WO2012032681A1 - Air conditioner - Google Patents

Air conditioner Download PDF

Info

Publication number
WO2012032681A1
WO2012032681A1 PCT/JP2011/001292 JP2011001292W WO2012032681A1 WO 2012032681 A1 WO2012032681 A1 WO 2012032681A1 JP 2011001292 W JP2011001292 W JP 2011001292W WO 2012032681 A1 WO2012032681 A1 WO 2012032681A1
Authority
WO
WIPO (PCT)
Prior art keywords
defrosting
heat exchanger
air conditioner
refrigerant
indoor
Prior art date
Application number
PCT/JP2011/001292
Other languages
French (fr)
Japanese (ja)
Inventor
杉尾 孝
高橋 正敏
大輔 川添
岡 浩二
憲昭 山本
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to KR1020137004435A priority Critical patent/KR20130103712A/en
Priority to EP11823167.9A priority patent/EP2615388B1/en
Priority to BR112013005113A priority patent/BR112013005113A2/en
Priority to CN2011800436015A priority patent/CN103097824A/en
Publication of WO2012032681A1 publication Critical patent/WO2012032681A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • F25B47/022Defrosting cycles hot gas defrosting
    • F25B47/025Defrosting cycles hot gas defrosting by reversing the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/41Defrosting; Preventing freezing
    • F24F11/42Defrosting; Preventing freezing of outdoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0003Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station characterised by a split arrangement, wherein parts of the air-conditioning system, e.g. evaporator and condenser, are in separately located units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/24Storage receiver heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2104Temperatures of an indoor room or compartment

Definitions

  • the present invention relates to an air conditioner that includes an indoor heat exchanger, an outdoor heat exchanger, a four-way valve, and a compressor and that can melt frost attached to the outdoor heat exchanger.
  • the present invention has been made in view of such problems of the prior art, and an object of the present invention is to more efficiently perform indoor heating and defrosting of an outdoor heat exchanger.
  • an air conditioner that includes an outdoor heat exchanger, an indoor heat exchanger, a four-way valve, and a compressor, and melts and defrosts frost adhering to the outdoor heat exchanger by a refrigerant heated to the compressor.
  • An indoor wall temperature detecting means for detecting the temperature of the indoor wall; When it is determined that defrosting is necessary, either the heating cycle or the cooling cycle is selected based on the indoor wall temperature detected by the indoor wall temperature detection means, and the four-way valve is controlled so that the selected cycle can be executed.
  • An air conditioner having defrosting means for performing defrosting is provided.
  • one of the defrosting by the heating cycle and the defrosting by the cooling cycle is selected and executed based on the indoor wall temperature. Heating and defrosting of the outdoor heat exchanger can be performed.
  • FIG. 1 The figure which shows the structure of the air conditioner which concerns on Embodiment 1 of this invention.
  • coolant The flowchart figure which shows the flow for determining the defrost operation of the air conditioner of FIG.
  • the first invention includes an outdoor heat exchanger, an indoor heat exchanger, a four-way valve, and a compressor, and is an air conditioner that melts and defrosts frost adhering to the outdoor heat exchanger by a refrigerant warmed by the compressor.
  • the indoor wall temperature detecting means for detecting the temperature of the indoor wall in the machine, and when it is determined that defrosting is necessary, either the heating cycle or the cooling cycle is determined based on the indoor wall temperature detected by the indoor wall temperature detecting means.
  • Defrosting means for performing defrosting by selecting one of them and controlling the four-way valve so that the selected cycle can be executed.
  • the defrosting means determines that defrosting is necessary, if the indoor wall temperature is higher than a predetermined temperature, the defrosting is performed by the cooling cycle, and the indoor wall temperature is lower than the predetermined temperature. When it is low, defrosting is performed by a heating cycle. Thus, it is possible to perform defrosting of the outdoor heat exchanger 14 while suppressing the temperature drop in the room, that is, without losing the user's feeling of heating.
  • the air conditioner further has a heating means for heating the outdoor heat exchanger at the time of defrosting by the heating cycle.
  • the air conditioner further has heat storage means for storing waste heat of the compressor and supplying the refrigerant to the refrigerant during defrosting by the heating cycle.
  • an air conditioner further has a defrosting means, and when a person detection means is detecting a person, it is by a heating cycle. Defrosting is executed, and when the person detecting means does not detect a person, the defrosting is executed by the cooling cycle. Thereby, the defrosting of the outdoor heat exchanger 14 can be further performed without losing the user's feeling of heating.
  • FIG. 1 shows a configuration of an air conditioner including a refrigeration cycle apparatus according to Embodiment 1 of the present invention.
  • the air conditioner includes an outdoor unit 2 and an indoor unit 4 that are connected to each other through refrigerant piping. It is configured.
  • a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2.
  • a heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.
  • the compressor 6 and the indoor heat exchanger 16 are connected via a refrigerant pipe 18 provided with the four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are refrigerant provided with the strainer 10. It is connected via a pipe 20.
  • the expansion valve 12 and the outdoor heat exchanger 14 are connected via a refrigerant pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a refrigerant pipe 24.
  • a four-way valve 8 is disposed in the middle of the refrigerant pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the refrigerant pipe 24 on the refrigerant suction side of the compressor 6. .
  • the compressor 6 and the refrigerant pipe 22 are connected via a refrigerant pipe 28, and a first electromagnetic valve 30 is provided in the refrigerant pipe 28.
  • a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a latent heat storage material (for example, heat exchange material for exchanging heat with the heat storage heat exchanger 34).
  • a latent heat storage material for example, heat exchange material for exchanging heat with the heat storage heat exchanger 34.
  • Ethylene glycol aqueous solution Ethylene glycol aqueous solution
  • the heat storage material 36 stores the waste heat of the compressor 6.
  • the refrigerant pipe 20 and the heat storage heat exchanger 34 are connected via a refrigerant pipe 38, and the heat storage heat exchanger 34 and the refrigerant pipe 24 are connected via a refrigerant pipe 40, and the refrigerant pipe 38 has a second electromagnetic wave.
  • a valve 42 is provided.
  • an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed.
  • the unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air warmed by heat exchange into the room during heating.
  • air cooled by heat exchange is blown into the room during cooling.
  • the upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.
  • the air conditioner according to the present embodiment is provided with an outdoor heat exchanger temperature sensor 44 that detects the temperature in the outdoor heat exchanger 14. Since the temperature in the outdoor heat exchanger 14 corresponds to the amount of frost formation in the outdoor heat exchanger 14, frost (deposition) adhering to the outdoor heat exchanger 14 is based on the temperature detected by the outdoor heat exchanger temperature sensor 44. Frost amount) can be detected.
  • the outdoor heat exchanger temperature sensor 44 outputs a signal corresponding to the detected temperature to the control device of the air conditioner.
  • the indoor unit 4 is provided with an indoor wall temperature sensor 46 that detects the wall temperature of the room and a human sensor 48 that detects the presence of a person in the room.
  • the indoor wall temperature sensor 46 is a sensor that detects the temperature of the indoor wall in which the indoor unit 4 is installed, and is, for example, an infrared sensor.
  • the indoor wall temperature sensor 46 outputs a signal corresponding to the detected temperature to the control device of the air conditioner. If the indoor wall temperature can be estimated with high accuracy from the intake port temperature of the indoor unit 4, a temperature sensor that detects the intake port temperature may be used instead of the indoor wall temperature sensor 46.
  • the human sensor 48 is a sensor that detects the presence of a person (user) in the room, and is, for example, an infrared sensor, an ultrasonic sensor, an illuminance sensor, or the like. When detecting the presence of a person in the room, the human sensor 48 outputs a signal to a control device (not shown) of the air conditioner.
  • the control device for the air conditioner receives signals output from the outdoor heat exchanger temperature sensor 44, the indoor wall temperature sensor 46, and the human sensor 48 described above, and based on the received signals, the compressor 6, the four-way valve. 8, the expansion valve 12, the electromagnetic valves 30, 42, the blower fan, the upper and lower blades, the left and right blades, and the like are controlled to perform various operations.
  • the defrosting operation is an operation for melting the frost adhering to the outdoor heat exchanger 14, and the control device for the air conditioner according to the present invention selects either the heating cycle or the cooling cycle depending on the conditions.
  • the defrosting operation is executed according to the selected cycle.
  • the control device functions as a defrosting unit.
  • the defrosting operation when the selected cycle is a heating cycle is referred to as a “heating cycle / defrosting operation”.
  • the cooling cycle is referred to as “cooling cycle / defrosting operation”. The cycle selection will be described later.
  • the “heating cycle” referred to in the present specification is a cycle in which the refrigerant moves from the compressor 6 to the indoor heat exchanger 16 via the four-way valve 8, that is, a cycle for heating
  • the “cooling cycle” Is a cycle when the refrigerant moves from the indoor heat exchanger 16 to the compressor 6 via the four-way valve 8, that is, when it is cooled.
  • the heating cycle / defrosting operation will be described with reference to FIG.
  • the solid line arrows indicate the flow of the refrigerant related to heating
  • the broken line arrows indicate the flow of the refrigerant related to defrosting.
  • the function of each component of the air conditioner will also be described.
  • frost When frost is formed on the outdoor heat exchanger 14 and the formed frost grows (when a predetermined amount of frost is formed), the ventilation resistance of the outdoor heat exchanger 14 increases and the air volume decreases, and the inside of the outdoor heat exchanger 14 Is reduced to a predetermined temperature (temperature that requires defrosting, hereinafter referred to as “defrosting required temperature”).
  • defrosting required temperature temperature that requires defrosting
  • the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be opened by the control device of the air conditioner, and the four-way valve 8 is controlled to the heating cycle side. Thereby, a part of the gas-phase refrigerant output from the discharge port of the compressor 6 flows into the refrigerant pipe 18 and the rest flows into the refrigerant pipe 28.
  • both the first solenoid valve 30 and the second solenoid valve 42 are controlled to be closed.
  • the gas-phase refrigerant entering the refrigerant pipe 18 from the compressor 6 passes through the four-way valve 8 and reaches the indoor heat exchanger 16, where it exchanges heat with indoor air via the indoor heat exchanger 16.
  • the refrigerant deprived of heat by heat exchange passes through the refrigerant pipe 20, is divided between the indoor heat exchanger 16 and the strainer 10 in the refrigerant pipe 20, and flows into the refrigerant pipes 22 and 38.
  • the refrigerant flowing through the refrigerant pipe 38 passes through the second electromagnetic valve 42 and enters the heat storage heat exchanger 34, and absorbs heat from the heat storage material 36 and evaporates to be vaporized.
  • the vaporized refrigerant merges with the refrigerant passing through the refrigerant pipe 24 via the refrigerant pipe 40 and enters the suction port of the compressor 6 via the accumulator 26.
  • the condensed refrigerant that has been split between the indoor heat exchanger 16 and the strainer 10 in the refrigerant pipe 20 passes through the strainer 10 that prevents foreign matter from entering the expansion valve 12 and enters the expansion valve 12 to expand ( Reduced pressure).
  • the refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the refrigerant pipe 22, and exchanges heat with the outside air there.
  • the refrigerant that exchanges heat with the outside air in the outdoor heat exchanger 14 enters the suction port of the compressor 6 through the refrigerant pipe 24, the four-way valve 8, and the accumulator 26.
  • the strainer 10 is arranged between the diversion part of the refrigerant pipe 20 and the refrigerant pipe 38 and the expansion valve 12, the strainer 10 is arranged between the diversion part of the refrigerant pipe 20 between the indoor heat exchanger 16 and the refrigerant pipe 38.
  • the function of preventing foreign matter from entering the expansion valve 12 can be maintained.
  • the strainer 10 has a pressure loss, and in the former arrangement, the refrigerant is more likely to flow to the refrigerant pipe 38 side in the part where the refrigerant pipe 20 is separated from the refrigerant pipe 38, and heat storage heat exchange is performed from the refrigerant pipe 38.
  • the circulation amount of the bypass piping system that reaches the refrigerant piping 40 through the vessel 34 increases.
  • the circulation amount of the heat storage heat exchanger 34 is large.
  • liquid phase refrigerant from the outdoor heat exchanger 14 and the high-temperature gas phase refrigerant from the heat storage heat exchanger 34 join together to promote the evaporation of the liquid phase refrigerant.
  • the liquid-phase refrigerant does not return to the compressor 6 through the flow, and the reliability of the compressor 6 can be improved.
  • the gas-phase refrigerant that is output from the discharge port of the compressor 6 and enters the refrigerant pipe 28 passes through the refrigerant pipe 28 and the electromagnetic valve 30, and merges with the refrigerant that passes through the refrigerant pipe 22. 14 is heated and condensed to form a liquid phase, and then enters the suction port of the compressor 6 through the refrigerant pipe 24 via the four-way valve 8 and the accumulator 26.
  • Such a heating cycle / defrosting operation increases the temperature of the outdoor heat exchanger 14 that has been below the freezing point due to frost adhesion at the start of the operation, while securing the heating capacity, as the frost melts.
  • the heating cycle / defrosting operation ends when the outdoor heat exchanger temperature sensor 44 detects a temperature (for example, 8 ° C.) that is higher than the defrosting required temperature and cannot contain frost.
  • the outdoor heat exchanger temperature sensor 44 detects the temperature required for defrosting and the conditions for executing the cooling cycle / defrosting operation (details will be described later) are satisfied, the cooling cycle / defrosting operation is started.
  • the control device of the air conditioner controls the first electromagnetic valve 30 and the second electromagnetic valve 42 to be closed, and the four-way valve 8 is controlled to the cooling cycle side.
  • the gas-phase refrigerant output from the discharge port of the compressor 6 passes through the refrigerant pipe 18, the four-way valve 8, and the refrigerant pipe 24 and enters the outdoor heat exchanger 14. Therefore, the vapor phase refrigerant is condensed by being deprived of heat by the frost via the outdoor heat exchanger 14. This heat melts the frost.
  • the liquid phase refrigerant which has been deprived of heat for melting frost and enters the refrigerant pipe 22, is expanded by the expansion valve 12, and enters the indoor heat exchanger 16 through the strainer 10, where the indoor heat is transferred from the indoor air to the indoor heat. Heat is taken away via the exchanger 16.
  • the refrigerant that has been vaporized by removing heat enters the suction port of the compressor 6 through the refrigerant pipe 18, the four-way valve 8, the refrigerant pipe 24, and the accumulator 26.
  • the temperature of the outdoor heat exchanger 14 that is below the freezing point due to frost adhesion at the start of the operation is faster than that of the heating cycle / defrosting operation. As the frost melts, it rises.
  • the cooling cycle / defrosting operation is terminated when the outdoor heat exchanger temperature sensor 44 detects a temperature that is higher than the defrosting required temperature and cannot contain frost.
  • the air conditioner control device selects either the heating cycle / defrosting operation or the cooling cycle / defrosting operation according to the flowchart shown in FIG.
  • step S10 the control device determines whether or not defrosting of the outdoor heat exchanger 14 is necessary. Specifically, as described above, when the temperature detected by the outdoor heat exchanger temperature sensor 44 is lower than the defrosting required temperature, it is determined that defrosting is necessary. When defrosting is required, it progresses to Step S20. If not, proceed to return and return to start.
  • step S20 the control device determines whether or not the indoor wall temperature detected by the indoor wall temperature sensor 46 is lower than a predetermined wall temperature.
  • step S50 the cooling cycle / defrosting operation is executed.
  • step S30 the process proceeds to step S30.
  • step S30 the control device determines whether a person is present in the room via the human sensor 48.
  • step S40 the heating cycle / defrosting operation is executed.
  • step S50 the cooling cycle / defrosting operation is executed.
  • the heating cycle / defrosting operation and the cooling cycle / defrosting operation are terminated when the temperature detected by the outdoor heat exchanger temperature sensor 44 exceeds the defrosting required temperature and reaches a temperature at which frost cannot exist.
  • either the heating cycle / defrosting operation or the cooling cycle / defrosting operation is selected and executed based on the indoor wall temperature.
  • indoor heating and defrosting of the outdoor heat exchanger 14 can be performed efficiently.
  • a heat storage device including the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 stores the waste heat of the compressor 6 and supplies it to the refrigerant during the heating cycle / defrosting operation. Thereby, while defrosting capability goes up, the waste heat of the compressor 6 can be used effectively.
  • the air conditioner includes a heat storage device that includes the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 that uses waste heat of the compressor.
  • the invention is not limited to an air conditioner having a heat storage device.
  • an air conditioner (Embodiment 2 of the present invention) shown in FIG. 5 is conceivable.
  • the air conditioner shown in FIG. 5 is obtained by removing the heat storage tank 32, the heat storage heat exchanger 34, the heat storage material 36, the refrigerant pipes 38 and 40, and the second electromagnetic valve 42 from the air conditioner shown in FIG.
  • a refrigerant pipe 50 is provided for connecting a portion of the refrigerant pipe 28 between 30 and the junction of the refrigerant pipes 28 and 22 and a portion of the refrigerant pipe 24 between the four-way valve 8 and the accumulator 26.
  • the first electromagnetic valve 30 is controlled to open and the four-way valve 8 is controlled to the heating cycle side.
  • the first solenoid valve 30 is controlled to be closed.
  • the gas-phase refrigerant entering the refrigerant pipe 18 from the compressor 6 passes through the four-way valve 8 and reaches the indoor heat exchanger 16, where it exchanges heat with the indoor air via the indoor heat exchanger 16.
  • the liquid-phase refrigerant that has been deprived of heat by heat exchange and condensed enters the refrigerant pipe 20, passes through the strainer 10, and reaches the expansion valve 12.
  • the refrigerant decompressed by the expansion valve 12 enters the outdoor heat exchanger 14 through the refrigerant pipe 22.
  • the gas-phase refrigerant that is output from the discharge port of the compressor 6 and enters the refrigerant pipe 28 passes through the refrigerant pipe 28 and the first electromagnetic valve 30, partly toward the outdoor heat exchanger 14, and the rest
  • the refrigerant pipe 50 is entered.
  • the refrigerant heading for the outdoor heat exchanger 14 joins the refrigerant flowing through the refrigerant pipe 22 and enters the outdoor heat exchanger 14 to exchange heat with the outside air.
  • the refrigerant that exchanges heat with the outside air in the outdoor heat exchanger 14 enters the suction port of the compressor 6 through the refrigerant pipe 24, the four-way valve 8, and the accumulator 26.
  • the refrigerant that has entered the refrigerant pipe 50 merges with the refrigerant flowing through the refrigerant pipe 24, passes through the accumulator 26, and enters the suction port of the compressor 6.
  • the first electromagnetic valve 30 is controlled to be closed, and the four-way valve 8 is controlled to the cooling cycle side.
  • the gas phase refrigerant entering the refrigerant pipe 24 from the compressor 6 enters the outdoor heat exchanger 14 via the four-way valve 8 and exchanges heat with the outside air.
  • the refrigerant that has been deprived of heat by heat exchange and condensed enters the refrigerant pipe 22 and reaches the expansion valve 12.
  • the refrigerant decompressed by the expansion valve 12 passes through the refrigerant pipe 20 and enters the indoor heat exchanger 16 where it exchanges heat with indoor air.
  • the refrigerant vaporized by heat exchange enters the refrigerant pipe 18 and then passes through the four-way valve 8 and the accumulator 26 and enters the suction port of the compressor 6.
  • indoor heating and defrosting of the outdoor heat exchanger 14 can be performed efficiently.
  • a heater (not shown) for heating the outdoor heat exchanger 14 may be provided.
  • the air conditioner shown in FIG. 5 is a structure which does not have a heat storage apparatus, compared with the air conditioner shown in FIG. 1, a defrosting capability is inferior and defrosting time is long. Therefore, in order to supplement the defrosting capability, a heater that supplies heat to the outdoor heat exchanger 14 during the heating cycle / defrosting operation is provided. Thereby, it can have defrosting capability equivalent to the air conditioner which has a thermal storage apparatus shown in FIG.
  • the indoor heating and the outdoor heat can be efficiently performed by selecting one of the heating cycle / defrosting operation or the cooling cycle / defrosting operation based on the indoor wall temperature. Since the defrosting of the exchanger can be performed, not only the air conditioner configured by the outdoor unit and the indoor unit as in the above-described embodiment, but also the integrated air in which the outdoor unit and the indoor unit are integrated. It can also be applied to a harmonic machine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

Provided is an air conditioner comprising an outdoor heat exchanger (14), an indoor heat exchanger (16), a four-way valve (8), and a compressor (6), and the outdoor heat exchanger (14) is defrosted using a refrigerant heated by the compressor (6). The air conditioner comprises: an indoor wall temperature detection means (46) for detecting the temperature of an indoor wall; and a defrosting means for defrosting when it is determined that defrosting is necessary, by selecting either a heating cycle or a cooling cycle on the basis of the indoor wall temperature detected by the indoor wall temperature detection means (46), and controlling the four-way valve (8) so that the selected cycle can be executed.

Description

空気調和機Air conditioner
 本発明は、室内熱交換器、室外熱交換器、四方弁、および圧縮機を備え、室外熱交換器に付着した霜を融解することができる空気調和機に関する。 The present invention relates to an air conditioner that includes an indoor heat exchanger, an outdoor heat exchanger, a four-way valve, and a compressor and that can melt frost attached to the outdoor heat exchanger.
 従来より、暖房運転時、室外熱交換器に着霜した場合、暖房サイクルから冷房サイクルに四方弁を切り替えて除霜を行うヒートポンプ式空気調和機が知られている。この除霜方式では、室内ファンは停止するものの、室内機から冷気が徐々に放出されることからユーザの暖房感が失われるという欠点がある。また、冷房サイクルによって室内熱交換器が冷えるため、冷房サイクルから暖房サイクルに復帰した後、暖房能力が十分に発揮できるまでに時間がかかる。 Conventionally, there is known a heat pump type air conditioner that performs defrosting by switching a four-way valve from a heating cycle to a cooling cycle when the outdoor heat exchanger is frosted during heating operation. In this defrosting method, although the indoor fan is stopped, there is a drawback that the user's feeling of heating is lost because cold air is gradually discharged from the indoor unit. Further, since the indoor heat exchanger is cooled by the cooling cycle, it takes time until the heating capacity can be sufficiently exhibited after returning from the cooling cycle to the heating cycle.
 これとは逆に、室外熱交換器に着霜した場合、暖房サイクルのままで除霜を行う空気調和機が知られている。この除霜方式では、暖房感は失われないが、室外熱交換器に供給される熱量が少ないために除霜に時間がかかるという欠点がある。特に、外気の温度が低い場合や、圧縮機の出力が低い場合、除霜に時間がかかる。この対処として、特許文献1に記載する空気調和機は、室外熱交換器の除霜を実行するときに、圧縮機から出力された高温の冷媒の一部を室内熱交換器を介さずに室外熱交換器に直接供給するためのバイパス管を備える。 Contrary to this, there is known an air conditioner that performs defrosting in the heating cycle when the outdoor heat exchanger is frosted. In this defrosting method, the feeling of heating is not lost, but there is a drawback that it takes time to defrost because the amount of heat supplied to the outdoor heat exchanger is small. In particular, when the temperature of the outside air is low or when the output of the compressor is low, it takes time to defrost. As a countermeasure for this, the air conditioner described in Patent Document 1 is configured so that when performing defrosting of the outdoor heat exchanger, a part of the high-temperature refrigerant output from the compressor is used outdoors without passing through the indoor heat exchanger. A bypass pipe for supplying directly to the heat exchanger is provided.
特開2009-145032号公報JP 2009-145032 A
 上述したように、室外熱交換器の除霜において、冷房サイクルまたは暖房サイクルいずれを実行するにしても利点と欠点とがある。すなわち、暖房能力を優先すれば室外熱交換器の除霜能力が低下し、一方、除霜能力を優先すれば暖房能力が低下する。したがって、より効率よく、室内の暖房と室外熱交換器の除霜とを実行することが望まれる。 As described above, in the defrosting of the outdoor heat exchanger, there are advantages and disadvantages when performing either the cooling cycle or the heating cycle. That is, if priority is given to the heating capacity, the defrosting capacity of the outdoor heat exchanger will decrease, while if priority is given to the defrosting capacity, the heating capacity will decrease. Therefore, it is desired to more efficiently execute indoor heating and defrosting of the outdoor heat exchanger.
 そこで、本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、より効率よく、室内の暖房と室外熱交換器の除霜を実行することを課題とする。 Therefore, the present invention has been made in view of such problems of the prior art, and an object of the present invention is to more efficiently perform indoor heating and defrosting of an outdoor heat exchanger.
 上記目的を達成するために、本発明の第1の態様によれば、
 室外熱交換器、室内熱交換器、四方弁、および圧縮機を備え、圧縮機に暖められた冷媒によって室外熱交換器に付着する霜を融解して除霜する空気調和機において、
 室内の壁の温度を検出する室内壁温度検出手段と、
 除霜が必要と判断された場合に、室内壁温度検出手段が検出する室内壁温度に基づいて暖房サイクルまたは冷房サイクルのいずれか一方を選択し、選択したサイクルを実行できるように四方弁を制御することによって除霜を実行する除霜手段とを有する、空気調和機が提供される。
In order to achieve the above object, according to the first aspect of the present invention,
In an air conditioner that includes an outdoor heat exchanger, an indoor heat exchanger, a four-way valve, and a compressor, and melts and defrosts frost adhering to the outdoor heat exchanger by a refrigerant heated to the compressor.
An indoor wall temperature detecting means for detecting the temperature of the indoor wall;
When it is determined that defrosting is necessary, either the heating cycle or the cooling cycle is selected based on the indoor wall temperature detected by the indoor wall temperature detection means, and the four-way valve is controlled so that the selected cycle can be executed. An air conditioner having defrosting means for performing defrosting is provided.
 本発明によれば、室外熱交換器に着霜した場合、室内壁温度に基づいて暖房サイクルによる除霜または冷房サイクルによる除霜のいずれか一方が選択されて実行されることにより、効率よく室内の暖房と室外熱交換器の除霜を実行することができる。 According to the present invention, when frost is formed on the outdoor heat exchanger, one of the defrosting by the heating cycle and the defrosting by the cooling cycle is selected and executed based on the indoor wall temperature. Heating and defrosting of the outdoor heat exchanger can be performed.
 本発明のこれらの態様と特徴は、添付された図面についての好ましい実施形態に関連した次の記述から明らかになる。
本発明の実施の形態1に係る空気調和機の構成を示す図 図1の空気調和機の暖房サイクル・除霜運転時の動作及び冷媒の流れを示す模式図 図1の空気調和機の冷房サイクル・除霜運転時の動作及び冷媒の流れを示す模式図 図1の空気調和機の除霜運転を決定するための流れを示すフローチャート図 本発明の実施の形態2に係る空気調和機の構成を示す模式図
These aspects and features of the invention will become apparent from the following description, taken in conjunction with the preferred embodiments with reference to the accompanying drawings, in which:
The figure which shows the structure of the air conditioner which concerns on Embodiment 1 of this invention. The schematic diagram which shows the operation | movement at the time of the heating cycle and defrost operation of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. The schematic diagram which shows the operation | movement at the time of the cooling cycle and defrost operation of the air conditioner of FIG. 1, and the flow of a refrigerant | coolant. The flowchart figure which shows the flow for determining the defrost operation of the air conditioner of FIG. The schematic diagram which shows the structure of the air conditioner which concerns on Embodiment 2 of this invention.
 第1の発明は、室外熱交換器、室内熱交換器、四方弁、および圧縮機を備え、圧縮機に暖められた冷媒によって室外熱交換器に付着する霜を融解して除霜する空気調和機において、室内の壁の温度を検出する室内壁温度検出手段と、除霜が必要と判断された場合に、室内壁温度検出手段が検出する室内壁温度に基づいて暖房サイクルまたは冷房サイクルのいずれか一方を選択し、選択したサイクルを実行できるように四方弁を制御することによって除霜を実行する除霜手段とを有する。 The first invention includes an outdoor heat exchanger, an indoor heat exchanger, a four-way valve, and a compressor, and is an air conditioner that melts and defrosts frost adhering to the outdoor heat exchanger by a refrigerant warmed by the compressor. The indoor wall temperature detecting means for detecting the temperature of the indoor wall in the machine, and when it is determined that defrosting is necessary, either the heating cycle or the cooling cycle is determined based on the indoor wall temperature detected by the indoor wall temperature detecting means. Defrosting means for performing defrosting by selecting one of them and controlling the four-way valve so that the selected cycle can be executed.
 この構成により、室外熱交換器に着霜した場合、室内壁温度に基づいて暖房サイクルによる除霜または冷房サイクルによる除霜のいずれか一方が選択されて実行されることにより、効率よく室内の暖房と室外熱交換器の除霜を実行することができる。 With this configuration, when frost is formed on the outdoor heat exchanger, either the defrosting by the heating cycle or the defrosting by the cooling cycle is selected and executed based on the indoor wall temperature, thereby efficiently heating the room. And defrosting of the outdoor heat exchanger.
 第2の発明は、除霜手段が、除霜が必要と判断された場合に、室内壁温度が所定の温度より高い場合は冷房サイクルによって除霜を実行し、室内壁温度が所定の温度より低い場合は暖房サイクルによって除霜を実行する。これらにより、室内の温度低下を抑制しつつ、すなわちユーザの暖房感を失うことなく、室外熱交換器14の除霜を実行することができる。 In the second invention, when the defrosting means determines that defrosting is necessary, if the indoor wall temperature is higher than a predetermined temperature, the defrosting is performed by the cooling cycle, and the indoor wall temperature is lower than the predetermined temperature. When it is low, defrosting is performed by a heating cycle. Thus, it is possible to perform defrosting of the outdoor heat exchanger 14 while suppressing the temperature drop in the room, that is, without losing the user's feeling of heating.
 第3の発明は、暖房サイクルによる除霜時に室外熱交換器を加熱する加熱手段を、空気調和機がさらに有する。これにより、暖房サイクルによる除霜時における、空気調和機の除霜能力が上がる。 In the third invention, the air conditioner further has a heating means for heating the outdoor heat exchanger at the time of defrosting by the heating cycle. Thereby, the defrosting capability of the air conditioner at the time of defrosting by a heating cycle increases.
 第4の発明は、暖房サイクルによる除霜時に、圧縮機の廃熱を蓄熱して冷媒に供給する蓄熱手段を、空気調和機がさらに有する。これにより、空気調和機の除霜能力が上がるとともに、圧縮機の廃熱が有効利用される。 In the fourth invention, the air conditioner further has heat storage means for storing waste heat of the compressor and supplying the refrigerant to the refrigerant during defrosting by the heating cycle. Thereby, while the defrosting capability of an air conditioner goes up, the waste heat of a compressor is used effectively.
 第5の発明は、室内に人が存在するか否を検出する人検出手段を、空気調和機がさらに有し、除霜手段が、人検出手段が人を検出しているときは暖房サイクルによって除霜を実行し、人検出手段が人を検出していないときは冷房サイクルによって除霜を実行する。これにより、さらに、ユーザの暖房感を失うことなく、室外熱交換器14の除霜を実行することができる。 5th invention has a human detection means which detects whether a person exists in a room, an air conditioner further has a defrosting means, and when a person detection means is detecting a person, it is by a heating cycle. Defrosting is executed, and when the person detecting means does not detect a person, the defrosting is executed by the cooling cycle. Thereby, the defrosting of the outdoor heat exchanger 14 can be further performed without losing the user's feeling of heating.
 以下、本発明の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the following embodiments.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置を備えた空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機2と室内機4とで構成されている。 FIG. 1 shows a configuration of an air conditioner including a refrigeration cycle apparatus according to Embodiment 1 of the present invention. The air conditioner includes an outdoor unit 2 and an indoor unit 4 that are connected to each other through refrigerant piping. It is configured.
 図1に示されるように、室外機2の内部には、圧縮機6と四方弁8とストレーナ10と膨張弁12と室外熱交換器14とが設けられ、室内機4の内部には、室内熱交換器16が設けられ、これらは冷媒配管を介して互いに接続されることで冷凍サイクルを構成している。 As shown in FIG. 1, a compressor 6, a four-way valve 8, a strainer 10, an expansion valve 12, and an outdoor heat exchanger 14 are provided inside the outdoor unit 2. A heat exchanger 16 is provided, and these are connected to each other via a refrigerant pipe to constitute a refrigeration cycle.
 さらに詳述すると、圧縮機6と室内熱交換器16は、四方弁8が設けられた冷媒配管18を介して接続され、室内熱交換器16と膨張弁12は、ストレーナ10が設けられた冷媒配管20を介して接続されている。また、膨張弁12と室外熱交換器14は冷媒配管22を介して接続され、室外熱交換器14と圧縮機6は冷媒配管24を介して接続されている。 More specifically, the compressor 6 and the indoor heat exchanger 16 are connected via a refrigerant pipe 18 provided with the four-way valve 8, and the indoor heat exchanger 16 and the expansion valve 12 are refrigerant provided with the strainer 10. It is connected via a pipe 20. The expansion valve 12 and the outdoor heat exchanger 14 are connected via a refrigerant pipe 22, and the outdoor heat exchanger 14 and the compressor 6 are connected via a refrigerant pipe 24.
 冷媒配管24の中間部には四方弁8が配置されており、圧縮機6の冷媒吸入側における冷媒配管24には、液相冷媒と気相冷媒を分離するためのアキュームレータ26が設けられている。また、圧縮機6と冷媒配管22は、冷媒配管28を介して接続されており、冷媒配管28には第1電磁弁30が設けられている。 A four-way valve 8 is disposed in the middle of the refrigerant pipe 24, and an accumulator 26 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided in the refrigerant pipe 24 on the refrigerant suction side of the compressor 6. . The compressor 6 and the refrigerant pipe 22 are connected via a refrigerant pipe 28, and a first electromagnetic valve 30 is provided in the refrigerant pipe 28.
 さらに、圧縮機6の周囲には蓄熱槽32が設けられ、蓄熱槽32の内部には、蓄熱熱交換器34が設けられるとともに、蓄熱熱交換器34と熱交換するための潜熱蓄熱材(例えば、エチレングリコール水溶液)36が充填されており、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とで蓄熱装置を構成している。この蓄熱材36は、圧縮機6の廃熱を蓄熱する。 Furthermore, a heat storage tank 32 is provided around the compressor 6, and a heat storage heat exchanger 34 is provided inside the heat storage tank 32, and a latent heat storage material (for example, heat exchange material for exchanging heat with the heat storage heat exchanger 34). , Ethylene glycol aqueous solution) 36 is filled, and the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 constitute a heat storage device. The heat storage material 36 stores the waste heat of the compressor 6.
 また、冷媒配管20と蓄熱熱交換器34は冷媒配管38を介して接続され、蓄熱熱交換器34と冷媒配管24は冷媒配管40を介して接続されており、冷媒配管38には第2電磁弁42が設けられている。 The refrigerant pipe 20 and the heat storage heat exchanger 34 are connected via a refrigerant pipe 38, and the heat storage heat exchanger 34 and the refrigerant pipe 24 are connected via a refrigerant pipe 40, and the refrigerant pipe 38 has a second electromagnetic wave. A valve 42 is provided.
 室内機4の内部には、室内熱交換器16に加えて、送風ファン(図示せず)と上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器16は、送風ファンにより室内機4の内部に吸込まれた室内空気と、室内熱交換器16の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機4から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機4から吹き出される空気の方向を必要に応じて左右に変更する。 In addition to the indoor heat exchanger 16, an air blower fan (not shown), upper and lower blades (not shown), and left and right blades (not shown) are provided inside the indoor unit 4, and indoor heat exchange is performed. The unit 16 exchanges heat between the indoor air sucked into the interior of the indoor unit 4 by the blower fan and the refrigerant flowing through the interior of the indoor heat exchanger 16, and blows out the air warmed by heat exchange into the room during heating. On the other hand, air cooled by heat exchange is blown into the room during cooling. The upper and lower blades change the direction of air blown from the indoor unit 4 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 4 to right and left as needed.
 さらに加えて、本実施の形態に係る空気調和機には、室外熱交換器14内の温度を検出する室外熱交換器温度センサ44が設けられている。室外熱交換器14内の温度は、室外熱交換器14の着霜量に対応するため、室外熱交換器温度センサ44が検出した温度に基づいて、室外熱交換器14に付着する霜(着霜量)を検出することができる。室外熱交換器温度センサ44は、検出した温度に対応する信号を、空気調和機の制御装置に出力する。 In addition, the air conditioner according to the present embodiment is provided with an outdoor heat exchanger temperature sensor 44 that detects the temperature in the outdoor heat exchanger 14. Since the temperature in the outdoor heat exchanger 14 corresponds to the amount of frost formation in the outdoor heat exchanger 14, frost (deposition) adhering to the outdoor heat exchanger 14 is based on the temperature detected by the outdoor heat exchanger temperature sensor 44. Frost amount) can be detected. The outdoor heat exchanger temperature sensor 44 outputs a signal corresponding to the detected temperature to the control device of the air conditioner.
 また、室内機4には、室内の壁温度を検出する室内壁温度センサ46と、室内において人の存在を検出する人感センサ48とが設けられている。室内壁温度センサ46は、室内機4が設置された室内の壁の温度を検出するセンサであって、例えば赤外線センサである。室内壁温度センサ46は、検出した温度に対応する信号を、空気調和機の制御装置に出力する。なお、室内機4の吸い込み口温度から室内壁温度を高精度に推測できる場合は、室内壁温度センサ46に代って吸い込み口温度を検出する温度センサを使用してもよい。 Further, the indoor unit 4 is provided with an indoor wall temperature sensor 46 that detects the wall temperature of the room and a human sensor 48 that detects the presence of a person in the room. The indoor wall temperature sensor 46 is a sensor that detects the temperature of the indoor wall in which the indoor unit 4 is installed, and is, for example, an infrared sensor. The indoor wall temperature sensor 46 outputs a signal corresponding to the detected temperature to the control device of the air conditioner. If the indoor wall temperature can be estimated with high accuracy from the intake port temperature of the indoor unit 4, a temperature sensor that detects the intake port temperature may be used instead of the indoor wall temperature sensor 46.
 人感センサ48は、室内において人(ユーザ)の存在を検出するセンサであって、例えば、赤外線センサ、超音波センサ、照度センサなどである。人感センサ48は、室内において人の存在を検出すると、信号を空気調和機の制御装置(図示せず)に出力する。 The human sensor 48 is a sensor that detects the presence of a person (user) in the room, and is, for example, an infrared sensor, an ultrasonic sensor, an illuminance sensor, or the like. When detecting the presence of a person in the room, the human sensor 48 outputs a signal to a control device (not shown) of the air conditioner.
 空気調和機の制御装置は、上述した室外熱交換器温度センサ44、室内壁温度センサ46、および人感センサ48から出力された信号を受け取り、受け取った信号に基づいて、圧縮機6、四方弁8、膨張弁12、電磁弁30、42、送風ファン、上下羽根、左右羽根などを制御し、種々の運転を実行するように構成されている。 The control device for the air conditioner receives signals output from the outdoor heat exchanger temperature sensor 44, the indoor wall temperature sensor 46, and the human sensor 48 described above, and based on the received signals, the compressor 6, the four-way valve. 8, the expansion valve 12, the electromagnetic valves 30, 42, the blower fan, the upper and lower blades, the left and right blades, and the like are controlled to perform various operations.
 ここからは、本発明に係る除霜運転について説明する。 From here, the defrosting operation according to the present invention will be described.
 除霜運転は室外熱交換器14に付着する霜を融解するための運転であって、本発明に係る空気調和機の制御装置は、条件に応じて暖房サイクルまたは冷房サイクルのいずれか一方を選択し、選択したサイクルによってこの除霜運転を実行する。言い換えると、制御装置が除霜手段として機能する。以下、選択されたサイクルが暖房サイクルである場合の除霜運転を「暖房サイクル・除霜運転」と称する。一方、冷房サイクルの場合は「冷房サイクル・除霜運転」と称する。なお、サイクルの選択については後述する。 The defrosting operation is an operation for melting the frost adhering to the outdoor heat exchanger 14, and the control device for the air conditioner according to the present invention selects either the heating cycle or the cooling cycle depending on the conditions. The defrosting operation is executed according to the selected cycle. In other words, the control device functions as a defrosting unit. Hereinafter, the defrosting operation when the selected cycle is a heating cycle is referred to as a “heating cycle / defrosting operation”. On the other hand, the cooling cycle is referred to as “cooling cycle / defrosting operation”. The cycle selection will be described later.
 また、本明細書で言う「暖房サイクル」は、圧縮機6から四方弁8を介して室内熱交換器16に冷媒が移動する、すなわち暖房するときのサイクルであって、一方、「冷房サイクル」は、室内熱交換器16から四方弁8を介して圧縮機6に冷媒が移動する、すなわち冷房するときのサイクルである。 Further, the “heating cycle” referred to in the present specification is a cycle in which the refrigerant moves from the compressor 6 to the indoor heat exchanger 16 via the four-way valve 8, that is, a cycle for heating, whereas the “cooling cycle” Is a cycle when the refrigerant moves from the indoor heat exchanger 16 to the compressor 6 via the four-way valve 8, that is, when it is cooled.
 まず、暖房サイクル・除霜運転について図2を参照しながら説明する。図中、実線矢印は暖房に関する冷媒の流れを示しており、破線矢印は除霜に関する冷媒の流れを示している。なお、合わせて、空気調和機の各構成要素の機能についても説明する。 First, the heating cycle / defrosting operation will be described with reference to FIG. In the figure, the solid line arrows indicate the flow of the refrigerant related to heating, and the broken line arrows indicate the flow of the refrigerant related to defrosting. In addition, the function of each component of the air conditioner will also be described.
 室外熱交換器14に着霜し、着霜した霜が成長すると(所定の着霜量になると)、室外熱交換器14の通風抵抗が増加して風量が減少し、室外熱交換器14内の温度が所定の温度(除霜が必要な温度、以下「除霜必要温度」と称する)まで低下する。この除霜必要温度を室外熱交換器温度センサ44が検出し、暖房サイクル・除霜運転の実行の条件(詳細は後述する)が成立すると、暖房サイクル・除霜運転が開始される。 When frost is formed on the outdoor heat exchanger 14 and the formed frost grows (when a predetermined amount of frost is formed), the ventilation resistance of the outdoor heat exchanger 14 increases and the air volume decreases, and the inside of the outdoor heat exchanger 14 Is reduced to a predetermined temperature (temperature that requires defrosting, hereinafter referred to as “defrosting required temperature”). When the outdoor heat exchanger temperature sensor 44 detects this defrosting required temperature and the conditions for executing the heating cycle / defrosting operation (details will be described later) are satisfied, the heating cycle / defrosting operation is started.
 暖房サイクル・除霜運転が開始されると、空気調和機の制御装置により、第1電磁弁30と第2電磁弁42は開制御されるとともに、四方弁8が暖房サイクル側に制御される。これにより、圧縮機6の吐出口から出力された気相冷媒の一部が冷媒配管18に流れ、残りが冷媒配管28に流れる。 When the heating cycle / defrosting operation is started, the first electromagnetic valve 30 and the second electromagnetic valve 42 are controlled to be opened by the control device of the air conditioner, and the four-way valve 8 is controlled to the heating cycle side. Thereby, a part of the gas-phase refrigerant output from the discharge port of the compressor 6 flows into the refrigerant pipe 18 and the rest flows into the refrigerant pipe 28.
 なお、参考のために、除霜を行わない暖房サイクルの場合、すなわち通常の暖房運転の場合は、第1電磁弁30と第2電磁弁42はともに閉制御される。 For reference, in a heating cycle in which defrosting is not performed, that is, in a normal heating operation, both the first solenoid valve 30 and the second solenoid valve 42 are controlled to be closed.
 圧縮機6から冷媒配管18に入る気相冷媒は、図2に示すように四方弁8を通過して室内熱交換器16に到達し、そこで室内空気と室内熱交換器16を介して熱交換する。熱交換によって熱を奪われて凝縮した冷媒は、冷媒配管20を通り、冷媒配管20における室内熱交換器16とストレーナ10との間で分流して、冷媒配管22、38とに流れる。冷媒配管38を流れる冷媒は、第2電磁弁42を通過して蓄熱熱交換器34に入り、蓄熱材36から吸熱して蒸発することにより気相化する。気相化した冷媒は、冷媒配管40を介して冷媒配管24を通る冷媒に合流し、アキュームレータ26を介して圧縮機6の吸入口に入る。 As shown in FIG. 2, the gas-phase refrigerant entering the refrigerant pipe 18 from the compressor 6 passes through the four-way valve 8 and reaches the indoor heat exchanger 16, where it exchanges heat with indoor air via the indoor heat exchanger 16. To do. The refrigerant deprived of heat by heat exchange passes through the refrigerant pipe 20, is divided between the indoor heat exchanger 16 and the strainer 10 in the refrigerant pipe 20, and flows into the refrigerant pipes 22 and 38. The refrigerant flowing through the refrigerant pipe 38 passes through the second electromagnetic valve 42 and enters the heat storage heat exchanger 34, and absorbs heat from the heat storage material 36 and evaporates to be vaporized. The vaporized refrigerant merges with the refrigerant passing through the refrigerant pipe 24 via the refrigerant pipe 40 and enters the suction port of the compressor 6 via the accumulator 26.
 一方、冷媒配管20における室内熱交換器16とストレーナ10との間で分流した、凝縮した冷媒は、膨張弁12への異物進入を防止するストレーナ10を通過し、膨張弁12に入って膨張(減圧)される。膨張弁12によって減圧された冷媒は、冷媒配管22を通って室外熱交換器14に至り、そこで外気と熱交換する。室外熱交換器14で外気と熱交換した冷媒は、冷媒配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口に入る。 On the other hand, the condensed refrigerant that has been split between the indoor heat exchanger 16 and the strainer 10 in the refrigerant pipe 20 passes through the strainer 10 that prevents foreign matter from entering the expansion valve 12 and enters the expansion valve 12 to expand ( Reduced pressure). The refrigerant decompressed by the expansion valve 12 reaches the outdoor heat exchanger 14 through the refrigerant pipe 22, and exchanges heat with the outside air there. The refrigerant that exchanges heat with the outside air in the outdoor heat exchanger 14 enters the suction port of the compressor 6 through the refrigerant pipe 24, the four-way valve 8, and the accumulator 26.
 なお、ストレーナ10を、冷媒配管20における冷媒配管38との分流部分と膨張弁12の間に配置したが、冷媒配管20における室内熱交換器16と冷媒配管38との分流部分の間に配置しても、膨張弁12への異物侵入を防止するという機能は保持することができる。 In addition, although the strainer 10 is arranged between the diversion part of the refrigerant pipe 20 and the refrigerant pipe 38 and the expansion valve 12, the strainer 10 is arranged between the diversion part of the refrigerant pipe 20 between the indoor heat exchanger 16 and the refrigerant pipe 38. However, the function of preventing foreign matter from entering the expansion valve 12 can be maintained.
 ただし、ストレーナ10には圧力損失があり、前者の配置にした方が、冷媒配管20における冷媒配管38との分流部分において、冷媒が冷媒配管38側に流れやすくなり、冷媒配管38から蓄熱熱交換器34を通って冷媒配管40に至るバイパス配管系の循環量が増加する。その結果、蓄熱材36の温度が高く蓄熱熱交換器34の熱交換能力が非常に大きい場合においても、蓄熱熱交換器34の循環量が多いため、蓄熱熱交換器34の後半部で過熱度が高くなって熱交換できなくなる現象が起こりにくくなり、蓄熱熱交換器34の熱交換量が十分発揮されて、除霜能力も十分に発揮されるという利点がある。 However, the strainer 10 has a pressure loss, and in the former arrangement, the refrigerant is more likely to flow to the refrigerant pipe 38 side in the part where the refrigerant pipe 20 is separated from the refrigerant pipe 38, and heat storage heat exchange is performed from the refrigerant pipe 38. The circulation amount of the bypass piping system that reaches the refrigerant piping 40 through the vessel 34 increases. As a result, even when the temperature of the heat storage material 36 is high and the heat exchange capacity of the heat storage heat exchanger 34 is very large, the circulation amount of the heat storage heat exchanger 34 is large. As a result, it becomes difficult to cause a phenomenon that heat exchange becomes impossible, and there is an advantage that the heat exchange amount of the heat storage heat exchanger 34 is sufficiently exhibited and the defrosting capability is sufficiently exhibited.
 また、アキュームレータ26に入る直前において、室外熱交換器14からの液相冷媒と蓄熱熱交換器34からの高温の気相冷媒とが合流することにより、液相冷媒の蒸発が促され、アキュームレータ26を通過して液相冷媒が圧縮機6に戻ることがなくなり、圧縮機6の信頼性の向上を図ることができる。 Further, immediately before entering the accumulator 26, the liquid phase refrigerant from the outdoor heat exchanger 14 and the high-temperature gas phase refrigerant from the heat storage heat exchanger 34 join together to promote the evaporation of the liquid phase refrigerant. The liquid-phase refrigerant does not return to the compressor 6 through the flow, and the reliability of the compressor 6 can be improved.
 これに対して、圧縮機6の吐出口から出力されて冷媒配管28に入る気相冷媒は、冷媒配管28と電磁弁30を通り、冷媒配管22を通る冷媒に合流して、室外熱交換器14を加熱し、凝縮して液相化した後、冷媒配管24を通って四方弁8とアキュームレータ26を介して圧縮機6の吸入口に入る。 On the other hand, the gas-phase refrigerant that is output from the discharge port of the compressor 6 and enters the refrigerant pipe 28 passes through the refrigerant pipe 28 and the electromagnetic valve 30, and merges with the refrigerant that passes through the refrigerant pipe 22. 14 is heated and condensed to form a liquid phase, and then enters the suction port of the compressor 6 through the refrigerant pipe 24 via the four-way valve 8 and the accumulator 26.
 このような暖房サイクル・除霜運転により、暖房能力を確保しつつ、当該運転開始時に霜の付着により氷点下であった室外熱交換器14の温度は、霜が融解することによって上昇する。なお、暖房サイクル・除霜運転は、室外熱交換器温度センサ44が、除霜必要温度より高くて霜が存在し得ない温度(例えば、8℃)を検出すると終了する。 Such a heating cycle / defrosting operation increases the temperature of the outdoor heat exchanger 14 that has been below the freezing point due to frost adhesion at the start of the operation, while securing the heating capacity, as the frost melts. The heating cycle / defrosting operation ends when the outdoor heat exchanger temperature sensor 44 detects a temperature (for example, 8 ° C.) that is higher than the defrosting required temperature and cannot contain frost.
 次に、冷房サイクル・除霜運転について図3を参照しながら説明する。 Next, the cooling cycle / defrosting operation will be described with reference to FIG.
 除霜必要温度を室外熱交換器温度センサ44が検出し、冷房サイクル・除霜運転の実行の条件(詳細は後述する)が成立すると、冷房サイクル・除霜運転が開始される。 When the outdoor heat exchanger temperature sensor 44 detects the temperature required for defrosting and the conditions for executing the cooling cycle / defrosting operation (details will be described later) are satisfied, the cooling cycle / defrosting operation is started.
 冷房サイクル・除霜運転が開始されると、空気調和機の制御装置により、第1電磁弁30と第2電磁弁42は閉制御されるとともに、四方弁8が冷房サイクル側に制御される。 When the cooling cycle / defrosting operation is started, the control device of the air conditioner controls the first electromagnetic valve 30 and the second electromagnetic valve 42 to be closed, and the four-way valve 8 is controlled to the cooling cycle side.
 圧縮機6の吐出口から出力された気相冷媒は、冷媒配管18、四方弁8、冷媒配管24を通り室外熱交換器14に入る。そこで、気相冷媒は、室外熱交換器14を介して霜に熱を奪われて凝縮する。この熱によって霜は融解する。 The gas-phase refrigerant output from the discharge port of the compressor 6 passes through the refrigerant pipe 18, the four-way valve 8, and the refrigerant pipe 24 and enters the outdoor heat exchanger 14. Therefore, the vapor phase refrigerant is condensed by being deprived of heat by the frost via the outdoor heat exchanger 14. This heat melts the frost.
 霜の融解のために熱を奪われて凝縮した液相冷媒は、冷媒配管22に入り、膨張弁12によって膨張され、ストレーナ10を介して室内熱交換器16に入り、そこで室内空気から室内熱交換器16を介して熱を奪う。熱を奪って気相化した冷媒は、冷媒配管18、四方弁8、冷媒配管24、アキュームレータ26を通って、圧縮機6の吸入口に入る。 The liquid phase refrigerant, which has been deprived of heat for melting frost and enters the refrigerant pipe 22, is expanded by the expansion valve 12, and enters the indoor heat exchanger 16 through the strainer 10, where the indoor heat is transferred from the indoor air to the indoor heat. Heat is taken away via the exchanger 16. The refrigerant that has been vaporized by removing heat enters the suction port of the compressor 6 through the refrigerant pipe 18, the four-way valve 8, the refrigerant pipe 24, and the accumulator 26.
 このような冷房サイクル・除霜運転により、暖房能力はないものの、暖房サイクル・除霜運転の場合に比べて速く、当該運転開始時に霜の付着により氷点下となった室外熱交換器14の温度は、霜が融解することによって上昇する。なお、冷房サイクル・除霜運転は、室外熱交換器温度センサ44が、除霜必要温度より高くて霜が存在し得ない温度を検出すると終了する。 Although there is no heating capacity by such a cooling cycle / defrosting operation, the temperature of the outdoor heat exchanger 14 that is below the freezing point due to frost adhesion at the start of the operation is faster than that of the heating cycle / defrosting operation. As the frost melts, it rises. The cooling cycle / defrosting operation is terminated when the outdoor heat exchanger temperature sensor 44 detects a temperature that is higher than the defrosting required temperature and cannot contain frost.
 ここからは、室外熱交換器14の除霜にあたり、暖房サイクル・除霜運転と冷房サイクル・除霜運転の選択方法(条件)について、図4を参照しながら説明する。 Hereafter, a method (condition) for selecting the heating cycle / defrosting operation and the cooling cycle / defrosting operation in defrosting the outdoor heat exchanger 14 will be described with reference to FIG.
 空気調和機の制御装置は、図4に示すフローチャートに従い、暖房サイクル・除霜運転または冷房サイクル・除霜運転のいずれか一方を選択する。 The air conditioner control device selects either the heating cycle / defrosting operation or the cooling cycle / defrosting operation according to the flowchart shown in FIG.
 まず、ステップS10において、制御装置は、室外熱交換器14の除霜が必要か否かを判定する。具体的には、上述したように、室外熱交換器温度センサ44が検出した温度が除霜必要温度より低い場合、除霜が必要であると判定する。除霜が必要である場合は、ステップS20に進む。そうでない場合は、リターンに進み、スタートに戻る。 First, in step S10, the control device determines whether or not defrosting of the outdoor heat exchanger 14 is necessary. Specifically, as described above, when the temperature detected by the outdoor heat exchanger temperature sensor 44 is lower than the defrosting required temperature, it is determined that defrosting is necessary. When defrosting is required, it progresses to Step S20. If not, proceed to return and return to start.
 次にステップS20において、制御装置は、室内壁温度センサ46が検出した室内壁温度が所定の壁温度より低いか否かを判定する。 Next, in step S20, the control device determines whether or not the indoor wall temperature detected by the indoor wall temperature sensor 46 is lower than a predetermined wall temperature.
 具体的に説明すると、室内壁温度が低い場合に暖房運転を停止すると、熱容量が小さい室内空気の熱が大量に熱容量が大きい壁に奪われ、または壁から室内空気に熱が移動せずに、室内空気の温度が急激に低下する。これにより、ユーザの暖房感が失われる。 Specifically, when the heating operation is stopped when the indoor wall temperature is low, the heat of the indoor air with a small heat capacity is taken away by the wall with a large heat capacity, or the heat does not move from the wall to the indoor air. The temperature of the room air drops rapidly. Thereby, a user's feeling of heating is lost.
 これに対して、室内壁温度が高い場合、暖房運転を停止しても、室内空気の熱が大量に壁に奪われることがないため、または壁から室内空気に熱が移動するので、室内空気の温度が急激に低下しない。そのため、暖房を停止しても、ユーザの暖房感が失われることがない。 On the other hand, when the indoor wall temperature is high, even if the heating operation is stopped, a large amount of heat from the room air is not taken away by the wall, or the heat is transferred from the wall to the room air. Temperature does not drop rapidly. Therefore, even if heating is stopped, the user's feeling of heating is not lost.
 したがって、室内壁温度が所定の壁温度より高い場合はステップS50に進み、冷房サイクル・除霜運転を実行する。一方、室内壁温度が所定の壁温度より低い場合は、ステップS30に進む。 Therefore, if the indoor wall temperature is higher than the predetermined wall temperature, the process proceeds to step S50, and the cooling cycle / defrosting operation is executed. On the other hand, if the indoor wall temperature is lower than the predetermined wall temperature, the process proceeds to step S30.
 ステップS30において、制御装置は、人感センサ48を介して室内に人が存在するか否かを判定する。 In step S30, the control device determines whether a person is present in the room via the human sensor 48.
 具体的に説明すると、室内に人(ユーザ)が存在する場合、ユーザの暖房感が失われないように暖房サイクル・除霜運転を実行する必要があるが、室内に人が存在しない場合は冷房サイクル・除霜運転が実行可能である。 More specifically, when there is a person (user) in the room, it is necessary to execute a heating cycle / defrosting operation so that the user's feeling of heating is not lost. Cycle and defrosting operations can be performed.
 したがって、室内に人が存在する場合は、ステップS40に進み、暖房サイクル・除霜運転を実行する。一方、室内に人が存在しない場合は、ステップS50に進み、冷房サイクル・除霜運転を実行する。 Therefore, if there is a person in the room, the process proceeds to step S40, and the heating cycle / defrosting operation is executed. On the other hand, when there is no person in the room, the process proceeds to step S50, and the cooling cycle / defrosting operation is executed.
 なお、暖房サイクル・除霜運転と冷房サイクル・除霜運転は、室外熱交換器温度センサ44が検出する温度が除霜必要温度を超えて霜が存在し得ない温度に達すると終了する。 The heating cycle / defrosting operation and the cooling cycle / defrosting operation are terminated when the temperature detected by the outdoor heat exchanger temperature sensor 44 exceeds the defrosting required temperature and reaches a temperature at which frost cannot exist.
 本実施の形態によれば、室外熱交換器14に着霜した場合、室内壁温度に基づいて暖房サイクル・除霜運転または冷房サイクル・除霜運転のいずれか一方が選択されて実行されることにより、効率よく室内の暖房と室外熱交換器14の除霜を実行することができる。 According to the present embodiment, when the outdoor heat exchanger 14 is frosted, either the heating cycle / defrosting operation or the cooling cycle / defrosting operation is selected and executed based on the indoor wall temperature. Thereby, indoor heating and defrosting of the outdoor heat exchanger 14 can be performed efficiently.
 また、室内壁温度が所定の温度より高い場合は、室内空気の熱が大量に壁に奪われることがないので、冷房サイクルによる除霜を実行する。一方、室内壁温度が所定の温度より低い場合は、室内空気の熱が大量に壁に奪われることになるので、暖房サイクルによる除霜を実行して室内の温度低下を抑制しながら除霜を実行する。これらにより、室内の温度低下を抑制しつつ、すなわちユーザの暖房感を失うことなく、室外熱交換器14の除霜を実行することができる。 In addition, when the indoor wall temperature is higher than a predetermined temperature, a large amount of indoor air heat is not taken away by the wall, so defrosting is performed by a cooling cycle. On the other hand, if the indoor wall temperature is lower than the predetermined temperature, a large amount of indoor air heat is taken away by the wall, so defrosting is performed while suppressing the temperature drop in the room by executing defrosting by the heating cycle. Execute. Thus, it is possible to perform defrosting of the outdoor heat exchanger 14 while suppressing the temperature drop in the room, that is, without losing the user's feeling of heating.
 さらに、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とから構成される蓄熱装置が、暖房サイクル・除霜運転時に、圧縮機6の廃熱を蓄熱して冷媒に供給する。これにより、除霜能力が上がるとともに、圧縮機6の廃熱を有効利用できる。 Furthermore, a heat storage device including the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 stores the waste heat of the compressor 6 and supplies it to the refrigerant during the heating cycle / defrosting operation. Thereby, while defrosting capability goes up, the waste heat of the compressor 6 can be used effectively.
 さらにまた、室外熱交換器14に着霜した場合、室内に人(ユーザ)が存在しない場合は、冷房サイクル・除霜運転を実行する。当然ながらユーザの暖房感を失うことなく、除霜を短時間に終了することができる。 Furthermore, when the outdoor heat exchanger 14 is frosted, if there is no person (user) in the room, a cooling cycle / defrosting operation is executed. Naturally, defrosting can be completed in a short time without losing the user's feeling of heating.
 以上、上述の実施の形態を挙げて本発明を説明したが、本発明はこれに限定されない。 As mentioned above, although the present invention has been described with reference to the above-described embodiment, the present invention is not limited to this.
 例えば、上述の実施の形態1の場合、空気調和機は、圧縮機の廃熱を利用する、蓄熱槽32と蓄熱熱交換器34と蓄熱材36とから構成される蓄熱装置を有するが、本発明は蓄熱装置を有する空気調和機に限定しない。 For example, in the case of the above-described first embodiment, the air conditioner includes a heat storage device that includes the heat storage tank 32, the heat storage heat exchanger 34, and the heat storage material 36 that uses waste heat of the compressor. The invention is not limited to an air conditioner having a heat storage device.
 例えば、図5に示す空気調和機(本発明の実施の形態2)が考えられる。図5に示す空気調和機は、図1に示す空気調和機から蓄熱槽32、蓄熱熱交換器34、蓄熱材36、冷媒配管38,40、第2電磁弁42が取り除かれ、第1電磁センサ30と冷媒配管28、22の合流部との間の冷媒配管28の部分と四方弁8とアキュームレータ26との間の冷媒配管24の部分とを接続する冷媒配管50が設けられている。 For example, an air conditioner (Embodiment 2 of the present invention) shown in FIG. 5 is conceivable. The air conditioner shown in FIG. 5 is obtained by removing the heat storage tank 32, the heat storage heat exchanger 34, the heat storage material 36, the refrigerant pipes 38 and 40, and the second electromagnetic valve 42 from the air conditioner shown in FIG. A refrigerant pipe 50 is provided for connecting a portion of the refrigerant pipe 28 between 30 and the junction of the refrigerant pipes 28 and 22 and a portion of the refrigerant pipe 24 between the four-way valve 8 and the accumulator 26.
 図5に示す空気調和機において、暖房サイクル・除霜運転を実行する場合、第1電磁弁30が開制御されるとともに、四方弁8が暖房サイクル側に制御される。なお、参考のために、除霜を行わない暖房サイクルの場合、すなわち通常の暖房運転の場合は、第1の電磁弁30は閉制御される。 In the air conditioner shown in FIG. 5, when the heating cycle / defrosting operation is executed, the first electromagnetic valve 30 is controlled to open and the four-way valve 8 is controlled to the heating cycle side. For reference, in the case of a heating cycle in which defrosting is not performed, that is, in the case of normal heating operation, the first solenoid valve 30 is controlled to be closed.
 圧縮機6から冷媒配管18に入る気相冷媒は、四方弁8を通過して室内熱交換器16に到達し、そこで室内空気と室内熱交換器16を介して熱交換する。熱交換によって熱を奪われて凝縮した液相の冷媒は、冷媒配管20に入り、ストレーナ10を通って、膨張弁12に至る。膨張弁12によって減圧された冷媒は、冷媒配管22を通って室外熱交換器14に入る。 The gas-phase refrigerant entering the refrigerant pipe 18 from the compressor 6 passes through the four-way valve 8 and reaches the indoor heat exchanger 16, where it exchanges heat with the indoor air via the indoor heat exchanger 16. The liquid-phase refrigerant that has been deprived of heat by heat exchange and condensed enters the refrigerant pipe 20, passes through the strainer 10, and reaches the expansion valve 12. The refrigerant decompressed by the expansion valve 12 enters the outdoor heat exchanger 14 through the refrigerant pipe 22.
 これに対して、圧縮機6の吐出口から出力されて冷媒配管28に入る気相冷媒は、冷媒配管28と第1電磁弁30を通り、一部が室外熱交換器14に向かい、残りが冷媒配管50に入る。室外熱交換器14に向かった冷媒は、冷媒配管22を流れる冷媒と合流して室外熱交換器14に入り、外気と熱交換する。室外熱交換器14で外気と熱交換した冷媒は、冷媒配管24と四方弁8とアキュームレータ26を通って圧縮機6の吸入口に入る。 On the other hand, the gas-phase refrigerant that is output from the discharge port of the compressor 6 and enters the refrigerant pipe 28 passes through the refrigerant pipe 28 and the first electromagnetic valve 30, partly toward the outdoor heat exchanger 14, and the rest The refrigerant pipe 50 is entered. The refrigerant heading for the outdoor heat exchanger 14 joins the refrigerant flowing through the refrigerant pipe 22 and enters the outdoor heat exchanger 14 to exchange heat with the outside air. The refrigerant that exchanges heat with the outside air in the outdoor heat exchanger 14 enters the suction port of the compressor 6 through the refrigerant pipe 24, the four-way valve 8, and the accumulator 26.
 一方、冷媒配管50に入った冷媒は、冷媒配管24を流れる冷媒と合流し、アキュームレータ26を通って圧縮機6の吸入口に入る。 On the other hand, the refrigerant that has entered the refrigerant pipe 50 merges with the refrigerant flowing through the refrigerant pipe 24, passes through the accumulator 26, and enters the suction port of the compressor 6.
 冷房サイクル・除霜運転を実行する場合、第1電磁弁30が閉制御されるとともに、四方弁8が冷房サイクル側に制御される。 When performing the cooling cycle / defrosting operation, the first electromagnetic valve 30 is controlled to be closed, and the four-way valve 8 is controlled to the cooling cycle side.
 圧縮機6から冷媒配管24に入る気相冷媒は、四方弁8を介して室外熱交換器14に入り、外気と熱交換する。熱交換よって熱を奪われて凝縮した冷媒は、冷媒配管22に入って膨張弁12に至る。膨張弁12によって減圧された冷媒は、冷媒配管20を通って室内熱交換器16に入り、そこで室内空気と熱交換する。熱交換によって気相化した冷媒は、冷媒配管18に入り、その後、四方弁8、アキュームレータ26を通過して圧縮機6の吸入口に入る。 The gas phase refrigerant entering the refrigerant pipe 24 from the compressor 6 enters the outdoor heat exchanger 14 via the four-way valve 8 and exchanges heat with the outside air. The refrigerant that has been deprived of heat by heat exchange and condensed enters the refrigerant pipe 22 and reaches the expansion valve 12. The refrigerant decompressed by the expansion valve 12 passes through the refrigerant pipe 20 and enters the indoor heat exchanger 16 where it exchanges heat with indoor air. The refrigerant vaporized by heat exchange enters the refrigerant pipe 18 and then passes through the four-way valve 8 and the accumulator 26 and enters the suction port of the compressor 6.
 図5に示すような空気調和機においても、効率よく室内の暖房と室外熱交換器14の除霜とを実行することができる。 Also in an air conditioner as shown in FIG. 5, indoor heating and defrosting of the outdoor heat exchanger 14 can be performed efficiently.
 また、例えば、図5に示す空気調和機において、室外熱交換器14を加熱するヒータ(図示せず)を設けてもよい。図5に示す空気調和機は蓄熱装置を有しない構成であるため、図1に示す空気調和機に比べて、除霜能力が劣り、除霜時間が長い。したがって、除霜能力を補うために、暖房サイクル・除霜運転時に室外熱交換器14に対して補助的に熱を供給するヒータを設ける。これにより、図1に示す、蓄熱装置を有する空気調和機と同等の除霜能力を持つことができる。 For example, in the air conditioner shown in FIG. 5, a heater (not shown) for heating the outdoor heat exchanger 14 may be provided. Since the air conditioner shown in FIG. 5 is a structure which does not have a heat storage apparatus, compared with the air conditioner shown in FIG. 1, a defrosting capability is inferior and defrosting time is long. Therefore, in order to supplement the defrosting capability, a heater that supplies heat to the outdoor heat exchanger 14 during the heating cycle / defrosting operation is provided. Thereby, it can have defrosting capability equivalent to the air conditioner which has a thermal storage apparatus shown in FIG.
 本発明は、添付図面を参照しながら好ましい実施形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。 Although the present invention has been fully described in connection with preferred embodiments with reference to the accompanying drawings, various variations and modifications will be apparent to those skilled in the art. Such changes and modifications are to be understood as being included therein, so long as they do not depart from the scope of the present invention according to the appended claims.
 本発明は、室外熱交換器に着霜した場合、室内壁温度に基づいて暖房サイクル・除霜運転または冷房サイクル・除霜運転のいずれか一方を選択することにより効率よく室内の暖房と室外熱交換器の除霜を実行することができるため、上述の実施の形態のような室外機と室内機とから構成される空気調和機に限らず、室外機と室内機とが一体の一体型空気調和機にも適用可能である。 In the present invention, when frost is formed on the outdoor heat exchanger, the indoor heating and the outdoor heat can be efficiently performed by selecting one of the heating cycle / defrosting operation or the cooling cycle / defrosting operation based on the indoor wall temperature. Since the defrosting of the exchanger can be performed, not only the air conditioner configured by the outdoor unit and the indoor unit as in the above-described embodiment, but also the integrated air in which the outdoor unit and the indoor unit are integrated. It can also be applied to a harmonic machine.
2 室外機、 4 室内機、 6 圧縮機、 8 四方弁、
10 ストレーナ、 12 膨張弁、 14 室外熱交換器、
16 室内熱交換器、 18 冷媒配管、 20 冷媒配管、
22 冷媒配管、 24 冷媒配管、 26 アキュームレータ、
28 冷媒配管、 30 第1電磁弁、 32 蓄熱槽、
34 蓄熱熱交換器、 36 蓄熱材、 38 冷媒配管、
40 冷媒配管、 42 第2電磁弁、
44 着霜量検出手段(室外熱交換器温度センサ)、
46 室内壁温度検出手段(室内壁温度センサ)、
48 人検出手段(人感センサ)。
2 outdoor units, 4 indoor units, 6 compressors, 8 four-way valves,
10 strainer, 12 expansion valve, 14 outdoor heat exchanger,
16 indoor heat exchanger, 18 refrigerant piping, 20 refrigerant piping,
22 refrigerant piping, 24 refrigerant piping, 26 accumulator,
28 refrigerant piping, 30 first solenoid valve, 32 heat storage tank,
34 heat storage heat exchanger, 36 heat storage material, 38 refrigerant piping,
40 refrigerant piping, 42 second solenoid valve,
44 Frosting amount detection means (outdoor heat exchanger temperature sensor),
46 indoor wall temperature detection means (indoor wall temperature sensor),
48 person detection means (human sensor).

Claims (5)

  1.  室外熱交換器、室内熱交換器、四方弁、および圧縮機を備え、圧縮機に暖められた冷媒によって室外熱交換器に付着する霜を融解して除霜する空気調和機において、
     室内の壁の温度を検出する室内壁温度検出手段と、
     除霜が必要と判断された場合に、室内壁温度検出手段が検出する室内壁温度に基づいて暖房サイクルまたは冷房サイクルのいずれか一方を選択し、選択したサイクルを実行できるように四方弁を制御することによって除霜を実行する除霜手段とを有する空気調和機。
    In an air conditioner that includes an outdoor heat exchanger, an indoor heat exchanger, a four-way valve, and a compressor, and melts and defrosts frost adhering to the outdoor heat exchanger by a refrigerant heated to the compressor.
    An indoor wall temperature detecting means for detecting the temperature of the indoor wall;
    When it is determined that defrosting is necessary, either the heating cycle or the cooling cycle is selected based on the indoor wall temperature detected by the indoor wall temperature detection means, and the four-way valve is controlled so that the selected cycle can be executed. The air conditioner which has a defrost means which performs a defrost by doing.
  2.  除霜手段が、
     除霜が必要と判断された場合に、
     室内壁温度が所定の温度より高い場合は冷房サイクルによって除霜を実行し、
     室内壁温度が所定の温度より低い場合は暖房サイクルによって除霜を実行する請求項1に記載の空気調和機。
    The defrosting means
    When it is determined that defrosting is necessary,
    When the indoor wall temperature is higher than the predetermined temperature, defrosting is performed by a cooling cycle,
    The air conditioner according to claim 1, wherein defrosting is performed by a heating cycle when the indoor wall temperature is lower than a predetermined temperature.
  3.  暖房サイクルによる除霜時に、室外熱交換器を加熱する加熱手段をさらに有する請求項1または2に記載の空気調和機。 The air conditioner according to claim 1 or 2, further comprising heating means for heating the outdoor heat exchanger during defrosting by a heating cycle.
  4.  暖房サイクルによる除霜時に、圧縮機の廃熱を蓄熱して冷媒に供給する蓄熱手段をさらに有する請求項1または2に記載の空気調和機。 The air conditioner according to claim 1 or 2, further comprising heat storage means for storing waste heat of the compressor and supplying the refrigerant to the refrigerant during defrosting by the heating cycle.
  5.  室内に人が存在するか否を検出する人検出手段をさらに有し、
     除霜手段が、
     人検出手段が人を検出しているときは暖房サイクルによって除霜を実行し、
     人検出手段が人を検出していないときは冷房サイクルによって除霜を実行する請求項1から4のいずれか一項に記載の空気調和機。
    It further has human detection means for detecting whether a person is present in the room,
    The defrosting means
    When the person detection means detects a person, it performs defrosting by the heating cycle,
    The air conditioner as described in any one of Claim 1 to 4 which performs a defrost by a cooling cycle when the person detection means has not detected the person.
PCT/JP2011/001292 2010-09-09 2011-03-04 Air conditioner WO2012032681A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020137004435A KR20130103712A (en) 2010-09-09 2011-03-04 Air conditioner
EP11823167.9A EP2615388B1 (en) 2010-09-09 2011-03-04 Air conditioner
BR112013005113A BR112013005113A2 (en) 2010-09-09 2011-03-04 air conditioner
CN2011800436015A CN103097824A (en) 2010-09-09 2011-03-04 Air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010202483A JP5210364B2 (en) 2010-09-09 2010-09-09 Air conditioner
JP2010-202483 2010-09-09

Publications (1)

Publication Number Publication Date
WO2012032681A1 true WO2012032681A1 (en) 2012-03-15

Family

ID=45810295

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/001292 WO2012032681A1 (en) 2010-09-09 2011-03-04 Air conditioner

Country Status (6)

Country Link
EP (1) EP2615388B1 (en)
JP (1) JP5210364B2 (en)
KR (1) KR20130103712A (en)
CN (1) CN103097824A (en)
BR (1) BR112013005113A2 (en)
WO (1) WO2012032681A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014013121A (en) * 2012-07-05 2014-01-23 Panasonic Corp Air conditioner
JP2015042922A (en) * 2013-08-26 2015-03-05 パナソニックIpマネジメント株式会社 Air conditioner
EP3093586B1 (en) * 2013-10-29 2021-08-25 Mitsubishi Electric Corporation Air conditioning device
CN103604169B (en) * 2013-11-14 2017-01-11 广东美的制冷设备有限公司 Heating and cooling air conditioner
CN108603706B (en) * 2016-02-05 2021-03-23 三菱电机株式会社 Air conditioner
JP6804272B2 (en) * 2016-11-24 2020-12-23 シャープ株式会社 Air conditioner control device
CN112041619B (en) * 2018-04-11 2022-08-23 夏普株式会社 Air conditioning system
CN109959096B (en) * 2018-08-01 2020-12-11 安徽省华腾农业科技有限公司经开区分公司 Intelligent cold and warm type temperature control equipment
CN111102686A (en) * 2019-12-13 2020-05-05 珠海格力电器股份有限公司 Air conditioner defrosting control method, computer readable storage medium and air conditioner

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124429U (en) * 1989-03-22 1990-10-12
JP2006017414A (en) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd Air conditioner
JP2007155261A (en) * 2005-12-07 2007-06-21 Sharp Corp Air conditioner
JP2007218499A (en) * 2006-02-16 2007-08-30 Hitachi Ltd Air conditioner
JP2009047344A (en) * 2007-08-20 2009-03-05 Panasonic Corp Air conditioning device
JP2009103426A (en) * 2007-10-03 2009-05-14 Panasonic Corp Air conditioner
JP2009145032A (en) 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same
JP2010085047A (en) * 2008-10-01 2010-04-15 Sharp Corp Air conditioner
JP2010121847A (en) * 2008-11-19 2010-06-03 Hitachi Appliances Inc Air conditioner
JP2010145020A (en) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp Heat pump device, and heat pump water heater and air conditioner loaded with the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63189731A (en) * 1987-02-02 1988-08-05 Matsushita Electric Ind Co Ltd Defrosting controller of air conditioner
JPH03105145A (en) * 1989-09-18 1991-05-01 Hitachi Ltd Controlling method for defrosting of thermo-hygrostat
KR100225640B1 (en) * 1997-06-27 1999-10-15 윤종용 Defrosting control method for air conditioner

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02124429U (en) * 1989-03-22 1990-10-12
JP2006017414A (en) * 2004-07-05 2006-01-19 Matsushita Electric Ind Co Ltd Air conditioner
JP2007155261A (en) * 2005-12-07 2007-06-21 Sharp Corp Air conditioner
JP2007218499A (en) * 2006-02-16 2007-08-30 Hitachi Ltd Air conditioner
JP2009047344A (en) * 2007-08-20 2009-03-05 Panasonic Corp Air conditioning device
JP2009103426A (en) * 2007-10-03 2009-05-14 Panasonic Corp Air conditioner
JP2009145032A (en) 2007-11-21 2009-07-02 Panasonic Corp Refrigeration cycle apparatus and air conditioner equipped with the same
JP2010085047A (en) * 2008-10-01 2010-04-15 Sharp Corp Air conditioner
JP2010121847A (en) * 2008-11-19 2010-06-03 Hitachi Appliances Inc Air conditioner
JP2010145020A (en) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp Heat pump device, and heat pump water heater and air conditioner loaded with the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2615388A4

Also Published As

Publication number Publication date
CN103097824A (en) 2013-05-08
EP2615388B1 (en) 2017-10-18
BR112013005113A2 (en) 2016-04-26
EP2615388A4 (en) 2016-06-15
JP2012057877A (en) 2012-03-22
JP5210364B2 (en) 2013-06-12
KR20130103712A (en) 2013-09-24
EP2615388A1 (en) 2013-07-17

Similar Documents

Publication Publication Date Title
JP5210364B2 (en) Air conditioner
JP5238001B2 (en) Refrigeration cycle equipment
US10724777B2 (en) Refrigeration cycle apparatus capable of performing refrigerant recovery operation and controlling blower
EP3361184B1 (en) Refrigeration cycle device
JP6138711B2 (en) Air conditioner
JP5615561B2 (en) Refrigeration cycle equipment
JP2008096033A (en) Refrigerating device
JP7034227B1 (en) Air conditioner and management device
WO2012042692A1 (en) Refrigeration cycle device
JP5903585B2 (en) Air conditioner
JPWO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP5445570B2 (en) Air conditioner
JP7093236B2 (en) Air conditioner and control method
JP6272481B2 (en) Air conditioner
JP2011153812A (en) Refrigerating cycle device
JP2018087675A (en) Refrigeration unit
JP6465332B2 (en) Heat pump hot water supply system
JP5747160B2 (en) Air conditioner
JP2012037130A (en) Refrigeration cycle device
JP5927500B2 (en) Refrigeration cycle apparatus and air conditioner equipped with the same
JP2012083065A (en) Air conditioner
JP2012083066A (en) Air conditioning apparatus
JP2012077938A (en) Refrigerating cycle device
JP6906088B1 (en) Air conditioner and management device
JP2008128515A (en) Air conditioning device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180043601.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11823167

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137004435

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2011823167

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011823167

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013005113

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013005113

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130301