JPH0431505Y2 - - Google Patents

Info

Publication number
JPH0431505Y2
JPH0431505Y2 JP1986099091U JP9909186U JPH0431505Y2 JP H0431505 Y2 JPH0431505 Y2 JP H0431505Y2 JP 1986099091 U JP1986099091 U JP 1986099091U JP 9909186 U JP9909186 U JP 9909186U JP H0431505 Y2 JPH0431505 Y2 JP H0431505Y2
Authority
JP
Japan
Prior art keywords
valve
refrigerant
heat exchanger
compressor
heating operation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1986099091U
Other languages
Japanese (ja)
Other versions
JPS637755U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1986099091U priority Critical patent/JPH0431505Y2/ja
Publication of JPS637755U publication Critical patent/JPS637755U/ja
Application granted granted Critical
Publication of JPH0431505Y2 publication Critical patent/JPH0431505Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案はヒートポンプ式空気調和機に関する。[Detailed explanation of the idea] (Industrial application field) The present invention relates to a heat pump type air conditioner.

(従来の技術) 従来のヒートポンプ式空気調和機の1例が第3
図に示され、暖房運転時、圧縮機1から吐出され
た高温・高圧の冷媒ガスは破線矢印で示すように
吐出管8、四方弁2を経て室内熱交換器3に入
り、ここで室内空気に放熱することにより凝縮液
化する。次いで、この冷媒液は絞り機構4に入つ
て断熱膨張した後、室外熱交換器5に入り、ここ
で外気より吸熱して蒸発気化する。その後、この
冷媒ガスは四方弁2を経て圧縮機1に戻る。
(Conventional technology) An example of a conventional heat pump type air conditioner is the third example.
As shown in the figure, during heating operation, the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 passes through the discharge pipe 8 and the four-way valve 2, as shown by the broken line arrow, and enters the indoor heat exchanger 3, where it enters the indoor heat exchanger 3. Condenses and liquefies by dissipating heat. Next, this refrigerant liquid enters the throttle mechanism 4 and undergoes adiabatic expansion, and then enters the outdoor heat exchanger 5, where it absorbs heat from the outside air and evaporates. Thereafter, this refrigerant gas returns to the compressor 1 via the four-way valve 2.

低温・多湿時等において暖房運転を継続するこ
とにより室外熱交換器5に一定量以上の霜が付着
すると、除霜運転が行われる。除霜運転時には一
端が圧縮機1の吐出管8に、他端が絞り機構4と
室外熱交換器5間の冷媒回路に接続されたバイパ
ス回路6に介装された開閉弁7が開くと同時に絞
り機構4が全開となる。すると、圧縮機1から吐
出された高温・高圧の冷媒ガスの大部分は吐出管
8からバイパス回路6、開閉弁7を経て室外熱交
換器5に入り、ここで放熱して霜を溶融すること
により自身は凝縮液化する。また、圧縮機1から
吐出された冷媒ガスの残部は四方弁2、室内熱交
換器3、絞り機構4を経て室外熱交換器5に入り
ここで凝縮液化し、さきに分岐した冷媒と合流し
て四方弁2を経て圧縮機1に戻る。
When a certain amount or more of frost adheres to the outdoor heat exchanger 5 due to continued heating operation at low temperature and high humidity, a defrosting operation is performed. During defrosting operation, at the same time as the opening/closing valve 7 interposed in the bypass circuit 6, which has one end connected to the discharge pipe 8 of the compressor 1 and the other end connected to the refrigerant circuit between the throttling mechanism 4 and the outdoor heat exchanger 5, opens. The diaphragm mechanism 4 is fully opened. Then, most of the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 enters the outdoor heat exchanger 5 through the discharge pipe 8, the bypass circuit 6, and the on-off valve 7, where it radiates heat and melts the frost. As a result, it condenses and liquefies itself. Further, the remainder of the refrigerant gas discharged from the compressor 1 passes through the four-way valve 2, the indoor heat exchanger 3, and the throttling mechanism 4, enters the outdoor heat exchanger 5, where it is condensed and liquefied, and merges with the previously branched refrigerant. The air then returns to the compressor 1 via the four-way valve 2.

冷房運転時、圧縮機1から吐出された冷媒は実
線矢印で示すように吐出管8、四方弁2、室外熱
交換器5、絞り機構4、室内熱交換器3、四方弁
2を経て圧縮機1に戻る。
During cooling operation, the refrigerant discharged from the compressor 1 passes through the discharge pipe 8, four-way valve 2, outdoor heat exchanger 5, throttling mechanism 4, indoor heat exchanger 3, and four-way valve 2 to the compressor as shown by the solid arrow. Return to 1.

(考案が解決しようとする問題点) 上記従来のヒートポンプ式空気調和機において
は、その暖房運転時に室外熱交換器5に霜が付着
すると、圧縮機1の温度が急激に低下する。従つ
て、この状態から除霜運転を開始した場合、除霜
のための熱が少ないので、除霜に関する時間が長
いという不具合があつた。
(Problems to be Solved by the Invention) In the conventional heat pump air conditioner described above, if frost adheres to the outdoor heat exchanger 5 during heating operation, the temperature of the compressor 1 will drop rapidly. Therefore, when defrosting operation is started from this state, there is a problem that the defrosting takes a long time because there is little heat for defrosting.

(問題点を解決するための手段) 本考案は上記不具合を解消するために提案され
たものであつて、その要旨とするところは、圧縮
機、四方弁、室内熱交換器、絞り機構及び室外熱
交換器により冷媒循環回路を構成するとともに一
端が上記圧縮機の吐出管に他端が上記絞り機構と
室外熱交換器間の冷媒回路に接続されたバイパス
回路に第1開閉弁を設けたヒートポンプ式空気調
和機において、上記バイパス回路と熱交換する冷
媒液溜を設け、同冷媒液溜を第2開閉弁を有する
冷媒通路を介して上記室内熱交換器と絞り機構と
の間の冷媒回路に接続し、冷暖房運転時には第1
開閉弁及び第2開閉弁は閉とし、暖房運転時に着
霜を検知すると第2開閉弁を開とする加熱運転を
行い、圧縮機の温度が所定温度に上昇した後絞り
機構、第1開閉弁及び第2開閉弁を開とする除霜
運転を行う制御装置を設けたことを特徴とするヒ
ートポンプ式空気調和機にある。
(Means for solving the problem) The present invention was proposed to solve the above-mentioned problems, and its gist consists of a compressor, a four-way valve, an indoor heat exchanger, a throttling mechanism, and an outdoor A heat pump comprising a refrigerant circulation circuit using a heat exchanger, and a bypass circuit having one end connected to a discharge pipe of the compressor and the other end connected to a refrigerant circuit between the throttling mechanism and the outdoor heat exchanger, and a first on-off valve provided therein. In the type air conditioner, a refrigerant reservoir is provided to exchange heat with the bypass circuit, and the refrigerant reservoir is connected to the refrigerant circuit between the indoor heat exchanger and the throttling mechanism via a refrigerant passage having a second on-off valve. Connect the first
The on-off valve and the second on-off valve are closed, and when frost is detected during heating operation, the second on-off valve is opened to perform heating operation, and after the temperature of the compressor rises to a predetermined temperature, the throttling mechanism and the first on-off valve are closed. and a heat pump type air conditioner characterized by being provided with a control device that performs a defrosting operation by opening a second on-off valve.

(作用) 本考案においては、上記構成を具えているた
め、冷房運転時には冷媒は圧縮機、四方弁、室内
熱交換器、絞り機構、室内熱交換器をこの順に循
環する。暖房運転時には冷媒は圧縮機、四方弁、
室内熱交換器、絞り機構、室外熱交換器をこの順
に循環する。暖房運転時に着霜を検知すると、第
2開閉弁を開とする加熱運転が行われ、室内熱交
換器で凝縮液化した液冷媒の一部を冷媒通路及び
第2開閉弁を経て冷媒液溜に導いてここに溜め冷
媒循環回路内を循環する冷媒量を減少させること
により圧縮機の温度を上昇させる。
(Function) Since the present invention has the above configuration, during cooling operation, the refrigerant circulates through the compressor, the four-way valve, the indoor heat exchanger, the throttling mechanism, and the indoor heat exchanger in this order. During heating operation, the refrigerant is transferred to the compressor, four-way valve,
The indoor heat exchanger, throttling mechanism, and outdoor heat exchanger are circulated in this order. When frost formation is detected during heating operation, heating operation is performed by opening the second on-off valve, and a portion of the liquid refrigerant condensed and liquefied in the indoor heat exchanger is transferred to the refrigerant reservoir through the refrigerant passage and the second on-off valve. The temperature of the compressor is increased by reducing the amount of refrigerant that is introduced and stored here and circulated within the refrigerant circulation circuit.

圧縮機の温度が所定温度に上昇した後絞り機
構、第1開閉弁及び第2開閉弁を開とする除霜運
転が行われ、圧縮機から吐出された高温・高圧の
冷媒ガスをバイパス通路に流すことによつて冷媒
液溜内の液冷媒を加熱する。これによつて冷媒液
溜内の液冷媒は冷媒通路及び第2開閉弁を経て冷
媒循環回路内に戻り以後冷媒循環回路内を循環す
る。
After the temperature of the compressor rises to a predetermined temperature, a defrosting operation is performed by opening the throttling mechanism, the first on-off valve, and the second on-off valve, and the high-temperature, high-pressure refrigerant gas discharged from the compressor is passed through the bypass passage. By flowing, the liquid refrigerant in the refrigerant reservoir is heated. As a result, the liquid refrigerant in the refrigerant reservoir returns to the refrigerant circulation circuit through the refrigerant passage and the second on-off valve, and thereafter circulates within the refrigerant circulation circuit.

(実施例) 本考案の1実施例が第1図及び第2図に示され
ている。第1図に示すように、一端が圧縮機1の
吐出管8に、他端が絞り機構4と室外熱交換器5
間の冷媒回路に接続されたバイパス回路6と熱交
換する冷媒液溜9を配設し、この冷媒液溜9は冷
媒通路10を介して室内熱交換器3と絞り機構4
との間の冷媒回路に接続されている。そして、こ
の冷媒通路10には除霜運転時及び除霜開始前の
加熱運転時に開となる第2開閉弁11が介装され
ている。バイパス回路6には第1開閉弁7が介装
されている。
(Embodiment) An embodiment of the present invention is shown in FIGS. 1 and 2. As shown in FIG. 1, one end is connected to the discharge pipe 8 of the compressor 1, and the other end is connected to the throttle mechanism 4 and the outdoor heat exchanger 5.
A refrigerant reservoir 9 is provided to exchange heat with the bypass circuit 6 connected to the refrigerant circuit between the indoor heat exchanger 3 and the throttling mechanism 4 via the refrigerant passage 10.
connected to the refrigerant circuit between the A second on-off valve 11 is interposed in this refrigerant passage 10 and is opened during defrosting operation and during heating operation before the start of defrosting. A first on-off valve 7 is interposed in the bypass circuit 6 .

このヒートポンプ式空気調和機には図示しない
制御装置が付設され、この制御装置の指令によつ
て冷暖房運転時には第1開閉弁7及び第2開閉弁
11を閉とし、暖房運転時に着霜を検知すると第
2開閉弁11を開とする加熱運転を行い、圧縮機
1の温度が所定温度に上昇した後絞り機構4、第
1開閉弁7及び第2開閉弁11を開とする除霜運
転を行う。他の構成は第3図に示す従来のものと
同様であり、対応する部材には同じ符号が付され
ている。
This heat pump type air conditioner is equipped with a control device (not shown), and according to commands from this control device, the first on-off valve 7 and the second on-off valve 11 are closed during heating/cooling operation, and when frost formation is detected during heating/heating operation. A heating operation is performed by opening the second on-off valve 11, and after the temperature of the compressor 1 rises to a predetermined temperature, a defrosting operation is performed by opening the throttling mechanism 4, the first on-off valve 7, and the second on-off valve 11. . The rest of the structure is the same as the conventional one shown in FIG. 3, and corresponding members are given the same reference numerals.

しかして、冷房運転時には、第1開閉弁7及び
第2開閉弁11は閉とされる。すると、圧縮機1
から吐出された高温・高圧の冷媒ガスは実線矢印
で示すように吐出管8、四方弁2を経て室外熱交
換器5に入り、ここで外気に放熱することにより
凝縮液化して低温・高圧の冷媒液となる。この冷
媒液は絞り機構4に入り、ここで絞られることに
より断熱膨張して低温・低圧の気液二相となる。
次いで、この気液二相の冷媒は室内熱交換器3に
入り、ここで室内空気を冷却することにより蒸発
気化して低温・低圧の冷媒ガスとなる。そして、
冷媒ガスは四方弁2を経て圧縮機1に戻り、以
後、上記を繰り返す。
Thus, during cooling operation, the first on-off valve 7 and the second on-off valve 11 are closed. Then, compressor 1
The high-temperature, high-pressure refrigerant gas discharged from the refrigerant gas enters the outdoor heat exchanger 5 through the discharge pipe 8 and the four-way valve 2, as shown by the solid arrow, where it condenses and liquefies by dissipating heat to the outside air. It becomes a refrigerant liquid. This refrigerant liquid enters the throttle mechanism 4, where it is throttled and expands adiabatically to become a gas-liquid two-phase at low temperature and low pressure.
Next, this gas-liquid two-phase refrigerant enters the indoor heat exchanger 3, where it evaporates by cooling the indoor air and becomes a low-temperature, low-pressure refrigerant gas. and,
The refrigerant gas returns to the compressor 1 via the four-way valve 2, and the above process is then repeated.

暖房運転時には第1開閉弁7及び第2開閉弁1
1は閉とされ、四方弁2は破線矢印のように切り
換えられる。従つて、圧縮機1から吐出された冷
媒は破線矢印に示すように吐出管8、四方弁2、
室内熱交換器3、絞り機構4、室外熱交換器5、
四方弁2をこの順に経て圧縮機1に戻り、以後、
上記を繰り返す。
During heating operation, the first on-off valve 7 and the second on-off valve 1
1 is closed, and the four-way valve 2 is switched as indicated by the dashed arrow. Therefore, the refrigerant discharged from the compressor 1 flows through the discharge pipe 8, the four-way valve 2, and the four-way valve 2 as shown by the broken line arrow.
indoor heat exchanger 3, throttle mechanism 4, outdoor heat exchanger 5,
It passes through the four-way valve 2 in this order and returns to the compressor 1, and thereafter,
Repeat the above.

暖房運転を継続することによつて室外熱交換器
5への着霜を検知すると加熱運転が行われる。加
熱運転時には四方弁2は暖房運転時と同様破線で
示す切換位置を占め、第1開閉弁7は閉とされて
いるが、第2開閉弁11が開とされる。すると、
室内熱交換器3から流出した液冷媒の一部が冷媒
通路10、開閉弁11を通つて冷媒液溜り9に入
り、絞り機構4を流過後の液冷媒との温度差によ
りここに溜まる。この結果、循環回路中を循環す
る冷媒量が減少し、圧縮機1の温度が上昇する。
そして、圧縮機1の温度が所定の温度に上昇した
後、除霜運転に入る。
When frost formation on the outdoor heat exchanger 5 is detected by continuing the heating operation, the heating operation is performed. During the heating operation, the four-way valve 2 occupies the switching position shown by the broken line as in the heating operation, and the first on-off valve 7 is closed, but the second on-off valve 11 is opened. Then,
A part of the liquid refrigerant flowing out of the indoor heat exchanger 3 passes through the refrigerant passage 10 and the on-off valve 11, enters the refrigerant liquid reservoir 9, and accumulates there due to the temperature difference with the liquid refrigerant after flowing through the throttling mechanism 4. As a result, the amount of refrigerant circulating in the circulation circuit decreases, and the temperature of the compressor 1 increases.
After the temperature of the compressor 1 rises to a predetermined temperature, the defrosting operation begins.

除霜運転時には四方弁2は暖房運転時及び加熱
運転と同様破線で示す切換位置を占めているが、
第1開閉弁7及び第2開閉弁11が開とされ同時
に絞り機構4が全開とされる。この結果、圧縮機
1から吐出された高温・高圧の冷媒ガスの大部分
は吐出管8からバイパス回路6、第1開閉弁7を
経て室外熱交換器5に入り、これに付着した霜を
溶融することによつて凝縮液化する。高温・高圧
の冷媒ガスがバイパス回路6を流過する際、この
バイパス回路6と熱交換する冷媒液溜9内の液冷
媒を加熱するので、冷媒液溜9内の液冷媒は冷媒
通路10、第2開閉弁11を経て循環回路内に出
て行き冷媒回路を循環する冷媒量が増加する。一
方、圧縮機1から吐出された冷媒ガスの残部は四
方弁2、室内熱交換器3、全開された絞り機構4
を経て室外熱交換器5内に入り、ここで凝縮液化
する。そして、さきに分岐した冷媒と合流して四
方弁2を経て圧縮機1に戻り、以後、上記を繰り
返す。
During defrosting operation, the four-way valve 2 occupies the switching position shown by the broken line, as in heating operation and during heating operation.
The first on-off valve 7 and the second on-off valve 11 are opened, and at the same time, the throttle mechanism 4 is fully opened. As a result, most of the high-temperature, high-pressure refrigerant gas discharged from the compressor 1 enters the outdoor heat exchanger 5 through the discharge pipe 8, the bypass circuit 6, and the first on-off valve 7, and melts the frost that has adhered thereto. It is condensed and liquefied by When high-temperature, high-pressure refrigerant gas flows through the bypass circuit 6, it heats the liquid refrigerant in the refrigerant reservoir 9 that exchanges heat with the bypass circuit 6. The amount of refrigerant that goes out into the circulation circuit via the second on-off valve 11 and circulates through the refrigerant circuit increases. On the other hand, the remainder of the refrigerant gas discharged from the compressor 1 is transferred to the four-way valve 2, the indoor heat exchanger 3, and the fully opened throttle mechanism 4.
It then enters the outdoor heat exchanger 5, where it is condensed and liquefied. Then, it joins with the previously branched refrigerant, returns to the compressor 1 via the four-way valve 2, and repeats the above process.

第2図にはこの空気調和機の制御要領を示すフ
ローチヤートが示され、第2図に示すようにステ
ツプ1における暖房運転中において、室外熱交換
器5に着霜したか否かがステツプ2で判断され、
然りの場合はステツプ3において加熱運転が行わ
れる。その後、ステツプ4において、圧縮機1の
温度が上昇したか否かが判断され、然りの場合に
はステツプ5において除霜運転が行われる。次い
で、ステツプ6で除霜が完了したか否かが判断さ
れ、然りの場合にはステツプ1に戻つて暖房運転
が開始されるが、否の場合にはステツプ5に戻つ
て除霜運転が継続される。ステツプ2において着
霜していないと判断された場合にはステツプ1に
戻つて暖房運転が継続される。また、ステツプ4
で圧縮機1の温度が上昇していないと判断された
場合にはステツプ3に戻つて加熱運転が継続され
る。
FIG. 2 shows a flowchart showing the control procedure for this air conditioner, and as shown in FIG. It is judged by
If so, a heating operation is performed in step 3. Thereafter, in step 4, it is determined whether the temperature of the compressor 1 has increased, and if so, a defrosting operation is performed in step 5. Next, in step 6, it is determined whether or not defrosting has been completed, and if so, the process returns to step 1 and heating operation is started, but if not, the process returns to step 5 and defrosting operation is started. Continued. If it is determined in step 2 that frost has not formed, the process returns to step 1 and the heating operation is continued. Also, step 4
If it is determined that the temperature of the compressor 1 has not increased, the process returns to step 3 and the heating operation is continued.

(考案の効果) 本考案においては、暖房運転時に室外熱交換器
への着霜を検知すると、第2開閉弁を開とする加
熱運転を行つて冷媒液溜内に液冷媒を溜めること
により冷媒循環回路内を循環する冷媒量を少なく
して圧縮機の温度を上昇させ、圧縮機の温度が所
定温度に上昇した後絞り機構、第1開閉弁及び第
2開閉弁を開とする除霜運転を行つて、加熱運転
時に冷媒液溜内に溜まつた液冷媒を冷媒循環回路
に戻して冷媒循環量を増大させるので、除霜に要
する時間が大巾に短縮され、従つて、暖房フイー
リングを著しく向上しうる。
(Effects of the invention) In the present invention, when frost formation on the outdoor heat exchanger is detected during heating operation, the second on-off valve is opened to perform heating operation to accumulate liquid refrigerant in the refrigerant reservoir. A defrosting operation in which the amount of refrigerant circulating in the circulation circuit is reduced to increase the temperature of the compressor, and after the temperature of the compressor rises to a predetermined temperature, the throttling mechanism, the first on-off valve, and the second on-off valve are opened. During heating operation, the liquid refrigerant accumulated in the refrigerant reservoir is returned to the refrigerant circulation circuit to increase the amount of refrigerant circulation, so the time required for defrosting is greatly shortened, and the heating feeling is reduced. It can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本考案の1実施例を示し、
第1図は冷媒系統図、第2図は制御要領を示すフ
ローチヤートである。第3図は従来のヒートポン
プ式空気調和機の冷媒系統図である。 圧縮機……1、四方弁……2、室内熱交換器…
…3、絞り機構……4、室外熱交換器……5、吐
出管……8、バイパス回路……6、第1開閉弁…
…7、冷媒液溜……9、冷媒通路……10、第2
開閉弁……11。
1 and 2 show one embodiment of the present invention,
FIG. 1 is a refrigerant system diagram, and FIG. 2 is a flowchart showing control procedures. FIG. 3 is a refrigerant system diagram of a conventional heat pump type air conditioner. Compressor...1, Four-way valve...2, Indoor heat exchanger...
...3, Throttle mechanism...4, Outdoor heat exchanger...5, Discharge pipe...8, Bypass circuit...6, First on-off valve...
…7, Refrigerant reservoir…9, Refrigerant passage…10, Second
Open/close valve...11.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 圧縮機、四方弁、室内熱交換器、絞り機構及び
室外熱交換器により冷媒循環回路を構成するとと
もに一端が上記圧縮機の吐出管に他端が上記絞り
機構と室外熱交換器間の冷媒回路に接続されたバ
イパス回路に第1開閉弁を設けたヒートポンプ式
空気調和機において、上記バイパス回路と熱交換
する冷媒液溜を設け、同冷媒液溜を第2開閉弁を
有する冷媒通路を介して上記室内熱交換器と絞り
機構との間の冷媒回路に接続し、冷暖房運転時に
は第1開閉弁及び第2開閉弁は閉とし、暖房運転
時に着霜を検知すると第2開閉弁を開とする加熱
運転を行い、圧縮機の温度が所定温度に上昇した
後絞り機構、第1開閉弁及び第2開閉弁を開とす
る除霜運転を行う制御装置を設けたことを特徴と
するヒートポンプ式空気調和機。
A refrigerant circulation circuit is composed of a compressor, a four-way valve, an indoor heat exchanger, a throttle mechanism, and an outdoor heat exchanger, and one end is a discharge pipe of the compressor and the other end is a refrigerant circuit between the throttle mechanism and the outdoor heat exchanger. In a heat pump type air conditioner in which a first on-off valve is provided in a bypass circuit connected to the bypass circuit, a refrigerant reservoir is provided to exchange heat with the bypass circuit, and the refrigerant reservoir is passed through a refrigerant passage having a second on-off valve. Connected to the refrigerant circuit between the indoor heat exchanger and the throttling mechanism, the first on-off valve and the second on-off valve are closed during heating and cooling operation, and the second on-off valve is opened when frost formation is detected during heating operation. Heat pump type air, characterized in that it is equipped with a control device that performs a defrosting operation that performs a heating operation and opens a throttling mechanism, a first on-off valve, and a second on-off valve after the temperature of the compressor rises to a predetermined temperature. harmonizer.
JP1986099091U 1986-06-30 1986-06-30 Expired JPH0431505Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1986099091U JPH0431505Y2 (en) 1986-06-30 1986-06-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1986099091U JPH0431505Y2 (en) 1986-06-30 1986-06-30

Publications (2)

Publication Number Publication Date
JPS637755U JPS637755U (en) 1988-01-19
JPH0431505Y2 true JPH0431505Y2 (en) 1992-07-29

Family

ID=30967655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1986099091U Expired JPH0431505Y2 (en) 1986-06-30 1986-06-30

Country Status (1)

Country Link
JP (1) JPH0431505Y2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS431724Y1 (en) * 1965-10-05 1968-01-25
JPS59219668A (en) * 1983-05-28 1984-12-11 株式会社東芝 Method of defrosting air conditioner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS431724Y1 (en) * 1965-10-05 1968-01-25
JPS59219668A (en) * 1983-05-28 1984-12-11 株式会社東芝 Method of defrosting air conditioner

Also Published As

Publication number Publication date
JPS637755U (en) 1988-01-19

Similar Documents

Publication Publication Date Title
US4799363A (en) Room air conditioner
JPS6155018B2 (en)
JP2667741B2 (en) Air conditioner
CN112856717A (en) Air conditioner, control method thereof and storage medium
JPH10205933A (en) Air conditioner
JPH01118080A (en) Heat pump type air conditioner
JPH0431505Y2 (en)
JPS61262560A (en) Heat pump type air conditioner
JPH0429345Y2 (en)
JPH0510191Y2 (en)
JPH0225101Y2 (en)
JP4186399B2 (en) Heat pump air conditioner
JPH0233108Y2 (en)
JPS6346350B2 (en)
JPH086203Y2 (en) Air conditioner
JPH03164668A (en) Heat pump device
JP2871166B2 (en) Air conditioner
JPH0623886Y2 (en) Heat pump air conditioner
JPS62237260A (en) Defrostation control method of heat pump type air conditioner
JPH0776646B2 (en) Air conditioner / water heater
JPH01127870A (en) Air conditioner
JPH0579901B2 (en)
JPS5971963A (en) Heat pump type refrigeration cycle
JPS6015084Y2 (en) Refrigeration equipment
JPS6229868A (en) Heat pump type air conditioner