JP2010145020A - Heat pump device, and heat pump water heater and air conditioner loaded with the same - Google Patents

Heat pump device, and heat pump water heater and air conditioner loaded with the same Download PDF

Info

Publication number
JP2010145020A
JP2010145020A JP2008323352A JP2008323352A JP2010145020A JP 2010145020 A JP2010145020 A JP 2010145020A JP 2008323352 A JP2008323352 A JP 2008323352A JP 2008323352 A JP2008323352 A JP 2008323352A JP 2010145020 A JP2010145020 A JP 2010145020A
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
heat storage
defrosting
way valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008323352A
Other languages
Japanese (ja)
Other versions
JP4937244B2 (en
Inventor
Mamoru Hamada
守 濱田
Fumitake Unezaki
史武 畝崎
Takesuke Tashiro
雄亮 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008323352A priority Critical patent/JP4937244B2/en
Publication of JP2010145020A publication Critical patent/JP2010145020A/en
Application granted granted Critical
Publication of JP4937244B2 publication Critical patent/JP4937244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat pump device, a heat pump water heater and an air conditioner loaded with the heat pump device having an operation mode for executing a defrosting operation simultaneously with a heating operation, and an operation mode for separately executing the defrosting operation, and capable of selecting a proper operation mode according to heating load. <P>SOLUTION: A first four-way valve 2, a first heat exchanger 3, a second four-way valve 4, a heat exchanger 5 for heat storage, an expanding means 6, and a second heat exchanger 7 are successively connected from a discharge side of a compressor 1 by refrigerant piping, and a control means 16 includes a defrosting cycle determining means 15 for determining which operation mode on the defrosting cycle is selected or executed on the basis of the temperature information transmitted from a heat storage material temperature detecting means 21, a first temperature detecting means 22 and a second temperature detecting means 23. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートポンプ装置並びにそれを搭載したヒートポンプ給湯機及び空気調和機に関し、特に、暖房負荷や除霜必要熱量を算出し、適切な除霜サイクルを選択することが可能なヒートポンプ装置に関するものである。   The present invention relates to a heat pump device, a heat pump water heater and an air conditioner equipped with the heat pump device, and more particularly, to a heat pump device capable of calculating a heating load and a defrosting necessary heat amount and selecting an appropriate defrost cycle. is there.

従来の空気調和機として、圧縮機、四方弁、室内熱交換器、減圧装置、室外熱交換器を環状に冷媒配管で連結し、室内熱交換器と減圧装置を結ぶ冷媒配管の途中に第一の熱交換器を設け、室外熱交換器と圧縮機の吸入側を結ぶ冷媒配管の途中に、この冷媒配管と並列に第二の熱交換器を設け、第一の熱交換器と第二の熱交換器を蓄熱材を封入した蓄熱槽内に収納して冷媒回路を構成し、暖房運転時には、第一の熱交換器で蓄熱を行い、除霜運転時には四方弁は暖房サイクルを保持して暖房を継続し、第一の熱交換器で蓄熱槽から吸熱し、さらに第二の熱交換器においても吸熱を行い、暖房運転を継続しながら除霜運転を可能にしている(例えば、特許文献1参照)。   As a conventional air conditioner, a compressor, a four-way valve, an indoor heat exchanger, a decompression device, and an outdoor heat exchanger are connected in an annular manner with refrigerant piping, and the first is placed in the middle of the refrigerant piping connecting the indoor heat exchanger and the decompression device. In the middle of the refrigerant pipe connecting the outdoor heat exchanger and the suction side of the compressor, a second heat exchanger is provided in parallel with the refrigerant pipe, and the first heat exchanger and the second heat exchanger are provided. The heat exchanger is housed in a heat storage tank filled with a heat storage material to form a refrigerant circuit. During heating operation, heat is stored in the first heat exchanger, and during the defrosting operation, the four-way valve holds the heating cycle. Continues heating, absorbs heat from the heat storage tank in the first heat exchanger, further absorbs heat in the second heat exchanger, and enables defrosting operation while continuing heating operation (for example, Patent Documents) 1).

また、蓄熱タンク及びその内部に収納する熱交換器は四方弁と室内熱交換器との中間に設けられ、また室外熱交換器と減圧装置との中間部と、室内熱交換器と蓄熱タンクとの中間部とを結ぶバイパス回路が設けられており、暖房運転時に圧縮機から吐出された高温冷媒は、四方弁、蓄熱タンク、室内熱交換器、減圧装置、室外熱交換器、四方弁、圧縮機の順に流れて蓄熱タンクに蓄熱しながら室内を暖房し、除霜運転時には四方弁を切り換え、冷媒は圧縮機、四方弁、室外熱交換器、蓄熱タンク、四方弁、圧縮機へ流れて蓄熱タンクに蓄えられた熱を除霜の熱源としてのみ利用し室温低下を抑制するものもある(例えば、特許文献2参照)。   The heat storage tank and the heat exchanger housed in the heat storage tank are provided between the four-way valve and the indoor heat exchanger, the intermediate portion between the outdoor heat exchanger and the decompression device, the indoor heat exchanger and the heat storage tank, The high-temperature refrigerant discharged from the compressor during the heating operation is provided with a four-way valve, a heat storage tank, an indoor heat exchanger, a pressure reducing device, an outdoor heat exchanger, a four-way valve, and a compression circuit. Heats the room while storing heat in the heat storage tank and switches the four-way valve during defrosting operation, and refrigerant flows to the compressor, four-way valve, outdoor heat exchanger, heat storage tank, four-way valve, and compressor to store heat. There is also one that uses the heat stored in the tank only as a heat source for defrosting and suppresses a decrease in room temperature (for example, see Patent Document 2).

特開昭63−148063号公報Japanese Unexamined Patent Publication No. 63-148063 特開平1−127871号公報Japanese Patent Laid-Open No. 1-127871

しかしながら、特許文献1においては、蓄熱量と圧縮機入力のみによって暖房運転と除霜運転とを実施する場合に暖房負荷が大きい場合には蓄熱量が不足して、暖房能力が十分に発揮できないばかりか除霜時間も長くなるため、逆に室温が低下するという問題があった。また、蓄熱量の不足分は圧縮機入力に頼らざるを得ないため、圧縮機入力の増大とともに消費電力が増え運転効率が低下するという問題があった。   However, in Patent Document 1, when the heating operation and the defrosting operation are performed only by the heat storage amount and the compressor input, when the heating load is large, the heat storage amount is insufficient and the heating capacity cannot be sufficiently exhibited. However, since the defrosting time becomes longer, there is a problem that the room temperature is lowered. Moreover, since the shortage of the heat storage amount has to rely on the compressor input, there is a problem in that the power consumption increases and the operation efficiency decreases as the compressor input increases.

また、特許文献2においては、蓄熱を除霜のための熱源としてのみ使用する場合、暖房負荷が大きい場合は除霜時間が短くなり、室温低下を抑制し効率のよい除霜運転が可能となるが、暖房負荷が小さい場合は、特許文献1のように暖房運転と除霜運転とを同時に実施するよりも、室温低下が多くなり再暖房する必要が生じるため効率が低下し、また快適性も低下するという課題があった。   Further, in Patent Document 2, when heat storage is used only as a heat source for defrosting, when the heating load is large, the defrosting time is shortened, and the room temperature decrease is suppressed and efficient defrosting operation is possible. However, when the heating load is small, the efficiency is lowered and the comfort is reduced because the room temperature decreases more and it is necessary to perform reheating than when the heating operation and the defrosting operation are simultaneously performed as in Patent Document 1. There was a problem of a decrease.

本発明は、上記のような問題を解決するためになされたものであり、暖房運転と同時に除霜運転を実施する運転モード及び除霜運転を単独で実施する運転モードを有し、暖房負荷によって適切な運転モードを選択することを可能とするヒートポンプ装置並びにそれを搭載したヒートポンプ給湯機及び空気調和機を得ることを目的とする。   The present invention has been made to solve the above-described problems, and has an operation mode in which the defrosting operation is performed simultaneously with the heating operation and an operation mode in which the defrosting operation is performed independently, and depending on the heating load. It is an object of the present invention to obtain a heat pump device capable of selecting an appropriate operation mode, a heat pump water heater and an air conditioner equipped with the heat pump device.

本発明に係るヒートポンプ装置は、圧縮機、第1四方弁、第1開閉弁、第1熱交換器、膨張手段及び第2熱交換器が順次冷媒配管によって接続された冷媒回路と、前記第1熱交換器と前記膨張手段の間に直列に設けられた第2四方弁及び蓄熱用熱交換器と、前記第1四方弁と前記第1開閉弁との間の冷媒配管から前記凝縮器と前記第2四方弁との間の冷媒配管までを接続するバイパス管と、該バイパス管に設けられた前記第2開閉弁と、を備え、前記蓄熱用熱交換器は、蓄熱材が充填された蓄熱槽内に収納されたことを特徴とする。   The heat pump device according to the present invention includes a refrigerant circuit in which a compressor, a first four-way valve, a first on-off valve, a first heat exchanger, an expansion means, and a second heat exchanger are sequentially connected by a refrigerant pipe, and the first A second four-way valve and a heat storage heat exchanger provided in series between the heat exchanger and the expansion means, the condenser and the condenser from the refrigerant pipe between the first four-way valve and the first on-off valve A bypass pipe connecting to the refrigerant pipe between the second four-way valve and the second on-off valve provided in the bypass pipe, wherein the heat storage heat exchanger is a heat storage material filled with a heat storage material It was stored in the tank.

本発明のヒートポンプ装置によれば、暖房負荷が大きい場合は、蓄熱を熱源とすることによって除霜運転時間を短縮して室温低下を抑制する除霜サイクル、また、暖房負荷が小さい場合は、蓄熱を熱源とすることによって暖房運転及び除霜運転を同時に実施し、室温低下を無くす除霜サイクルというように、暖房負荷等によって好適な除霜サイクルに切り替えることが可能となり、消費電力量を抑え省エネ性を向上させることができる。   According to the heat pump device of the present invention, when the heating load is large, a defrost cycle that shortens the defrosting operation time by suppressing the defrosting operation time by using the heat storage as a heat source, and when the heating load is small, the heat storage It is possible to switch to a suitable defrost cycle depending on the heating load, such as a defrost cycle in which heating operation and defrost operation are simultaneously performed by using as a heat source and eliminate the decrease in room temperature, saving energy consumption. Can be improved.

実施の形態1.
(ヒートポンプ装置の全体構成)
図1は、本発明の実施の形態1に係るヒートポンプ装置の冷媒回路構成図である。
図1で示されるように、圧縮機1の吐出側から、第1四方弁2、第1熱交換器3、第2四方弁4、蓄熱用熱交換器5、膨張手段6、第2熱交換器7が冷媒配管によって順次接続されている。また、第2熱交換器7から第2四方弁4に、そして、その第2四方弁4から第1四方弁2に冷媒配管によって接続されている。また、圧縮機1の吸込側は、第1四方弁2に接続されている。第1四方弁2と第1熱交換器3の間の冷媒配管上には、第1開閉弁12が設置されており、その第1開閉弁12と第1四方弁2との間の冷媒配管と、第1熱交換器3と第2四方弁4との間の冷媒配管とがバイパス管13によって接続されている。このバイパス管13上には、第2開閉弁14が設置されている。
Embodiment 1 FIG.
(Overall configuration of heat pump device)
FIG. 1 is a refrigerant circuit configuration diagram of a heat pump device according to Embodiment 1 of the present invention.
As shown in FIG. 1, from the discharge side of the compressor 1, the first four-way valve 2, the first heat exchanger 3, the second four-way valve 4, the heat storage heat exchanger 5, the expansion means 6, and the second heat exchange. The units 7 are sequentially connected by refrigerant piping. Further, the second heat exchanger 7 is connected to the second four-way valve 4, and the second four-way valve 4 to the first four-way valve 2 are connected by refrigerant piping. The suction side of the compressor 1 is connected to the first four-way valve 2. A first on-off valve 12 is provided on the refrigerant pipe between the first four-way valve 2 and the first heat exchanger 3, and the refrigerant pipe between the first on-off valve 12 and the first four-way valve 2. A refrigerant pipe between the first heat exchanger 3 and the second four-way valve 4 is connected by a bypass pipe 13. A second on-off valve 14 is installed on the bypass pipe 13.

蓄熱用熱交換器5は、蓄熱材8が充填された蓄熱槽9に収納されている。また、第1熱交換器3には第1熱交換器用ファン10が、そして、第2熱交換器7には第2熱交換器用ファン11が備えられている。また、蓄熱槽9には、蓄熱材8の温度を検出する蓄熱材温度検出手段21が設置されている。そして、第1熱交換器3には、そこに吸い込まれる空気の温度を検出する第1温度検出手段22が設置されている。さらに、第2熱交換器7には、そこに吸い込まれる空気の温度を検出する第2温度検出手段23が設置されている。上記の蓄熱材温度検出手段21、第1温度検出手段22及び第2温度検出手段23は、制御手段16に電気的に接続されており、それぞれ温度情報を制御手段16に送信する。また、制御手段16には、上記の蓄熱材温度検出手段21、第1温度検出手段22及び第2温度検出手段23から送信される温度情報に基づいて、除霜サイクルについてどの運転モードを選択及び実施させるかを判定する除霜サイクル判定手段15を備えており、その判定情報は、制御手段16に送信される。そして、制御手段16には、第1四方弁2、第2四方弁4、第1開閉弁12及び第2開閉弁14は電気的に接続されており、制御手段16は、除霜サイクル判定手段15の判定情報等に基づいてこれらを制御する。   The heat storage heat exchanger 5 is housed in a heat storage tank 9 filled with a heat storage material 8. The first heat exchanger 3 is provided with a first heat exchanger fan 10, and the second heat exchanger 7 is provided with a second heat exchanger fan 11. Further, the heat storage tank 9 is provided with a heat storage material temperature detection means 21 for detecting the temperature of the heat storage material 8. The first heat exchanger 3 is provided with first temperature detection means 22 that detects the temperature of the air sucked into the first heat exchanger 3. Further, the second heat exchanger 7 is provided with second temperature detection means 23 for detecting the temperature of the air sucked into the second heat exchanger 7. The heat storage material temperature detection means 21, the first temperature detection means 22, and the second temperature detection means 23 are electrically connected to the control means 16, and each transmits temperature information to the control means 16. In addition, the control unit 16 selects which operation mode for the defrost cycle based on the temperature information transmitted from the heat storage material temperature detection unit 21, the first temperature detection unit 22, and the second temperature detection unit 23. A defrost cycle determining unit 15 for determining whether to perform the operation is provided, and the determination information is transmitted to the control unit 16. The first four-way valve 2, the second four-way valve 4, the first on-off valve 12, and the second on-off valve 14 are electrically connected to the control means 16, and the control means 16 is a defrost cycle determination means. These are controlled based on 15 determination information and the like.

(ヒートポンプ装置の暖房運転動作)
図2は、同ヒートポンプ装置の暖房運転時の動作を示す図である。以下、図2を参照しながら、本実施の形態に係るヒートポンプ装置の暖房運転動作について説明する。
暖房運転時には、制御手段16は、第1四方弁2については圧縮機1から吐出された冷媒が第1熱交換器3に流れる方向、第2四方弁4については第1熱交換器3から流出した冷媒が蓄熱用熱交換器5に流れる方向に切り替え、第1開閉弁12を開状態、そして、第2開閉弁14を閉状態にする。このように構成された冷媒回路において、圧縮機1から吐出された冷媒は、図2の実線矢印で示される方向に流れ、第1四方弁2、第1熱交換器3、第2四方弁4、蓄熱用熱交換器5、膨張手段6及び第2熱交換器7を順次流れ、第2熱交換器7から流出した冷媒は、第2四方弁4及び第1四方弁2を経由して圧縮機1に戻る。このとき、第1熱交換器3においては、第1熱交換器用ファン10が回転駆動することによって空気が送り込まれ、その空気と第1熱交換器3の内部を流通する冷媒との熱交換が実施され、冷媒は凝縮して液化し、液冷媒となって第1熱交換器3から流出する。また、蓄熱用熱交換器5においては、第1熱交換器3から流出した高温の液冷媒が流通することによって、蓄熱槽9における蓄熱材8にその熱が吸収され蓄熱される。例えば、本実施の形態に係るヒートポンプ装置において、室内空気は20℃〜40℃程度に加熱される場合、冷媒は放熱によって40℃前後の液冷媒となって第1熱交換器3から流出し蓄熱用熱交換器5に送られる。このとき、蓄熱槽9内に相変化温度が0℃〜30℃の蓄熱材8が充填されていれば、蓄熱材8が加熱されて固体から液体となって蓄熱される。また、膨張手段6において膨張及び減圧された冷媒は、第2熱交換器7において、第2熱交換器用ファン11が回転駆動することによって送り込まれた空気と熱交換が実施され、蒸発して気化し、ガス冷媒となって流出する。
(Heating operation of heat pump device)
FIG. 2 is a diagram showing an operation during the heating operation of the heat pump device. Hereinafter, the heating operation of the heat pump device according to the present embodiment will be described with reference to FIG.
During the heating operation, the control means 16 causes the refrigerant discharged from the compressor 1 to flow in the first heat exchanger 3 for the first four-way valve 2, and flows out from the first heat exchanger 3 for the second four-way valve 4. The refrigerant is switched to the direction in which the refrigerant flows into the heat storage heat exchanger 5, the first on-off valve 12 is opened, and the second on-off valve 14 is closed. In the refrigerant circuit configured as described above, the refrigerant discharged from the compressor 1 flows in the direction indicated by the solid line arrow in FIG. 2, and the first four-way valve 2, the first heat exchanger 3, and the second four-way valve 4. The heat storage heat exchanger 5, the expansion means 6 and the second heat exchanger 7 sequentially flow, and the refrigerant flowing out of the second heat exchanger 7 is compressed via the second four-way valve 4 and the first four-way valve 2. Return to machine 1. At this time, in the first heat exchanger 3, air is sent in by the first heat exchanger fan 10 being rotationally driven, and heat exchange between the air and the refrigerant circulating in the first heat exchanger 3 is performed. The refrigerant is condensed and liquefied to become a liquid refrigerant and flows out of the first heat exchanger 3. Further, in the heat storage heat exchanger 5, when the high-temperature liquid refrigerant flowing out from the first heat exchanger 3 circulates, the heat is absorbed and stored in the heat storage material 8 in the heat storage tank 9. For example, in the heat pump device according to the present embodiment, when the indoor air is heated to about 20 ° C. to 40 ° C., the refrigerant becomes a liquid refrigerant at around 40 ° C. due to heat radiation and flows out of the first heat exchanger 3 to store heat. The heat exchanger 5 is sent. At this time, if the heat storage material 8 having a phase change temperature of 0 ° C. to 30 ° C. is filled in the heat storage tank 9, the heat storage material 8 is heated to be stored from solid to liquid. The refrigerant expanded and depressurized in the expansion means 6 is subjected to heat exchange with the air fed by the second heat exchanger fan 11 being rotationally driven in the second heat exchanger 7, and is evaporated. And flows out as a gas refrigerant.

(ヒートポンプ装置の除霜サイクル動作)
図3は、同ヒートポンプ装置の着霜時のCOPの時間変化を示す図である。
暖房運転時においては、第2熱交換器7を流通する冷媒の温度が0℃以下で、かつ、吸込空気が露点温度以下である場合は、空気中に含まれる水分が第2熱交換器7へ付着し霜へと成長する着霜現象が発生する。この着霜現象が進むと、通風抵抗の増加及び熱抵抗の増加によって、第2熱交換器7における熱交換量が減少し、図3で示されるようにCOPや暖房能力が低下するため、除霜運転が必要となってくる。
(Defrost cycle operation of heat pump device)
FIG. 3 is a diagram showing a change in COP over time when the heat pump apparatus is frosted.
During the heating operation, when the temperature of the refrigerant flowing through the second heat exchanger 7 is 0 ° C. or less and the intake air is the dew point temperature or less, the moisture contained in the air is the second heat exchanger 7. The frosting phenomenon that grows to frost occurs. As this frosting phenomenon progresses, the amount of heat exchange in the second heat exchanger 7 decreases due to an increase in ventilation resistance and an increase in heat resistance, and the COP and heating capacity decrease as shown in FIG. Frost operation is required.

図4は、通常の除霜運転時の動作を示す図である。
図4で示されるように、一般的なヒートポンプ装置における通常の除霜運転は、四方弁17を冷房運転側に切り替え、圧縮機1によって圧縮された高温高圧のガス冷媒を、第2熱交換器7に送ることで実施される。すなわち、第2熱交換器7におけるガス冷媒の熱によって、第2熱交換器7に発生した霜が融解する。しかしながら、このとき、第1熱交換器3における暖房能力は0以下となるため、室温が低下してしまう。この室温低下は、除霜運転時間が長い程大きくなる。室温低下が大きくなると、快適性が損なわれるばかりか、除霜終了後の暖房運転における負荷が大きくなって消費電力も増加し、省エネ性も低下してしまう。このため、室温低下を無くすか、除霜運転時間を短くして室温低下を抑制することが重要となる。
FIG. 4 is a diagram illustrating an operation during a normal defrosting operation.
As shown in FIG. 4, in a normal defrosting operation in a general heat pump device, the four-way valve 17 is switched to the cooling operation side, and the high-temperature and high-pressure gas refrigerant compressed by the compressor 1 is converted into the second heat exchanger. It is carried out by sending to 7. That is, the frost generated in the second heat exchanger 7 is melted by the heat of the gas refrigerant in the second heat exchanger 7. However, since the heating capability in the 1st heat exchanger 3 will be 0 or less at this time, room temperature will fall. This decrease in room temperature becomes greater as the defrosting operation time is longer. When the decrease in the room temperature increases, not only the comfort is impaired, but the load in the heating operation after the completion of the defrosting increases, the power consumption increases, and the energy saving performance also decreases. For this reason, it is important to eliminate the decrease in room temperature by eliminating the decrease in room temperature or shortening the defrosting operation time.

そこで、本実施の形態に係るヒートポンプ装置は、暖房運転時に蓄熱材8に蓄熱した熱を、除霜運転時の熱源として使用し、さらに、暖房運転と同時に除霜運転を実施する動作モード(以下、暖房除霜運転モードという)、又は、除霜運転を単独で実施する運転モード(以下、除霜単独運転モードという)を適宜切り替えて実施する。以下、各運転モードの説明をする。   Therefore, the heat pump device according to the present embodiment uses the heat stored in the heat storage material 8 during the heating operation as a heat source during the defrosting operation, and further performs an operation mode (hereinafter referred to as the defrosting operation simultaneously with the heating operation). , Heating defrosting operation mode) or an operation mode in which the defrosting operation is performed independently (hereinafter referred to as defrosting single operation mode) is appropriately switched and performed. Hereinafter, each operation mode will be described.

図5は、実施の形態1に係るヒートポンプ装置における除霜単独運転モードの動作を示す図である。以下、図5を参照しながら、除霜単独運転モードの動作を説明する。
除霜単独運転モードにおいて、制御手段16は、第1四方弁2については圧縮機1から吐出された冷媒が第2四方弁4に流れる方向、第2四方弁4については蓄熱用熱交換器5を流出した冷媒が第1熱交換器3に流れる方向に切り替え、第1開閉弁12を閉状態、そして、第2開閉弁14を開状態にする。圧縮機1によって圧縮され吐出された高温高圧のガス冷媒は、第1四方弁2及び第2四方弁4を経由して、第2熱交換器7に送られる。このガス冷媒は、第2熱交換器7において熱交換が実施され、凝縮して液化し、液冷媒となって膨張手段6に送られる。このときの冷媒からの放熱によって第2熱交換器7に発生した霜が融解する。そして、膨張手段6によって膨張及び減圧された冷媒は、蓄熱用熱交換器5における蓄熱材8から吸熱し気化する。そして、第1熱交換器3を経由せず、バイパス管13における第2開閉弁14及び第1四方弁2を経由して圧縮機1に戻る。以上の動作が、除霜が完了するまで実施される。
FIG. 5 is a diagram illustrating an operation in the defrosting single operation mode in the heat pump device according to the first embodiment. Hereinafter, the operation in the defrosting single operation mode will be described with reference to FIG.
In the defrosting single operation mode, the control means 16 is the direction in which the refrigerant discharged from the compressor 1 flows to the second four-way valve 4 for the first four-way valve 2, and the heat storage heat exchanger 5 for the second four-way valve 4. Is switched to the direction in which the refrigerant that has flowed out flows to the first heat exchanger 3, the first on-off valve 12 is closed, and the second on-off valve 14 is opened. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 1 is sent to the second heat exchanger 7 via the first four-way valve 2 and the second four-way valve 4. This gas refrigerant undergoes heat exchange in the second heat exchanger 7, condenses and liquefies, and is sent to the expansion means 6 as a liquid refrigerant. The frost generated in the second heat exchanger 7 is melted by the heat radiation from the refrigerant at this time. The refrigerant expanded and depressurized by the expansion means 6 absorbs heat from the heat storage material 8 in the heat storage heat exchanger 5 and vaporizes. And it returns to the compressor 1 via the 2nd on-off valve 14 and the 1st four-way valve 2 in the bypass pipe 13 without passing through the 1st heat exchanger 3. The above operation is performed until the defrosting is completed.

図6は、同ヒートポンプ装置における暖房除霜運転モードの動作を示す図である。以下、図6を参照しながら、暖房除霜運転モードの動作を説明する。
暖房除霜運転モードにおいて、制御手段16は、第1四方弁2については圧縮機1から吐出された冷媒が第1熱交換器3に流れる方向、第2四方弁4については第1熱交換器3から流出した冷媒が第2熱交換器7に流れる方向に切り替え、第1開閉弁12を開状態、そして、第2開閉弁14を閉状態にする。圧縮機1によって圧縮され吐出された高温高圧のガス冷媒は、第1四方弁2を経由して、第1熱交換器3に送られる。このガス冷媒は、第1熱交換器3において熱交換がなされ室内空気に対し暖房動作を実施し、その後、第1熱交換器3を流出した高温冷媒は、第2四方弁4を経由して第2熱交換器7に送られる。第2熱交換器7に流入した高温冷媒は、熱交換が実施され、このときの冷媒からの放熱によって第2熱交換器7に発生した霜が融解する。そして、第2熱交換器7を流出した冷媒は、膨張手段6において膨張及び減圧され、さらに、蓄熱用熱交換器5における蓄熱材8から吸熱し気化する。そして、第2四方弁4及び第1四方弁2を経由して圧縮機1に戻る。以上の動作が、除霜が完了するまで実施される。
FIG. 6 is a diagram showing an operation in a heating defrosting operation mode in the heat pump device. Hereinafter, the operation in the heating defrosting operation mode will be described with reference to FIG.
In the heating defrosting operation mode, the control means 16 is configured so that the refrigerant discharged from the compressor 1 flows into the first heat exchanger 3 for the first four-way valve 2 and the first heat exchanger for the second four-way valve 4. The refrigerant that has flowed out of the refrigerant 3 is switched to the direction in which the refrigerant flows to the second heat exchanger 7, the first on-off valve 12 is opened, and the second on-off valve 14 is closed. The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 1 is sent to the first heat exchanger 3 via the first four-way valve 2. The gas refrigerant is heat-exchanged in the first heat exchanger 3 and performs a heating operation on the indoor air. Thereafter, the high-temperature refrigerant flowing out of the first heat exchanger 3 passes through the second four-way valve 4. It is sent to the second heat exchanger 7. The high-temperature refrigerant that has flowed into the second heat exchanger 7 is subjected to heat exchange, and frost generated in the second heat exchanger 7 is melted by heat radiation from the refrigerant at this time. The refrigerant that has flowed out of the second heat exchanger 7 is expanded and depressurized in the expansion means 6, and further absorbs heat from the heat storage material 8 in the heat storage heat exchanger 5 and vaporizes. Then, it returns to the compressor 1 via the second four-way valve 4 and the first four-way valve 2. The above operation is performed until the defrosting is completed.

図7は、同ヒートポンプ装置において暖房負荷が大きい場合の室温の時間変化を表す図である。
図7で示されるように、除霜開始時刻t1における暖房負荷が大きい場合、暖房除霜運転モードが実施されると、暖房能力及び除霜能力ともに不足し、点線で示すように室温が低下するとともに、途中で蓄熱材8における蓄熱が無くなって除霜が完了するまで(暖房除霜運転モード除霜終了時刻t3)長くなり、さらに、設定温度Tsに到達する時間が長くなってしまう。一方、除霜単独運転モードが実施される場合、一時的に室温は下降するが、第2熱交換器7における除霜が集中的に実施されるので、暖房除霜運転モードよりも早く除霜が完了し(除霜単独運転モード除霜終了時刻t2)、設定温度Tsに到達する時間も短くなる。つまり、暖房負荷が大きい場合は、除霜単独運転モードを実施した方が、除霜時間が短縮して適性が向上し、また、消費電力量が少なくなり省エネ性が向上する。
FIG. 7 is a diagram illustrating a temporal change in room temperature when the heating load is large in the heat pump apparatus.
As shown in FIG. 7, when the heating load at the defrosting start time t1 is large, when the heating defrosting operation mode is performed, both the heating capacity and the defrosting capacity are insufficient, and the room temperature is lowered as shown by the dotted line. At the same time, the heat storage in the heat storage material 8 disappears and the defrosting is completed (heating defrosting operation mode defrosting end time t3), and the time to reach the set temperature Ts is increased. On the other hand, when the defrosting single operation mode is performed, the room temperature temporarily decreases, but defrosting in the second heat exchanger 7 is performed intensively, so defrosting earlier than the heating defrosting operation mode. Is completed (defrosting single operation mode defrosting end time t2), and the time to reach the set temperature Ts is also shortened. That is, when the heating load is large, performing the defrosting single operation mode shortens the defrosting time and improves the suitability, and also reduces the power consumption and improves the energy saving performance.

図8は、同ヒートポンプ装置において暖房負荷が小さい場合の室温の時間変化を表す図である。
図8で示されるように、図7における暖房負荷が大きい場合と異なり、暖房除霜運転モードを実施しても、暖房能力及び除霜能力が十分に確保されているため、室温を下げることなく設定温度Tsに早く到達することが可能となる。一方、除霜単独運転モードが実施される場合、暖房能力が0となるので、除霜開始時刻t1から除霜が完了するまで(除霜単独運転モード除霜終了時刻t2)室温が下降し、設定温度Tsに到達する時間も長くなる。つまり、暖房負荷が小さい場合は、暖房除霜運転モードを実施した方が、室温低下が無くなり、室温低下分を再暖房する必要がないため、快適性及び省エネ性が向上する。
FIG. 8 is a diagram illustrating a time change in room temperature when the heating load is small in the heat pump apparatus.
As FIG. 8 shows, unlike the case where the heating load in FIG. 7 is large, even if it implements heating defrost operation mode, since heating capability and defrost capability are fully ensured, without lowering | hanging room temperature The set temperature Ts can be reached quickly. On the other hand, when the defrosting single operation mode is carried out, the heating capacity becomes 0, so that the room temperature decreases from the defrosting start time t1 until the defrosting is completed (defrosting single operation mode defrosting end time t2), The time for reaching the set temperature Ts also becomes longer. That is, when the heating load is small, the room temperature decrease is eliminated and the room temperature decrease is not required to be reheated when the heating defrosting operation mode is performed, so that comfort and energy saving are improved.

以上のように、室内の暖房負荷の大小によって、除霜単独運転モード及び暖房除霜運転モードを適切に切り替えて実施する必要がある。以下、除霜単独運転モード及び暖房除霜運転モードのどちらを実施するのかを判定する制御フローについて説明する。   As described above, it is necessary to appropriately switch between the defrosting single operation mode and the heating defrosting operation mode depending on the size of the indoor heating load. Hereinafter, a control flow for determining which one of the defrosting single operation mode and the heating defrosting operation mode will be described.

図9は、同ヒートポンプ装置における除霜サイクルの制御フローを示す図である。
除霜サイクルが開始されると、制御手段16における除霜サイクル判定手段15によって、除霜単独運転モード及び暖房除霜運転モードのどちらを実施するかの判定を行う(ステップS1)。以下、ステップS1におけるこの判定動作について説明する。
FIG. 9 is a diagram showing a control flow of a defrost cycle in the heat pump device.
When the defrost cycle is started, the defrost cycle determination unit 15 in the control unit 16 determines whether to perform the defrost single operation mode or the heating defrost operation mode (step S1). Hereinafter, this determination operation in step S1 will be described.

まず、蓄熱槽9に設けられた蓄熱材温度検出手段21は、蓄熱材8の温度を検出し、その温度情報を制御手段16に送信する。制御手段16は、その温度情報に基づいて蓄熱材8における蓄熱量Qs(J)を算出する。   First, the heat storage material temperature detection means 21 provided in the heat storage tank 9 detects the temperature of the heat storage material 8 and transmits the temperature information to the control means 16. The control means 16 calculates the heat storage amount Qs (J) in the heat storage material 8 based on the temperature information.

また、第1温度検出手段22は、第1熱交換器3に吸い込まれる空気の温度、すなわち、室内吸込空気温度Tr(℃)を検出し、第2温度検出手段23は、第2熱交換器7に吸い込まれる空気の温度、すなわち、室外吸込空気温度To(℃)を検出し、それぞれ制御手段16に送信する。制御手段16は、設定温度Ts(℃)、室内吸込空気温度Tr(℃)及び室外吸込空気温度To(℃)に基づいて暖房負荷Qh(J)を、例えば下記の式(1)によって推算する。なお、式(1)に限らず、その他の数式によって推量するものとしてもよい。   The first temperature detecting means 22 detects the temperature of the air sucked into the first heat exchanger 3, that is, the indoor intake air temperature Tr (° C.), and the second temperature detecting means 23 is the second heat exchanger. 7 detects the temperature of the air sucked into 7, that is, the outdoor suction air temperature To (° C.), and transmits it to the control means 16. The control means 16 estimates the heating load Qh (J) based on the set temperature Ts (° C.), the indoor intake air temperature Tr (° C.), and the outdoor intake air temperature To (° C.), for example, by the following equation (1). . In addition, it is good also as what guesses not only by Formula (1) but by another numerical formula.

Qh=C1*(Ts−Tr)+C2*(Tr−To) (1)   Qh = C1 * (Ts−Tr) + C2 * (Tr−To) (1)

ここで、C1は室内空間の体積によって決まる定数であり、C2は室内から室外への伝熱面積によって決まる定数である。例えば、室内空間の体積をVa(m3)、空気の密度をρa(kg/m3)、そして、空気の比熱をca(J/(kg・K))とすると、C1は下記式(2)のように決定される。 Here, C1 is a constant determined by the volume of the indoor space, and C2 is a constant determined by the heat transfer area from the room to the outdoor. For example, assuming that the volume of the indoor space is Va (m 3 ), the density of air is ρa (kg / m 3 ), and the specific heat of air is ca (J / (kg · K)), C1 is expressed by the following formula (2 ) Is determined.

C1=Va*ρa*ca (2)   C1 = Va * ρa * ca (2)

なお、C1はその他の数式に基づいて決定しても良いし、また、経験的にある一定の値に決めてもよい。   Note that C1 may be determined based on other mathematical expressions, or may be determined empirically as a certain value.

また、室内と室外を隔てる壁面の面積をAa(m2)、そして、室内空気から室外空気への熱通過率をKa(W/(m2・k))とすると、C2は下記式(3)のように決定される。 Further, when the area of the wall surface separating the room and the outdoor is Aa (m 2 ), and the heat passage rate from the indoor air to the outdoor air is Ka (W / (m 2 · k)), C2 is expressed by the following formula (3 ) Is determined.

C2=Aa*Ka (3)   C2 = Aa * Ka (3)

なお、C2はその他の数式に基づいて決定しても良いし、また、経験的にある一定の値に決めてもよい。   C2 may be determined based on other mathematical expressions, or may be determined empirically as a certain value.

また、第2熱交換器7が着霜によって完全に目詰まりしたときの着霜量をF(kg)、そして、水の融解潜熱qw(約333kJ/kg)とすると、除霜に必要な熱量、すなわち除霜必要熱量Qd(J)は下記式(4)によって算出される。   Further, if the amount of frost when the second heat exchanger 7 is completely clogged due to frost is F (kg) and the latent heat of fusion qw (about 333 kJ / kg), the amount of heat necessary for defrosting That is, the defrosting necessary heat quantity Qd (J) is calculated by the following equation (4).

Qd=F*qw(≒F*333) (4)   Qd = F * qw (≈F * 333) (4)

除霜サイクル判定手段15は、ステップS1において最終的に、以上の蓄熱量Qs(J)、暖房負荷Qh(J)及び除霜必要熱量Qd(J)によって表される下記の判定式(5)によって、除霜単独運転モードを実施させるか、暖房除霜運転モードを実施させるかを判定する。   In step S1, the defrost cycle determination means 15 is finally expressed by the following determination formula (5) represented by the above heat storage amount Qs (J), heating load Qh (J), and defrost necessary heat amount Qd (J). To determine whether to perform the defrosting single operation mode or the heating defrosting operation mode.

Qs<Qh+Qd (5)   Qs <Qh + Qd (5)

除霜サイクル判定手段15は、判定式(5)を満たす場合、暖房能力及び除霜能力が不足していて除霜単独運転モードを実施させるのが適していると判定し、制御手段16は、除霜単独運転モードを実施させる(ステップS2)。   When the defrost cycle determining means 15 satisfies the determination formula (5), the defrosting cycle determining means 15 determines that the heating capacity and the defrosting capacity are insufficient and it is suitable to perform the defrosting single operation mode, and the control means 16 The defrosting single operation mode is performed (step S2).

一方、判定式(5)を満たさない場合、暖房能力及び除霜能力は十分であり暖房除霜運転モードを実施させるのが適していると判定し、制御手段16は、暖房除霜運転モードを実施させる(ステップS3)。   On the other hand, when the determination formula (5) is not satisfied, it is determined that the heating capacity and the defrosting capacity are sufficient and it is suitable to execute the heating defrosting operation mode, and the control unit 16 sets the heating defrosting operation mode. Implement (step S3).

ステップS2及びステップS3において、制御手段16は、除霜サイクル判定手段15の判定結果にも基づいて、第1四方弁2、第2四方弁4、第1開閉弁12及び第2開閉弁14の切り替えを実施する。   In step S2 and step S3, the control unit 16 determines whether the first four-way valve 2, the second four-way valve 4, the first on-off valve 12, and the second on-off valve 14 are based on the determination result of the defrost cycle determining unit 15. Perform switching.

(実施の形態1の効果)
以上の構成及び動作によって、蓄熱量、暖房負荷及び除霜必要熱量に基づいて、除霜サイクルにおける好適な運転モードを選択することが可能となり、除霜時間を短縮し、又は、室温低下を防止し、消費電力量を小さくして省エネ性を向上させることができる。
また、第1熱交換器3と膨張手段6との間に、蓄熱材8を設けたことによって、第1熱交換器3における暖房動作が終了した冷媒によって蓄熱するようにしているので、暖房運転時の能力低下を抑制することが可能となる。
(Effect of Embodiment 1)
With the above configuration and operation, it becomes possible to select a suitable operation mode in the defrost cycle based on the heat storage amount, the heating load, and the defrosting necessary heat amount, thereby shortening the defrost time or preventing the room temperature from decreasing. In addition, energy consumption can be improved by reducing power consumption.
Moreover, since the heat storage material 8 is provided between the first heat exchanger 3 and the expansion means 6, heat is stored by the refrigerant that has completed the heating operation in the first heat exchanger 3. It becomes possible to suppress the performance degradation at the time.

なお、本実施の形態における冷媒回路内を循環する冷媒は、どんなものでもよく、二酸化炭素、炭化水素若しくはヘリウムのような自然冷媒、HFC410A若しくはHFC407C等の代替冷媒のような塩素を含まない冷媒、又は既存の製品に使用されているR22若しくはR134a等のフロン系冷媒のいずれでもよい。
また、圧縮機1は、レシプロ、ロータリー、スクロール又はスクリュー等の各種タイプのいずれのものを用いてもよく、回転数可変のものでも、回転数固定のものでも構わない。
The refrigerant circulating in the refrigerant circuit in the present embodiment may be any refrigerant, such as a natural refrigerant such as carbon dioxide, hydrocarbon or helium, a refrigerant not containing chlorine such as an alternative refrigerant such as HFC410A or HFC407C, Alternatively, any of CFC-based refrigerants such as R22 or R134a used in existing products may be used.
The compressor 1 may be of any type such as a reciprocating, rotary, scroll, or screw, and may be a variable speed or a fixed speed.

実施の形態2.
(ヒートポンプ給湯機の全体構成)
図10は、本発明の実施の形態2に係るヒートポンプ給湯機の回路構成図である。本実施の形態に係るヒートポンプ給湯機は、以下で説明する相違点を除き、実施の形態1に係るヒートポンプ装置を搭載したものである。以下、本実施の形態に係るヒートポンプ給湯機において、前述の実施の形態1のものと相違する構成及び動作を中心に説明する。
本実施の形態に係るヒートポンプ給湯機には、第1熱交換器3の代わりに冷媒−水熱交換器18が設置されており、また、第1熱交換器3に設置されていた第1温度検出手段22の代わりに、後述する貯湯タンク19に設置されたタンク内水温度検出手段24が備えられており、制御手段16に電気的に接続されている。実施の形態1に係るヒートポンプ装置の構成要素のうち、前述の第1温度検出手段22の代わりに備えられたタンク内水温度検出手段24を除いた構成要素によってヒートポンプユニット51が構成されている。冷媒−水熱交換器18には、冷媒が流通する冷媒流路及び水が流通する水流路が備えられている。この冷媒−水熱交換器18における水流路の出口部から、水配管によって貯湯タンク19及びポンプ20を経由して冷媒−水熱交換器18における水流路の入口部に接続されている。この貯湯タンク19、ポンプ20及び前述したタンク内水温度検出手段24によって貯湯ユニット52が構成されている。
Embodiment 2. FIG.
(Overall configuration of heat pump water heater)
FIG. 10 is a circuit configuration diagram of a heat pump water heater according to Embodiment 2 of the present invention. The heat pump water heater according to the present embodiment is mounted with the heat pump device according to the first embodiment except for the differences described below. Hereinafter, the heat pump water heater according to the present embodiment will be described focusing on the configuration and operation different from those of the first embodiment.
In the heat pump water heater according to the present embodiment, a refrigerant-water heat exchanger 18 is installed instead of the first heat exchanger 3, and the first temperature installed in the first heat exchanger 3 is set. Instead of the detection means 22, a tank water temperature detection means 24 installed in the hot water storage tank 19 described later is provided, and is electrically connected to the control means 16. Of the components of the heat pump device according to the first embodiment, the heat pump unit 51 is configured by components excluding the tank water temperature detecting means 24 provided instead of the first temperature detecting means 22 described above. The refrigerant-water heat exchanger 18 is provided with a refrigerant flow path through which refrigerant flows and a water flow path through which water flows. The outlet of the water channel in the refrigerant-water heat exchanger 18 is connected to the inlet of the water channel in the refrigerant-water heat exchanger 18 via a hot water storage tank 19 and a pump 20 by a water pipe. The hot water storage tank 19, the pump 20, and the tank water temperature detecting means 24 described above constitute a hot water storage unit 52.

(ヒートポンプ給湯機の動作)
冷媒−水熱交換器18において、その冷媒流路には、圧縮機1から吐出された高温高圧のガス冷媒が流通し、このガス冷媒は水流路を流通する水に対して放熱する。ガス冷媒から放熱を受けて温められた水は、冷媒−水熱交換器18の水流路の出口部から流出して水配管を経由し、貯湯タンク19の内部に貯湯される。この貯湯タンク19に備えられたタンク内水温度検出手段24は、貯湯タンク19内の水の温度を検出し、その温度情報を制御手段16に送信する。そして、貯湯タンク19に貯湯された水は、ポンプ20の駆動によって、ポンプ20に送られ、さらに、冷媒−水熱交換器18へ送られる。以上の動作を繰り返し、貯湯ユニット52における水配管を流通する水が温められる。ヒートポンプユニット51における上記以外の動作は、実施の形態1に係るヒートポンプ装置の動作と同様である。
(Operation of heat pump water heater)
In the refrigerant-water heat exchanger 18, the high-temperature and high-pressure gas refrigerant discharged from the compressor 1 flows through the refrigerant flow path, and the gas refrigerant radiates heat to the water flowing through the water flow path. The water heated by receiving heat radiation from the gas refrigerant flows out from the outlet of the water flow path of the refrigerant-water heat exchanger 18 and is stored in the hot water storage tank 19 through the water pipe. The tank water temperature detection means 24 provided in the hot water storage tank 19 detects the temperature of the water in the hot water storage tank 19 and transmits the temperature information to the control means 16. Then, the hot water stored in the hot water storage tank 19 is sent to the pump 20 by driving the pump 20, and further sent to the refrigerant-water heat exchanger 18. By repeating the above operation, the water flowing through the water pipe in the hot water storage unit 52 is warmed. The operation other than the above in the heat pump unit 51 is the same as the operation of the heat pump device according to the first embodiment.

(ヒートポンプ給湯機の除霜サイクル動作)
本実施の形態に係るヒートポンプ給湯機においても、実施の形態1に係るヒートポンプ装置と同様に、除霜サイクルにおいて除霜単独運転モード、及び、暖房除霜運転モードの2つの動作モードを有し、実施の形態1における図9と同様の制御フローに基づいて、2つの動作モードのうちどちらを実施するかの判定(図9におけるステップS1に対応)が実施される。以下、その判定動作について説明する。
(Defrost cycle operation of heat pump water heater)
Also in the heat pump water heater according to the present embodiment, similarly to the heat pump device according to the first embodiment, in the defrost cycle, the defrost cycle operation mode and the heating defrost operation mode have two operation modes, Based on the same control flow as in FIG. 9 in the first embodiment, a determination as to which of the two operation modes is to be performed (corresponding to step S1 in FIG. 9) is performed. Hereinafter, the determination operation will be described.

まず、蓄熱槽9に設けられた蓄熱材温度検出手段21は、蓄熱材8の温度を検出し、その温度情報を制御手段16に送信する。制御手段16は、その温度情報に基づいて蓄熱材8における蓄熱量Qs(J)を算出する。   First, the heat storage material temperature detection means 21 provided in the heat storage tank 9 detects the temperature of the heat storage material 8 and transmits the temperature information to the control means 16. The control means 16 calculates the heat storage amount Qs (J) in the heat storage material 8 based on the temperature information.

また、タンク内水温度検出手段24は、貯湯タンク19内の水の温度、すなわち、タンク内水温度Tw(℃)を検出し、第2温度検出手段23は、第2熱交換器7に吸い込まれる空気の温度、すなわち、室外吸込空気温度To(℃)を検出し、それぞれ制御手段16に送信する。制御手段16は、設定温度Ts(℃)、タンク内水温度Tw(℃)及び室外吸込空気温度To(℃)に基づいて暖房負荷Qh’(J)を、例えば下記の式(6)によって推算する。なお、式(6)に限らず、その他の数式によって推量するものとしてもよい。   The tank water temperature detecting means 24 detects the temperature of the water in the hot water storage tank 19, that is, the tank water temperature Tw (° C.), and the second temperature detecting means 23 is sucked into the second heat exchanger 7. The detected air temperature, that is, the outdoor intake air temperature To (° C.) is detected and transmitted to the control means 16. The control means 16 estimates the heating load Qh ′ (J) based on the set temperature Ts (° C.), the tank water temperature Tw (° C.), and the outdoor intake air temperature To (° C.), for example, by the following equation (6). To do. In addition, it is good also as what estimates not only by Formula (6) but by another numerical formula.

Qh’=C1’*(Ts−Tw)+C2’*(Tw−To)(6)   Qh ′ = C1 ′ * (Ts−Tw) + C2 ′ * (Tw−To) (6)

ここで、C1’は貯湯タンク19の体積によって決まる定数であり、C2’は貯湯タンク19内部から外への伝熱面積によって決まる定数である。例えば、貯湯タンク19の体積をVw(m3)、水の密度をρw(kg/m3)、そして、水の比熱をcw(J/(kg・K))とすると、C1’は下記式(7)のように決定される。 Here, C1 ′ is a constant determined by the volume of the hot water storage tank 19, and C2 ′ is a constant determined by the heat transfer area from the inside of the hot water storage tank 19 to the outside. For example, if the volume of the hot water storage tank 19 is Vw (m 3 ), the density of water is ρw (kg / m 3 ), and the specific heat of water is cw (J / (kg · K)), C1 ′ It is determined as in (7).

C1’=Vw*ρw*cw (7)   C1 '= Vw * ρw * cw (7)

なお、C1はその他の数式に基づいて決定しても良いし、また、経験的にある一定の値に決めてもよい。   Note that C1 may be determined based on other mathematical expressions, or may be determined empirically as a certain value.

また、貯湯タンク19内外を隔てる壁面の面積をAw(m2)、そして、貯湯タンク19内の水から外の空気への熱通過率をKw(W/(m2・k))とすると、C2’は下記式(8)のように決定される。 Further, if the area of the wall surface separating the inside and outside of the hot water storage tank 19 is Aw (m 2 ), and the heat passage rate from the water in the hot water storage tank 19 to the outside air is Kw (W / (m 2 · k)), C2 ′ is determined as shown in the following formula (8).

C2’=Aw*Kw (8)   C2 '= Aw * Kw (8)

なお、C2’はその他の数式に基づいて決定しても良いし、また、経験的にある一定の値に決めてもよい。   Note that C2 'may be determined based on other mathematical expressions, or may be determined empirically as a certain value.

また、第2熱交換器7が着想によって完全に目詰まりしたときの着霜量をF(kg)、そして、水の融解潜熱qw(約333kJ/kg)とすると、除霜に必要な熱量、すなわち除霜必要熱量Qd(J)は下記式(9)によって算出される。   Further, if the amount of frost when the second heat exchanger 7 is completely clogged by the idea is F (kg), and the latent heat of fusion qw (about 333 kJ / kg), the amount of heat necessary for defrosting, That is, the defrosting necessary heat quantity Qd (J) is calculated by the following formula (9).

Qd=F*qw(≒F*333) (9)   Qd = F * qw (≈F * 333) (9)

除霜サイクル判定手段15は、最終的に、以上の蓄熱量Qs(J)、暖房負荷Qh’(J)及び除霜必要熱量Qd(J)によって表される下記の判定式(10)によって、除霜単独運転モードを実施させるか、暖房除霜運転モードを実施させるかを判定する。   The defrost cycle determination means 15 is finally determined by the following determination formula (10) represented by the above heat storage amount Qs (J), heating load Qh ′ (J) and defrost necessary heat amount Qd (J). It is determined whether to perform the defrosting single operation mode or the heating defrosting operation mode.

Qs<Qh’+Qd (10)     Qs <Qh ′ + Qd (10)

除霜サイクル判定手段15は、判定式(10)を満たす場合、暖房能力及び除霜能力が不足していて除霜単独運転モードを実施させるのが適していると判定し、制御手段16は、除霜単独運転モードを実施する(図9におけるステップS2に対応)。   When the defrost cycle determining means 15 satisfies the determination formula (10), it is determined that the heating capacity and the defrosting capacity are insufficient and it is suitable to perform the defrosting single operation mode. The defrosting single operation mode is performed (corresponding to step S2 in FIG. 9).

一方、判定式(10)を満たさない場合、暖房能力及び除霜能力は十分であり暖房除霜運転モードを実施させるのが適していると判定し、制御手段16は、暖房除霜運転モードを実施する(図9におけるステップS3に対応)。   On the other hand, when the determination formula (10) is not satisfied, it is determined that the heating capacity and the defrosting capacity are sufficient and it is suitable to execute the heating defrosting operation mode, and the control unit 16 sets the heating defrosting operation mode. Implement (corresponding to step S3 in FIG. 9).

制御手段16は、上記の除霜サイクル判定手段15の判定結果にも基づいて、第1四方弁2、第2四方弁4、第1開閉弁12及び第2開閉弁14の切り替えを実施する。   The control unit 16 switches the first four-way valve 2, the second four-way valve 4, the first on-off valve 12, and the second on-off valve 14 based on the determination result of the defrost cycle determination unit 15.

(実施の形態2の効果)
以上の構成及び動作によって、蓄熱量、暖房負荷及び除霜必要熱量に基づいて、除霜サイクルにおける好適な運転モードを選択することが可能となり、除霜時間を短縮し、又は、タンク内水温度の低下を防止し、消費電力量が小さく省エネ性が向上したヒートポンプ給湯機を得ることができる。
また、冷媒−水熱交換器18と膨張手段6との間に、蓄熱材8を設けたことによって、冷媒−水熱交換器18における加熱動作が終了した冷媒によって蓄熱するようにしているので、暖房運転時の能力低下を抑制することが可能となる。
(Effect of Embodiment 2)
With the above configuration and operation, it becomes possible to select a suitable operation mode in the defrost cycle based on the heat storage amount, the heating load, and the defrosting required heat amount, shorten the defrost time, or the water temperature in the tank The heat pump water heater with reduced power consumption and improved energy saving can be obtained.
Moreover, since the heat storage material 8 is provided between the refrigerant-water heat exchanger 18 and the expansion means 6, heat is stored by the refrigerant whose heating operation in the refrigerant-water heat exchanger 18 is completed. It becomes possible to suppress the capability fall at the time of heating operation.

実施の形態3.
(空気調和機の全体構成)
図11は、本発明の実施の形態3に係る空気調和機の回路構成図である。本実施の形態に係る空気調和機は、実施の形態1に係るヒートポンプ装置を搭載したものである。以下、本実施の形態に係る空気調和機において、前述の実施の形態1のものと相違する構成を中心に説明する。
本実施の形態に係る空気調和機において、室内機62は、第1熱交換器3、第1熱交換器用ファン10及び第1熱交換器3に設置された第1温度検出手段22によって構成されている。また、室外機61は、実施の形態1に係るヒートポンプ装置の構成要素の内、上記の構成要素を除いたものによって構成されている。本実施の形態に係る空気調和機の基本動作、除霜サイクル動作等は実施の形態1に係るヒートポンプ装置と同様である。
Embodiment 3 FIG.
(Overall configuration of air conditioner)
FIG. 11 is a circuit configuration diagram of an air conditioner according to Embodiment 3 of the present invention. The air conditioner according to the present embodiment is equipped with the heat pump device according to the first embodiment. Hereinafter, the air conditioner according to the present embodiment will be described focusing on the configuration different from that of the first embodiment.
In the air conditioner according to the present embodiment, the indoor unit 62 is configured by the first heat exchanger 3, the first heat exchanger fan 10, and the first temperature detection means 22 installed in the first heat exchanger 3. ing. Moreover, the outdoor unit 61 is comprised by the thing except said component among the components of the heat pump apparatus which concerns on Embodiment 1. FIG. The basic operation, the defrost cycle operation, and the like of the air conditioner according to the present embodiment are the same as those of the heat pump device according to the first embodiment.

(実施の形態3の効果)
以上の構成によって、蓄熱量、暖房負荷及び除霜必要熱量に基づいて、除霜サイクルにおける好適な運転モードを選択することが可能となり、除霜時間を短縮し、又は、タンク内水温度の低下を防止し、消費電力量が小さく省エネ性が向上した空気調和機を得ることができる。
(Effect of Embodiment 3)
With the above configuration, it becomes possible to select a suitable operation mode in the defrost cycle based on the heat storage amount, the heating load, and the defrosting necessary heat amount, shorten the defrost time, or lower the tank water temperature. Thus, an air conditioner with low power consumption and improved energy saving can be obtained.

本発明の実施の形態1に係るヒートポンプ装置の冷媒回路構成図である。It is a refrigerant circuit block diagram of the heat pump apparatus which concerns on Embodiment 1 of this invention. 同ヒートポンプ装置の暖房運転時の動作を示す図である。It is a figure which shows the operation | movement at the time of heating operation of the heat pump apparatus. 同ヒートポンプ装置の着霜時のCOPの時間変化を示す図である。It is a figure which shows the time change of COP at the time of frost formation of the heat pump apparatus. 通常の除霜運転時の動作を示す図である。It is a figure which shows the operation | movement at the time of normal defrost operation. 実施の形態1に係るヒートポンプ装置における除霜単独運転モードの動作を示す図である。It is a figure which shows operation | movement of the defrost isolated operation mode in the heat pump apparatus which concerns on Embodiment 1. FIG. 同ヒートポンプ装置における暖房除霜運転モードの動作を示す図である。It is a figure which shows operation | movement of the heating defrost operation mode in the heat pump apparatus. 同ヒートポンプ装置において暖房負荷が大きい場合の室温の時間変化を表す図である。It is a figure showing the time change of room temperature when the heating load is large in the heat pump device. 同ヒートポンプ装置において暖房負荷が小さい場合の室温の時間変化を表す図である。It is a figure showing the time change of room temperature when the heating load is small in the heat pump device. 同ヒートポンプ装置における除霜サイクルの制御フローを示す図である。It is a figure which shows the control flow of the defrost cycle in the heat pump apparatus. 本発明の実施の形態2に係るヒートポンプ給湯機の回路構成図である。It is a circuit block diagram of the heat pump water heater which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る空気調和機の回路構成図である。It is a circuit block diagram of the air conditioner which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 圧縮機、2 第1四方弁、3 第1熱交換器、4 第2四方弁、5 蓄熱用熱交換器、6 膨張手段、7 第2熱交換器、8 蓄熱材、9 蓄熱槽、10 第1熱交換器用ファン、11 第2熱交換器用ファン、12 第1開閉弁、13 バイパス管、14 第2開閉弁、15 除霜サイクル判定手段、16 制御手段、17 四方弁、18 冷媒−水熱交換器、19 貯湯タンク、20 ポンプ、21 蓄熱材温度検出手段、22 第1温度検出手段、23 第2温度検出手段、24 タンク内水温度検出手段、51 ヒートポンプユニット、52 貯湯ユニット、61 室外機、62 室内機。   DESCRIPTION OF SYMBOLS 1 Compressor, 2 1st four way valve, 3 1st heat exchanger, 4 2nd 4 way valve, 5 Heat storage heat exchanger, 6 Expansion means, 7 2nd heat exchanger, 8 Thermal storage material, 9 Thermal storage tank, 10 1st heat exchanger fan, 11 2nd heat exchanger fan, 12 1st on-off valve, 13 bypass pipe, 14 2nd on-off valve, 15 defrost cycle judging means, 16 control means, 17 four-way valve, 18 refrigerant-water Heat exchanger, 19 hot water storage tank, 20 pump, 21 heat storage material temperature detection means, 22 first temperature detection means, 23 second temperature detection means, 24 tank water temperature detection means, 51 heat pump unit, 52 hot water storage unit, 61 outdoor Machine, 62 indoor unit.

Claims (9)

圧縮機、第1四方弁、第1開閉弁、第1熱交換器、膨張手段及び第2熱交換器が順次冷媒配管によって接続された冷媒回路と、
前記第1熱交換器と前記膨張手段の間に直列に設けられた第2四方弁及び蓄熱用熱交換器と、
前記第1四方弁と前記第1開閉弁との間の冷媒配管から前記第1熱交換器と前記第2四方弁との間の冷媒配管までを接続するバイパス管と、
該バイパス管に設けられた前記第2開閉弁と、
を備え、
前記蓄熱用熱交換器は、蓄熱材が充填された蓄熱槽内に収納された
ことを特徴とするヒートポンプ装置。
A refrigerant circuit in which a compressor, a first four-way valve, a first on-off valve, a first heat exchanger, an expansion means, and a second heat exchanger are sequentially connected by a refrigerant pipe;
A second four-way valve and a heat storage heat exchanger provided in series between the first heat exchanger and the expansion means;
A bypass pipe connecting a refrigerant pipe between the first four-way valve and the first on-off valve to a refrigerant pipe between the first heat exchanger and the second four-way valve;
The second on-off valve provided in the bypass pipe;
With
The heat storage heat exchanger is housed in a heat storage tank filled with a heat storage material.
暖房運転時において、前記第1熱交換器から流出した高温の冷媒が前記蓄熱用熱交換器を通ることによって、前記蓄熱材に蓄熱される
ことを特徴とする請求項1記載のヒートポンプ装置。
2. The heat pump device according to claim 1, wherein during the heating operation, the high-temperature refrigerant that has flowed out of the first heat exchanger passes through the heat storage heat exchanger and is stored in the heat storage material.
除霜運転においては、前記蓄熱材に蓄熱された熱が熱源として利用され、前記蓄熱用熱交換器は蒸発器として機能し、前記第2熱交換器は凝縮器として機能して前記第2熱交換器の除霜が実施される
ことを特徴とする請求項2記載のヒートポンプ装置。
In the defrosting operation, the heat stored in the heat storage material is used as a heat source, the heat storage heat exchanger functions as an evaporator, and the second heat exchanger functions as a condenser. The heat pump device according to claim 2, wherein defrosting of the exchanger is performed.
暖房運転を実施しながら、前記第2熱交換器に対する除霜運転を実施する暖房除霜運転モードと、
前記第2熱交換器に対する除霜運転のみ実施する除霜単独運転モードと、
を有し、
前記暖房除霜運転モードにおいては、前記圧縮機から吐出された冷媒が、前記第1四方弁、前記第1開閉弁、前記第1熱交換器、前記第2四方弁、前記第2熱交換器、前記膨張手段、前記蓄熱用熱交換器、前記第2四方弁及び前記第1四方弁を順次流通して前記圧縮機に戻る冷媒流路とし、
前記除霜単独運転モードにおいては、前記圧縮機から吐出された冷媒が、前記第1四方弁、前記第2熱交換器、前記膨張手段、前記蓄熱用熱交換器、前記第2四方弁、前記バイパス管、前記第2開閉弁及び前記第1四方弁を順次流通して前記圧縮機に戻る冷媒流路とする
ことを特徴とする請求項3記載のヒートポンプ装置。
A heating defrosting operation mode for performing a defrosting operation on the second heat exchanger while performing a heating operation;
A defrosting single operation mode for carrying out only the defrosting operation for the second heat exchanger;
Have
In the heating defrosting operation mode, the refrigerant discharged from the compressor is the first four-way valve, the first on-off valve, the first heat exchanger, the second four-way valve, and the second heat exchanger. A refrigerant flow path that sequentially flows through the expansion means, the heat storage heat exchanger, the second four-way valve, and the first four-way valve and returns to the compressor,
In the defrosting single operation mode, the refrigerant discharged from the compressor is the first four-way valve, the second heat exchanger, the expansion means, the heat storage heat exchanger, the second four-way valve, The heat pump device according to claim 3, wherein a refrigerant flow path that sequentially flows through the bypass pipe, the second on-off valve, and the first four-way valve returns to the compressor.
暖房負荷を推算する暖房負荷推算手段と、
前記蓄熱用熱交換器の蓄熱量を算出する蓄熱量算出手段と、
を備え、
前記暖房負荷推算手段によって推算された前記暖房負荷及び前記蓄熱量検出手段によって検出された前記蓄熱量に基づいて、前記暖房除霜運転モードを実施するか、前記除霜単独運転モードを実施するかを切り替える
ことを特徴とする請求項4記載のヒートポンプ装置。
Heating load estimating means for estimating the heating load;
A heat storage amount calculating means for calculating a heat storage amount of the heat storage heat exchanger;
With
Whether to perform the heating defrosting operation mode or the defrosting single operation mode based on the heating load estimated by the heating load estimation unit and the heat storage amount detected by the heat storage amount detection unit The heat pump device according to claim 4, wherein the heat pump device is switched.
前記第1熱交換器によって加熱される流体の温度を検出する第1温度検出手段と、
前記室外熱交換器に吸い込まれる空気の温度を検出する第2温度検出手段と、
を備え、
前記暖房負荷推算手段は、前記第1温度検出手段によって検出された温度、前記第2温度検出手段によって検出された温度及び前記第1熱交換器によって加熱される流体の設定温度に基づいて前記暖房負荷を推算する
ことを特徴とする請求項5記載のヒートポンプ装置。
First temperature detection means for detecting the temperature of the fluid heated by the first heat exchanger;
Second temperature detecting means for detecting the temperature of air sucked into the outdoor heat exchanger;
With
The heating load estimating means is configured to perform heating based on a temperature detected by the first temperature detecting means, a temperature detected by the second temperature detecting means, and a set temperature of a fluid heated by the first heat exchanger. The heat pump device according to claim 5, wherein the load is estimated.
前記蓄熱用熱交換器における前記蓄熱材の温度を検出する蓄熱材温度検出手段を備え、
前記蓄熱量算出手段は、前記蓄熱材温度検出手段によって検出された温度から前記蓄熱用熱交換器の蓄熱量を算出する
ことを特徴とする請求項5又は請求項6記載のヒートポンプ装置。
A heat storage material temperature detection means for detecting the temperature of the heat storage material in the heat storage heat exchanger;
The heat pump apparatus according to claim 5 or 6, wherein the heat storage amount calculation means calculates a heat storage amount of the heat storage heat exchanger from a temperature detected by the heat storage material temperature detection means.
請求項1〜請求項7のいずれかに記載のヒートポンプ装置を搭載し、
前記第1熱交換器は、冷媒−水熱交換器である
ことを特徴とするヒートポンプ給湯機。
The heat pump device according to any one of claims 1 to 7 is mounted,
Said 1st heat exchanger is a refrigerant | coolant-water heat exchanger. The heat pump water heater characterized by the above-mentioned.
請求項1〜請求項7のいずれかに記載のヒートポンプ装置を搭載した
ことを特徴とする空気調和機。
An air conditioner equipped with the heat pump device according to any one of claims 1 to 7.
JP2008323352A 2008-12-19 2008-12-19 Heat pump device and heat pump water heater and air conditioner equipped with the same Active JP4937244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008323352A JP4937244B2 (en) 2008-12-19 2008-12-19 Heat pump device and heat pump water heater and air conditioner equipped with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008323352A JP4937244B2 (en) 2008-12-19 2008-12-19 Heat pump device and heat pump water heater and air conditioner equipped with the same

Publications (2)

Publication Number Publication Date
JP2010145020A true JP2010145020A (en) 2010-07-01
JP4937244B2 JP4937244B2 (en) 2012-05-23

Family

ID=42565630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008323352A Active JP4937244B2 (en) 2008-12-19 2008-12-19 Heat pump device and heat pump water heater and air conditioner equipped with the same

Country Status (1)

Country Link
JP (1) JP4937244B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032682A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Air conditioning apparatus
WO2012032681A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Air conditioner
JP2013092342A (en) * 2011-10-27 2013-05-16 Daikin Industries Ltd Refrigerating device
WO2014061133A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
WO2014061131A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
WO2014061132A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
CN104344550A (en) * 2013-07-25 2015-02-11 广东美的暖通设备有限公司 Heat pump water heater group
CN106765778A (en) * 2017-01-10 2017-05-31 美的集团武汉制冷设备有限公司 The defrosting control method of air-conditioner and air-conditioner
CN112665220A (en) * 2021-01-14 2021-04-16 同济大学 Air source heat pump system based on refrigerant supercooling heat recovery efficiency improvement and control method
JP7415750B2 (en) 2020-03-31 2024-01-17 株式会社富士通ゼネラル heat pump cycle equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104390400A (en) * 2014-10-20 2015-03-04 苏州大美节能科技有限公司 Heat pump product with novel defrosting heat exchange device
CN106705379A (en) * 2017-01-10 2017-05-24 美的集团武汉制冷设备有限公司 Defrosting control method, defrosting control system and air conditioner
CN111503823A (en) * 2020-04-29 2020-08-07 广东美的制冷设备有限公司 Control method of air conditioning system and air conditioning system

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111060A (en) * 1979-02-19 1980-08-27 Citizen Watch Co Ltd Thin battery
JPS62294857A (en) * 1986-05-29 1987-12-22 三洋電機株式会社 Air conditioner
JPS63217169A (en) * 1987-03-03 1988-09-09 三洋電機株式会社 Air conditioner
JPH02136657A (en) * 1988-11-18 1990-05-25 Mitsubishi Electric Corp Heat pump device
JPH05296616A (en) * 1992-04-23 1993-11-09 Hitachi Ltd Freezer
JPH06193972A (en) * 1992-12-22 1994-07-15 Nippondenso Co Ltd Air conditioner
JP2003004346A (en) * 2001-06-26 2003-01-08 Sanyo Electric Co Ltd Cooling equipment
JP2003287311A (en) * 2002-03-27 2003-10-10 Sanyo Electric Co Ltd Air-conditioner, and air-conditioner control method
JP2003302131A (en) * 2002-04-08 2003-10-24 Sanyo Electric Co Ltd Air conditioner and method for controlling the same
JP2008025904A (en) * 2006-07-20 2008-02-07 Daikin Ind Ltd Heat pump device
JP2008224088A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Hot water system

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55111060A (en) * 1979-02-19 1980-08-27 Citizen Watch Co Ltd Thin battery
JPS62294857A (en) * 1986-05-29 1987-12-22 三洋電機株式会社 Air conditioner
JPS63217169A (en) * 1987-03-03 1988-09-09 三洋電機株式会社 Air conditioner
JPH02136657A (en) * 1988-11-18 1990-05-25 Mitsubishi Electric Corp Heat pump device
JPH05296616A (en) * 1992-04-23 1993-11-09 Hitachi Ltd Freezer
JPH06193972A (en) * 1992-12-22 1994-07-15 Nippondenso Co Ltd Air conditioner
JP2003004346A (en) * 2001-06-26 2003-01-08 Sanyo Electric Co Ltd Cooling equipment
JP2003287311A (en) * 2002-03-27 2003-10-10 Sanyo Electric Co Ltd Air-conditioner, and air-conditioner control method
JP2003302131A (en) * 2002-04-08 2003-10-24 Sanyo Electric Co Ltd Air conditioner and method for controlling the same
JP2008025904A (en) * 2006-07-20 2008-02-07 Daikin Ind Ltd Heat pump device
JP2008224088A (en) * 2007-03-09 2008-09-25 Mitsubishi Electric Corp Hot water system

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032682A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Air conditioning apparatus
WO2012032681A1 (en) * 2010-09-09 2012-03-15 パナソニック株式会社 Air conditioner
JP2012057878A (en) * 2010-09-09 2012-03-22 Panasonic Corp Air conditioner
CN103097824A (en) * 2010-09-09 2013-05-08 松下电器产业株式会社 Air conditioner
JP2013092342A (en) * 2011-10-27 2013-05-16 Daikin Industries Ltd Refrigerating device
CN104736949A (en) * 2012-10-18 2015-06-24 大金工业株式会社 Air conditioner
JP5829761B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
WO2014061132A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
CN104736949B (en) * 2012-10-18 2016-06-15 大金工业株式会社 Air-conditioning device
CN104736950A (en) * 2012-10-18 2015-06-24 大金工业株式会社 Air conditioner
WO2014061133A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
EP2884205A4 (en) * 2012-10-18 2015-10-28 Daikin Ind Ltd Air conditioner
WO2014061131A1 (en) * 2012-10-18 2014-04-24 ダイキン工業株式会社 Air conditioner
JP5829762B2 (en) * 2012-10-18 2015-12-09 ダイキン工業株式会社 Air conditioner
CN104344550A (en) * 2013-07-25 2015-02-11 广东美的暖通设备有限公司 Heat pump water heater group
CN104344550B (en) * 2013-07-25 2017-05-03 广东美的暖通设备有限公司 Heat pump water heater group
CN106765778A (en) * 2017-01-10 2017-05-31 美的集团武汉制冷设备有限公司 The defrosting control method of air-conditioner and air-conditioner
CN106765778B (en) * 2017-01-10 2019-09-27 美的集团武汉制冷设备有限公司 The defrosting control method of air conditioner and air conditioner
JP7415750B2 (en) 2020-03-31 2024-01-17 株式会社富士通ゼネラル heat pump cycle equipment
CN112665220A (en) * 2021-01-14 2021-04-16 同济大学 Air source heat pump system based on refrigerant supercooling heat recovery efficiency improvement and control method

Also Published As

Publication number Publication date
JP4937244B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4937244B2 (en) Heat pump device and heat pump water heater and air conditioner equipped with the same
JP5984914B2 (en) Air conditioner
JP5121908B2 (en) Air conditioner
CN106461253B (en) Air conditioner and defrosting operation method thereof
WO2010070828A1 (en) Heat pump hot-water supply device and operation method therefor
JP5042262B2 (en) Air conditioning and hot water supply complex system
EP3062031B1 (en) Air conditioner
JP5409715B2 (en) Air conditioner
JP5137933B2 (en) Air conditioner
JP5893151B2 (en) Air conditioning and hot water supply complex system
CN103733002A (en) Air conditioner
JP5634071B2 (en) Air conditioner and defrosting operation method of air conditioner
WO2003083381A1 (en) Refrigerating cycle device
JP5908183B1 (en) Air conditioner
EP2645019B1 (en) Heat pump hot-water supply device
JP5274174B2 (en) Air conditioner
JP6257809B2 (en) Refrigeration cycle equipment
JP4156422B2 (en) Refrigeration cycle equipment
JP2003232563A (en) Thermal storage hot water supply apparatus
JP4869320B2 (en) Refrigeration cycle apparatus and water heater equipped with the same
WO2022118842A1 (en) Refrigeration cycle system
WO2013088734A1 (en) Air conditioner
JP6042037B2 (en) Refrigeration cycle equipment
JPH06257868A (en) Heat pump type ice heat accumulating device for air conditioning
JP6685472B2 (en) Refrigeration equipment

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110517

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110729

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120221

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4937244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250