JP5903585B2 - Air conditioner - Google Patents
Air conditioner Download PDFInfo
- Publication number
- JP5903585B2 JP5903585B2 JP2012172640A JP2012172640A JP5903585B2 JP 5903585 B2 JP5903585 B2 JP 5903585B2 JP 2012172640 A JP2012172640 A JP 2012172640A JP 2012172640 A JP2012172640 A JP 2012172640A JP 5903585 B2 JP5903585 B2 JP 5903585B2
- Authority
- JP
- Japan
- Prior art keywords
- way valve
- temperature
- air conditioner
- heat exchanger
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Air Conditioning Control Device (AREA)
Description
本発明は、室外熱交換器と四方弁との間と、四方弁と圧縮機の吸入口との間を接続するバイパス回路と、バイパス回路内に三方弁とを備えた空気調和機に関する。 The present invention relates to an air conditioner including a bypass circuit connecting between an outdoor heat exchanger and a four-way valve, between the four-way valve and a suction port of a compressor, and a three-way valve in the bypass circuit.
従来、ヒートポンプ式空気調和機による暖房運転時、室内温度が目標温度を上回った状態を所定の時間継続すると、圧縮機の運転を停止し(以下、サーモオフ運転と呼ぶ)室内温度が上がりすぎるのを防止していた。 Conventionally, during a heating operation by a heat pump type air conditioner, if the state in which the room temperature exceeds the target temperature is continued for a predetermined time, the operation of the compressor is stopped (hereinafter referred to as a thermo-off operation) and the room temperature is excessively increased. It was preventing.
しかしながら、圧縮機を停止すると、急激に室内温度が低下し、快適性を損なうばかりか、室内温度が低下した後、再度圧縮機を起動した際に、多くの消費電力を要していた。本発明は、従来技術の有するこのような問題点に鑑みてなされたものであり、暖房運転時において室内温度が目標温度を上回った状態を所定の時間継続すると、圧縮機を停止させずに、暖房運転を継続させることによって、快適な温度を維持する運転を行うことができる空気調和機を提供することを目的としている。 However, when the compressor is stopped, the room temperature is suddenly lowered to impair comfort, and a large amount of power is consumed when the compressor is started again after the room temperature is lowered. The present invention has been made in view of such problems of the prior art, and if the state in which the room temperature exceeds the target temperature during a heating operation is continued for a predetermined time, without stopping the compressor, It aims at providing the air conditioner which can perform the driving | operation which maintains comfortable temperature by continuing heating operation.
上記目的を達成するために、本発明は、暖房運転時に、圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器、四方弁の順に冷媒が流れるように接続した冷凍サイクルと、室内温度を検出する室内温度検出手段と、目標温度を設定する目標温度設定手段と、室外熱交換器と四方弁との間と、四方弁と圧縮機の吸入口との間を接続するバイパス回路と(以下、蓄熱バイパス回路と呼ぶ)蓄熱バイパス回路内に三方弁と絞り機構を備えた空気調和機であって、室内温度検出手段が目標温度を上回った状態を所定の時間継続すると、蓄熱バイパス回路内に冷媒が流れるように三方弁の開閉動作を行う制御を行うようにしている。 In order to achieve the above object, the present invention comprises a refrigeration cycle in which a refrigerant flows in the order of a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and a four-way valve during heating operation. Bypass circuit for connecting indoor temperature detecting means for detecting the indoor temperature, target temperature setting means for setting the target temperature, between the outdoor heat exchanger and the four-way valve, and between the four-way valve and the suction port of the compressor And (hereinafter referred to as a heat storage bypass circuit) an air conditioner equipped with a three-way valve and a throttle mechanism in the heat storage bypass circuit, and when the state in which the indoor temperature detecting means exceeds the target temperature is continued for a predetermined time, the heat storage bypass Control is performed to open and close the three-way valve so that the refrigerant flows in the circuit.
本発明によれば、三方弁を動作し蓄熱バイパス回路に冷媒を流通する制御を行うようにすることで、サーモオフすることなく暖房運転を継続することができ、快適性を損なうことなく、効率の良い運転を継続させることができる。 According to the present invention, by operating the three-way valve to control the circulation of the refrigerant to the heat storage bypass circuit, the heating operation can be continued without turning off the thermo, and the efficiency can be improved without impairing the comfort. Good driving can be continued.
第1の発明は、暖房運転時に、圧縮機、四方弁、室内熱交換器、膨張弁、室外熱交換器、四方弁の順に冷媒が流れるように接続した冷凍サイクル備えた空気調和機に関するもの
であり、室内温度を検出する室内温度検出手段と、目標温度を設定する目標温度設定手段と、室外熱交換器と四方弁との間と、四方弁と圧縮機の吸入口との間を接続する蓄熱バイパス回路と、蓄熱バイパス回路内に三方弁と絞り機構をさらに設けるとともに、室内温度が目標温度を上回った状態を所定の時間継続すると、蓄熱バイパス回路内に冷媒が流れるように三方弁を開閉動作する制御を行うようにしている。
1st invention is related with the air conditioner provided with the refrigerating cycle connected so that a refrigerant might flow in order of a compressor, a four-way valve, an indoor heat exchanger, an expansion valve, an outdoor heat exchanger, and a four-way valve at the time of heating operation. Yes, indoor temperature detection means for detecting the room temperature, target temperature setting means for setting the target temperature, between the outdoor heat exchanger and the four-way valve, and between the four-way valve and the suction port of the compressor A heat storage bypass circuit, a three-way valve and a throttle mechanism are further provided in the heat storage bypass circuit, and the three-way valve is opened and closed so that the refrigerant flows into the heat storage bypass circuit when the room temperature exceeds the target temperature for a predetermined time. The control to operate is performed.
この構成は、三方弁を動作する制御を行うことで、サーモオフすることなく暖房運転を継続することができ、快適性を損なうことなく、効率の良い運転を継続させることができる。 In this configuration, by performing control to operate the three-way valve, the heating operation can be continued without turning off the thermo, and the efficient operation can be continued without impairing the comfort.
第2の発明は、三方弁を動作する制御を複数回行うことで、吹出し温度の急激な低下を防止することができる。 2nd invention can prevent the rapid fall of blowing temperature by performing control which operates a three-way valve in multiple times.
第3の発明は、三方弁を動作する制御の回数に上限を設けることにより、吹出し温度が下がりすぎることを防止することができる。 In the third aspect of the present invention, it is possible to prevent the discharge temperature from being excessively lowered by providing an upper limit for the number of times of control for operating the three-way valve.
第4の発明は、三方弁を動作する制御は室内熱交換器温度に基づいて行うことで、吹出し温度を一定の温度以上に維持することができる。 According to the fourth aspect of the invention, the control for operating the three-way valve is performed based on the indoor heat exchanger temperature, so that the blowing temperature can be maintained at a certain temperature or higher.
第5の発明は、圧縮機停止中は三方弁を動作する制御を行わないことにした。このことにより、三方弁の余分な動作が防止できる。 In the fifth aspect of the present invention, the control for operating the three-way valve is not performed while the compressor is stopped. This can prevent excessive operation of the three-way valve.
第6の発明は、室外熱交換器の霜を除去する除霜運転実施中は、三方弁を動作する制御を行わないことで、確実に室外機に付着した霜を取り除くことができる。 6th invention can remove the frost adhering to an outdoor unit reliably by not performing control which operates a three-way valve during the defrost operation which removes the frost of an outdoor heat exchanger.
第7の発明は三方弁を動作する制御が行われた後、三方弁を動作する制御を所定の時間行わないことで、過度に三方弁が動作することなく三方弁の耐久性を確保できる。 In the seventh aspect of the invention, after the control for operating the three-way valve is performed, the control for operating the three-way valve is not performed for a predetermined time, so that the durability of the three-way valve can be ensured without excessively operating the three-way valve.
第8の発明は、蓄熱バイパス回路に冷媒加熱器を備え、このことにより、蓄熱バイパス回路に冷媒加熱器が無い場合に比べて、三方弁を動作する制御を行った際の吹出し温度を高温の状態に保つことができる。 According to an eighth aspect of the present invention, a refrigerant heater is provided in the heat storage bypass circuit, and as a result, the temperature at which the three-way valve is controlled to be controlled is higher than that in the case where the refrigerant heater is not provided in the heat storage bypass circuit. Can be kept in a state.
第9の発明は、冷媒加熱器は圧縮機の熱を蓄熱する蓄熱材と、蓄熱材の内部に冷媒が流れる冷媒流路とで構成されている空気調和機に関するものであり、除霜条件が成立した場合に、膨張弁の開度を全開にし、三方弁を動作して除霜運転を行う。除霜条件が成立した場合は、室内温度が目標温度を所定の時間上回った状態であっても、膨張弁の開度を除霜運転前の状態に戻しサーモオフを回避する制御を行わないことで、除霜運転時に熱の消費を防止することができる。 The ninth invention relates to an air conditioner in which the refrigerant heater is composed of a heat storage material for storing heat of the compressor and a refrigerant flow path in which the refrigerant flows inside the heat storage material. When established, the opening degree of the expansion valve is fully opened, and the three-way valve is operated to perform the defrosting operation. When the defrosting condition is satisfied, even if the room temperature exceeds the target temperature for a predetermined time, the opening degree of the expansion valve is returned to the state before the defrosting operation and control for avoiding the thermo-off is not performed. Heat consumption can be prevented during the defrosting operation.
第10の発明は、蓄熱材温度を検出する蓄熱材温度検出手段と、をさらに備えた空気調和機に関するものであり、蓄熱材温度が所定の温度よりも低い場合は、室内温度が目標温度を所定の時間上回った状態であっても三方弁を動作する制御を行わないことで吹出し温度を高温の状態に保つことができる。 A tenth aspect of the invention relates to an air conditioner further comprising a heat storage material temperature detecting means for detecting a heat storage material temperature, and when the heat storage material temperature is lower than a predetermined temperature, the indoor temperature becomes the target temperature. Even if it is in a state exceeding a predetermined time, it is possible to keep the blowing temperature at a high temperature by not performing the control for operating the three-way valve.
第11の発明は三方弁を動作する制御を、外気温度に基づいて行われることとした。外気温度が一定温度未満である時、除霜に入る可能性が高い為、三方弁を動作する制御を行わないこととした。この構成は、蓄熱材の熱は除霜運転時に取り出すことを目的としているため、三方弁を動作する制御を行わないことで、除霜運転時に熱の消費を防止することができる。 In the eleventh aspect of the invention, the control for operating the three-way valve is performed based on the outside air temperature. Since the possibility of defrosting is high when the outside air temperature is lower than a certain temperature, control to operate the three-way valve is not performed. Since this configuration is intended to take out the heat of the heat storage material during the defrosting operation, heat consumption during the defrosting operation can be prevented by not performing control to operate the three-way valve.
第12の発明は、三方弁を動作する制御が、室外熱交換器の温度に基づいて行われることとした。室外熱交換器の温度が一定温度未満である時、除霜に入る可能性が高い為、三方弁を動作する制御を行わないことで、除霜運転時に熱の消費を防止することができる。 In the twelfth invention, the control for operating the three-way valve is performed based on the temperature of the outdoor heat exchanger. When the temperature of the outdoor heat exchanger is less than a certain temperature, there is a high possibility of defrosting. Therefore, heat consumption can be prevented during the defrosting operation by not performing control to operate the three-way valve.
第13の発明は、三方弁を動作し膨張弁を開いて除霜運転を行った後は、室内温度が目標温度を所定の時間上回った状態であっても、三方弁の開閉を行わないこととした。 In the thirteenth invention, after the three-way valve is operated and the expansion valve is opened and the defrosting operation is performed, the three-way valve is not opened or closed even when the room temperature exceeds the target temperature for a predetermined time. It was.
この構成は、三方弁を動作し膨張弁を開いて除霜運転を行った後も除霜に入る可能性が高い為、三方弁を動作する制御を行わないこととした。この構成は、蓄熱材の熱は除霜運転時に取り出すことを目的としているため三方弁を動作する制御を行わないことで、除霜運転時に熱の消費を防止することができる。 In this configuration, since the possibility of entering the defrosting is high even after the three-way valve is operated and the expansion valve is opened to perform the defrosting operation, the control for operating the three-way valve is not performed. Since this structure is intended to take out the heat of the heat storage material during the defrosting operation, it is possible to prevent the consumption of heat during the defrosting operation by not performing the control for operating the three-way valve.
以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(実施の形態1)
図1は、本発明に係る冷凍サイクル装置である空気調和機の構成を示しており、空気調和機は、冷媒配管で互いに接続された室外機1と室内機2とで構成されている。
(Embodiment 1)
FIG. 1 shows a configuration of an air conditioner that is a refrigeration cycle apparatus according to the present invention, and the air conditioner includes an outdoor unit 1 and an indoor unit 2 that are connected to each other through a refrigerant pipe.
図1に示されるように、室外機1の内部には、圧縮機3と四方弁4と膨張弁5と室外送風ファン6と室外熱交換器12とが設けられ、室内機2の内部には、室内送風ファン7と室内熱交換器11が設けられる。 As shown in FIG. 1, a compressor 3, a four-way valve 4, an expansion valve 5, an outdoor blower fan 6, and an outdoor heat exchanger 12 are provided inside the outdoor unit 1. An indoor fan 7 and an indoor heat exchanger 11 are provided.
さらに詳述すると、圧縮機3の冷媒吸入側には、液相冷媒と気相冷媒を分離するためのアキュームレータ8が設けられている。また、室外熱交換器12と四方弁4との間には三方弁(例えば、電磁弁)21と絞り機構22が設けられている。 More specifically, an accumulator 8 for separating the liquid-phase refrigerant and the gas-phase refrigerant is provided on the refrigerant suction side of the compressor 3. In addition, a three-way valve (for example, an electromagnetic valve) 21 and a throttle mechanism 22 are provided between the outdoor heat exchanger 12 and the four-way valve 4.
さらに、圧縮機3の周囲には蓄熱槽31が設けられ、蓄熱槽31の内部には、蓄熱熱交換器32が設けられるとともに、蓄熱熱交換器32と熱交換するための蓄熱材(例えば、エチレングリコール水溶液)が充填されており、蓄熱槽31と蓄熱熱交換器32と蓄熱材とで蓄熱装置を構成している。 Furthermore, a heat storage tank 31 is provided around the compressor 3, and a heat storage heat exchanger 32 is provided inside the heat storage tank 31, and a heat storage material for exchanging heat with the heat storage heat exchanger 32 (for example, An ethylene glycol aqueous solution) is filled, and the heat storage tank 31, the heat storage heat exchanger 32, and the heat storage material constitute a heat storage device.
これらは冷媒配管(番号付与しないが各部品を連結する線で図示する)を介して互いに接続されることで冷凍サイクルを構成している。 These are connected to each other via a refrigerant pipe (not numbered but illustrated by lines connecting components) to constitute a refrigeration cycle.
室内機2の内部には、室内熱交換器11に加えて、上下羽根(図示せず)と左右羽根(図示せず)とが設けられており、室内熱交換器11は、室内送風ファン7により室内機2の内部に吸込まれた室内空気と、室内熱交換器11の内部を流れる冷媒との熱交換を行い、暖房時には熱交換により暖められた空気を室内に吹き出す一方、冷房時には熱交換により冷却された空気を室内に吹き出す。上下羽根は、室内機2から吹き出される空気の方向を必要に応じて上下に変更し、左右羽根は、室内機2から吹き出される空気の方向を必要に応じて左右に変更する。 In the interior of the indoor unit 2, upper and lower blades (not shown) and left and right blades (not shown) are provided in addition to the indoor heat exchanger 11. The indoor heat exchanger 11 is provided with an indoor blower fan 7. Heat exchange is performed between the indoor air sucked into the indoor unit 2 by the refrigerant flowing through the indoor heat exchanger 11, and the air warmed by heat exchange is blown into the room during heating, while heat exchange is performed during cooling. The air cooled by is blown out into the room. The upper and lower blades change the direction of air blown from the indoor unit 2 up and down as necessary, and the left and right blades change the direction of air blown from the indoor unit 2 to right and left as needed.
また、室外熱交換器12には、暖房運転時の冷媒入口温度及び冷媒出口温度をそれぞれ検出する室外熱交換器入口温度検出手段41と室外熱交換器出口温度検出手段42が設けられ、室内熱交換器11には、室内熱交換器11の温度を検出する室内熱交換器温度検出手段43が設けられている。さらに、蓄熱槽31には、蓄熱槽31の温度を検出する蓄熱槽温度検出手段44が設けられており、室外機1には、外気温度を検出する外気温度検出手段45が設けられている。 The outdoor heat exchanger 12 is provided with an outdoor heat exchanger inlet temperature detecting means 41 and an outdoor heat exchanger outlet temperature detecting means 42 for detecting the refrigerant inlet temperature and the refrigerant outlet temperature during heating operation, respectively. The exchanger 11 is provided with indoor heat exchanger temperature detecting means 43 that detects the temperature of the indoor heat exchanger 11. Further, the heat storage tank 31 is provided with a heat storage tank temperature detection means 44 for detecting the temperature of the heat storage tank 31, and the outdoor unit 1 is provided with an outside air temperature detection means 45 for detecting the outside air temperature.
なお、圧縮機3、室外送風ファン6、室内送風ファン7、上下羽根、左右羽根、四方弁
4、膨張弁5、三方弁21、室外熱交換器入口温度検出手段41、室外熱交換器出口温度検出手段42、室内熱交換器温度検出手段43、蓄熱槽温度検出手段44、外気温度検出手段45等はコントローラ51(例えば、マイコン)に電気的に接続され、圧縮機3、室外送風ファン6、室内送風ファン7、上下羽根、左右羽根、四方弁4、膨張弁5の運転あるいは動作は、コントローラ51からの制御信号に基づいて制御されるとともに、三方弁21はコントローラ51からの制御信号に基づいて開閉動作制御される。
Note that the compressor 3, the outdoor fan 6, the indoor fan 7, the upper and lower blades, the left and right blades, the four-way valve 4, the expansion valve 5, the three-way valve 21, the outdoor heat exchanger inlet temperature detection means 41, and the outdoor heat exchanger outlet temperature. The detection means 42, the indoor heat exchanger temperature detection means 43, the heat storage tank temperature detection means 44, the outside air temperature detection means 45, etc. are electrically connected to the controller 51 (for example, a microcomputer), and the compressor 3, the outdoor blower fan 6, The operation or operation of the indoor blower fan 7, the upper and lower blades, the left and right blades, the four-way valve 4, and the expansion valve 5 is controlled based on a control signal from the controller 51, and the three-way valve 21 is based on a control signal from the controller 51. The opening / closing operation is controlled.
上記構成の本発明に係る冷凍サイクル装置において、各部品の相互の接続関係と機能とを、暖房運転時の場合を例にとり冷媒の流れとともに説明する。 In the refrigeration cycle apparatus according to the present invention having the above-described configuration, the mutual connection relationship and function of each component will be described together with the flow of the refrigerant, taking the case of heating operation as an example.
圧縮機3の吐出口から吐出された冷媒は、冷媒配管を通って四方弁4から室内熱交換器11へと至る。室内熱交換器11で室内空気と熱交換して凝縮した冷媒は、室内熱交換器11を出て冷媒配管を通り、膨張弁5に至る。膨張弁5で減圧した冷媒は、冷媒配管を通って室外熱交換器12に至り、室外熱交換器12で室外空気と熱交換して蒸発した冷媒は、冷媒配管と四方弁4とアキュームレータ8を通って圧縮機3の吸入口へと戻る。 The refrigerant discharged from the discharge port of the compressor 3 reaches the indoor heat exchanger 11 from the four-way valve 4 through the refrigerant pipe. The refrigerant condensed by exchanging heat with indoor air in the indoor heat exchanger 11 exits the indoor heat exchanger 11, passes through the refrigerant pipe, and reaches the expansion valve 5. The refrigerant depressurized by the expansion valve 5 reaches the outdoor heat exchanger 12 through the refrigerant pipe, and the refrigerant evaporated by exchanging heat with the outdoor air in the outdoor heat exchanger 12 passes through the refrigerant pipe, the four-way valve 4 and the accumulator 8. It passes through and returns to the suction port of the compressor 3.
また、室外熱交換器12と四方弁4との間に三方弁21と絞り機構22が設けられており、内部に蓄熱材と蓄熱熱交換器32を収納した蓄熱槽31は、圧縮機3に接して取り囲むように配置され、圧縮機3で発生した熱を蓄熱材に蓄積し、三方弁21と絞り機構22を経て蓄熱熱交換器32の入口へと至り、蓄熱熱交換器32の出口から出た冷媒配管は、四方弁4とアキュームレータ8の間に合流する。 Further, a three-way valve 21 and a throttle mechanism 22 are provided between the outdoor heat exchanger 12 and the four-way valve 4, and a heat storage tank 31 containing a heat storage material and a heat storage heat exchanger 32 is provided in the compressor 3. The heat generated in the compressor 3 is accumulated in the heat storage material, passes through the three-way valve 21 and the throttle mechanism 22, reaches the inlet of the heat storage heat exchanger 32, and exits from the heat storage heat exchanger 32. The refrigerant pipe that has exited joins between the four-way valve 4 and the accumulator 8.
次に、図1に示される空気調和機の通常暖房時の動作及び冷媒の流れを模式的に示す図2を参照しながら通常暖房時の動作を説明する。 Next, the operation during normal heating will be described with reference to FIG. 2 schematically showing the operation during normal heating and the flow of the refrigerant of the air conditioner shown in FIG.
通常暖房運転時、三方弁21はA―B間が開通しておりCは閉じている。上述したように圧縮機3の吐出口から吐出された冷媒は、冷媒配管を通って四方弁4から室内熱交換器11に至る。室内熱交換器11で室内空気と熱交換して凝縮した冷媒は、室内熱交換器11を出て、冷媒配管を通り膨張弁5に至り、膨張弁5で減圧した冷媒は、冷媒配管を通って室外熱交換器12に至る。室外熱交換器12で室外空気と熱交換して蒸発した冷媒は、冷媒配管を通って四方弁4からアキュームレータ8を通り圧縮機3の吸入口へと戻る。 During normal heating operation, the three-way valve 21 is open between AB and C is closed. As described above, the refrigerant discharged from the discharge port of the compressor 3 reaches the indoor heat exchanger 11 from the four-way valve 4 through the refrigerant pipe. The refrigerant condensed by exchanging heat with the indoor air in the indoor heat exchanger 11 exits the indoor heat exchanger 11, passes through the refrigerant pipe, reaches the expansion valve 5, and the refrigerant decompressed by the expansion valve 5 passes through the refrigerant pipe. To the outdoor heat exchanger 12. The refrigerant that has evaporated by exchanging heat with outdoor air in the outdoor heat exchanger 12 returns from the four-way valve 4 through the accumulator 8 to the suction port of the compressor 3 through the refrigerant pipe.
また、圧縮機3で発生した熱は、圧縮機3の外壁から蓄熱槽31の外壁を介して蓄熱槽31の内部に収容された蓄熱材に蓄積される。 The heat generated in the compressor 3 is accumulated in the heat storage material accommodated in the heat storage tank 31 from the outer wall of the compressor 3 through the outer wall of the heat storage tank 31.
次に、図1に示される空気調和機の除霜・暖房時の動作及び冷媒の流れを示す模式的に示す図3を参照しながら除霜・暖房時の動作を説明する。尚、図3における矢印の表記で、実線は圧縮機3から吐出され凝縮工程(高圧側)までの冷媒の流れを表し、破線は凝縮工程の後、絞り機構22で減圧され蒸発工程(低圧側)を経て圧縮機3まで戻る冷媒の流れを表している。 Next, the operation during defrosting / heating will be described with reference to FIG. 3 schematically showing the operation of the air conditioner shown in FIG. 1 during defrosting / heating and the flow of refrigerant. 3, the solid line represents the flow of refrigerant discharged from the compressor 3 to the condensation process (high pressure side), and the broken line is decompressed by the throttle mechanism 22 after the condensation process and evaporated (low pressure side). ) And the flow of the refrigerant returning to the compressor 3.
上述した通常暖房運転中に室外熱交換器12に着霜し、着霜した霜が成長すると、室外熱交換器12の通風抵抗が増加して風量が減少し、室外熱交換器12内の蒸発温度が低下する。本発明に係る冷凍サイクル装置である空気調和機には、図1に示されるように、暖房運転時における室外熱交換器12の冷媒入口温度を検出する室外熱交換器入口温度検出手段41が設けられており、非着霜時に比べて、蒸発温度が低下したことを室外熱交換器入口温度検出手段41で検出すると、コントローラ51から通常暖房運転から除霜・暖房運転への指示が出力される。 When the outdoor heat exchanger 12 is frosted during the normal heating operation described above and the frost that has grown grows, the ventilation resistance of the outdoor heat exchanger 12 increases, the air flow decreases, and evaporation in the outdoor heat exchanger 12 occurs. The temperature drops. As shown in FIG. 1, an air conditioner that is a refrigeration cycle apparatus according to the present invention is provided with an outdoor heat exchanger inlet temperature detection means 41 for detecting the refrigerant inlet temperature of the outdoor heat exchanger 12 during heating operation. When the outdoor heat exchanger inlet temperature detection means 41 detects that the evaporation temperature has decreased as compared with the time of non-frosting, the controller 51 outputs an instruction from the normal heating operation to the defrosting / heating operation. .
通常暖房運転から除霜・暖房運転に移行すると、三方弁21が動作しA−C間が開通し
Bが閉じ、同時に膨張弁5の開度が全開となり、室外熱交換器12には室内熱交換器11を通過した冷媒が減圧されず流入し、室外熱交換器12の中で冷媒は熱交換され室内熱交換器11と同じく凝縮し液層化することになり、冷媒が凝縮する工程において外部に放出された熱量によって室外熱交換器12に着霜した霜が除霜される。
When the normal heating operation is shifted to the defrosting / heating operation, the three-way valve 21 is operated to open between A and C, and B is closed. At the same time, the opening of the expansion valve 5 is fully opened. In the step where the refrigerant that has passed through the exchanger 11 flows in without being decompressed, the refrigerant is heat-exchanged in the outdoor heat exchanger 12 and is condensed and liquefied in the same manner as the indoor heat exchanger 11. The frost formed on the outdoor heat exchanger 12 is defrosted by the amount of heat released to the outside.
また室外熱交換器12で凝縮された冷媒は三方弁21の中でA−C間を通り、絞り機構22で減圧され液相冷媒となり、蓄熱熱交換器32で蓄熱材から吸熱し蒸発、気相化して冷媒配管を通り、アキュームレータ8から圧縮機3の吸入口へと戻る。 The refrigerant condensed in the outdoor heat exchanger 12 passes between A and C in the three-way valve 21 and is reduced in pressure by the throttle mechanism 22 to become a liquid phase refrigerant. The heat storage heat exchanger 32 absorbs heat from the heat storage material, evaporates, Phases through the refrigerant pipe and returns from the accumulator 8 to the suction port of the compressor 3.
除霜・暖房開始時に霜の付着により氷点下となった室外熱交換器12の温度は、上記の通り、圧縮機3の吐出口から出た気相冷媒が凝縮しし液層化するによって加熱されて、零度付近で霜が融解し、霜の融解が終わると、室外熱交換器12の温度は再び上昇し始める。この室外熱交換器12の温度上昇を室外熱交換器出口温度検出手段42で検出すると、除霜が完了したと判断し、コントローラ51から除霜・暖房運転から通常暖房運転への指示が出力される。 As described above, the temperature of the outdoor heat exchanger 12 that has become below freezing due to the attachment of frost at the start of defrosting / heating is heated by condensing the gas-phase refrigerant from the discharge port of the compressor 3 into a liquid layer. When the frost melts near zero degrees and the frost melts, the temperature of the outdoor heat exchanger 12 begins to rise again. When the temperature rise of the outdoor heat exchanger 12 is detected by the outdoor heat exchanger outlet temperature detecting means 42, it is determined that the defrosting is completed, and the controller 51 outputs an instruction from the defrosting / heating operation to the normal heating operation. The
図4は、図1に示される空気調和機の暖房運転時に室内温度が目標温度を上回った状態を所定の時間継続した場合に、圧縮機を停止させずに、暖房運転を継続させるため、三方弁を動作した状態における暖房時動作及び冷媒の流れを模式的に示したものであり、図5は三方弁の開閉を行う制御の制御フロー図である。 FIG. 4 illustrates a three-way operation in order to continue the heating operation without stopping the compressor when the room temperature exceeds the target temperature for a predetermined time during the heating operation of the air conditioner shown in FIG. FIG. 5 is a control flow diagram of control for opening and closing the three-way valve, schematically showing the heating operation and the refrigerant flow in a state where the valve is operated.
以下、図4及び図5を参照しながら暖房運転時の三方弁開閉制御動作を説明する。 Hereinafter, the three-way valve opening / closing control operation during the heating operation will be described with reference to FIGS. 4 and 5.
暖房運転開始後、ステップSP1において、圧縮機3が駆動しているかどうかを判定し、圧縮機3が駆動していれば、ステップSP2へ進み、圧縮機3が駆動していなければステップSP15へ進む。 After the heating operation is started, in step SP1, it is determined whether or not the compressor 3 is driven. If the compressor 3 is driven, the process proceeds to step SP2, and if the compressor 3 is not driven, the process proceeds to step SP15. .
ステップSP1から進んだステップSP2において、蓄熱槽31の温度がa℃以上(例えば0℃)、の条件を満たしている場合、ステップSP3へ進む。条件を満たしていない場合は吹出し温度が著しく低下してしまう可能性があるため、本制御を実施することなくステップSP15へ進む。 In step SP2 advanced from step SP1, when the temperature of the heat storage tank 31 satisfies the condition of a ° C. or higher (for example, 0 ° C.), the process advances to step SP3. If the condition is not satisfied, the blow-out temperature may be remarkably lowered, so the process proceeds to step SP15 without performing this control.
ステップSP2から進んだステップSP3において、暖房運転開始から1度も除霜運転を実施していない若しくは前回除霜運転実施からA分経過(例えば360分)している場合、ステップSP4へ進み、暖房運転開始後、除霜運転を実施し、A分経過していない場合は、再度除霜運転に入る事が容易に想定できる為、本来除霜に使用する為に蓄熱材に蓄えた熱を、三方弁21を動作することで放出して除霜に使用できなくなることを避ける為、本制御を実施することなくステップSP15へ進む。 In step SP3 advanced from step SP2, if the defrosting operation has not been performed once since the start of the heating operation or if A minutes have elapsed (for example, 360 minutes) since the previous defrosting operation was performed, the process proceeds to step SP4. When the defrosting operation is carried out after the start of operation and A has not elapsed, it can be easily assumed to enter the defrosting operation again, so the heat stored in the heat storage material originally used for defrosting, In order to avoid that the three-way valve 21 is released and cannot be used for defrosting, the process proceeds to step SP15 without performing this control.
ステップSP3から進んだステップSP4において、暖房運転開始から1度も本制御を実施していない若しくは前回本制御実施からB分経過(例えば30分)している場合、ステップSP5へ進み、暖房運転開始後、本制御を実施し、B分経過していない場合は、ステップSP15へ進む。 In step SP4 that has proceeded from step SP3, if the main control has not been performed once since the start of the heating operation or if B minutes have elapsed (for example, 30 minutes) since the previous main control was performed, the flow proceeds to step SP5 and the heating operation is started. Thereafter, this control is performed, and if the B minutes have not elapsed, the process proceeds to step SP15.
ステップSP4から進んだステップSP5において、空気調和機が除霜中であった場合は、除霜運転において膨張弁5の開度を全開とする為、本制御を実施することなくステップSP15へ進み、除霜運転中でない場合はステップSP6へ進む。 If the air conditioner is in the process of defrosting in step SP5 advanced from step SP4, in order to fully open the opening of the expansion valve 5 in the defrosting operation, the process proceeds to step SP15 without performing this control. If the defrosting operation is not being performed, the process proceeds to step SP6.
ステップSP5から進んだステップSP6において、外気温度がc℃以上(例えば−5℃)である時、ステップSP7へ進み、外気温度がc℃未満である時、除霜に入る可能性
が高い(又は、空気調和機の室内への熱量の投入能力が過多になる可能性が低い)為、ステップSP15へ進む。
In step SP6 advanced from step SP5, when the outside air temperature is not lower than c ° C. (for example, −5 ° C.), the process proceeds to step SP7, and when the outside air temperature is lower than c ° C., there is a high possibility of entering defrosting (or Therefore, since there is a low possibility that the capacity of heat input into the air conditioner's room is excessive), the process proceeds to step SP15.
ステップSP6から進んだステップSP7において、室外熱交換器12の温度がd℃以上(例えば2℃)である場合、ステップSP8へ進み、室外熱交換器12の温度がd℃未満である場合、除霜に入る可能性が高い為、ステップSP15へ進む。 If the temperature of the outdoor heat exchanger 12 is not lower than d ° C. (for example, 2 ° C.) in step SP7 advanced from step SP6, the process proceeds to step SP8, and if the temperature of the outdoor heat exchanger 12 is lower than d ° C. Since there is a high possibility of entering frost, the process proceeds to step SP15.
ステップSP8において、室内温度から設定温度を引いた値がe℃以上(例えば2℃)であり、室内温度から設定温度を引いた値がe℃以上である状態をC秒以上(例えば90秒)維持した場合、室内への熱量の投入が過多であると判断し、ステップSP9へ進み、室内温度から設定温度を引いた値がe℃未満又は、室内温度から設定温度を引いた値がd℃以上の状態をC秒以上維持していない場合はステップSP15へ進む。 In step SP8, a value obtained by subtracting the set temperature from the room temperature is e ° C or higher (for example, 2 ° C), and a state in which the value obtained by subtracting the set temperature from the room temperature is eC or higher is C seconds or longer (for example, 90 seconds). If it is maintained, it is determined that the amount of heat input into the room is excessive, and the process proceeds to step SP9 where the value obtained by subtracting the set temperature from the room temperature is less than e ° C or the value obtained by subtracting the set temperature from the room temperature is d ° C. When the above state is not maintained for C seconds or more, the process proceeds to step SP15.
ステップSP8から進んだステップSP9において、室内熱交換器11の温度がf℃以上(例えば40℃以上)である時、本制御の実施を許可しSP10へ進み本制御を開始する。室内熱交換器11の温度がf℃未満である時、ステップSP15へ進む。 In step SP9 that has advanced from step SP8, when the temperature of the indoor heat exchanger 11 is equal to or higher than f ° C. (for example, 40 ° C. or higher), execution of this control is permitted, and the flow advances to SP10 to start this control. When the temperature of the indoor heat exchanger 11 is less than f ° C., the process proceeds to step SP15.
ステップSP8から進んだステップSP9において開始された本制御は、ステップSP10において三方弁21が動作しA−C間が開通し、A−Bが閉塞する。A−C間の開通がD秒間(例えば3秒)行われ、その後、ステップSP11において三方弁21が動作しA−B間が開通し、A−Cが閉塞する。 In the present control started in step SP9 that has advanced from step SP8, the three-way valve 21 is operated in step SP10 to open between A and C, and AB is closed. The opening between A and C is performed for D seconds (for example, 3 seconds). Thereafter, in step SP11, the three-way valve 21 is operated to open between A and B, and A and C are closed.
ステップSP12において、ステップSP11で三方弁21が動作しA−B間が開通したE秒(例えば20秒)経過後、三方弁21のA−B間が開通した状態で、室内熱交換器11の温度がf℃以上であるかどうかを再度判定し、室内熱交換器11の温度がf℃以上である場合はステップSP13へ進み、室内熱交換器11の温度がf℃未満の場合はステップSP14へ進み、本制御を終了する。 In step SP12, after E seconds (for example, 20 seconds) when the three-way valve 21 is operated and the passage between A and B is opened in step SP11, the passage between the A and B of the three-way valve 21 is opened. It is determined again whether the temperature is equal to or higher than f ° C. When the temperature of the indoor heat exchanger 11 is equal to or higher than f ° C, the process proceeds to step SP13. When the temperature of the indoor heat exchanger 11 is lower than f ° C, step SP14 is performed. Proceed to and end this control.
ステップSP13において、三方弁21を動作する回数が、本制御の最大回数F回(例えば3回)に到達した場合は、ステップSP14へ進み本制御を終了しステップSP15へ進み、三方弁21を開く動作が本制御の最大回数F回に到達していない場合は、ステップSP10へ戻り、再度、三方弁21を動作する。 In step SP13, when the number of times the three-way valve 21 is operated reaches the maximum number F of the main control (for example, three times), the process proceeds to step SP14, the present control is terminated, the process proceeds to step SP15, and the three-way valve 21 is opened. When the operation has not reached the maximum number F of the main control, the process returns to step SP10 and the three-way valve 21 is operated again.
ステップSP15において、運転停止が選択されていなければ、運転を継続し、ステップSP1へ戻り、運転が停止されていた場合は、運転を停止する。 In step SP15, if the operation stop is not selected, the operation is continued, and the process returns to step SP1, and if the operation is stopped, the operation is stopped.
以上の制御を実施することにより、ステップSP9以降の本制御時において、三方弁21が動作しA−C間が開通すると、室外熱交換器12の中で液冷媒は蒸発し気化した後、三方弁21のA−C間を通り、絞り機構22にて更に減圧され低圧化した気相冷媒となり蓄熱熱交換器32に至る。冷媒は、蓄熱槽31の中に充填され圧縮機3の放熱した熱量を蓄えた蓄熱材と熱交換し吸熱するが、気相であるため温度的には上昇するものの相が変化することはなく、蓄熱熱交換器32を通過することによることで、生じる圧力損失により、更に低圧化されアキュームレータ8を介して圧縮機3に戻ることになる。 By carrying out the above control, when the three-way valve 21 is operated and the circuit between A and C is opened during the main control after step SP9, the liquid refrigerant is evaporated and vaporized in the outdoor heat exchanger 12, and then the three-way It passes between A and C of the valve 21 and becomes a gas-phase refrigerant that is further reduced in pressure and reduced in pressure by the throttle mechanism 22 and reaches the heat storage heat exchanger 32. The refrigerant exchanges heat with the heat storage material filled in the heat storage tank 31 and stores the amount of heat radiated by the compressor 3, and absorbs heat. However, since it is in the gas phase, the temperature rises but the phase does not change. By passing through the heat storage heat exchanger 32, the pressure is further reduced due to the generated pressure loss and returns to the compressor 3 via the accumulator 8.
この結果、制御中の圧縮機3の吐出圧力は、通常暖房運転時より低下し、一時的に室内熱交換器11の飽和圧力(高圧)が低下する。この作用によってサーモオフを行わず暖房運転を継続することが可能となる。 As a result, the discharge pressure of the compressor 3 being controlled is lower than that during normal heating operation, and the saturation pressure (high pressure) of the indoor heat exchanger 11 is temporarily reduced. This action makes it possible to continue the heating operation without performing the thermo-off.
本発明に係る空気調和機は蓄熱バイパス回路と三方弁を用いてサーモオフ運転を行わず
に暖房運転を持続可能にするので、冬季にサーモオフ運転を行う他の冷凍サイクル装置にも有効利用することができる。
Since the air conditioner according to the present invention uses the heat storage bypass circuit and the three-way valve to enable the heating operation without performing the thermo-off operation, it can be effectively used for other refrigeration cycle apparatuses that perform the thermo-off operation in winter. it can.
1 室外機
2 室内機
3 圧縮機
4 四方弁
5 膨張弁
6 室外送風ファン
7 室内送風ファン
8 アキュームレータ
11 室内熱交換器
12 室外熱交換器
21 三方弁
22 絞り機構
31 蓄熱槽
32 蓄熱熱交換器
41 室外熱交換器入口温度検出手段
42 室外熱交換器出口温度検出手段
43 室内熱交換器温度検出手段
44 蓄熱槽温度検出手段
45 外気温度検出手段
51 コントローラ、
DESCRIPTION OF SYMBOLS 1 Outdoor unit 2 Indoor unit 3 Compressor 4 Four-way valve 5 Expansion valve 6 Outdoor ventilation fan 7 Indoor ventilation fan 8 Accumulator 11 Indoor heat exchanger 12 Outdoor heat exchanger 21 Three-way valve 22 Throttle mechanism 31 Thermal storage tank 32 Thermal storage heat exchanger 41 Outdoor heat exchanger inlet temperature detection means 42 Outdoor heat exchanger outlet temperature detection means 43 Indoor heat exchanger temperature detection means 44 Thermal storage tank temperature detection means 45 Outdoor air temperature detection means 51 Controller,
Claims (12)
場合は、室内温度が目標温度を上回った状態であっても、前記三方弁を動作する制御を行わないことを特徴とする空気調和機。 The refrigerant heater is composed of a heat storage material for storing heat of the compressor and a refrigerant flow path through which the refrigerant flows inside the heat storage material, and when the defrost condition is satisfied, the opening degree of the expansion valve is increased. The air conditioner according to claim 1 , wherein the defrosting operation is performed by operating the three-way valve with the valve fully open, and when the defrost condition is satisfied, even if the indoor temperature is higher than the target temperature, An air conditioner characterized by not performing control to operate the three-way valve.
After the opening degree of the expansion valve is fully opened and the three-way valve is operated to perform the defrosting operation, the control for operating the three-way valve is performed even if the room temperature exceeds the target temperature for a predetermined time. It does not perform, The air conditioner of any one of Claim 8 to 11 characterized by the above-mentioned.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012172640A JP5903585B2 (en) | 2012-08-03 | 2012-08-03 | Air conditioner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012172640A JP5903585B2 (en) | 2012-08-03 | 2012-08-03 | Air conditioner |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014031954A JP2014031954A (en) | 2014-02-20 |
JP5903585B2 true JP5903585B2 (en) | 2016-04-13 |
Family
ID=50281915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012172640A Active JP5903585B2 (en) | 2012-08-03 | 2012-08-03 | Air conditioner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5903585B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105042795B (en) * | 2015-08-31 | 2018-02-09 | 青岛海尔空调器有限总公司 | Wall-mounted transducer air conditioning control method |
CN105042794A (en) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | Air conditioner control method |
CN105091240A (en) * | 2015-08-31 | 2015-11-25 | 青岛海尔空调器有限总公司 | Variable-frequency air conditioner control method |
CN105091241B (en) * | 2015-08-31 | 2018-03-20 | 青岛海尔空调器有限总公司 | A kind of method for controlling transducer air conditioning |
CN105157170A (en) * | 2015-08-31 | 2015-12-16 | 青岛海尔空调器有限总公司 | Method for controlling variable frequency air conditioner |
JP7199529B2 (en) * | 2019-05-28 | 2023-01-05 | 三菱電機株式会社 | Control device, air environment adjustment system, air environment adjustment method, program, and recording medium |
CN114459167B (en) * | 2021-12-24 | 2023-09-26 | 青岛海尔空调电子有限公司 | Method and device for controlling air source heat pump and air source heat pump |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS597861A (en) * | 1982-07-05 | 1984-01-17 | 松下電器産業株式会社 | Heat accumulation type air conditioner |
JPH0331666A (en) * | 1989-06-28 | 1991-02-12 | Matsushita Electric Ind Co Ltd | Heat pump type air conditioner |
JP2797695B2 (en) * | 1990-11-08 | 1998-09-17 | 三菱電機株式会社 | Air conditioner |
JPH053856U (en) * | 1991-06-21 | 1993-01-22 | 株式会社富士通ゼネラル | Air conditioner |
JP2913235B2 (en) * | 1992-09-09 | 1999-06-28 | 株式会社日立製作所 | Air conditioner |
JP3076411U (en) * | 2000-09-19 | 2001-04-06 | 船井電機株式会社 | Operation control device for air conditioner |
JP2007057191A (en) * | 2005-08-26 | 2007-03-08 | Matsushita Electric Ind Co Ltd | Air conditioner |
JP2010236816A (en) * | 2009-03-31 | 2010-10-21 | Nippon Pmac Co Ltd | Heat pump type air conditioner and method of controlling heat pump type air conditioner |
-
2012
- 2012-08-03 JP JP2012172640A patent/JP5903585B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2014031954A (en) | 2014-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5903585B2 (en) | Air conditioner | |
JP5238001B2 (en) | Refrigeration cycle equipment | |
JP5427428B2 (en) | Heat pump type hot water supply / air conditioner | |
EP2530411B1 (en) | Refrigeration cycle equipment | |
JP5204189B2 (en) | Refrigeration cycle equipment | |
JP5445570B2 (en) | Air conditioner | |
JP5210364B2 (en) | Air conditioner | |
EP2623897B1 (en) | Refrigeration cycle equipment | |
JP2013104623A (en) | Refrigeration cycle device and air conditioner with the same | |
JP2013072621A (en) | Air conditioner | |
CN108779938A (en) | Air conditioning hot supply system | |
JP2022057100A (en) | Air conditioner and management device | |
JP6272481B2 (en) | Air conditioner | |
JP4622901B2 (en) | Air conditioner | |
JP6465332B2 (en) | Heat pump hot water supply system | |
JP5287820B2 (en) | Air conditioner | |
JP5287821B2 (en) | Air conditioner | |
JP5927500B2 (en) | Refrigeration cycle apparatus and air conditioner equipped with the same | |
JP2006275449A (en) | Heat storage type air conditioner | |
WO2011108019A1 (en) | Refrigeration cycle device | |
JP2012037130A (en) | Refrigeration cycle device | |
JP2012077938A (en) | Refrigerating cycle device | |
JP5310696B2 (en) | Air conditioner | |
JP2013104586A (en) | Refrigerating cycle device and air conditioner with the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150130 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20150224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20151015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151027 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151110 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151221 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5903585 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |