JPH0429345Y2 - - Google Patents

Info

Publication number
JPH0429345Y2
JPH0429345Y2 JP10554586U JP10554586U JPH0429345Y2 JP H0429345 Y2 JPH0429345 Y2 JP H0429345Y2 JP 10554586 U JP10554586 U JP 10554586U JP 10554586 U JP10554586 U JP 10554586U JP H0429345 Y2 JPH0429345 Y2 JP H0429345Y2
Authority
JP
Japan
Prior art keywords
refrigerant
compressor
heat exchanger
outdoor heat
defrosting operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP10554586U
Other languages
Japanese (ja)
Other versions
JPS6315468U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP10554586U priority Critical patent/JPH0429345Y2/ja
Publication of JPS6315468U publication Critical patent/JPS6315468U/ja
Application granted granted Critical
Publication of JPH0429345Y2 publication Critical patent/JPH0429345Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は空気調和機、温水機等のヒートポンプ
に関する。
[Detailed description of the invention] (Field of industrial application) The present invention relates to heat pumps for air conditioners, water heaters, etc.

(従来の技術) 従来の空気調和機の冷媒回路の1例が第2図に
示され、暖房運転時、圧縮機1から吐出された高
温・高圧の冷媒ガスは、破線矢印で示すように、
吐出管8、四方弁2を経て室内熱交換器3に入
り、ここで室内空気に放熱することにより凝縮液
化する。次いで、この冷媒液は絞り機構4に入つ
て断熱膨張した後、室外熱交換器5に入り、ここ
で外気より吸熱して蒸発気化する。その後、この
冷媒ガスは四方弁2、吸入管9を経て圧縮機1に
戻る。低温・多湿時等において暖房運転を継続す
ることにより室外熱交換器5に一定量以上の霜が
付着すると、除霜運転が行われる。除霜運転時に
は一端が圧縮機1の吐出管8に他端が絞り機構4
と室外熱交換器5間の冷媒配管に接続されたバイ
パス回路6に介装された開閉弁7が開くと同時に
絞り機構4が全開となる。すると、圧縮機1から
吐出された高温・高圧の冷媒ガスの大部分は吐出
管8からバイパス回路6、開閉弁7を経て室外熱
交換器5に入り、ここで放熱して霜を溶融するこ
とにより自身は凝縮液化する。また、圧縮機1か
ら吐出された冷媒ガスの残部は四方弁2、室内熱
交換器3、絞り機構4を経て室外熱交換器5に入
りここで凝縮液化し、さきに分岐した冷媒と合流
して四方弁2、吸入管9を経て圧縮機1に戻る。
(Prior Art) An example of a refrigerant circuit of a conventional air conditioner is shown in FIG. 2. During heating operation, the high temperature and high pressure refrigerant gas discharged from the compressor 1 flows as shown by the broken line arrow.
It enters the indoor heat exchanger 3 via the discharge pipe 8 and the four-way valve 2, where it is condensed and liquefied by radiating heat to the indoor air. Next, this refrigerant liquid enters the throttle mechanism 4 and undergoes adiabatic expansion, and then enters the outdoor heat exchanger 5, where it absorbs heat from the outside air and evaporates. Thereafter, this refrigerant gas returns to the compressor 1 via the four-way valve 2 and the suction pipe 9. When a certain amount or more of frost adheres to the outdoor heat exchanger 5 due to continued heating operation at low temperature and high humidity, a defrosting operation is performed. During defrosting operation, one end is the discharge pipe 8 of the compressor 1 and the other end is the throttle mechanism 4.
At the same time as the opening/closing valve 7 installed in the bypass circuit 6 connected to the refrigerant pipe between the outdoor heat exchanger 5 and the outdoor heat exchanger 5 opens, the throttling mechanism 4 becomes fully open. Then, most of the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 enters the outdoor heat exchanger 5 through the discharge pipe 8, the bypass circuit 6, and the on-off valve 7, where it radiates heat and melts the frost. As a result, it condenses and liquefies itself. Further, the remainder of the refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, the indoor heat exchanger 3, and the throttle mechanism 4, enters the outdoor heat exchanger 5, where it is condensed and liquefied, and merges with the previously branched refrigerant. It then returns to the compressor 1 via the four-way valve 2 and suction pipe 9.

冷房運転時、圧縮機1から吐出された冷媒は、
実線矢印で示すように、吐出管8、四方弁2、室
外熱交換器5、絞り機構4、室内熱交換器5、四
方弁2、吸入管9を経て圧縮機1に戻る。
During cooling operation, the refrigerant discharged from the compressor 1 is
As shown by the solid arrow, it returns to the compressor 1 via the discharge pipe 8, four-way valve 2, outdoor heat exchanger 5, throttling mechanism 4, indoor heat exchanger 5, four-way valve 2, and suction pipe 9.

(考案が解決しようとする問題点) 上記従来の空気調和機においては、その暖房運
転時に外気温度が低下して負荷が減少すると、余
剰の冷媒が生じ、液冷媒が圧縮機1に戻るとい所
謂液バツク現像が生ずる。この液バツク現像によ
り圧縮機1の温度が低下するが、この状態から除
霜運転を開始した場合、除霜のための熱が少ない
ので、除霜に要する時間が長くなり、暖房運転時
のフイーリングが悪化するという不具合があつ
た。
(Problems to be solved by the invention) In the conventional air conditioner described above, when the outside air temperature drops and the load decreases during heating operation, surplus refrigerant is generated, and the liquid refrigerant returns to the compressor 1. Liquid back development occurs. This liquid back development lowers the temperature of the compressor 1, but if defrosting operation is started from this state, there is less heat for defrosting, so the time required for defrosting will be longer, and the feeling during heating operation will be reduced. There was a problem that the condition worsened.

(問題点を解決するための手段) 本考案は上記問題点に対処するために提案され
たものであつて、その要旨とするところは、圧縮
機、四方弁、室内熱交換器、除霜運転時に開とさ
れる絞り機構及び室外熱交換器よりなり暖房サイ
クルを維持したまま除霜運転するヒートポンプに
おいて、上記圧縮機の吸入管にこれと熱交換可能
な冷媒液溜を設け、この冷媒液溜を上記絞り機構
と室外熱交換器との間に冷媒通路を介して接続す
るとともに上記圧縮機の吐出管に除霜運転時開と
なる開閉弁が介装された冷媒通路を介して接続し
たことを特徴とするヒートポンプにある。
(Means for Solving the Problems) The present invention was proposed to solve the above problems, and its gist is to provide a compressor, a four-way valve, an indoor heat exchanger, and a defrosting operation. In a heat pump that consists of a throttle mechanism that is sometimes opened and an outdoor heat exchanger, and which performs defrosting operation while maintaining the heating cycle, a refrigerant reservoir that can exchange heat with the suction pipe of the compressor is provided, and this refrigerant reservoir is connected between the throttle mechanism and the outdoor heat exchanger via a refrigerant passage, and connected to the discharge pipe of the compressor via a refrigerant passage interposed with an on-off valve that opens during defrosting operation. The heat pump is characterized by:

(作用) 本考案においては、上記構成を具えているた
め、暖房運転時には、冷媒液溜に液冷媒を溜め、
循環回路内を循環する冷媒量を減少させ、所謂液
バツク現像を防止する。除霜運転時には開閉弁を
開として圧縮機から吐出された高温・高圧の冷媒
ガスを冷媒液溜に流入させて冷媒液溜内の液冷媒
を循環回路に戻すことにより冷媒の全量を循環さ
せて室外熱交換器における熱交換量を増大させる
ことにより室外熱交換器に付着した霜を迅速に溶
融する。
(Function) Since the present invention has the above configuration, during heating operation, liquid refrigerant is stored in the refrigerant reservoir,
The amount of refrigerant circulating in the circulation circuit is reduced to prevent so-called liquid back development. During defrosting operation, the on-off valve is opened to allow the high temperature and high pressure refrigerant gas discharged from the compressor to flow into the refrigerant reservoir, and the liquid refrigerant in the refrigerant reservoir is returned to the circulation circuit, thereby circulating the entire amount of refrigerant. Frost attached to the outdoor heat exchanger is quickly melted by increasing the amount of heat exchanged in the outdoor heat exchanger.

(実施例) 本考案の1実施例が第1図に示されている。第
1図に示すように、圧縮機1の吸入管9にこれと
熱交換可能な冷媒液溜10を配設し、この冷媒液
溜10は冷媒通路11を介して絞り機構4と室外
熱交換器5の間の冷媒配管に接続するとともに冷
媒通路12を介して圧縮機1の吐出管8に接続さ
れている。そして、この冷媒通路12には除霜運
転時に開となる開閉弁13が介装されている。他
の構成は第2図に示す従来のものと同様であり、
対応する部材には同じ符号が付されている。
(Embodiment) An embodiment of the present invention is shown in FIG. As shown in FIG. 1, a refrigerant reservoir 10 that can exchange heat with the suction pipe 9 of the compressor 1 is arranged, and this refrigerant reservoir 10 exchanges outdoor heat with the throttling mechanism 4 via a refrigerant passage 11. It is connected to the refrigerant pipe between the compressor 5 and the discharge pipe 8 of the compressor 1 via the refrigerant passage 12 . This refrigerant passage 12 is provided with an on-off valve 13 that is opened during defrosting operation. The other configurations are the same as the conventional one shown in FIG.
Corresponding members are given the same reference numerals.

しかして、冷房運転時には開閉弁13と閉とさ
れる。すると、圧縮機1から吐出さた高温・高圧
の冷媒ガスは、実線矢印で示すように、吐出管
8、四方弁2を経て室外熱交換器5に入り、ここ
で外気に放熱することにより凝縮液化して低温・
高圧の冷媒液となる。この冷媒液は絞り機構4に
入り、ここで絞られることにより断熱膨張して低
温・低圧の気液二相となる。次いで、この気液二
相の冷媒は室内熱交換器3の入り、ここで室内空
気を冷却することにより蒸発気化して低温・低圧
の冷媒ガスとなる。そして、この冷媒ガスは四方
弁2、吸入管9を経て圧縮機1に戻り、以後、上
記を操り返す。この際、冷媒液溜10は吸入管9
によつて冷却されるので冷媒液溜10内には冷媒
通路11を経て冷媒が流入し、ここに液状になつ
て貯溜される。
Thus, during cooling operation, the on-off valve 13 is closed. Then, the high temperature and high pressure refrigerant gas discharged from the compressor 1 passes through the discharge pipe 8 and the four-way valve 2 and enters the outdoor heat exchanger 5, as shown by the solid arrow, where it is condensed by dissipating heat to the outside air. Liquefied and low temperature
It becomes a high-pressure refrigerant liquid. This refrigerant liquid enters the throttle mechanism 4, where it is throttled and expands adiabatically to become a gas-liquid two-phase at low temperature and low pressure. Next, this gas-liquid two-phase refrigerant enters the indoor heat exchanger 3, where it cools the indoor air and evaporates into a low-temperature, low-pressure refrigerant gas. Then, this refrigerant gas returns to the compressor 1 via the four-way valve 2 and the suction pipe 9, and thereafter repeats the above process. At this time, the refrigerant reservoir 10 is connected to the suction pipe 9
The refrigerant flows into the refrigerant reservoir 10 through the refrigerant passage 11 and is stored here in a liquid state.

暖房運転時には開閉弁13は閉とされ、四方弁
2は破線矢印のように切り換えられる。従つて、
圧縮機1から吐出された冷媒は、破線矢印に示す
ように、吐出管8、四方弁2、室内熱交換器3、
絞り機構4、室外熱交換器5、四方弁2、吸入管
9をこの順に経て圧縮機1に戻り、以後、上記を
繰り返す。
During heating operation, the on-off valve 13 is closed, and the four-way valve 2 is switched as indicated by the dashed arrow. Therefore,
The refrigerant discharged from the compressor 1 passes through a discharge pipe 8, a four-way valve 2, an indoor heat exchanger 3, as shown by the broken line arrow.
It returns to the compressor 1 through the throttle mechanism 4, outdoor heat exchanger 5, four-way valve 2, and suction pipe 9 in this order, and then repeats the above steps.

この際、冷媒液溜10は吸入管9によつて冷却
されるので、絞り機構4から流出した冷媒の一部
が冷媒通路11を通つて冷媒液溜9に入り、ここ
に溜まる。この結果、循環回路中を循環する冷媒
量が減少する。
At this time, since the refrigerant reservoir 10 is cooled by the suction pipe 9, a part of the refrigerant flowing out from the throttle mechanism 4 enters the refrigerant reservoir 9 through the refrigerant passage 11 and is accumulated there. As a result, the amount of refrigerant circulating in the circulation circuit is reduced.

暖房運転時、外気温度が低下することにより室
外熱交換器5に霜が付着し始めると除霜運転が行
われる。除霜運転時には四方弁2は暖房運転時と
同様破線で示す切換位置を占めているが、開閉弁
13が開とされ同時に絞り機構4が全開とされ
る。この結果、圧縮機1から吐出された高温・高
圧の冷媒ガスの大部分は吐出管8から冷媒通路1
2、開閉弁13を経て冷媒液溜10内に入り、こ
の中に貯溜された液冷媒を流出させてこれと一緒
に冷媒通路11を経て室外熱交換器5に入り、こ
れに付着した霜を溶融することによつて凝縮液化
する。一方、圧縮機1から吐出された冷媒ガスの
残部は四方弁2、室内熱交換器3、全開された絞
り機構4を経て室外熱交換器5内に入り、ここで
凝縮液化する。そして、さきに分岐した冷媒と合
流して四方弁2、吸入管9を経て圧縮機1に戻
り、以後、上記を繰り返す。
During heating operation, when frost begins to adhere to the outdoor heat exchanger 5 due to a drop in outside air temperature, defrosting operation is performed. During the defrosting operation, the four-way valve 2 occupies the switching position shown by the broken line as in the heating operation, but the on-off valve 13 is opened and at the same time the throttling mechanism 4 is fully opened. As a result, most of the high temperature and high pressure refrigerant gas discharged from the compressor 1 is transferred from the discharge pipe 8 to the refrigerant passage 1.
2. The refrigerant enters the refrigerant reservoir 10 through the on-off valve 13, and the liquid refrigerant stored therein flows out and enters the outdoor heat exchanger 5 together with the refrigerant through the refrigerant passage 11 to remove frost attached to it. Condenses into liquid by melting. On the other hand, the remainder of the refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, the indoor heat exchanger 3, and the fully opened throttling mechanism 4, and enters the outdoor heat exchanger 5, where it is condensed and liquefied. Then, it joins with the previously branched refrigerant, returns to the compressor 1 via the four-way valve 2 and the suction pipe 9, and repeats the above process.

(考案の効果) 本考案においては、圧縮機の吸入管にこれと熱
交換器可能な冷媒液溜を設け、この冷媒液溜を上
記絞り機構と室外熱交換器との間に冷媒通路を介
して接続するとともに上記圧縮機の吐出管に除霜
運転時開となる開閉弁が介装された冷媒通路を介
して接続したため、暖房運転時には冷媒液溜内に
液冷媒を溜めることによつて循環回路内を循環す
る冷媒量を少なくして所謂液バツクを防止するこ
とができる。そして、除霜運転時には開閉弁を開
として圧縮機から吐出された高温・高圧の冷媒ガ
スを冷媒液溜内に供給することによりこの中に貯
溜されている液冷媒を循環回路内に戻して冷媒循
環量を増大させる。かくして、除霜に要する時間
が大巾に短縮され暖房フイーリングを著しく向上
できる。
(Effects of the invention) In the present invention, a refrigerant reservoir is provided in the suction pipe of the compressor and can be used for heat exchange with the suction pipe, and this refrigerant reservoir is connected between the throttle mechanism and the outdoor heat exchanger via a refrigerant passage. At the same time, it is connected to the discharge pipe of the compressor through a refrigerant passage equipped with an on-off valve that opens during defrosting operation, so during heating operation, liquid refrigerant is stored in the refrigerant reservoir and circulated. By reducing the amount of refrigerant circulating in the circuit, so-called liquid backflow can be prevented. During defrosting operation, the on-off valve is opened and the high-temperature, high-pressure refrigerant gas discharged from the compressor is supplied into the refrigerant reservoir, and the liquid refrigerant stored there is returned to the circulation circuit and refrigerated. Increases circulation. In this way, the time required for defrosting can be greatly shortened and the heating feeling can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本考案の1実施例を示す冷媒系統図、
第2図は従来の空気調和機の冷媒系統図である。 圧縮機……1、四方弁……2、室内熱交換器…
…3、絞り機構……4、室外熱交換器……5、吐
出管……8、吸入管……9、冷媒液溜……10、
冷媒通路……11,12、開閉弁……13。
FIG. 1 is a refrigerant system diagram showing one embodiment of the present invention.
FIG. 2 is a refrigerant system diagram of a conventional air conditioner. Compressor...1, Four-way valve...2, Indoor heat exchanger...
...3, Throttle mechanism...4, Outdoor heat exchanger...5, Discharge pipe...8, Suction pipe...9, Refrigerant reservoir...10,
Refrigerant passage...11, 12, on-off valve...13.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、四方弁、室内熱交換器、除霜運転時に
開とされる絞り機構及び室外熱交換器よりなり暖
房サイクルを維持したまま除霜運転するヒートポ
ンプにおいて、上記圧縮機の吸入管にこれと熱交
換可能な冷媒液溜を設け、この冷媒液溜を上記絞
り機構と室外熱交換器との間に冷媒通路を介して
接続するとともに上記圧縮機の吐出管に除霜運転
時間となる開閉弁が介装された冷媒通路を介して
接続したことを特徴とするヒートボンプ。
In a heat pump that is composed of a compressor, a four-way valve, an indoor heat exchanger, a throttling mechanism that is opened during defrosting operation, and an outdoor heat exchanger, and which performs defrosting operation while maintaining the heating cycle, this is connected to the suction pipe of the compressor. A refrigerant reservoir capable of heat exchange is provided, and this refrigerant reservoir is connected between the throttle mechanism and the outdoor heat exchanger via a refrigerant passage, and an on-off valve is provided in the discharge pipe of the compressor for defrosting operation time. A heat pump characterized in that the heat pump is connected through a refrigerant passage having an intervening refrigerant passage.
JP10554586U 1986-07-11 1986-07-11 Expired JPH0429345Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10554586U JPH0429345Y2 (en) 1986-07-11 1986-07-11

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10554586U JPH0429345Y2 (en) 1986-07-11 1986-07-11

Publications (2)

Publication Number Publication Date
JPS6315468U JPS6315468U (en) 1988-02-01
JPH0429345Y2 true JPH0429345Y2 (en) 1992-07-16

Family

ID=30980077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10554586U Expired JPH0429345Y2 (en) 1986-07-11 1986-07-11

Country Status (1)

Country Link
JP (1) JPH0429345Y2 (en)

Also Published As

Publication number Publication date
JPS6315468U (en) 1988-02-01

Similar Documents

Publication Publication Date Title
US4799363A (en) Room air conditioner
JP3324420B2 (en) Refrigeration equipment
JP2667741B2 (en) Air conditioner
JPH01118080A (en) Heat pump type air conditioner
JPH0429345Y2 (en)
JPH078999Y2 (en) Air source heat pump
CN111578450A (en) Air conditioning system and defrosting method thereof
JPH1163709A (en) Air conditioner
JP4186399B2 (en) Heat pump air conditioner
JPH0431505Y2 (en)
CN214501455U (en) Air conditioner
JPH0510191Y2 (en)
JPH0225101Y2 (en)
JP2001033126A (en) Air conditioner
JPH0623886Y2 (en) Heat pump air conditioner
JP2001248933A (en) Air conditioner
JPH06123499A (en) Air conditioner
JPH0413576Y2 (en)
JPH01127870A (en) Air conditioner
KR100419479B1 (en) Auxiliary refrigerator mounted heat pump system
JPH0233108Y2 (en)
JP2001330347A (en) Air-conditioner
JPH03113249A (en) Air-conditioning snow melting device
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JP2001116423A (en) Deep freezing air conditioner