrigerant. Thus, the refrigerant that has flowed into the second outdoor heat exchanger 23b functioning as a condenser melts frost, and defrosting of the second outdoor heat exchanger 23b is performed.
The refrigerant that has flowed out of the second outdoor heat exchanger 23b flows through the second liquid distribution pipe 44b, is depressurized by the second outdoor expansion valve 24b, flows into the outdoor unit 2 from the indoor units 5a to 5c, and flows through the outdoor unit liquid pipe 44. The refrigerant joins at the connection point B.

CPU210は、第2室外熱交換器23bの除霜を行っているとき、第2熱交温度センサ35bで検出した冷媒温度が10℃以上となっていれば、あるいは、第1室外熱交換器23aの除霜を開始してから所定時間(例えば5分)以上が経過していれば、第2室外熱交換器23bの除霜が完了したと判断し、冷媒回路100を図1に示す状態に戻して暖房運転を継続する。   When the CPU 210 defrosts the second outdoor heat exchanger 23b, if the refrigerant temperature detected by the second heat exchange temperature sensor 35b is 10 ° C. or higher, or the first outdoor heat exchanger 23a. If a predetermined time (for example, 5 minutes) has elapsed since the start of the defrosting, it is determined that the defrosting of the second outdoor heat exchanger 23b has been completed, and the refrigerant circuit 100 is brought into the state shown in FIG. Return and continue heating operation.

以上説明したように、空気調和装置1が除霜運転を行うとき、第1室外熱交換器23aを凝縮器として機能させて第1室外熱交換器23aを除霜しているときは第2室外熱交換器23bが蒸発器として機能し、第2室外熱交換器23bを凝縮器として機能させて第2室外熱交換器23bを除霜しているときは第1室外熱交換器23aが蒸発器として機能している。そして、前述したように、一方の室外熱交換器に流入し霜を融かして当該室外熱交換器から流出した液冷媒あるいは気液二相冷媒は、他方の蒸発器として機能している室外熱交換器に流入し蒸発して圧縮機21に吸入される。これにより、除霜した室外熱交換器から流出した液冷媒あるいは気液二相冷媒がそのまま圧縮機21に吸入されることがないので、圧縮機21の吐出温度の低下が抑制でき、吐出温度の低下に起因して除霜時間が長くなることがない。   As described above, when the air conditioner 1 performs the defrosting operation, when the first outdoor heat exchanger 23a is functioning as a condenser to defrost the first outdoor heat exchanger 23a, the second outdoor When the heat exchanger 23b functions as an evaporator and the second outdoor heat exchanger 23b functions as a condenser to defrost the second outdoor heat exchanger 23b, the first outdoor heat exchanger 23a is an evaporator. Is functioning. As described above, the liquid refrigerant or the gas-liquid two-phase refrigerant that flows into one outdoor heat exchanger, melts frost, and flows out from the outdoor heat exchanger is the outdoor functioning as the other evaporator. It flows into the heat exchanger, evaporates and is sucked into the compressor 21. As a result, the liquid refrigerant or the gas-liquid two-phase refrigerant flowing out from the defrosted outdoor heat exchanger is not sucked into the compressor 21 as it is, so that a decrease in the discharge temperature of the compressor 21 can be suppressed, and the discharge temperature can be reduced. The defrosting time does not become longer due to the decrease.

また、本発明の空気調和装置1は、室外機2に高圧ガス管41と第3四方弁25を備えることで、室内機5a〜5cでの暖房運転を継続しつつ第1室外熱交換器23aあるいは第2室外熱交換器23bの除霜が行える。   Moreover, the air conditioning apparatus 1 of the present invention includes the high pressure gas pipe 41 and the third four-way valve 25 in the outdoor unit 2, so that the first outdoor heat exchanger 23a is maintained while continuing the heating operation in the indoor units 5a to 5c. Or the 2nd outdoor heat exchanger 23b can be defrosted.

一般的に、室外機と室内機がガス管と液管の2本の冷媒配管で接続され、室内機で冷房あるいは暖房のうちいずれか一方を同時に行う空気調和装置では、室外機にもガス管と液管の2本の冷媒配管が備えられる。図1を用いて具体的に説明すると、圧縮機21の吐出側に接続される冷媒配管は第1四方弁22aと第2四方弁22bに分岐されて接続される。また、圧縮機21の吸入側と第1四方弁22aのポートcおよび第2四方弁22bのポートgが冷媒配管で接続されるとともに、閉鎖弁27と第1四方弁22aのポートdおよび第2四方弁22bのポートhが冷媒配管で接続される。ここで、閉鎖弁27と第1四方弁22aのポートdおよび第2四方弁22bのポートhを接続する冷媒配管がガス管である。また、液管44と第1液分管44aと第2液分管44bが液管である。   In general, in an air conditioner in which an outdoor unit and an indoor unit are connected by two refrigerant pipes, a gas pipe and a liquid pipe, and the indoor unit performs either cooling or heating at the same time, the outdoor unit also has a gas pipe. And two refrigerant pipes, a liquid pipe and a liquid pipe. If it demonstrates concretely using FIG. 1, the refrigerant | coolant piping connected to the discharge side of the compressor 21 will be branched and connected to the 1st four-way valve 22a and the 2nd four-way valve 22b. Further, the suction side of the compressor 21 and the port c of the first four-way valve 22a and the port g of the second four-way valve 22b are connected by refrigerant piping, and the ports d and second of the closing valve 27 and the first four-way valve 22a are connected. A port h of the four-way valve 22b is connected by a refrigerant pipe. Here, the refrigerant pipe connecting the closing valve 27 and the port d of the first four-way valve 22a and the port h of the second four-way valve 22b is a gas pipe. The liquid pipe 44, the first liquid distribution pipe 44a, and the second liquid distribution pipe 44b are liquid pipes.

上記のような冷媒回路で、例えば、図5に示すように第2室外熱交換器23bが凝縮器として機能するように第2四方弁22bを切り替えるとともに、第1室外熱交換器22aが蒸発器として機能するように第1四方弁22aを切り替えた場合、圧縮機21から吐出された冷媒の一部は、第1四方弁22a、閉鎖弁27と第1四方弁22aのポートdを接続する冷媒配管、閉鎖弁27と第2四方弁22bのポートhを接続する冷媒配管(ガス管)、第2四方弁22b、圧縮機21の吸込口と第2四方弁22bのポートgを接続する冷媒配管の順に流れて圧縮機21に吸入される恐れがある。   In the refrigerant circuit as described above, for example, as shown in FIG. 5, the second outdoor heat exchanger 23b is switched so that the second outdoor heat exchanger 23b functions as a condenser, and the first outdoor heat exchanger 22a is an evaporator. When the first four-way valve 22a is switched to function as a part of the refrigerant, a part of the refrigerant discharged from the compressor 21 is a refrigerant that connects the first four-way valve 22a, the closing valve 27, and the port d of the first four-way valve 22a. Piping, refrigerant piping (gas pipe) connecting the closing valve 27 and the port h of the second four-way valve 22b, second refrigerant piping 22b, refrigerant piping connecting the suction port of the compressor 21 and the port g of the second four-way valve 22b There is a risk that the air flows into the compressor 21 and is sucked into the compressor 21.

圧縮機21から吐出され室内機5a〜5cに向かって流れる冷媒が、上述した経路で圧縮機21に吸入されると、室内機5a〜5cに冷媒が流れず暖房が行えないという問題が発生する。しかし、本発明の空気調和装置1のように、室外機2に高圧ガス管41と第3四方弁25を備え、暖房運転時に高圧ガス管41とガス管9が接続するように第3四方弁25を切り替えれば、圧縮機21から吐出された冷媒の一部が高圧ガス管41、第3四方弁25、第3冷媒配管47、閉鎖弁27、ガス管9と流れて確実に室内機5a〜5cに流入するので、暖房運転を行いつつ第1室外熱交換器23aあるいは第2室外熱交換器23bの除霜が行える。   When the refrigerant discharged from the compressor 21 and flowing toward the indoor units 5a to 5c is sucked into the compressor 21 through the above-described path, there is a problem that the refrigerant does not flow into the indoor units 5a to 5c and cannot be heated. . However, like the air conditioner 1 of the present invention, the outdoor unit 2 includes the high-pressure gas pipe 41 and the third four-way valve 25, and the third four-way valve is connected so that the high-pressure gas pipe 41 and the gas pipe 9 are connected during heating operation. 25, a part of the refrigerant discharged from the compressor 21 flows through the high pressure gas pipe 41, the third four-way valve 25, the third refrigerant pipe 47, the closing valve 27, and the gas pipe 9 to ensure the indoor units 5a to 5a. Since it flows into 5c, defrosting of the 1st outdoor heat exchanger 23a or the 2nd outdoor heat exchanger 23b can be performed, performing heating operation.

尚、本実施形態の空気調和装置1において、第1室外熱交換器23aと第2室外熱交換器23bを上下に並べて配置する場合、例えば、第1室外熱交換器23aを上側、第2室外熱交換器23bを下側にそれぞれ配置する場合は、上側に配置される第1室外熱交換器23aから除霜を行うことが望ましい。第1室外熱交換器23aを先に除霜することによって、霜が融解したことにより発生した水が第2室外熱交換器23bに流れ、この水で第2室外熱交換器23bの霜を融かすことができる。また、第1室外熱交換器23aの除霜に続いて第2室外熱交換器23bの除霜が行われるので、第2室外熱交換器23bの下方に配置される図示しないドレンパンに溜まった水が凍結することを抑制できる。   In the air conditioner 1 of the present embodiment, when the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b are arranged one above the other, for example, the first outdoor heat exchanger 23a is located on the upper side and the second outdoor heat exchanger 23b. When the heat exchangers 23b are respectively disposed on the lower side, it is desirable to perform defrosting from the first outdoor heat exchanger 23a disposed on the upper side. By first defrosting the first outdoor heat exchanger 23a, water generated by melting of the frost flows into the second outdoor heat exchanger 23b, and this water melts the frost of the second outdoor heat exchanger 23b. Can be dull. Moreover, since the defrosting of the 2nd outdoor heat exchanger 23b is performed following the defrosting of the 1st outdoor heat exchanger 23a, the water collected in the drain pan which is not shown arrange | positioned under the 2nd outdoor heat exchanger 23b Can be prevented from freezing.

また、第1室外熱交換器23aと第2室外熱交換器23bの熱交換器能力が異なる場合、例えば、第1室外熱交換器23aの方が第2室外熱交換器23bより熱交換器能力が大きい場合は、熱交換器能力が大きい第1室外熱交換器23aから除霜を行うことが望ましい。これは、以下に述べる理由による。   Moreover, when the heat exchanger capability of the 1st outdoor heat exchanger 23a and the 2nd outdoor heat exchanger 23b differs, for example, the direction of the 1st outdoor heat exchanger 23a is more heat exchanger capability than the 2nd outdoor heat exchanger 23b. When is large, it is desirable to defrost from the 1st outdoor heat exchanger 23a with large heat exchanger capability. This is for the reason described below.

本発明のように、複数の室外熱交換器のうち少なくとも1台の室外熱交換器を凝縮器として機能させて除霜を行い、他の室外熱交換器を蒸発器として機能させて暖房運転を行う場合、蒸発器として機能する室外熱交換器が除霜を行う室外熱交換器の熱源となる。本実施形態では、第1室外熱交換器23aを除霜しているときは第2室外熱交換器23bが熱源となり、第2室外熱交換器23bを除霜しているときは第1室外熱交換器23aが熱源となる。   As in the present invention, at least one of the outdoor heat exchangers functions as a condenser to perform defrosting, and the other outdoor heat exchangers function as an evaporator to perform heating operation. When performing, the outdoor heat exchanger which functions as an evaporator becomes a heat source of the outdoor heat exchanger which defrosts. In the present embodiment, when the first outdoor heat exchanger 23a is defrosted, the second outdoor heat exchanger 23b serves as a heat source, and when the second outdoor heat exchanger 23b is defrosted, the first outdoor heat The exchanger 23a becomes a heat source.

最初に第2室外熱交換器23bの除霜を行い、次に第1室外熱交換器23aの除霜を行う場合、第1室外熱交換器23aの除霜の際に熱源となる第2室外熱交換器23bが第1室外熱交換器23aより熱交換器能力が小さいために第2室外熱交換器23bの温度が下がりやすい。このため、除霜運転が終了してから第2室外熱交換器23bで着霜が発生して再び除霜運転となるまでの時間が短くなる恐れがある。   When defrosting the 2nd outdoor heat exchanger 23b first and then defrosting the 1st outdoor heat exchanger 23a, the 2nd outdoor which becomes a heat source in the case of defrosting the 1st outdoor heat exchanger 23a Since the heat exchanger 23b has a smaller heat exchanger capacity than the first outdoor heat exchanger 23a, the temperature of the second outdoor heat exchanger 23b tends to decrease. For this reason, there is a possibility that the time from when the defrosting operation is completed to when the second outdoor heat exchanger 23b is frosted and when the defrosting operation is started again is shortened.

一方、最初に第1室外熱交換器23aの除霜を行い、次に第2室外熱交換器23bの除霜を行う場合、第2室外熱交換器23bの除霜の際に熱源となる第1室外熱交換器23aが第2室外熱交換器23bより熱交換器能力が大きいために第1室外熱交換器23aの温度が下がりにくい。これと併せて、最後に小さい第2室外熱交換器23bの除霜を行うことから、除霜運転が終了してから第1室外熱交換器23aや第2室外熱交換器23bで着霜が発生して再び除霜運転となるまでの時間が、最初に小さい第2室外熱交換器23bの除霜を行う場合と比べて長くなる。   On the other hand, when the first outdoor heat exchanger 23a is first defrosted and then the second outdoor heat exchanger 23b is defrosted, the second outdoor heat exchanger 23b becomes a heat source during the defrosting. Since the 1 outdoor heat exchanger 23a has a larger heat exchanger capacity than the second outdoor heat exchanger 23b, the temperature of the first outdoor heat exchanger 23a is hardly lowered. At the same time, since the small second outdoor heat exchanger 23b is finally defrosted, frost is formed in the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b after the defrosting operation is completed. The time until the defrosting operation is generated again becomes longer than when the second outdoor heat exchanger 23b, which is initially small, is defrosted.

本発明の空気調和装置は、これまで説明してきたように暖房運転を継続しながら室外熱交換器の除霜が行えるため、暖房運転が中断されて使用者に不快感を与えることはない。しかし、除霜運転を行うときは、暖房運転中に全て蒸発器として機能している室外熱交換器の一部が凝縮器として機能する為、除霜運転時の暖房能力は通常の暖房運転時より低下する。従って、除霜運転の頻度が少ないことが望ましく、そのためには除霜運転の終了から次の除霜運転開始までの時間が長い方がよい。   Since the air conditioner of the present invention can defrost the outdoor heat exchanger while continuing the heating operation as described above, the heating operation is interrupted and the user is not uncomfortable. However, when performing the defrosting operation, part of the outdoor heat exchanger that functions as an evaporator during the heating operation functions as a condenser, so the heating capacity during the defrosting operation is the same as during normal heating operation. It will be lower. Therefore, it is desirable that the frequency of the defrosting operation is low, and for that purpose, it is better that the time from the end of the defrosting operation to the start of the next defrosting operation is long.

そこで、上述したように、最初に熱交換器能力が大きい第1室外熱交換器23aの除霜を行い、次に熱交換器能力が小さい第2室外熱交換器23bの除霜を行えば、除霜運転終了後に再び除霜運転となるまでの時間が長くなり、除霜運転の頻度が少なくなるので、これに起因する暖房能力の低下を抑制することができる。   Therefore, as described above, if the first outdoor heat exchanger 23a having a large heat exchanger capacity is first defrosted and then the second outdoor heat exchanger 23b having a small heat exchanger capacity is defrosted, Since the time until the defrosting operation is started again after the completion of the defrosting operation becomes longer and the frequency of the defrosting operation decreases, it is possible to suppress a decrease in heating capacity caused by this.

以上説明したように、本発明の空気調和装置では、暖房運転中に複数の室外熱交換器の除霜を行うときに、一部の室外熱交換器を除霜しつつ他の室外熱交換器で暖房運転を行うので、暖房運転を中断することなく室外熱交換器の除霜を行える。また、除霜する室外熱交換器から流出した冷媒が暖房を行う室外熱交換器で蒸発して圧縮機に吸入されるので、圧縮機の吐出温度が低下せず除霜時間を短縮できる。   As described above, in the air conditioning apparatus of the present invention, when performing defrosting of a plurality of outdoor heat exchangers during heating operation, other outdoor heat exchangers are defrosted while defrosting some of the outdoor heat exchangers. Since the heating operation is performed at the outdoor heat exchanger, the outdoor heat exchanger can be defrosted without interrupting the heating operation. Further, since the refrigerant flowing out from the outdoor heat exchanger to be defrosted is evaporated by the outdoor heat exchanger for heating and sucked into the compressor, the discharge temperature of the compressor is not lowered and the defrosting time can be shortened.

尚、以上説明した実施形態では、室外熱交換器が2つ(第1室外熱交換器23aと第2室外熱交換器23b)である場合について説明したが、室外熱交換器が3つ以上設けられて順次除霜を行う場合であってもよい。そして、これら3つ以上の室外熱交換器が上下に並べて配置されている場合は、一番上に配置されている室外熱交換器から除霜を始め、順次下方の室外熱交換器を除霜する。また、3つ以上の室外熱交換器の大きさが各々異なる場合は、一番大きい室外熱交換器から除霜を始め、順次小さい室外熱交換器を除霜する。   In the embodiment described above, the case where there are two outdoor heat exchangers (the first outdoor heat exchanger 23a and the second outdoor heat exchanger 23b) has been described, but three or more outdoor heat exchangers are provided. In this case, the defrosting may be performed sequentially. And when these three or more outdoor heat exchangers are arranged side by side, defrosting starts from the outdoor heat exchanger arranged at the top, and the lower outdoor heat exchangers are defrosted sequentially. To do. When the sizes of the three or more outdoor heat exchangers are different from each other, the defrosting is started from the largest outdoor heat exchanger, and the small outdoor heat exchangers are sequentially defrosted.

1 空気調和装置
2 室外機
5a〜5c 室内機
8 液管
9 ガス管
20 室外機冷媒回路
20a 第1室外熱交換器ユニット
20b 第2室外熱交換器ユニット
21 圧縮機
22a 第1四方弁
22b 第2四方弁
23a 第1室外熱交換器
23b 第2室外熱交換器
25 第3四方弁
41 高圧ガス管
41a 第1高圧分管
41b 第2高圧分管
42 低圧ガス管
42a 第1低圧分管
42b 第2低圧分管
43a 第1接続配管
43b 第2接続配管
44 室外機液管
44a 第1液分管
44b 第2液分管
47 室外機ガス管
51a〜51c 室内熱交換器
210 CPU
260四方弁切替部
DESCRIPTION OF SYMBOLS 1 Air conditioning apparatus 2 Outdoor unit 5a-5c Indoor unit 8 Liquid pipe 9 Gas pipe 20 Outdoor unit refrigerant circuit 20a 1st outdoor heat exchanger unit 20b 2nd outdoor heat exchanger unit 21 Compressor 22a 1st four-way valve 22b 2nd Four-way valve 23a First outdoor heat exchanger 23b Second outdoor heat exchanger 25 Third four-way valve 41 High pressure gas pipe 41a First high pressure branch pipe 41b Second high pressure branch pipe 42 Low pressure gas pipe 42a First low pressure branch pipe 42b Second low pressure branch pipe 43a First connection pipe 43b Second connection pipe 44 Outdoor unit liquid pipe 44a First liquid distribution pipe 44b Second liquid distribution pipe 47 Outdoor unit gas pipe
51a-51c indoor heat exchanger 210 CPU
260 four-way valve switching section

Claims (3)

室外機と室内機が液管とガス管で接続されてなる冷媒回路と、制御手段を有する空気調和装置であって、
前記室外機は、圧縮機と、複数の室外熱交換器ユニットと、高圧ガス管と、低圧ガス管と、室外機ガス管と、室外機液管と、第2流路切替手段を有し、
前記圧縮機の冷媒吐出側と前記第2流路切替手段が前記高圧ガス管で接続され、
前記圧縮機の冷媒吸入側と前記第2流路切替手段が前記低圧ガス管で接続され、
前記ガス管と前記第2流路切替手段が前記室外機ガス管で接続され、
前記液管と前記室外機液管が接続され、
前記室外熱交換器ユニットは、室外熱交換器と、第1流路切換手段と、高圧分管と、低圧分管と、液分管と、接続配管を有し、
前記室外熱交換器の一方の冷媒出入口と前記第1流路切換手段が前記接続配管で接続され、
前記室外熱交換器の他方の冷媒出入口と前記室外機液管が前記液分管で接続され、
前記高圧ガス管と前記第1流路切換手段が前記高圧分管で接続され、
前記低圧ガス管と前記第1流路切換手段が前記低圧分管で接続され、
前記制御手段は、
暖房運転を行うとき、前記各室外熱交換器ユニットの前記室外熱交換器が蒸発器として機能するように前記各室外熱交換器ユニットの前記第1流路切替手段を切り替えるとともに、前記高圧ガス管と前記室外機ガス管が接続するように前記第2流路切替手段を切り替え、
暖房運転中に除霜運転を行うとき、前記第1流路切替手段を切り替えて前記室外熱交換器を凝縮器として機能させて行う当該室外熱交換器の除霜を前記室外熱交換器ユニット毎に順次行うとともに、前記第2流路切替手段および除霜を行っていない前記室外熱交換器ユニットは暖房運転時の状態を維持する、
ことを特徴とする空気調和装置。
An air conditioner having a refrigerant circuit in which an outdoor unit and an indoor unit are connected by a liquid pipe and a gas pipe, and a control means,
The outdoor unit includes a compressor, a plurality of outdoor heat exchanger units, a high pressure gas pipe, a low pressure gas pipe, an outdoor unit gas pipe, an outdoor unit liquid pipe, and a second flow path switching unit.
The refrigerant discharge side of the compressor and the second flow path switching means are connected by the high pressure gas pipe,
The refrigerant suction side of the compressor and the second flow path switching means are connected by the low pressure gas pipe,
The gas pipe and the second flow path switching means are connected by the outdoor unit gas pipe,
The liquid pipe and the outdoor unit liquid pipe are connected,
The outdoor heat exchanger unit has an outdoor heat exchanger, a first flow path switching means, a high-pressure distribution pipe, a low-pressure distribution pipe, a liquid distribution pipe, and a connection pipe.
One refrigerant inlet / outlet of the outdoor heat exchanger and the first flow path switching means are connected by the connection pipe,
The other refrigerant inlet / outlet of the outdoor heat exchanger and the outdoor unit liquid pipe are connected by the liquid pipe,
The high pressure gas pipe and the first flow path switching means are connected by the high pressure branch pipe;
The low-pressure gas pipe and the first flow path switching means are connected by the low-pressure branch pipe;
The control means includes
When performing the heating operation, the first flow path switching unit of each outdoor heat exchanger unit is switched so that the outdoor heat exchanger of each outdoor heat exchanger unit functions as an evaporator, and the high-pressure gas pipe And switching the second flow path switching means so that the outdoor unit gas pipe is connected,
When performing the defrosting operation during the heating operation, the defrosting of the outdoor heat exchanger performed by switching the first flow path switching unit and causing the outdoor heat exchanger to function as a condenser is performed for each outdoor heat exchanger unit. And the outdoor heat exchanger unit that is not performing defrosting maintains the state during the heating operation.
An air conditioner characterized by that.
前記複数の室外熱交換器ユニットの前記複数の室外熱交換器が上下に並べて配置され、
前記制御手段は、暖房運転中に除霜運転を行うとき、一番上に配置されている室外熱交換器を有する室外熱交換器ユニットから除霜を開始し、その後、順次下層の室外熱交換器を有する室外熱交換器ユニットを除霜する、
ことを特徴とする請求項1に記載の空気調和装置。
The plurality of outdoor heat exchangers of the plurality of outdoor heat exchanger units are arranged side by side up and down,
When performing the defrosting operation during the heating operation, the control means starts the defrosting from the outdoor heat exchanger unit having the outdoor heat exchanger disposed at the top, and then sequentially lower layer outdoor heat exchange Defrosting an outdoor heat exchanger unit having a heater,
The air conditioner according to claim 1.
前記複数の室外熱交換器ユニットの前記複数の室外熱交換器の熱交換器能力が異なり、
前記制御手段は、暖房運転中に除霜運転を行うとき、一番熱交換器能力が大きい室外熱交換器を有する室外熱交換器ユニットから除霜を開始し、その後、順次熱交換器能力が小さい室外熱交換器を有する室外熱交換器ユニットを除霜する、
ことを特徴とする請求項1に記載の空気調和装置。
The heat exchanger capabilities of the plurality of outdoor heat exchangers of the plurality of outdoor heat exchanger units are different,
When performing the defrosting operation during the heating operation, the control means starts defrosting from the outdoor heat exchanger unit having the outdoor heat exchanger having the largest heat exchanger capability, and then the heat exchanger capability is sequentially increased. Defrost outdoor heat exchanger unit with small outdoor heat exchanger,
The air conditioner according to claim 1.
JP2014222350A 2014-10-31 2014-10-31 Air conditioner Pending JP2016090092A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014222350A JP2016090092A (en) 2014-10-31 2014-10-31 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014222350A JP2016090092A (en) 2014-10-31 2014-10-31 Air conditioner

Publications (1)

Publication Number Publication Date
JP2016090092A true JP2016090092A (en) 2016-05-23

Family

ID=56018210

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014222350A Pending JP2016090092A (en) 2014-10-31 2014-10-31 Air conditioner

Country Status (1)

Country Link
JP (1) JP2016090092A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931676A (en) * 2017-04-27 2017-07-07 广东美的制冷设备有限公司 Air-conditioning system and its defrosting control method
CN108489134A (en) * 2018-04-09 2018-09-04 珠海格力电器股份有限公司 Air conditioning system
CN110332618A (en) * 2019-07-15 2019-10-15 珠海格力电器股份有限公司 Outdoor unit with continuous heating function, air conditioning system and control method
CN113218103A (en) * 2021-04-28 2021-08-06 湖南雅立科技开发有限公司 Air-cooled heat pump system
CN113970167A (en) * 2021-10-21 2022-01-25 珠海格力电器股份有限公司 Air conditioner defrosting method, device, module, air conditioner and storage medium
WO2024166938A1 (en) * 2023-02-10 2024-08-15 シャープ株式会社 Refrigeration cycle device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290369A (en) * 1987-05-22 1988-11-28 株式会社東芝 Air conditioner
JP2008064381A (en) * 2006-09-07 2008-03-21 Hitachi Appliances Inc Air conditioner
JP2010139097A (en) * 2008-12-09 2010-06-24 Mitsubishi Electric Corp Air conditioner
US20100170270A1 (en) * 2009-01-06 2010-07-08 Lg Electronics Inc. Air conditioner and defrosting operation method of the same
WO2014020651A1 (en) * 2012-08-03 2014-02-06 三菱電機株式会社 Air-conditioning device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63290369A (en) * 1987-05-22 1988-11-28 株式会社東芝 Air conditioner
JP2008064381A (en) * 2006-09-07 2008-03-21 Hitachi Appliances Inc Air conditioner
JP2010139097A (en) * 2008-12-09 2010-06-24 Mitsubishi Electric Corp Air conditioner
US20100170270A1 (en) * 2009-01-06 2010-07-08 Lg Electronics Inc. Air conditioner and defrosting operation method of the same
WO2014020651A1 (en) * 2012-08-03 2014-02-06 三菱電機株式会社 Air-conditioning device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106931676A (en) * 2017-04-27 2017-07-07 广东美的制冷设备有限公司 Air-conditioning system and its defrosting control method
CN108489134A (en) * 2018-04-09 2018-09-04 珠海格力电器股份有限公司 Air conditioning system
CN110332618A (en) * 2019-07-15 2019-10-15 珠海格力电器股份有限公司 Outdoor unit with continuous heating function, air conditioning system and control method
CN113218103A (en) * 2021-04-28 2021-08-06 湖南雅立科技开发有限公司 Air-cooled heat pump system
CN113970167A (en) * 2021-10-21 2022-01-25 珠海格力电器股份有限公司 Air conditioner defrosting method, device, module, air conditioner and storage medium
WO2024166938A1 (en) * 2023-02-10 2024-08-15 シャープ株式会社 Refrigeration cycle device

Similar Documents

Publication Publication Date Title
JP5549773B1 (en) Air conditioner
JP5574028B1 (en) Air conditioner
WO2019146070A1 (en) Refrigeration cycle device
US9739521B2 (en) Air conditioning apparatus
JP5692302B2 (en) Air conditioner
JP5549771B1 (en) Air conditioner
JP5590195B1 (en) Air conditioner
JP2016090092A (en) Air conditioner
WO2013001976A1 (en) Air conditioner
JP6138711B2 (en) Air conditioner
JP2010159926A (en) Air conditioner
JP2016161256A (en) Air conditioner
JP2010255921A (en) Air conditioner
JP6410839B2 (en) Refrigeration cycle equipment
JP2017122557A (en) Air conditioner
JP2017062049A (en) Air conditioner
WO2012032681A1 (en) Air conditioner
JP2018141599A (en) Air conditioning device
JP6819112B2 (en) Air conditioner
JP2010203673A (en) Air conditioner
JPWO2019224944A1 (en) Air conditioner
JP2014126310A (en) Air conditioner
JP2019020061A (en) Air-conditioner
JP2016020784A (en) Air conditioning device
JP2019113246A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171031

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180515