JPH02136657A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH02136657A
JPH02136657A JP29174288A JP29174288A JPH02136657A JP H02136657 A JPH02136657 A JP H02136657A JP 29174288 A JP29174288 A JP 29174288A JP 29174288 A JP29174288 A JP 29174288A JP H02136657 A JPH02136657 A JP H02136657A
Authority
JP
Japan
Prior art keywords
valve
heat exchanger
heat
refrigerant
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29174288A
Other languages
Japanese (ja)
Other versions
JPH0730978B2 (en
Inventor
Yoshiaki Tanimura
佳昭 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP29174288A priority Critical patent/JPH0730978B2/en
Publication of JPH02136657A publication Critical patent/JPH02136657A/en
Publication of JPH0730978B2 publication Critical patent/JPH0730978B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To contrive high efficiency of heating and defrosting by accumulating heat in a heat accumulation material in a heat accumulator by a refrigerant after heating is always performed at the time of heating operation, and utilizing accumulated heat to heat and defrost an outdoor heat exchanger at the time of defrosting operation. CONSTITUTION:A refrigerant becomes at about 40 deg.C and is allowed out from an indoor heat exchanger 3 to send to a second expansion valve 12 through a fourth closing valve 25. The refrigerant temperature allowed to flow in a heat exchanger 11 is decreased by reducing the pressure a little to lessen the temperature difference with a heat accumulation material 10 so as to control the heat accumulated amount without the lowering of a heating capacity. Next, a refrigerant liquid allowed to flow out from the heat exchanger 11 is reduced down to intermediate pressure of high pressure and low pressure through a third reducer 18, becomes two-phase refrigerant of the mixture of gas and liquid, sent in a gas and liquid separator 21, only a refrigerant liquid is allowed to flow in an outdoor heat exchanger 5 and returned to a compressor 1. Furthermore, a refrigerant gas separated from the refrigerant liquid is sucked in the injection port of the compressor 1 and heating and heat accumulation performance are improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、蓄熱材に蓄えた熱を利用して除霜を行うヒ
ートポンプ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a heat pump device that performs defrosting using heat stored in a heat storage material.

〔従来の技術〕[Conventional technology]

第5図は特開昭61−125555号公報に示された従
来のヒートポンプ装置の冷凍サイクルを示す冷媒回路の
構成図である。
FIG. 5 is a configuration diagram of a refrigerant circuit showing a refrigeration cycle of a conventional heat pump device disclosed in Japanese Patent Application Laid-Open No. 61-125555.

第5図において、(1)は圧縮機、(2)は四方弁、(
3)は室内熱交換器、(4)は第1減圧装置、(5)は
室外熱交換器であり、これらの部材が順次環状になるよ
うに接続されて、冷凍サイクルが構成されている冷凍サ
イクル四方弁(2)と室内熱交換器(3)の間に設けら
れた第1三方弁(6)に一端が接続されたバイパス路(
13)の他端が室内熱交換器(3)と第1減圧装置(4
)の間に接続され、この接続部と第1減圧装置(4)の
間に蓄熱回路(14)の両端が接続されている。蓄熱回
路(14)には第2減圧装置(12)、第2三方弁(7
)、蓄熱器(9)に充填された蓄熱材(10)と熱交換
する熱交換器(11)がこの順に設けられ、熱交換器(
11)が第3三方弁(8)を介して冷媒回路の第1減圧
装置(4)近(に接続されている。また、第2三方弁(
7)を介して蓄熱回路(14)が冷媒回路の四方弁(2
)と圧縮機(1)の吸入側の間にアキュムレータ(17
)を介して接続されている。なお2第2図中、 (15
)、 (16)は第1.第2減圧装置(4)、 (12
)のバイパス回路に設けた開閉弁である。
In Figure 5, (1) is a compressor, (2) is a four-way valve, (
3) is an indoor heat exchanger, (4) is a first pressure reducing device, and (5) is an outdoor heat exchanger, and these members are sequentially connected to form a ring to form a refrigeration cycle. A bypass passage (one end connected to the first three-way valve (6) provided between the cycle four-way valve (2) and the indoor heat exchanger (3)
13) The other end is connected to the indoor heat exchanger (3) and the first pressure reducing device (4).
), and both ends of the heat storage circuit (14) are connected between this connection part and the first pressure reducing device (4). The heat storage circuit (14) is equipped with a second pressure reducing device (12) and a second three-way valve (7).
), a heat exchanger (11) that exchanges heat with the heat storage material (10) filled in the heat storage device (9) are provided in this order, and the heat exchanger (
11) is connected to (near) the first pressure reducing device (4) of the refrigerant circuit via the third three-way valve (8).
7), the heat storage circuit (14) connects to the four-way valve (2) of the refrigerant circuit.
) and the suction side of the compressor (1).
) are connected through. 2 In Figure 2, (15
), (16) is the first. Second pressure reducing device (4), (12
) is an on-off valve installed in the bypass circuit.

以上のように構成された従来のヒートポンプ装置の動作
について説明する。
The operation of the conventional heat pump device configured as described above will be explained.

冷房運転時には、圧縮機(1)から吐出された冷媒ダ は、第+図の実線矢印に示すように流れ、四方弁(2)
、室外熱交換器(5)、第1減圧装置(4)、第3三方
弁(8)、室内熱交換器(3)、第1王方弁(6)を経
て圧縮機(1)に戻る。また暖房運転時には、圧縮機(
1)ダ から吐出された冷媒は、第4図の破線矢印に示すように
流れ、V!!方弁(2)、第1三方弁(6)、室内熱交
換器(3)、第3三方弁(8)、第1減圧装置(4)、
室外熱交換器(5)、四方弁(2)を経て圧縮fi(1
)に戻り、この場合には蓄熱材(10)への蓄熱を行っ
ていない。
During cooling operation, the refrigerant discharged from the compressor (1) flows as shown by the solid arrow in Fig.
, returns to the compressor (1) via the outdoor heat exchanger (5), the first pressure reducing device (4), the third three-way valve (8), the indoor heat exchanger (3), and the first king-way valve (6). . Also, during heating operation, the compressor (
1) The refrigerant discharged from V flows as shown by the broken line arrow in Fig. 4, and V! ! direction valve (2), first three-way valve (6), indoor heat exchanger (3), third three-way valve (8), first pressure reducing device (4),
Compression fi (1
), and in this case, heat is not stored in the heat storage material (10).

蓄熱運転時には、圧縮機(+)から吐出された冷媒は四
方弁(2)、第1三方弁(6)、開閉弁(16)、第2
三方弁(7)を通って蓄熱器(9)内の熱交換器(11
)に導かれ、冷媒から蓄熱器(9)内の蓄熱材(10)
に放熱されてこれに蓄熱され、第3三方弁(8)、第1
減圧装置(4)2室外熱交換器(5)、四方弁(2)を
経て圧縮機(1)に戻り、この場合には暖房を行ってい
ない。
During heat storage operation, the refrigerant discharged from the compressor (+) passes through the four-way valve (2), the first three-way valve (6), the on-off valve (16), and the second
The heat exchanger (11) in the heat storage (9) passes through the three-way valve (7).
) from the refrigerant to the heat storage material (10) in the heat storage device (9).
The heat is radiated to and stored in the third three-way valve (8), the first
It returns to the compressor (1) via the pressure reducing device (4), the outdoor heat exchanger (5), and the four-way valve (2), and in this case, heating is not performed.

除霜運転時には、圧縮機(1)から吐出された冷媒は、
第4図の鎖線矢印に示すように流れ、四方弁(2)、第
1三方弁(6)、室内熱交換器(3)、開閉弁(16)
を通って蓄熱器(9)内の熱交換器(11)に導かれ、
蓄熱材(10)に蓄熱された熱によって冷媒が加熱され
蓄熱器(9)を出た冷媒は、第3三方弁(8)、開閉弁
(15)を通って室外熱交換器(5)に導かれ、この熱
交換器(5)に付着した霜を融かし四方弁(2)を経て
圧縮機(1)に戻る。そして、このヒートポンプ装置で
は、室内熱交換器(3)の負荷が小さい場合のみ、上述
した蓄熱運転を行い、冷凍サイクル内の余熱を蓄熱器(
9)内の蓄熱材(10)に蓄熱している。
During defrosting operation, the refrigerant discharged from the compressor (1) is
The flow is as shown by the chain arrow in Fig. 4, and the four-way valve (2), the first three-way valve (6), the indoor heat exchanger (3), and the on-off valve (16)
through the heat exchanger (11) in the heat storage (9),
The refrigerant is heated by the heat stored in the heat storage material (10) and exits the heat storage device (9). The refrigerant passes through the third three-way valve (8) and the on-off valve (15) to the outdoor heat exchanger (5). It melts the frost adhering to the heat exchanger (5) and returns to the compressor (1) via the four-way valve (2). In this heat pump device, the heat storage operation described above is performed only when the load on the indoor heat exchanger (3) is small, and the residual heat in the refrigeration cycle is transferred to the heat storage (3).
Heat is stored in the heat storage material (10) inside 9).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以」−のように構成された従来のヒートポンプ装置では
、蓄熱運転中には暖房運転ができず、また除霜時におい
ては高温・高圧のガスが蒸発器に流れ込むため、外気と
の放熱ロスが大きく暖房及び除霜運転時の効率が良くな
いという問題点があった。
In conventional heat pump devices configured as described above, heating operation cannot be performed during heat storage operation, and high-temperature, high-pressure gas flows into the evaporator during defrosting, resulting in heat radiation loss with the outside air. A major problem was that the efficiency during heating and defrosting operations was not good.

この発明は、上記のような問題点を解決するためになさ
れたもので、暖房運転時には常に暖房を行った後の冷媒
によって蓄熱器内の蓄熱材に蓄熱させ、また除霜運転時
には、上記蓄熱材に蓄熱された熱を利用して暖房と室外
熱交換器の除霜を行うことができ、暖房および除霜運転
が効率よくでき、除霜時間も短くなるヒートポンプ装置
を得ることを目的としている。
This invention was made to solve the above-mentioned problems. During heating operation, the refrigerant after heating is used to store heat in the heat storage material in the heat storage device, and during defrosting operation, the heat storage material is stored in the heat storage material in the heat storage device. The aim is to obtain a heat pump device that can perform heating and defrost the outdoor heat exchanger by using the heat stored in the material, and can perform heating and defrosting operations efficiently and shorten the defrosting time. .

〔課題を解決するための手段〕[Means to solve the problem]

この発明に係るヒートポンプ装置は、圧縮機、四方弁、
室外熱交換器、第1減圧装置、室内熱交換器を順次接続
した冷凍サイクルを有するものにおいて、前記第1減圧
装置と前記室内熱交換器の間に接続された第1の開閉弁
、前記第1減圧装置と前記室外熱交換器の間に接続され
た第2の開閉弁前記室外熱交換器と前記四方弁の間に接
続された第3の開閉弁、前記第1の開閉弁に並列に接続
され、第4の開閉弁と第2減圧装置と蓄熱器と第5の開
閉弁とを前記室内熱交換器側からこの順に有する暖房蓄
熱回路、前記第1減圧装置と前記第2の開閉弁の間と前
記室外熱交換器と前記第3の開閉ちに接続された第6の
開閉弁、前記室外熱交換器と前記第2の開閉弁の間と前
記蓄熱器と前記第5の開閉弁の間に接続された第7の開
閉弁、前記蓄熱器と前記第2減圧装置の間と前記四方弁
の低圧側出口に接続された第8の開閉弁を備え、暖房運
転時前記第2.第3.第4.第5の開閉弁を開、前記第
1.第6.第7.第8の開閉弁を閉とし除霜運転時前記
第1.第6.第7.第8 の開閉弁を開、前記第2.第
3.第4.第5 の開閉弁を閑とし冷房運転時前記第1
.第2.第3の開閉弁を開、前記第4.第5.第6.第
7.第8の開閉弁を閑とするものである。
The heat pump device according to the present invention includes a compressor, a four-way valve,
In the refrigeration cycle in which an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are connected in sequence, a first on-off valve connected between the first pressure reducing device and the indoor heat exchanger; 1 a second on-off valve connected between the pressure reducing device and the outdoor heat exchanger; a third on-off valve connected between the outdoor heat exchanger and the four-way valve, in parallel with the first on-off valve; A heating heat storage circuit that is connected and has a fourth on-off valve, a second pressure reducing device, a heat storage device, and a fifth on-off valve in this order from the indoor heat exchanger side, the first pressure reducing device and the second on-off valve. a sixth on-off valve connected between the outdoor heat exchanger and the third on-off valve; a sixth on-off valve connected between the outdoor heat exchanger and the second on-off valve, the heat storage device and the fifth on-off valve; a seventh on-off valve connected between the heat storage device and the second pressure reducing device, and an eighth on-off valve connected between the heat storage device and the second pressure reducing device and the low pressure side outlet of the four-way valve; Third. 4th. The fifth on-off valve is opened, and the first on-off valve is opened. 6th. 7th. The eighth on-off valve is closed and the first valve is closed during defrosting operation. 6th. 7th. The eighth on-off valve is opened, and the second on-off valve is opened. Third. 4th. When the fifth on-off valve is turned off and the cooling operation is performed, the first
.. Second. The third on-off valve is opened, and the fourth on-off valve is opened. Fifth. 6th. 7th. The eighth on-off valve is left open.

〔作用〕[Effect]

この発明におけるヒートポンプ装置は、暖房蓄熱回路に
より暖房運転と同時に中間圧での蓄熱が行われ、この熱
を利用して除霜と暖房が同時に行われる。
In the heat pump device according to the present invention, the heating heat storage circuit performs heat storage at intermediate pressure at the same time as heating operation, and defrosting and heating are performed simultaneously using this heat.

明する。第1図は、この発明の一実施例によるヒートポ
ンプ装置の冷凍サイクルを示す冷媒回路構成図である。
I will clarify. FIG. 1 is a refrigerant circuit configuration diagram showing a refrigeration cycle of a heat pump device according to an embodiment of the present invention.

第1図において、(1)はインジェクションポートを有
する圧縮機、(2)は四方弁、(3)は室内熱交換器(
4)は第1減圧装置、(5)は室外熱交換器であり、こ
れらが順次接続されて冷凍サイクルが構成されている。
In Figure 1, (1) is a compressor with an injection port, (2) is a four-way valve, and (3) is an indoor heat exchanger (
4) is a first pressure reducing device, and (5) is an outdoor heat exchanger, which are connected in sequence to form a refrigeration cycle.

(22)は室内熱交換器(3)と第1減圧装置(4)の
間に設けた第1の開閉弁、 (23)は室外熱交換器(
5)と第1減圧装置(4)の間に設けた第2の開閉弁(
24)は西方弁(2)と室外熱交換器(5)の間に設け
た第3の開閉弁である。(19)は暖房蓄熱回路であり
人口端が前記室内熱交換器(3)と第1の開閉弁(22
)の間に接続され、出口端が前記第1減圧装置(4)と
第1の開閉弁(22)の間に接続されている。
(22) is the first on-off valve provided between the indoor heat exchanger (3) and the first pressure reducing device (4), and (23) is the outdoor heat exchanger (
5) and the second on-off valve (4) provided between the first pressure reducing device (4).
24) is a third on-off valve provided between the west valve (2) and the outdoor heat exchanger (5). (19) is a heating heat storage circuit whose artificial end is connected to the indoor heat exchanger (3) and the first on-off valve (22).
), and its outlet end is connected between the first pressure reducing device (4) and the first on-off valve (22).

この暖房蓄熱回路(19)は、その回路上に第4の開閉
弁(25)、第2の減圧装置(12)、蓄熱器(9)に
蓄熱器(10)とともに内蔵された熱交換器(11)、
第3減圧装置(1g)、気液分離器(21)、第5の開
閉弁(26)をこの順に備えており、前記気液分離器(
2I)の液出口と第5の開閉弁(26)とが接続されて
いる。
This heating heat storage circuit (19) includes a fourth on-off valve (25), a second pressure reducing device (12), and a heat exchanger (9) built into the heat storage (9) together with the heat storage (10). 11),
It is equipped with a third pressure reducing device (1g), a gas-liquid separator (21), and a fifth on-off valve (26) in this order, and the gas-liquid separator (
2I) and the fifth on-off valve (26) are connected.

また前記気液分離器(21)の気体出口は、前記圧縮f
i(1)のインジェクションポートに第9の開閉弁(3
0)を介して接続されている。(20)は除霜回路であ
り9人口端が前記第1減圧装置(4)と第2の開閉弁(
23)の間に接続され、出口端が前記圧縮機(1)の吸
入口と四方弁(22)の間に接続されている。
Further, the gas outlet of the gas-liquid separator (21) is connected to the compressed f
A ninth on-off valve (3
0). (20) is a defrosting circuit, and the 9th port terminal connects the first pressure reducing device (4) and the second on-off valve (
23), and its outlet end is connected between the suction port of the compressor (1) and the four-way valve (22).

この回路(20)は、その回路上に第6の開閉弁(27
)前記室外熱交換器(5)、第7の開閉弁(2+11)
、前記暖房蓄熱回路(19)と共用する第3減圧装置(
18)と熱交換器(11)、第8の開閉弁り29)をこ
の順序で備えており、前記第6の開閉弁(27)の出口
端を前記室外熱交換器(5)と第3の開閉弁(24)の
間に接続し第7の開閉弁(28)の入口端を前記室外熱
交換器(5)と第2の開閉弁(23)の間に接続し、第
8の開閉弁(29)の入口端を前記暖房蓄熱回路(19
)の熱交換器(11)と第2減圧装置(12)の間に接
続している。
This circuit (20) has a sixth on-off valve (27) on the circuit.
) The outdoor heat exchanger (5), the seventh on-off valve (2+11)
, a third pressure reducing device (
18), a heat exchanger (11), and an eighth on-off valve 29) in this order, and the outlet end of the sixth on-off valve (27) is connected to the outdoor heat exchanger (5) and the third on-off valve (29). The inlet end of the seventh on-off valve (28) is connected between the outdoor heat exchanger (5) and the second on-off valve (23); The inlet end of the valve (29) is connected to the heating heat storage circuit (19).
) is connected between the heat exchanger (11) and the second pressure reducing device (12).

なお蓄熱器(9)に充填された蓄熱材(10)は相変化
温度が0°C〜30°Cの間にある水や各種パラフィン
、塩化カルシウム系混合塩などの潜熱利用蓄熱材が用い
られている。
The heat storage material (10) filled in the heat storage device (9) is a heat storage material that utilizes latent heat such as water, various paraffins, and mixed salts based on calcium chloride and has a phase change temperature between 0°C and 30°C. ing.

次に以上のように構成された実施例の暖房及び除霜運転
時のヒートポンプ装置の動作について説明する。暖房運
転時には第2図に示すように第2第3.第4.第5.第
9の開閉弁(23)〜(26)、 (30)が開、第1
.第6.第7.第8 の開閉弁(22)、 (27)〜
(29)が閑にされる。
Next, the operation of the heat pump device configured as above during heating and defrosting operations will be described. During heating operation, as shown in FIG. 4th. Fifth. The ninth on-off valves (23) to (26), (30) are open, and the first
.. 6th. 7th. Eighth on-off valve (22), (27) ~
(29) is ignored.

そして圧縮機(1)から吐出された高温・高圧の冷媒ガ
スは四方弁(2)を通って室内熱交換器(3)に送られ
、ここで放熱して暖房に供せられ、凝縮液化される。こ
の時の温度変化の一例について説明すると冷媒の暖房作
用により、室内空気は20℃から40°C程度に加熱さ
れて、冷媒は40°C前後の冷媒液となって室内熱交換
器(3)を出て、第4の開閉弁(25)を通り第2の膨
張弁(12)に送られる。ここで若干減圧されることに
より室内熱交換器(3)を出た冷媒温度より低い温度で
蓄熱器(9)の熱交換器(11)に送られる。蓄熱器(
9)内には、相変化温度か0〜30’Cの間にある蓄熱
材(10)が充填されているため、そこで熱交換器(1
1)内を通る冷媒液により加熱されて固体から液体とな
って蓄熱される。
The high-temperature, high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way valve (2) and is sent to the indoor heat exchanger (3), where it radiates heat, is used for heating, and is condensed and liquefied. Ru. To explain an example of the temperature change at this time, due to the heating effect of the refrigerant, the indoor air is heated from 20°C to about 40°C, and the refrigerant becomes a refrigerant liquid at around 40°C, which is transferred to the indoor heat exchanger (3). and is sent to the second expansion valve (12) through the fourth on-off valve (25). Here, the pressure is slightly reduced and the refrigerant is sent to the heat exchanger (11) of the heat storage device (9) at a temperature lower than that of the refrigerant that exits the indoor heat exchanger (3). Heat storage device (
9) is filled with a heat storage material (10) whose phase change temperature is between 0 and 30'C.
1) It is heated by the refrigerant liquid passing through it, changes from solid to liquid, and stores heat.

ここで第2の減圧装置(12)で若干減圧した理由は特
に除霜運転から暖房運転に切換え時、蓄熱材(lO)は
除霜時に吸熱され固化して低温となっているため、室内
熱交換器(3)を出た冷媒との温度差が大きい場合そこ
で熱を奪われ暖房能力が低下してしまうことになる。 
したがって第2の減圧装置(12)で減圧量を変えるこ
とにより熱交換器(11)に流れ込む冷媒温度を低下さ
せ、蓄熱材(10)との温度差を小さくシ、そこでの蓄
熱量を暖房能力が低下しないようにコントロールしてい
るのである。
Here, the reason why the pressure is slightly reduced by the second pressure reducing device (12) is that especially when switching from defrosting operation to heating operation, the heat storage material (1O) absorbs heat during defrosting and solidifies, becoming low temperature. If the temperature difference between the refrigerant and the refrigerant exiting the exchanger (3) is large, heat will be taken there and the heating capacity will be reduced.
Therefore, by changing the amount of pressure reduction in the second pressure reduction device (12), the temperature of the refrigerant flowing into the heat exchanger (11) is lowered, the temperature difference with the heat storage material (10) is reduced, and the amount of heat stored there is reduced by the heating capacity. It is controlled so that it does not decrease.

次に熱交換器(II)を出た冷媒液は、第3の減圧装置
(18)を通ることで、高圧と低圧の中間圧力まで減圧
され、気液混合の2相冷媒となって、気液分離器(21
)に入る。この2相冷媒は、気液分離器(26)で液と
ガスとに分離され、冷媒液のみが、第5の開閉弁(26
)を通って第1の減圧装置(4)に送られ、低温・低圧
の2相冷媒となった後、第2の開閉弁(23)を通って
室外熱交換器(5)に送られ、ここで吸熱することによ
り蒸発する。蒸発した冷媒ガスは、第3の開閉弁(24
)を通って圧縮機(1)に戻る。そして上述したサイク
ルを繰り返す。
Next, the refrigerant liquid that exits the heat exchanger (II) passes through the third pressure reducing device (18) and is reduced in pressure to an intermediate pressure between high pressure and low pressure, becoming a two-phase refrigerant of gas-liquid mixture. Liquid separator (21
)to go into. This two-phase refrigerant is separated into liquid and gas by the gas-liquid separator (26), and only the refrigerant liquid is separated from the fifth on-off valve (26).
), the refrigerant is sent to the first pressure reducing device (4), where it becomes a low-temperature, low-pressure two-phase refrigerant, and then sent to the outdoor heat exchanger (5) through the second on-off valve (23), It evaporates by absorbing heat here. The evaporated refrigerant gas flows through the third on-off valve (24
) and returns to the compressor (1). The cycle described above is then repeated.

また前記気液分離器(21)内で冷媒液と分離した冷媒
ガスは第9の開閉弁(30)を通り、圧縮機(1)のイ
ンジェクションボートに吸入される。このためインジェ
クションボートに吸入される冷媒流量の割合だけ、高圧
側の冷媒流量が、インジェクションボートに吸入されな
い場合よりも増加し、従って暖房能力および蓄熱能力を
含む高圧側の能力(凝縮能力)がインジェクションされ
ない場合に比べて増加し、暖房性能および蓄熱性能も向
上する更に蓄熱は、高温・高圧の冷媒ガスが室内熱交換
器(3)を通って凝縮した後の冷媒液で行うとともにそ
の蓄熱器を第2の減圧装置(12)の絞り量によりコン
トロールして蓄熱するので暖房能力の低下が開閉弁(2
2)、 (27)〜(29)が開、第2.第3.第4.
第5、第9の開閉弁(23)〜(26)、 (30)が
閉にされる。
Further, the refrigerant gas separated from the refrigerant liquid in the gas-liquid separator (21) passes through the ninth on-off valve (30) and is sucked into the injection boat of the compressor (1). For this reason, the refrigerant flow rate on the high pressure side increases by the proportion of the refrigerant flow rate sucked into the injection boat compared to when it is not sucked into the injection boat, and therefore the high pressure side capacity (condensing capacity) including heating capacity and heat storage capacity In addition, heat storage is performed using the refrigerant liquid after the high temperature and high pressure refrigerant gas passes through the indoor heat exchanger (3) and is condensed. Heat storage is controlled by the throttling amount of the second pressure reducing device (12), so the reduction in heating capacity is prevented by the opening/closing valve (2
2), (27) to (29) are open, and the second. Third. 4th.
The fifth and ninth on-off valves (23) to (26) and (30) are closed.

そして、圧縮機(1)から吐出された高温、高圧の冷媒
ガスは、四方弁(2)を通って室内熱交換器(3)に送
られ、ここで放熱して暖房が行われるが、暖房効果を全
て発揮せず、一部に冷媒ガスを残した気液混合の2相冷
媒の状態で、第1開閉弁(22)を通って第1減圧装置
(4)に送られる。ここで、気液混合の2相冷媒は低圧
と高圧の中間の圧力まで減圧され2例えば凝縮温度が1
0℃〜20℃程度の状態になって第6の開閉弁(27)
を通って室外熱交換器(5)に送られ、ここで放熱する
ことで冷媒の全体が凝縮して冷媒液となる。
The high-temperature, high-pressure refrigerant gas discharged from the compressor (1) passes through the four-way valve (2) and is sent to the indoor heat exchanger (3), where heat is radiated and heating is performed. The refrigerant is sent to the first pressure reducing device (4) through the first on-off valve (22) in the state of a gas-liquid mixed two-phase refrigerant that does not fully exhibit its effect and leaves some refrigerant gas behind. Here, the two-phase refrigerant, which is a gas-liquid mixture, is depressurized to a pressure between low pressure and high pressure.2For example, the condensation temperature is 1.
When the temperature is between 0℃ and 20℃, the sixth on-off valve (27)
The refrigerant is sent to the outdoor heat exchanger (5), where the heat is radiated and the entire refrigerant is condensed to become a refrigerant liquid.

上述した放熱によって室外熱交換器(5)に付着してい
た霜が融かされて除霜が行われる。室外熱交換器(5)
を出た冷媒液は、第7開閉弁(28)を通って第3減圧
装置(18)に送られ、低温、低圧の気液混合の2相冷
媒となって蓄熱器(9)内の熱交換器(11)に入る。
The frost adhering to the outdoor heat exchanger (5) is melted by the above-mentioned heat radiation, and defrosting is performed. Outdoor heat exchanger (5)
The refrigerant liquid that has exited is sent to the third pressure reducing device (18) through the seventh on-off valve (28), where it becomes a low-temperature, low-pressure, gas-liquid mixture two-phase refrigerant, and absorbs the heat in the heat storage device (9). Enter the exchanger (11).

ここで、2相冷媒は蓄熱材(10)に蓄熱されている熱
を吸熱して蒸発し、冷媒ガスとなり、第8開閉弁(29
)を経て圧縮機(1)に戻る。上述したサイクルの運転
は除霜が完了するまで行われ、完了後は再び暖房運転と
なる。
Here, the two-phase refrigerant absorbs the heat stored in the heat storage material (10), evaporates, becomes refrigerant gas, and becomes the eighth on-off valve (29).
) and returns to the compressor (1). The above-described cycle operation is performed until defrosting is completed, and after completion, heating operation resumes.

上述した除霜運転は、o’c〜30°Cの間に相変化温
度をもつ蓄熱材(10)を熱源として行われるため外気
を熱源として暖房運転をしている場合に比べ冷媒の蒸発
温度が高く維持され、放熱能力が大きく増加する。この
ため、暖房と除霜に冷媒の放熱能力を振り分けても外気
熱源の場合とほぼ同等の暖房能力が維持されると共に、
除霜時間も短縮される。
The above-mentioned defrosting operation is performed using the heat storage material (10) having a phase change temperature between o'c and 30°C as a heat source, so the evaporation temperature of the refrigerant is lower than when heating is performed using outside air as the heat source. is maintained at a high level, and the heat dissipation capacity is greatly increased. Therefore, even if the heat dissipation capacity of the refrigerant is distributed between heating and defrosting, the heating capacity is maintained almost the same as when using an outside air heat source, and
Defrosting time is also shortened.

この実施例では、除霜運転中に室外熱交換器(5)を流
れる冷媒の圧力を第1減圧装置(4)によって減圧して
中間圧力とし、除霜のための冷媒放熱温度を10°C〜
20°Cに調整している。この調整は、第1減圧装置(
4)を用いずに暖房江転時と同程度の40°C〜50°
Cの冷媒を室外熱交換器(5)に流すと、冷媒のもつ凝
縮熱が除霜に使用される以外に、外気への放熱となる放
熱ロス分が増加するのを防ぐためである。また冷房運転
中には第4図に示すように第1.第2.第3開閉弁(2
2)〜(24)が開、第4゜第5.第6.第7.第8.
第9.第10開閉弁(25)〜(30)が閉となり、冷
房用の冷凍サイクルを形成する。
In this embodiment, during defrosting operation, the pressure of the refrigerant flowing through the outdoor heat exchanger (5) is reduced by the first pressure reducing device (4) to an intermediate pressure, and the refrigerant radiation temperature for defrosting is set at 10°C. ~
Adjusted to 20°C. This adjustment is performed by the first pressure reducing device (
4) without using 40°C to 50°, which is the same level as when heating is turned on.
When the refrigerant C flows through the outdoor heat exchanger (5), the condensation heat of the refrigerant is not only used for defrosting, but also to prevent an increase in heat radiation loss, which is heat radiation to the outside air. Also, during cooling operation, as shown in FIG. Second. Third on-off valve (2
2) to (24) are open, 4th degree and 5th degree. 6th. 7th. 8th.
9th. The tenth on-off valves (25) to (30) are closed, forming a refrigeration cycle for cooling.

〔発明の効果〕〔Effect of the invention〕

以上のようにこの発明によれば、圧縮機、四方弁、室外
熱交換器、第1減圧装置、室内熱交換器を順次接続した
冷凍サイクルを有するヒートポンプ装置において、前記
第1減圧装置と前記室内熱交換器の間に接続された第1
の開閉弁、前記第1減圧装置と前記室外熱交換器の間に
接続された第2の開閉弁、前記室外熱交換器と前記四方
・弁の間に接続された第3の開閉弁、前記第1の開閉弁
に並列に接続され、第4の開閉弁と第2減圧装置と蓄熱
器と第5の開閉弁とを前記室内熱交換器側からこの順に
有する暖房蓄熱回路、前記第1減圧装置と前記第2の開
閉弁の間と前記室外熱交換器と前記第3の開閉メ鵠に接
続された第6の開閉弁。
As described above, according to the present invention, in a heat pump device having a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are sequentially connected, the first pressure reducing device and the indoor heat exchanger are connected. The first connected between the heat exchangers
a second on-off valve connected between the first pressure reducing device and the outdoor heat exchanger; a third on-off valve connected between the outdoor heat exchanger and the four-way valve; a heating heat storage circuit connected in parallel to the first on-off valve and having a fourth on-off valve, a second pressure reducing device, a heat storage device, and a fifth on-off valve in this order from the indoor heat exchanger side; a sixth on-off valve connected between the device and the second on-off valve, and between the outdoor heat exchanger and the third on-off valve;

前記室外熱交換器と前記第2の開閉弁の間と前記蓄熱器
と前記第5の開閉弁の間に接続された第7の開閉弁、前
記蓄熱器と前記第2減圧装置の間と前記四方弁の低圧側
出口に接続された第8の開閉弁を備え、暖房運転時前記
第2.第3.第4.第5の開閉弁を開、前記第1.第6
.第7.第8の開閉弁を閑とし、除霜運転時前記第1.
第6.第7.第8の開閉弁を開、前記第2.第3.第4
.第5の開閉弁を閑とし、冷房運転時前記第1.第2.
第3の開閉弁を開、前記第4.第5.第6.第7.第8
の開閉弁を閑とする構成にしたので、暖房能力を減じる
ことなく蓄熱ができ、除霜運転時には除霜と同時に通常
の暖房運転時と同等の暖房が行える効果を奏する
a seventh on-off valve connected between the outdoor heat exchanger and the second on-off valve and between the heat storage device and the fifth on-off valve; a seventh on-off valve connected between the heat storage device and the second pressure reducing device; The eighth on-off valve is connected to the low pressure side outlet of the four-way valve, and the second on-off valve is connected to the low pressure side outlet of the four-way valve. Third. 4th. The fifth on-off valve is opened, and the first on-off valve is opened. 6th
.. 7th. The eighth on-off valve is left open, and the first valve is turned off during defrosting operation.
6th. 7th. The eighth on-off valve is opened, and the second on-off valve is opened. Third. Fourth
.. The fifth on-off valve is left open, and the first on-off valve is turned off during cooling operation. Second.
The third on-off valve is opened, and the fourth on-off valve is opened. Fifth. 6th. 7th. 8th
Since the opening/closing valve is configured to be idle, heat can be stored without reducing heating capacity, and during defrosting operation, the same heating as during normal heating operation can be achieved at the same time as defrosting.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明のヒートポンプ装置の一実施例を示す
冷媒回路図、第2図は同暖房運転時の冷間において、(
1)は圧縮機、(2)は四方弁、(3)は室内熱交換器
、(イ)は第1減圧装置、(5)は室外熱交換器、 (
10)は蓄熱器、(12)は第2減圧装置、 (+9)
は暖房蓄熱回路、 (22)は第1の開閉弁、 (23
)は第2の開閉弁、 (24)は第3の開閉弁、 (2
5)は第4の開閉弁。 (26)は第5の開閉弁、 (27)は第6の開閉弁、
 (2g)は第7の開閉弁、 (29)は第8の開閉弁
である。 なお、各図中同一符号は同一または相当部分を示す。
FIG. 1 is a refrigerant circuit diagram showing an embodiment of the heat pump device of the present invention, and FIG.
1) is a compressor, (2) is a four-way valve, (3) is an indoor heat exchanger, (a) is a first pressure reducing device, (5) is an outdoor heat exchanger, (
10) is a heat storage device, (12) is a second pressure reducing device, (+9)
is the heating heat storage circuit, (22) is the first on-off valve, (23
) is the second on-off valve, (24) is the third on-off valve, (2
5) is the fourth on-off valve. (26) is the fifth on-off valve, (27) is the sixth on-off valve,
(2g) is the seventh on-off valve, and (29) is the eighth on-off valve. Note that the same reference numerals in each figure indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims]  圧縮機,四方弁,室外熱交換器,第1減圧装置,室内
熱交換器を順次接続した冷凍サイクルを有するヒートポ
ンプ装置において,前記第1減圧装置と前記室内熱交換
器の間に接続された第1開閉弁,前記第1減圧装置と前
記室外熱交換器の間に接続された第2の開閉弁,前記室
外熱交換器と前記四方弁の間に接続された第3の開閉弁
,前記第1の開閉弁に並列に接続され,第4の開閉弁と
第2減圧装置と蓄熱器と第5の開閉弁とを前記室内熱交
換器側からこの順に有する暖房蓄熱回路,前記第1減圧
装置と前記第2の開閉弁の間と前記室外熱交換器と前記
第3の開閉弁の間に接続された第6の開閉弁,前記室外
熱交換器と前記第2の開閉弁の間と前記蓄熱器と前記第
5の開閉弁の間に接続された第7の開閉弁,前記蓄熱器
と前記第2減圧装置の間と前記四方弁の低圧側出口に接
続された第8の開閉弁を備え,暖房運転時前記第2,第
3,第4,第5の開閉弁を開,前記第1,第6,第7,
第8の開閉弁を閉とし,除霜運転時前記第1,第6,第
7,第8の開閉弁を開,前記第2,第3,第4,第5の
開閉弁を閉とし,冷房運転時前記第1,第2,第3の開
閉弁を開,前記第4,第5,第6,第7,第8の開閉弁
を閉とすることを特徴とするヒートポンプ装置。
In a heat pump device having a refrigeration cycle in which a compressor, a four-way valve, an outdoor heat exchanger, a first pressure reducing device, and an indoor heat exchanger are sequentially connected, a first pressure reducing device connected between the first pressure reducing device and the indoor heat exchanger is provided. a second on-off valve connected between the first pressure reducing device and the outdoor heat exchanger; a third on-off valve connected between the outdoor heat exchanger and the four-way valve; A heating heat storage circuit connected in parallel to the first on-off valve and having a fourth on-off valve, a second pressure reducing device, a heat storage device, and a fifth on-off valve in this order from the indoor heat exchanger side, the first pressure reducing device and a sixth on-off valve connected between the outdoor heat exchanger and the third on-off valve, and between the outdoor heat exchanger and the second on-off valve, and between the outdoor heat exchanger and the third on-off valve. a seventh on-off valve connected between the heat storage device and the fifth on-off valve; and an eighth on-off valve connected between the heat storage device and the second pressure reducing device and to the low pressure side outlet of the four-way valve. In preparation, the second, third, fourth, and fifth on-off valves are opened during heating operation, and the first, sixth, seventh, and
an eighth on-off valve is closed, the first, sixth, seventh, and eighth on-off valves are opened during defrosting operation, and the second, third, fourth, and fifth on-off valves are closed; A heat pump device characterized in that during cooling operation, the first, second, and third on-off valves are opened, and the fourth, fifth, sixth, seventh, and eighth on-off valves are closed.
JP29174288A 1988-11-18 1988-11-18 Heat pump device Expired - Lifetime JPH0730978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29174288A JPH0730978B2 (en) 1988-11-18 1988-11-18 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29174288A JPH0730978B2 (en) 1988-11-18 1988-11-18 Heat pump device

Publications (2)

Publication Number Publication Date
JPH02136657A true JPH02136657A (en) 1990-05-25
JPH0730978B2 JPH0730978B2 (en) 1995-04-10

Family

ID=17772816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29174288A Expired - Lifetime JPH0730978B2 (en) 1988-11-18 1988-11-18 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0730978B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145020A (en) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp Heat pump device, and heat pump water heater and air conditioner loaded with the same
JP6021940B2 (en) * 2012-11-29 2016-11-09 三菱電機株式会社 Air conditioner
CN109539620A (en) * 2018-11-12 2019-03-29 珠海格力电器股份有限公司 A kind of air-conditioning system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010145020A (en) * 2008-12-19 2010-07-01 Mitsubishi Electric Corp Heat pump device, and heat pump water heater and air conditioner loaded with the same
JP6021940B2 (en) * 2012-11-29 2016-11-09 三菱電機株式会社 Air conditioner
JPWO2014083867A1 (en) * 2012-11-29 2017-01-05 三菱電機株式会社 Air conditioner
CN109539620A (en) * 2018-11-12 2019-03-29 珠海格力电器股份有限公司 A kind of air-conditioning system
CN109539620B (en) * 2018-11-12 2024-04-09 珠海格力电器股份有限公司 Air conditioning system

Also Published As

Publication number Publication date
JPH0730978B2 (en) 1995-04-10

Similar Documents

Publication Publication Date Title
KR100186526B1 (en) Defrosting apparatus of heat pump
JP3352469B2 (en) Air conditioner
JP3324420B2 (en) Refrigeration equipment
JP2667741B2 (en) Air conditioner
JPH10205933A (en) Air conditioner
JPH02136657A (en) Heat pump device
CN109974327A (en) A kind of hot-gas bypass joint phase-transition heat-storage does not shut down the air source heat pump system of defrosting
JP2981559B2 (en) Air conditioner
JPH07104080B2 (en) Heat pump device
JP2000028186A (en) Air conditioner
JP2504416B2 (en) Refrigeration cycle
JPH10148412A (en) Refrigerating system
JP3783153B2 (en) Air conditioner
JPH05133635A (en) Cold accumulation type air conditioning apparatus
JPH04324067A (en) Air conditioner
JPH0794927B2 (en) Air conditioner
JPH1130450A (en) Air conditioner
JPS63148063A (en) Defrostation controller for heat pump type air conditioner
JPH0350466A (en) Air conditioner
JP2800573B2 (en) Air conditioner
JPH0429345Y2 (en)
CN114413406A (en) Air conditioner with heat storage device
JPS6243249Y2 (en)
JP2003176960A (en) Air conditioner
JPH07107471B2 (en) Heat pump air conditioner